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Abstract. An improved design of cryptosystem based on small Ree groups is proposed. We have changed the encryption 

algorithm and propose to use a logarithmic signature for the entire Ree group. This approach improves security against 

sequential key recovery attacks. Hence, the complexity of the key recovery attack will be defined by a brute-force attack over 
the entire group. In this paper, we have proved that to construct secure cryptosystems with group computations over a small 

finite field its needed to use 3-parametric small Ree group. 
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INTRODUCTION 

Within a few papers of our research on post-quantum public cryptography several 

approaches were considered with an aim of improving the original scheme of MST3 

cryptosystem which was introduced by Lempken et al. [4]. Original design was based on 

random covers. Suzuki 2-group is chosen for the original design. However, there are many 

attack vectors found in the original design. And it became strong evidence of non-readiness 

for PQC era.  

A more secure cryptosystem design (aka eMST3) was introduced by Svaba et al. [6]. 

Secret homomorphic coverage was used. After that, the general approach of strong aperiodic 

logarithmic signatures construction for any abelian p-groups was introduced by van Trung 

[9].  

Our research group has joined this scientific journey [10–14] to improve MST3 

cryptography, considering this cryptosystem as a PQC-ready candidate. Hence, we have 

considered the implementations of X-parameter groups (where X is a few parameters). We 

have addressed an issue with computational overheads by reducing large keys. This 

approach has shown a significant increase of encryption and decryption efficiency. Also, we 

found the way to construct a more secure cryptosystem using groups with a large order. 

Here, we also compute the logarithmic signature outside the group center. We do it over 

finite fields of small dimension. 

This work shows a new encryption algorithm with bonded keys. Also, we evaluate brute-

force attacks on key recovery for a cryptosystem with Ree groups. 



GENETAL ENCRYPTION SCHEME BASED ON REE GROUPS 

We have a finite field qF  and define a small Ree group over it as follows: 2 13 nq +=  for some 

0n   and 3np = as [15] 

( ) , , , ,q qRee q (y), (y) (y) h( ) I y F F    − =   . 

We represent a subgroup ( )U q  for the ( )Ree q  of upper triangular matrices in the form of  

( ) , qQ q (y), (y) (y) y F  =  . 

We also represent each element of ( )Q q  uniquely 

( ) ( ) ( )( )U x,y,z x y z  =  

so  ( ) ( ) qQ q U x, y,z x, y,z F=  , and it follows that 3Q q= . Also, Q  is a Sylow 3-subgroup of 

( )Ree q , and we conclude by computing the following 

3 3 1 2 3

1 1 1 2 2 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2( ) ( ) ( ),p p pU x , y ,z U x , y ,z U x x , y y x x ,z z x y x x x x+= + + − + − + −  

1 3 1 3 2( ) ( )p pU x, y,z U x, y z , z xy x− + += − − − − − + . 

The center ( )  (0 0 ) qZ Q U , , F =  . 

We have subgroup Q  for the small group ( )Ree q  with a greater ( ) 3ordQ q q=  than the 

Suzuki group orders. In original scheme Suzuki groups is used and there are isomorphic to 

the projective linear group ( )3, qPGL F , where 22q p= , 2mp =  and has order 2q .  

Here, we continue to consider the way of implementing a small Ree group-based 

cryptosystem [13].  

We have a  ( ) ( ) , , qQ q U v,w, v w F =   as a large group with 2 13 nq += , 0n  , 3np = . 

Tame logarithmic signatures can be defined by the following way 

( ) ( )( )(1) 1(1) (1) 1(1)
,..., 0, ,0s ij ij

w W W w U w = = =  , ( ) ( )( )(2) 1(2) (2) 2(2)
,..., 0,0,s ij ij

w W W w U w = = =   

of types ( )1( ) ( ),...,t h t  , 1, ( )i h t= , ( )1, i tj = , ( )ij t qw F , 1, 2t =  for coordinates w  and  . 

Then, we choose two random covers 

( ) ( )(1) 1(1) (1) (1) (1) (1)(1)
,..., , ,

v ws ij ij ij ijv V V v U v v v


 = = =  , ( ) ( )(2) 1(2) (2) (2) (2)(2)
,..., 0, ,

ws ij ij ijv V V v U v v


 = = =   

The type of cover is the same as ( )tw , 1, 2t =  respectively, ( )ijv Q q ,  ( ) ( ) ( ), , \ 0
v wij t ij t ij t qv v v F


 . 



 

We generate 0( ) 1( ) ( ), ,..., \k t h t Q Z    , ( )( ) ( ) ( ) ( ), ,
a b ci t i t i t i tU   = ,  ( ) / 0

ji t qF  , 0, ( )i h t= , 1,3j = , 1,2t =  

and 
(1) 0(2)h = . 

Calculating 

( ) ( )( )( )1

( ) 1( ) ( ) ( 1)( ) ( )( ) ( ) ( )
,...,t t h t ij i t ij ij i tt t t

v w      −

−
 = = =  , 1, ( )i h t= ,

( )1, i tj = , 1, 2t = , 

where   is a homomorphic function ( )( ) ( ), , 0, ,U v w U w  = . 

Hence, we have an output public key  , ( , )t tv  , and a private key 
 

( )( ) ( ) ( ), ,...,t 0 t h tw   
 

, 1, 2t = . 

The next step is to proceed with encryption. 

As input data, we have a message ( )2 30, ,x U x x=  and the public key  , ( , )t tv  , 1,2t = . 

As output data, we have a ciphertext ( )1 2 3, ,z z z  of the message x . 

Generate random 
1 2( , )a a a= , 1 2,

Z
a a Z  and calculate 

( ) ( ) ( )1 1 1 2 2' ' 'z v a x v a v a x=  =   , ( ) ( ) ( )2 1 1 2 2' ' 'z a a a  = =  , ( )( )3 2 2'z v a= . 

We have ( )1 2 3, ,z z z  as an output. 

The next step is to proceed with decryption. 

As input data, we have a ciphertext ( )1 2 3, ,z z z  and private key ( )( ) ( ) ( ), ,...,t 0 t h tw   
 

, 1,2t = . 

As an output data we have the message x  corresponding to the ciphertext ( )1 2 3, ,z z z . 

To perform the decryption of the message x , we are going to restore random numbers 

1 2( , )a a a= . We know the parameter ( )
1(1) 1v a  from the

1z  and it is included in the second 

component of 
2z . 

Let’s generate (1) 1

1 2 0(1) 2 (2)( , ) sC a a z −=  , ( )
1 (1)

1 1 2( ) ( , ).C a z C a a
− =  

We may restore 
1a  using ( )

1

(1) 1w a
− . We simply remove ( )1 1' a  from 

2z  

( ) ( )
1(1)

2 1 1 2 2 2' 'z a z a 
−

= = . 

We calculate 

(2) 1

2 0(2) 2 (2)( ) sC a z −=  , (2) 1 (2)

2 3 2( ) ( ) ( )C a C a z C a −= =  

and restore 2a  with ( )(2) 2w a  using ( )
1

(2) 2w a
− .  

We recover 1 2( , )a a a=  and the message x  from 1z  

( )
1

1 2 1' ,x v a a z
−

=  . 



This general approach was confirming its results in [13]. However, it has several 

significant drawbacks.  

First, the keys 
1a  and 

2a  allow sequential key recovery attack. Key recovery of
1a  over a 

brute force attack based on brute force 
1 'a  can be performed based on the computing ( )1 1' 'v a  

followed by value comparison 
1z  in coordinate v  within a next equation 

( ) ( ) ( ) ( )( )1 (1) 1 (1) 1 (2) 2' ' ' , ' ' ,
v w w wz v a x U v a v a v a x=  = + +  . 

Also, iterating and finding 
1 'a  have no dependencies on the value 

2a . It is possible to 

recover a Key 
2a  through computing ( )2 2' 'v a  and comparison with 

3z  in coordinate   within 

a next equation 

( )( ) ( )( )3 2 2 (2) 2' ' 0,0, '
w

z f v a U v a= = . 

We evaluate the complexity of the attack on the keys 
1 2( , )a a a=  equals to 2q . 

Also, the encryption algorithm does not use the entire volume of the group definition. 

The Ree group is only the deriver group  1( ) (0 ) , qQ q U ,w, w F =  , which has 2

1( )Q q q= , what 

determines the size of the message when encrypted 2x q= .  

 

PROPOSED APPROACH 

Our analysis has shown that extension of the logarithmic signature to the whole Ree group 

will eliminate these shortcomings. Let’s have  ( ) ( ) qQ q U v,w, v,w, F =  , with 3Q q= . We 

changed the encryption algorithm by implementation of bonded keys of logarithmic 

signatures. It improves security against a sequential recovery attack.  

Let’s describe the proposed scheme as follows 

Let  ( ) ( ) qQ q U v,w, v,w, F =   be a large group with 2 13 nq += , 0n  , 3np = . 

Next step is to proceed with key generation. 

The tame logarithmic signatures should be chosen ( )( ) 1( ) ( ) ( )
,...,t t h t ij t

w W W w = =  , ( )
( )

( )ij t
w Q q  of 

type ( )1( ) ( ),...,t h t  , 1, ( )i h t= , ( )1, i tj = , ( )ij t qw F , 1,3t = . Group element ( )
( )ij t

w  has a value in only 

one coordinates v , w , or  , respectively. For example, ( ) ( )( )(1)
, 0,0

vij ij tw U w= . 



 

Choose a random covers ( ) ( )( ) 1( ) ( ) ( ) ( ) ( )( )
,..., , ,

v wt t h t ij ij t ij t ij tt
v V V v U v v v


 = = =   of the same types as ( )tw , 

where ( )ijv Q q ,  ( ) ( ) ( ), , \ 0
v wij t ij t ij t qv v v F


 , 1,3t = ,

( )1, i tj = , 0, ( )i h t= . 

We generate 0( ) 1( ) ( ), ,..., \t t h t Q Z    , ( )( ) ( ) ( ) ( ), ,
v wi t i t i t i tU


   = ,  ( ) ( ) ( ), , / 0

v wi t i t i t qF


    , 1,3t = , 0, ( )i h t= . 

Let’s 
( 1) 0( )h t t − = , 1,3t = . 

We generate the homomorphic function defined by  

( )( ) ( )1 , , 0, ,U v w U w  = , ( )( ) ( )2 , , 0,0,U v w U  = . 

Next, we calculate 

( ) ( ) ( )1

(1) 1(1) (1) ( 1)(1) (1)(1) (1) (1)
,..., h ij i ij ij iv w     −

−
 = = =  ,

(1)1, ij = , 1, (1)i h=  , 

( ) ( )( )( )1

(2) 1(2) (2) ( 1)(2) 1 (2)(2) (2) (2)
,..., h ij i ij ij iv w      −

−
 = = =  , 

(2)1, ij = , 1, (2)i h=  , 

( ) ( )( )( )1

(3) 1(3) (3) ( 1)(3) 2 (3)(3) (3) (3)
,..., h ij i ij ij iv w      −

−
 = = =  ,

(3)1, ij = , 1, (3)i h= , 

where 

( ) ( )( ) ( )(1) (1) (1) (1) (1) (1) (1)1
, , ,0,0 , , ,

v w v vv
ij ij ij ij ij ij ijij

v w U v v v U w U v w


= = +    

( ) ( ) ( )( ) ( )1 (2) (2) (2) (2) (2) (2) (2)2
0, , 0, ,0 0, , ,

w w ww
ij ij ij ij ij ij ijij

v w U v v U w U v w w
 

 = = +  

( ) ( ) ( )( ) ( )( )2 (3) (3) (3) (3)3 3
0,0, 0,0, 0,0, .ij ij ij ijij ij

v w U v U w U v w
  

 = = +  

We have an output public key  1 2, , ( , )t tv w  , and a private key 
 

( )( ) ( ) ( ), ,...,t 0 t h tw   
 

, 1,3t = . 

Next step is to proceed with encryption. 

Let ( ), ,v wx U x x x=  be the message, ( )x Q q . Choose a random 
1 2 3( , , )a a a a= , t Z

a Z , 1,3t = .  

Then, we proceed with encryption 

Representation
1 2 3 1 2 3' ( , , ) ( ', ', ')a a a a a a a= = is used for encryption key.  

Calculating ( ) ( ) ( ) ( )1 1 1 2 2 3 3' ' ' ' ' ' ' 'z v a x v a v a v a x=  =    . 

Calculating component
2z . 

( ) ( ) ( ) ( )1 1 2 2 3 3' ' 'a a a a   =   , 

( ) ( ) ( ) ( )
(1) ( 2) (3)

(1) (2) (3)
1

0(1) (1) (1) (3) (2) (2) (3) (3)

1, 1, 1,

, ,
v v w w

i i i

h h h

ij ij s ij ij ij ij

i i i
j a j a j a

a U v w v w v w
 

  −

= = =
= = =

 
 

= + + + + + + + 
 
 

    

( ) ( )( ) ( )( ) ( )( )2 2 3 3 1 3 3 1 2 2' ' 'z a v a v a v a   =    , 

where 



( )( ) ( )
( )( )

( ) ( )

1 ( ) ( )

1,1,

' , 0,0 , ,
v v

i ti k

h t h t

t t ij t ij t

ii
j aj a

v a U v U v
==
==

 
 

= =   
 
 

 , 2,3t =  

( )( ) ( )
( )( )

( ) ( )

2 ( ) ( )

1,1,

' 0, ,0 0, ,0 , 3
w w

i ti t

h t h t

t t ij t ij t

ii
j aj a

v a U v U v t
==
==

 
 

= = = 
 
 

  

and 

( ) ( )
(1) (1) ( 2) (3) (3)

(1) (1) (2) (3) (3)3
1

2 0(1) (1) (1) (3) (2) (2) (3) (3) (3)

1 1, 1, 1, 1, 1,

, ,
v v w w w

i i i i i

h h h h h

ij ij h ij ij ij ij ij

t i i i i i
j a j a j a j a j a

z U v w v w v v w
 

 −

= = = = = =
= = = = =

 
 

= + + + + + + + + 
 
 

       

Calculating 

( ) ( ) ( )( ) ( )( )1 1 1 2 2 1 3 3' ' 'a v a v a v a  =   , 

( ) ( )( ) ( )( )3 1 3 3 1 2 2' 'z a v a v a  =  , 

where 

( )( ) ( )
( ) ( )( )

( ) ( ) ( )

1 ( ) ( ) ( ) ( )

1, 1,1,

' 0, , 0, ,
v v

i t i ti t

h t h t h t

t t ij t ij t ij t ij t

i ii
j a j aj a

v a U v v U v v
 


= ==
= ==

 
 

= =  
 
 

   

for 2,3t =  and 

( ) ( ) ( )

( ) ( ) ( )3 3 3

3 ( ) ( ) ( )

1 1, 2 1, 2 1,

, ,
v w

i t i t i t

h t h t h t

ij k ij t ij t

t i t i t i
j a j a j a

z U v v v


= = = = = =
= = =

 
 

= + + 
 
 

      . 

So, we have an output ( )1 2 3, ,z z z . 

Next step is to proceed with decryption. 

To decrypt a message x random numbers 
2 3( , , )1a a a a=  is needed to be restored. 

We generate  

1 1

0(1) 2 3 (3)( ) sC a z z − −=  

(1) (1)

( ) ( ) ( )

(1) (1)3
1

2 3 0(1) 0(1) ( ) (1) (3)

1 1, 1,

( ) ( ) ( )3 3 3

( ) ( ) ( )

1 1, 2 1, 3 1,

( , , ) , ,

, ,

v v

i i

v w

i t i t i t

h h

1 ij t ij h

t i i
j a j a

h t h t h t

ij k ij t ij t

t i t i t i
j a j a j a

C a a a U v w

U v v v


  −

= = =
= =

−

= = = = = =
= = =

 
 

= + + +   
 
 

 
 

+  + 
 
 

  

     
(1)

1

(1)
1

(3) (1) (3)

1,

,
v

i

h

h ij h

i
j a

U w −

=
=

 
 

=   
 
 



 



 

We restore 
1a  with ( )

(1)

(1)

(1) 1 (1)

1,
v

i

h

ij

i
j a

w a w
=
=

=   using ( )
1

(1) 1w a
− , because 

1w  is simple. Here we need to 

remove ( )1 1' a  from 
2z  and ( )1 1'v a  from 

3z . 

We calculate   

( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )
(1) ( 2) (3) (3)

1(1)

2 1 1 2 2 2 3 3 2 3 3 1 3 3 1 2 2

(1) (2) (3) (3)3
1

0(2) ( ) (3) (2) (2) (3) (3) (3)

2 1, 1, 1, 1,

' ' ' ' ' '

, , .
a b b b c c

i i i i

h h h h

ij t h ij ij ij ij ij

t i i i i
j a j a j a j a

z a z a a v a v a v a

U v v w v v w

     

 

−

−

= = = = =
= = = =

= =    =

 
 

+ + + + + + + 
 
 

    
 

and 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )3 3 3
1(1)

3 1 1 3 1 2 2 1 3 3 1 3 3 1 2 2 ( ) ( ) ( )

2 1, 2 1, 2 1,

' ' ' ' ' , ,
v w

i t i t i t

h t h t h t

ij t ij t ij t

t i t i t i
j a j a j a

z v a z v a v a v a v a U v v v


   
−

= = = = = =
= = =

 
 

= =   = + + 
 
 

       

Same calculations to be performed for 
2 3( , )C a a  

( ) ( )
( 2) (3)

(2) (3)
1

(1) (1) 1

2 3 0(2) 2 3 (3) (2) (3) (3)

1, 1,

( , ) 0, ,
w

i i

h h

h ij ij ij

i i
j a j a

C a a z z U w v w
 

 
−

−

= =
= =

 
 

= = + + 
 
 

   

We restore 
2a  with ( )

(1)

(2)

(2) 2 (1)

1,
v

i

h

ij

i
j a

w a w
=
=

=   using ( )
1

(2) 2w a
− , because 

2w  is simple.  

We remove the component ( )2 2' a  from (1)

2z  and ( )( )1 2 2'v a  from (1)

3z . 

( ) ( )
(1) (3) (3)

(1) (3) (3)3
1(2) (1) 1

2 2 2 2 0(3) ( ) (3) (3) (3) (3)

2 1, 1, 1,

' , ,
v w

i i i

h h h

ij k h ij ij ij

t i i i
j a j a j a

z a z U v v v w
 

  
− −

= = = =
= = =

 
 

= = + + + + + 
 
 

     

and  

( )( ) ( )
(1) (3) (3)

(1) (3) (3)3
1(2) (1)

3 1 2 2 3 ( ) (3) (3) (3)
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Calculating 
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3 0(3) 2 3 (3) (3)

1,

( ) 0,0,
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Restore 3a  with ( )(3) 3w a  using ( )
1

(3) 3w a
− .  

We obtain 1 2 3 1 2 3' ( , , ) ( ', ', ')a a a a a a a= =  and recover the message x  from 1z  

( )
1

1 2 3 1' ', ', 'x v v v v z
−

=  . 

 



SECURITY ANALYSIS 

We introduced our results of short security analysis mainly focused on brute-force key 

recovery and algorithm attacks.  

Our first consideration is a brute force attack on the ciphertext 
1z . We choose 

1 2 3( , , )a a a a=  

try to decipher the text ( ) ( ) ( ) ( )1 1 1 2 2 3 3' ' ' ' ' ' ' ' 'z v a x v a v a v a x=  =    . The covers 

( ) ( )( ) 1( ) ( ) ( ) ( ) ( )( )
,..., , ,

v wt t s t ij ij t ij t ij tt
v V V v U v v v


 = = =   selected a random and value ( )' 'v a  is defined by 

multiplication in a group without any constraints for the coordinate. The resulting vector 

( )' 'v a  depends on all components ( ) ( ) ( )1 1 2 2 3 3' ' , ' ' , ' 'v a v a v a . Iterating over key values 
1 2 3( , , )a a a a=  

has a difficulty rating 3q . For a practical message, attack m  is also unknown and has 

uncertainty for choice 3q . This makes a brute-force attack on the key not having a correct 

solution. If we take an attack model with a known text, then the complexity of the attack 

still remains equal to 3q . 

Or second consideration is a brute force attack on the ciphertext 
2z . Select 

1 2 3( , , )a a a a=  to 

match ( ) ( )( ) ( )( ) ( )( )2 2 3 3 1 3 3 1 2 2' ' 'z a v a v a v a   =    .  

Let’s represent 
2z  over components ( )'i iv a  

( )
(1) (1) ( 2) (3)

(1) (1) (2) (3)3
1

2 0(1) ( ) (1) (3) (2) (2) (3)

1 1, 1, 1, 1,

, ,
v v w w w

i i i i

h h h h

ij k ij s ij ij ij

t i i i i
j a j a j a j a

z U v w v w v −

= = = = =
= = = =

 
 

= + + + + + +  
 
 

      

We highlight ( )  components which are defined by cross-calculations in the group 

operation.  Group operation of the product of ( ) ( ),...,0 t h t   and product of ( ) ( )(1) 1 (1) 1,
v

v a w a  for 

coordianates v  and product of  ( ) ( ) ( ) ( )(1) 1 (1) 1 (2) 2 (2) 2, , ,
v w

v a w a v a w a  for coordinate  is used.  

Coordinates’ values are defined by calculations over vectors ( ) ( ) ( )1 1 2 2 3 3' , ' , 'v a v a v a . The keys 

1 2 3, ,a a a  are related, a change in any of them leads to a change 
2z . A brute-force attack on a 

key 
1 2 3( , , )a a a a=  has a complexity equal to 3q . 

Our third consideration is a brute force attack on the ciphertext 3z . 

We choose 1 2 3( , , )a a a a=  to match ( ) ( )( ) ( )( )3 1 3 3 1 2 2' 'z a v a v a  =  . Let’s represent 3z  over 

components ( )'i iv a . We will get 



 

( ) ( ) ( )

( ) ( ) ( )3 3 3

3 ( ) ( ) ( )

1 1, 2 1, 2 1,

, ,
v w

i t i t i t

h t h t h t

ij t ij t ij t

t i t i t i
j a j a j a

z U v v v


= = = = = =
= = =

 
 

= + + 
 
 

       

We highlight ( )  components which are defined by cross-calculations in the group 

operation. Group operation with product of ( ) ( )(1) 1 (1) 1,
v

v a w a  coordinates w  and a product of  

( ) ( )(1) 1 (2) 2,
v w

v a v a  for coordinate  .  

Values of coordinates 
3z  are defined by calculations over vectors ( ) ( ) ( )1 1 2 2 3 3' , ' , 'v a v a v a . The 

keys 
1 2 3, ,a a a  are also binding, a change in any of them leads to a change 

3z . A brute-force 

attack on a key 
1 2 3( , , )a a a a=  also has a complexity equal to 3q . 

Our fourth consideration is a brute force attack on the vectors ( )( ) ( ),...,0 l h l  . A brute-force 

attack on ( )( ) ( ),...,0 l h l   is common for MST cryptosystems and for calculations in the field qF  

over a group center ( )Z G  has an optimistic lower complexity bound equalt to q . For our 

encryption algorithm, calculations are performed on the entire group 3G q=  and the 

complexity of a brute force attack on ( )( ) ( ),...,0 l h l   will be equal to 3q . 

Our fifth consideration is an attack on the algorithm. There are many details related to the 

vulnerabilities of group operation or logarithmic signature itself that corresponds to this 

attack. Our estimation is valid for the implementation of the MST on any noncommutative 

group. However, complexity requires a separate analysis. As we shown in our previous 

papers this attack has a lot of details that come from the design of logarithmic signature and 

group operation. 

CONCLUSION 

Within the results of this research we see that for encryption on the entire group 

 ( ) ( ) qQ q U v,w, v,w, F =   with bind keys 
1 2 3( , , )a a a a=  the small Ree groups have shown a 

complexity of the brute-force attack equal to 3q . Our proposal includes an extension of 

logarithmic signature to the entire Ree group  ( ) ( ) qQ q U v,w, v,w, F =  , with 3Q q= . We 

redesign our encryption algorithm in such a way as to bind the keys of logarithmic signatures 

and improve the security against a sequential recovery attack. 
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