
1

Enabling Deep Visibility into VxWorks-Based
Embedded Controllers in Cyber-Physical Systems

for Anomaly Detection
Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami

Abstract—We propose the DIVER (Defensive Implant for
Visibility into Embedded Run-times) framework for real-time
deep visibility into embedded control devices in cyber-physical
systems (CPSs). DIVER enables run-time detection of anomalies
and is targeted at devices running the real-time operating
system (RTOS), VxWorks, which precludes traditional methods
of implementing dynamic monitors using OS (e.g., Linux, Win-
dows) functions. DIVER has two components. The “measurer”
implant is embedded into the VxWorks kernel to collect run-time
measurements and provide interactive/streaming interfaces over
a TCP/IP port. The remote “listener” acquires and analyzes the
measurements and provides an interactive user interface. DIVER
focuses on small embedded devices with stringent resource con-
straints (e.g., insufficient storage to locally store measurements).
We demonstrate efficacy of DIVER on the Motorola ACE Remote
Terminal Unit used in CPS including power systems.

Index Terms—Anomaly detection, PLC, real-time operating
system, VxWorks, Embedded systems, Defensive implant, Remote
monitoring.

I. INTRODUCTION

With growing complexity, connectivity, and remote pro-
grammability and configurability of embedded control devices
in cyber-physical systems, robust cyber-security and anomaly
detection techniques are becoming increasingly vital [1]–[3].
The need for such techniques is becoming more crucial with
sophisticated adversaries able to transit from the information
technology (IT) network to the operational technology (OT)
network and exploit vulnerabilities of embedded devices to
insert malicious code, alter device configurations, or modify
their behavior. Through such adversarial manipulations, adver-
saries can severely disrupt the operation of the cyber-physical
system (CPS) and potentially cause catastrophic consequences
to the stability, safety, or performance of the CPS. Hence,
development of real-time monitoring and anomaly detection
techniques has been intensely studied and several approaches
have been proposed based on techniques such as network
traffic monitoring, host-based intrusion detection, side channel
analysis, etc.

While host-based methods using operating system (OS)
level observations such as system call traces and registry

P. Krishnamurthy, R. Karri, and F. Khorrami are with the Dept. of ECE,
NYU Tandon School of Engineering, Brooklyn, NY 11201, USA. (e-mails:
{prashanth.krishnamurthy, rkarri, khorrami}@nyu.edu).

This work was supported in part by DARPA under AFRL contract FA8750-
16-C-0179 and by NSF under SaTC grant 2039615. The views and conclu-
sions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

modifications can be effective for devices running general-
purpose operating systems such as Linux or Windows, they
are not directly applicable to embedded devices that run real-
time operating systems (RTOS) such as VxWorks, QNX, or
FreeRTOS. Such embedded devices are prevalent in CPS such
as power grid due to their real-time performance, robustness,
simplicity, and reliability. The development of corresponding
host-based monitoring methods for such devices faces multiple
challenges due to, for example, the monolithic structure of
such RTOS (e.g., no separate processes), constraints of their
software ecosystem (e.g., do not expose a command-line shell
or only provide a shell under a special debug mode that
requires a device reset and is very different from normal
mode, difficulties in deploying custom code), and device-level
limitations (e.g., limited disk space to store measurements).
While the human-machine interfaces (HMIs) of these devices
provide some visibility into the device operation, malware
on the devices can easily spoof these observations and cloak
the presence of the malware. Hence, a deep under-the-hood
visibility into the device run-time operation is crucial to
establish integrity of the devices.

To address this vital need, we develop the DIVER (Defen-
sive Implant for Visibility into Embedded Run-times) frame-
work (Figure 1) in this study for achieving real-time deep
visibility into embedded control devices (e.g., programmable
logic controllers and remote terminal units). DIVER is in-
tended to enable real-time introspection and anomaly detection
by embedding a defensive implant (“measurer”) directly into
the RTOS to enable under-the-hood monitoring of run-time
measurements (of various types including RTOS task-level
activity measurements, device status, firmware module infor-
mation, timer interrupt configurations, memory and filesystem
contents, etc.). This implant communicates with a remote
monitoring agent (“listener”) via a TCP/IP channel to exfiltrate
real-time measurements from within the RTOS. The listener
analyzes these measurements to build a real-time situational
awareness of the device execution state and detect anomalies
relative to prior observations or baselines. The listener also
provides an interface for interactive commands to be relayed
to the VxWorks-embedded implant – this interface can be used
both by human operators or automated scripts. The DIVER
framework focuses on small embedded resource-constrained
devices such as programmable logic controllers (PLCs) and
remote terminal units (RTUs) in CPS. For the proof-of-
concept, we demonstrate the framework on the Motorola ACE
RTU [4] that runs the VxWorks RTOS.

ar
X

iv
:2

50
4.

17
87

5v
1 

 [
cs

.C
R

] 
 2

4 
A

pr
 2

02
5



2

Fig. 1: Structure of the DIVER framework comprising an embedded defensive implant (“measurer”) that starts a TCP server
to allow connection from a remote client (“listener”) to provide an interactive user interface and to exfiltrate measurements.

II. BACKGROUND AND RELATED WORK

While RTOS such as VxWorks and QNX are popularly
used in embedded control devices due to their deterministic
real-time properties, performance, robustness, and reliability,
they are not immune to vulnerabilities that can be exploited
by adversaries. For example, a set of zero-day vulnerabilities
(URGENT/11) discovered in the VxWorks RTOS in 2019 [3]
was found to potentially affect billions of devices across
various industries. Vulnerabilities specific to particular devices
such as the Motorola ACE RTU have also been noted [5].
Several classes of vulnerabilities have been identified across
a broad range of embedded devices across several major
vendors [6] and have been found to potentially allow attackers
to gain unauthorized access to devices to manipulate their
configurations, modify their code, and alter their behavior.
The detection of such vulnerabilities underscores the need for
robust real-time monitoring and anomaly detection. Devices
running general-purpose OS such as Linux and Windows can
leverage OS-level functionalities [7] to facilitate monitoring
and anomaly detection using various “side channel” obser-
vations (e.g., system call traces, stack traces, registry keys,
enumerations of processes and dynamically loaded modules,
Hardware Performance Counters – HPCs, etc.). On the other
hand, devices running RTOS such as VxWorks pose unique
challenges to development of corresponding monitoring meth-
ods. While network-based monitoring methods (such as pro-
tocol payload anomaly detection [8]) can be device-agnostic,
host-based methods need to address the challenges of inte-
grating into an RTOS, deploying such custom code, extracting
run-time measurements that provide a comprehensive view of
the device operation, and exfiltrating these measurements to
a remote monitoring agent. These challenges have also been
discussed in [9], where a host intrusion detection system was
developed to collect system logs and RAM usage measure-
ments from a Bosch Rexroth AG IndraControl XM device with
an Intel Atom processor running VxWorks. Since integrating
monitoring methods into the device RTOS is challenging, off-
device approaches have been studied based on methods such as
evaluating input-output behaviors using offline copies of PLC
programs [10], symbolic execution and model checking to
analyze PLC control logic [11], and measurements of program
execution times using vendor-provided tools to detect timing
anomalies during the scan cycle of the PLC [12].

In comparison with the prior work discussed above, the
DIVER framework provides several unique contributions: (1)

it enables collection of dynamic task-level measurements
providing deep visibility into the run-time behavior rather
than relying upon built-in logging behavior which could be
circumvented by adversaries – the dynamic time series mea-
surements are analogous to process-level measurements that
could be obtained on devices running general-purpose OS and
can enable detection of subtle dynamic activity changes on the
device; (2) it enables real-time exfiltration of measurements
through a streaming interface over a TCP/IP channel to a re-
mote monitoring agent, removing requirement for any storage
on the device itself; (3) it enables an interactive interface to
the device implant for real-time command and control, which
can be used to dynamically query the device, perform actions,
and enable a moving target defense against adversaries; (4) it
is designed to be lightweight and scalable to support highly
resource-constrained embedded devices.

III. DIVER FRAMEWORK

A. Threat Model

The DIVER framework is designed to address the threat
model where an adversary either (a) uses some existing
vulnerability in the device to gain unauthorized access and
deploy new code or modify existing code to manipulate the
operation of the device; or (b) modifies network traffic or other
inputs to the device to cause changes to the device operation.
The proposed DIVER approach seeks to address the general
change detection problem by flagging behavioral changes that
could be due to attacks, malfunctions, process-level changes,
etc., and serving as an alarm mechanism to alert operators on
unexpected behavioral modifications of a device. To enable
such on-demand integrity verification, the defender is assumed
to be able to access the device (remotely or physically)
and deploy a defensive implant into the device RTOS using
the proposed DIVER framework. Thereafter, DIVER opens
a remotely accessible port to stream measurements from the
device to enable remote monitoring and anomaly detection.

B. Overall Framework

The DIVER framework addresses an embedded device
running an RTOS (specifically VxWorks) and comprises of
two components as illustrated in Figure 1:

• An on-device defensive “measurer” implant is deployed
to the device (typically using device-specific vendor-
provided tools such as the Motorola STS software suite
for Motorola ACE device).



3

• An off-device “listener” (i.e., remote monitoring agent)
that communicates via a network connection with the
on-device component to retrieve measurements from the
device as well as to enable on-demand execution of
commands on the device.

While the on-device component depends on device-specific
details such as the appropriate compiler toolchains and de-
ployment mechanisms, its core architecture is scalable between
devices and comprises of the following primary components:
a TCP server, an embedded scripting engine for run-time
configurability from the listener agent, a set of function
callbacks exposed via the scripting engine for use by the
remote listener to invoke device operations/measurements on
demand, back-end functions that acquire measurements of the
device activity (these back-end functions are the ones that are
primarily dependent on device-specific details). The off-device
remote listener is agnostic of the specific devices to a large
extent and is a general-purpose change detection and user
interface module. The on-device/off-device hybrid architecture
of DIVER is motivated by multiple considerations. Firstly,
embedded VxWorks devices (such as Motorola ACE) do not
provide any remote access to retrieve measurements (e.g., no
secure shell access) except for device-specific HMI which
communicate using proprietary protocols, provide only limited
visibility of device activity, and themselves might be the target
of attacks by adversaries. Hence, DIVER’s defensive implant
instead makes available a separate parallel communication
channel that is independent of vendor-provided functionalities.
Secondly, the embedded devices of specific focus for DIVER
are small and have limited memory, storage, and processing
capabilities. Hence, instead of attempting to perform anomaly
detection algorithmic computations on the device, DIVER
leverages off-device computational capabilities accessible to
the remote listener to enable flexible algorithmic designs
for data analysis and anomaly detection while keeping the
on-device component light-weight to fit within the stringent
limitations of the embedded device. Thirdly, by decoupling
the on-device and off-device components, DIVER enables
device-independent off-device data analysis and interactive
user interface which can be used not only to visualize retrieved
data but also to run on-demand operations on the device via
the embedded scripting engine.

The on-device defensive implant implements a library of
measurement functions on the device that are accessible to
the remote listener to execute on-demand and retrieve data or
configure for periodic execution to receive data in streaming
mode. The scripting-based automation framework embedded
into the implant enables flexible configuration of sets of mea-
surements and their sampling periodicities and granularities.
Thus, the implant enables remote visibility into a device that in
off-the-shelf mode, does not provide any mechanism for such
visibility. Using the retrieved measurements from the device,
the remote listener can register a baseline (during training on a
known-good device) or analyze for anomalies (during integrity
verification of a device in the field) and more generally,
detect changes in device activity over time (same device
at different points in time) or over space (across multiple

devices in the CPS configured similarly and expected to have
similar behaviors). The on-device and off-device components
are discussed in more detail in the next subsection.

C. Implant and Listener Architectures
The architectures of the implant and listener components

are illustrated in Figure 2. Upon deployment, the defensive
implant starts a TCP server on the device allowing connections
from remote clients. When a remote client connects, the im-
plant initiates a query-response loop to process commands sent
from the remote client. The query-response module connects to
a scripting engine to perform the command-specific actions on
the device using a library of back-end functions for acquiring
device-level measurements or performing device operations
such as setting configuration parameters or performing I/O
operations. The implant is designed to be lightweight and
modular, allowing for easy addition of new measurement
functions as needed. The query-response loop continues until
the client disconnects or times out, at which point the implant
closes the connection and cleans up any remaining state from
the client. The implant supports parallel connections from
multiple clients to allow, for example, multiple operators
to connect simultaneously through command-line or browser
front-end interfaces. After the initial connection from a client,
subsequent communications can use a light-weight encryption
of the payload with an embedded session identifier to prevent
adversaries from eavesdropping, sending unauthorized com-
mands, or mounting replay attacks.

Two variants of the scripting engine were implemented. The
first is a simple text-based format structured as a command
name with parameters to specify operations to be performed on
the device and corresponding configuration parameters (e.g.,
read task-level information with a configurable granularity set-
ting and specify a sampling rate for streaming mode retrieval).
The second is a full-featured scripting engine based on the
Lua programming language and allows for execution of more
complex scripts on the device (e.g., performing a measurement
or an I/O operation based on a specific condition such as when
resource usage exceeds a specified level, setting up custom
timer-based callbacks for operations to be performed after a
specified time).

The back-end function library (details of implementation
using VxWorks/device APIs discussed as part of the next sec-
tion) provides several device-level measurement functionalities
such as:

• List of running tasks, task names and task IDs.
• Task-level measurements of task status, program counter,

stack pointer, link register, task priority, entry point,
etc.; task-level measurements of activity levels based
on percentages of time in READY state, variability in
program counter for the task, etc.

• System diagnostics (versions of VxWorks kernel and
libraries, input/output configurations, uptime, system
database, etc.).

• Loaded modules and C applications on the device along
with details such as file location on the device, addresses
of the jump table and control function, hashes of initial
memory segments of modules/applications, etc.



4

Fig. 2: Architectures of the on-device defensive (top)) and the off-device remote listener (bottom).

Fig. 3: Sample snippet of a timer tree reconstructed from measurements exfiltrated from a Motorola ACE by the embedded
defensive implant.

• Readings from the device diagnostics and system log
mechanisms. For this purpose, the implant uses a flex-
ible parser implemented to read the binary format used
internally by the device diagnostics and system log func-
tionalities on the Motorola ACE.

• Binary contents of ranges of memory locations.
• Full timer tree with callback pointer locations and code

hashes – the timer tree is a hierarchical structure defining

the relations between the primary timer and the lower-
frequency timers iteratively derived from it and the call-
backs registered at each level of the tree.

In addition, the implant allows actions such as
• Reading and writing analog and digital inputs and outputs

on the device.
• Reading and writing to the diagnostics and system log

buffers.



5

• Reading and writing to the device’s flash memory.
• Registering callback functions implemented in the script-

ing language to a specified timer in the timer tree to be
executed periodically.

• Reading and writing the device’s time and date.
• Reset the device.

The remote listener is implemented in Python and connects
to the embedded implant via a TCP/IP channel and interacts
with the query-response loop component of the implant. The
listener provides an interactive command-line user interface
for operators to issue commands and view responses from the
implant. The command-line interface is structured using the
format for the simple text-based scripting engine described
above. When the full-featured scripting engine is enabled,
the command-line interface also provides functions for the
operator to send over script snippets to be executed on the
device. The listener also provides a browser-based front-end
interface, which refreshes automatically when receiving data
in streaming mode and also provides visualizations of retrieved
data such as the timer tree as well as color-coded visualizations
of anomaly detection analysis results (Figures 3 and 4). The
browser-based interface is implemented using HTML and
JavaScript with the content dynamically created by the Python-
based listener.

The listener includes a data analysis module that processes
the retrieved measurements to build a model of the device
activity. This generated model can be specified to be used as a
baseline model (e.g., during training on a known-good device)
or as a model to be evaluated (e.g., during integrity verification
of a device in the field). The various types of measurements
available to be exfiltrated via the implant as discussed above
enable comprehensive change detection at multiple levels. For
example, changes in the device configuration such as network
settings, timer configurations, timeout parameters, etc., are
immediately flagged. Addition/deletion of modules or tasks
are also directly observed. Furthermore, since hashes of the
memory segments of modules, etc., are retrieved, changes to
existing modules are also flagged. Any new timer callbacks are
also detected. Following these low-level change detections, the
anomaly detector analyzes the more granular measurements
such as task-level states, activity levels, priorities, etc., to
detect statistical changes in the device behavior. In streaming
mode, the basic semantic structure for activity analysis as
discussed above is a time series of snapshots of running tasks
on the device along with task-level observations such as the
task states (READY, SLEEPING, etc.), task priorities, registers
such as program counter and stack pointer, etc. By comparing
statistical properties of an observed time series of snapshots
against statistical properties of a baseline set of measurements,
anomalies based on detected statistical differences are flagged.
Variations in observed statistical properties of temporal distri-
butions of task states, measured ranges of registers such as
program counter and stack pointer (per-task and across all
tasks) compared to baseline observations show fine-grained
modifications in the overall device activity that could result
from adversarial manipulations or other changes in the device
operation. For example, a task that is much more or much

less in READY state compared to the baseline or a task that
is in pending state (PEND) when it was typically in READY
state in the baseline indicate anomalous changes in the device
operation. The listener generates alerts or notifications auto-
matically in the browser-based front-end when anomalies are
detected, allowing operators to take appropriate remediation
actions.

IV. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL
STUDIES

For the proof-of-concept experimental studies in this paper,
we deployed DIVER on the Motorola ACE3600 RTU [4],
which is a real-time process automation device designed for
SCADA (Supervisory Control And Data Acquisition) systems
in CPS such as power grid. The ACE3600 has a 32-bit
200MHz PowerPC processor running the VxWorks RTOS.
The device features a modular design accommodating several
types of input/output (I/O) modules (both digital and ana-
log inputs and outputs). It supports several OT (Operational
Technology) communication protocols such as the industry-
standard Modbus, DNP3, M-OPC, and IEC60870-5-101, as
well as Motorola’s own MDLC protocol. Motorola’s ACE3600
System Tools Suite (STS) is a vendor-provided Windows-
based software that provides tools to administer ACE3600
devices, set up their configurations, and download files or
code modules to the devices. Additionally, Motorola’s C
Toolkit for ACE3600 RTUs with the MOSCAD (MOtorola
SCADa) APIs provides a toolchain (cross compiler, linker,
etc.) for compiling C code into a dynamically loadable module
packaged into a compressed file (.plz), which can then be
downloaded using STS into the device. Upon downloading
to the device, the module is dynamically loaded into the
device’s memory and starts executing at a predefined module
entry point (user control function). From this entry point, new
tasks can be started to be executed in the background using
VxWorks APIs or MOSCAD APIs which are a thin layer
on top of the VxWorks APIs. Additionally, functions to be
periodically executed can be registered by connecting them to
one of the entries in the device’s timer tree (e.g., 10ms, 100ms,
1s, etc.) by providing a callback pointer for the function. To
access VxWorks APIs via symbol resolution during dynamic
loading, the required VxWorks function declarations (e.g.,
taskIdListGet from VxWorks’ taskInfo library to obtain a list
of active task IDs) are included in the C code module along
with the required C structure definitions (e.g., TASK DESC
from VxWorks’ taskShow library to obtain detailed task-level
information) based on separately publicly available VxWorks
documentation. These APIs facilitate the various implant func-
tionalities described in the previous section such as obtaining
high-granularity measurements of device activity and access-
ing networking functionalities such as starting a TCP/IP server
for remote communication.

The implemented DIVER prototype was deployed on the
Motorola ACE RTU. Samples of measurements retrieved using
the DIVER prototype are shown in Figures 3-5. The visual-
izations of the sample timer tree and the summary snippets
in Figures 3 and 4, respectively, are from the browser-based



6

Fig. 4: Sample snippets of the summaries and detected anomaly listings generated by the remote listener using measurements
exfiltrated by the embedded defensive implant. Top row: snippet of task activity summaries (two color-coded icons on the
left of the task names indicate the activity levels of the tasks in terms of percentage of time the task is in READY state and
the amount of variations seen in the program counter for the task (red indicates more active). Middle row: snippets of device
configuration (left) and task state statistics changes (right) compared to a baseline. Bottom row: snippet of flagging of an
unknown C application loaded on the device.

front-end of the listener. The timer tree in Figure 3 shows
the hierarchical structure of the timers on the device, with the
primary timer at the left and lower-frequency timers derived
from it on the right. The callbacks registered at each level
of the tree are also shown, along with their corresponding
memory locations and code hashes. The summary snippets in
Figure 4 show various types of measurements retrieved from
the device, including task-level information and device config
and example anomaly alerts. The sample anomalies shown in
Figure 4 indicate changes in task state statistics compared to
a baseline and presence of an unexpected C application on
the device along with its file location, memory addresses, and
hash of the initial segment of the memory contents of the
loaded application. The unexpected C application flagged in
Figure 4 is a malware that sends a stream of UDP packets
via a background task started by the malware. Sample time
series of task states are shown in Figure 5, where each colored
dotted line represents a different task and the Y-axis shows the
different states that were observed for the tasks: READY (task
is ready to execute and is only waiting to be scheduled on the
CPU), PEND (task is blocked since some required resource is
not available), PEND+T (similar to PEND except that it also
has a timeout), DELAY (task is sleeping for a time interval),
SUSPEND (task is not available for execution), etc. It is seen
that there are clearly discernible temporal patterns in the state
transitions of the tasks indicating the task behaviors. The right-
side plot in Figure 5 shows the numbers of tasks in each
of these states at each sampling time instant. In this sample
data, the sampling rate was set to 1 Hz in streaming mode.
As discussed in the previous section, the multiple types of
measurements retrieved by the implant enable several types
of change detection. Apart from insertion of unexpected C
application modules as illustrated in Figure 4, other types of
modifications such as changes in the timer tree configuration
and replacement of existing modules were also tested and ver-
ified to be detected by DIVER. Specifically, insertion of new
callbacks into the timer tree to be periodically executed were
flagged. Also, modifications of existing modules were detected
from mismatches in the corresponding memory hashes. Other

modifications such as disabling existing tasks, changing task
priorities, and uploading new files were also studied.

V. DISCUSSION AND CONCLUSIONS

This study develops the DIVER framework that enables
deep real-time visibility into the run-time operation of em-
bedded control devices in CPS. The DIVER framework is
architected as a combination of two interconnected compo-
nents: a defensive implant deployed into the RTOS of the
embedded device that opens a custom TCP/IP server for
the purpose of exfiltrating measurements and enabling an
interactive command interface; a remote listener that acquires
measurements from the implant via a TCP/IP connection and
evaluates the integrity of the measurements against prior/base-
line observations for anomaly detection and also provides
an interactive console to relay commands to the defensive
implant. The DIVER framework is designed to support light-
weight embedded devices with stringent resource constraints.
DIVER specifically focuses on VxWorks devices due to their
prevalence in various CPS such as power grid and industrial
control systems and due to the unique challenges posed by
such devices that have stringent resource constraints and on-
device limitations that preclude traditional monitoring meth-
ods.

We demonstrated the efficacy of the proposed DIVER
framework on the Motorola ACE RTU. By deep integration
into the bare-metal RTOS layer of the embedded device,
DIVER enables detection of stealthy adversarial modifications
that might not have evident manifestations in the higher-
level application layer or in the device’s input-output be-
havior and therefore not detectable by traditional monitoring
methods. Furthermore, while DIVER focuses on detection of
malware/anomalies on the device, DIVER can also indirectly
enable detection of attacks on the HMI by being able to
flag mismatches between the on-device measurements and the
HMI’s view of the device operations. Also, while DIVER
primarily addresses detection of changes from a baseline,
DIVER’s real-time visibility into the device operation can also
be used to extract salient properties of device activity even in



7

Fig. 5: Left: Sample time series of task state measurements; each colored dotted line represents a different task. Right: Numbers
of tasks in each state (READY, PEND, etc.) at each sampling time instant. The time series and the state counts are obtained
from measurements exfiltrated from a Motorola ACE by the embedded defensive implant.

the absence of an available baseline, e.g., to identify tasks with
most activity or using most resources (i.e., analogous to a tool
such as htop on Linux). Through integration of a scripting
engine into the defensive implant and a remotely available
interactive console in the listener, DIVER enables dynamic
configurability and on-demand execution of commands on the
device.

The DIVER framework is designed to be agnostic to the
specific device under observation and can be adapted to
other embedded devices and can also be extended to support
additional types of measurements and anomaly detection tech-
niques. Also, DIVER’s modular on-device/off-device structure
and the real-time visibility of device activity and exfiltration
of time series measurements enabled by DIVER can benefit
third-party monitoring and event detection systems to assist
in remote integrity verification. Future work will focus on
enhancing the DIVER framework to support additional types
of measurements and anomaly detection techniques, and on
evaluating the framework on a broader range of embedded
devices in CPS.

REFERENCES

[1] F. Khorrami, P. Krishnamurthy, and R. Karri, “Cybersecurity for control
systems: A process-aware perspective,” IEEE Design & Test, vol. 33,
no. 5, pp. 75–83, 2016.

[2] R. Spenneberg, M. Brüggemann, and H. Schwartke, “Plc-blaster: A
worm living solely in the plc,” in Proc. of Black Hat Asia, 2016.

[3] ARMIS, “Urgent/11: 11 zero day vulnerabilities impacting billions
of mission-critical devices,” https://www.armis.com/research/urgent-11/,
[Online; accessed 12-20-2024].

[4] M. Solutions, “ACE3600 Remote Terminal Unit,” https:
//www.motorolasolutions.com/en us/products/mission-critical-internet-
of-things/scada/ace3600-rtu.html, [Online; accessed 12-20-2024].

[5] Cybersecurity and I. S. A. (CISA), “Ics advisory: Motorola solutions
moscad ip and ace ip gateways,” https://www.cisa.gov/news-events/ics-
advisories/icsa-22-179-04, [Online; accessed 12-20-2024].

[6] J. Wetzels, D. Dos Santos, and M. Ghafari, “Insecure by design in
the backbone of critical infrastructure,” in Proc. of the Cyber-Physical
Systems and Internet of Things Week, ser. CPS-IoT Week ’23, 2023, p.
7–12.

[7] P. Krishnamurthy, H. Salehghaffari, S. Duraisamy, R. Karri, and F. Khor-
rami, “Stealthy rootkits in smart grid controllers,” in Proc. of the IEEE
International Conference on Computer Design (ICCD), 2019, pp. 20–28.

[8] H. Kim, S. Kim, W. Jo, K.-H. Kim, and T. Shon, “Unknown payload
anomaly detection based on format and field semantics inference in
cyber-physical infrastructure systems,” IEEE Access, vol. 9, pp. 75 542–
75 552, 2021.

[9] C. Vargas Martinez and B. Vogel-Heuser, “A host intrusion detection
system architecture for embedded industrial devices,” Journal of
the Franklin Institute, vol. 358, no. 1, pp. 210–236, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0016003219305307

[10] Y. Chen, C. M. Poskitt, and J. Sun, “Code integrity attestation for
plcs using black box neural network predictions,” in Proc. of the
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2021, New York, NY, USA, 2021, p. 32–44. [Online].
Available: https://doi.org/10.1145/3468264.3468617

[11] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
vol. 12, no. 6, pp. 40–47, 2014.

[12] D. Formby and R. Beyah, “Temporal execution behavior for host
anomaly detection in programmable logic controllers,” IEEE Transac-
tions on Information Forensics and Security, vol. 15, pp. 1455–1469,
2020.

https://www.armis.com/research/urgent-11/
 https://www.motorolasolutions.com/en_us/products/mission-critical-internet-of-things/scada/ace3600-rtu.html
 https://www.motorolasolutions.com/en_us/products/mission-critical-internet-of-things/scada/ace3600-rtu.html
 https://www.motorolasolutions.com/en_us/products/mission-critical-internet-of-things/scada/ace3600-rtu.html
https://www.cisa.gov/news-events/ics-advisories/icsa-22-179-04
https://www.cisa.gov/news-events/ics-advisories/icsa-22-179-04
https://www.sciencedirect.com/science/article/pii/S0016003219305307
https://www.sciencedirect.com/science/article/pii/S0016003219305307
https://doi.org/10.1145/3468264.3468617

	Introduction
	Background and Related Work
	DIVER Framework
	Threat Model
	Overall Framework
	Implant and Listener Architectures

	Prototype Implementation and Experimental Studies
	Discussion and Conclusions
	References

