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Abstract

This paper focuses on the problem of evolving Boolean functions of odd sizes
with high nonlinearity, a property of cryptographic relevance. Despite its simple
formulation, this problem turns out to be remarkably difficult. We perform a
systematic evaluation by considering three solution encodings and four problem
instances, analyzing how well different types of evolutionary algorithms behave
in finding a maximally nonlinear Boolean function. Our results show that genetic
programming generally outperforms other evolutionary algorithms, although it
falls short of the best-known results achieved by ad-hoc heuristics. Interestingly,
by adding local search and restricting the space to rotation symmetric Boolean
functions, we show that a genetic algorithm with the bitstring encoding manages to
evolve a 9-variable Boolean function with nonlinearity 241.
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1 Introduction
Boolean functions play a fundamental role in various cryptographic applications, for
example, in the design of stream ciphers based on the combiner or filter model [4]. In
this context, the cryptographic properties of a Boolean function determine whether the
overall encryption system is vulnerable to certain attacks or not. Besides cryptogra-
phy, Boolean functions find applications in several other closely connected domains,
including combinatorics [13], coding theory [21], and computational complexity the-
ory [1]. Interestingly, the same theory developed for the cryptographic properties of
Boolean functions also applies to these other domains. For example, the nonlinearity
of a Boolean function can be interpreted both as a cryptographic criterion and as a
metric in coding theory. In the former case, the maximum nonlinearity achievable by
an n-variable Boolean function determines the efficiency of best-affine approximation
attacks and fast correlation attacks on certain stream ciphers. In the latter case, the
maximum nonlinearity is equivalent to the covering radius of the first-order Reed-Muller
code RM(1,n), whose codewords are all linear Boolean functions of n variables. As a
matter of fact, the upper bound on the nonlinearity attainable by any Boolean function
of n variables is also called the covering radius bound.

It is known that the covering radius bound can be satisfied with equality only when
the number of variables n is even; in this case, a maximally nonlinear Boolean function
is also called a bent function. On the other hand, for n odd, it is still an open problem to
determine a tighter upper bound on the nonlinearity. In particular, up to n = 7 variables,
this more precise bound has already been proved by means of other techniques. For a
larger number of variables, the question is still open at the moment, with the available
literature providing only some examples of functions that reach the best-known values.
Hence, finding new functions that achieve or go beyond the best known values of
nonlinearity for an odd number of variables is a relevant open problem both in the field
of cryptographic Boolean functions and Reed-Muller codes.

A common approach to generating functions with a good combination of crypto-
graphic properties is algebraic constructions, which can be divided into primary and
secondary constructions. Primary constructions typically take as input the target number
of variables n as an input parameter, and then leverage other types of combinatorial
objects (e.g., partial spreads) to construct a class of n-variable Boolean functions satis-
fying a specific set of criteria, such as optimal nonlinearity. Secondary constructions,
on the other hand, take as input existing Boolean functions and generate new ones
with analogous good properties, typically defined over a larger number of variables.
Algebraic constructions have the advantage of a clear mathematical formulation, and
they commonly work for multiple sizes, both even and odd.

On the other hand, a shortcoming of algebraic constructions is that they are not really
flexible, meaning that it is difficult to employ them by optimizing for several properties
of interest at once. In this respect, heuristics represent a suitable alternative for the
generation of good Boolean functions. In particular, one can leverage (meta)heuristics
such as evolutionary algorithms (EAs) to design functions with properties that are
typically not attainable with the currently known algebraic constructions. Unfortunately,
heuristics commonly struggle when considering Boolean functions of a large number
of variables, due to the super-exponential growth of the search space. It has been
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observed in different works that genetic programming (GP) is usually able to evolve
better Boolean functions than other EAs, such as genetic algorithm (GA) [28, 31, 22].

This paper focuses on the heuristic design of Boolean functions of an odd number of
variables with high nonlinearity. As remarked above, this problem is deceptively simple
in its formulation, but very hard to solve. For instance, until a few years ago, it was
not known whether a 9-variable Boolean function could achieve a nonlinearity larger
than 240. While the available upper bounds theoretically allowed for its existence, no
one was able to find an example of such a function for a long time. This question was
positively settled in 2007 by Kavut et al. using simulated annealing [19]. However, the
authors needed to integrate simulated annealing with specialized heuristics and limit the
search space to the class of rotation symmetric Boolean functions, which is considerably
smaller than the search space size for general Boolean functions (see Table 3).

The goal of this paper is to provide a systematic evaluation of various types of evo-
lutionary algorithms applied to the optimization problem of generating highly nonlinear
odd-sized Boolean functions. Since the problem is difficult due to the large size of
the search space, we restrict our attention only to function sizes from n = 7 to n = 13
variables, thus including both an instance where the theoretical optimum is known
(n = 7) while for the remaining three ones it is still an open problem to determine
it. More precisely, we evaluate three different types of genotype encodings (bitstring,
symbolic, and floating-point) on these four problem instances.

This manuscript is an extended version of the paper “A Systematic Evaluation of
Evolving Highly Nonlinear Boolean Functions in Odd Sizes” presented at EuroGP
2025 [7]. In particular, with respect to the conference paper, here we present the
following two additional contributions:

1. We experiment with an additional encoding, namely a symbolic one, to evolve
algebraic constructions of nonlinear Boolean functions through GP.

2. We design two different strategies to restrict the search space of GP to rotation
symmetric Boolean functions. The first strategy evolves a GP tree on a smaller
number of variables such that the resulting truth table is large enough to index
the set of rotation classes. The second strategy evolves a GP tree of the same
target number of variables, but evaluates it only partially on the rotation class
representatives.

Overall, the findings of the conference version of the paper are confirmed: the results
show that GP generally outperforms the other considered EAs in consistently evolving
highly nonlinear functions. However, the optimization problem tends to be difficult,
especially for the larger problem instances. In particular, we can find optimal results
for certain sizes, but such solutions are rare. Already for nine inputs, none of the basic
algorithms, including GP, can reach the best known value of nonlinearity achieved by the
heuristic proposed in [19]. For this reason, we consider two enhancement approaches.
The first one adds a local search step to our GA and GP, making the results somewhat
better for GA. The second one concerns the restriction of the search space to the set
of rotation symmetric Boolean functions. Interestingly, with a combination of GA and
local search step, we can find a rotation symmetric Boolean function with nonlinearity
241 and size 9, thereby achieving the same result of [19]. On the other hand, the addition
of local search and rotation symmetry actually hampers the average performance of
GP. We hypothesize that this result is induced by the “superabundant” encoding used
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to represent the list of rotation classes through a syntactic tree, which might actually
induce GP to evolve genetic components that are not useful to solve this optimization
problem.

The rest of this paper is organized as follows. Section 2 provides the necessary
background information about Boolean functions, their representations, and their crypto-
graphic properties. In Section 3, we discuss the most relevant works related to the design
of nonlinear Boolean functions with (meta)heuristic optimization algorithms. Section 4
provides information about the experimental setup, while Section 5 gives experimental
results and concludes with a discussion of the findings. Finally, Section 6 summarizes
the main contributions of the paper and points out some directions for future research
on this topic.

2 Background

2.1 Notation
Let n and m be positive integers. We denote the Galois (finite) field with two elements by
F2. Moreover, we denote the Galois field with 2n elements by F2n . An (n,m)-function is
a mapping F from Fn

2 to Fm
2 . When m = 1, the function is called a Boolean function (of

dimension n) and denoted by a lowercase symbol f . We endow the vector space Fn
2 with

the structure of a field, since for every n, there exists a field F2n of order 2n that is an
n-dimensional vector space. The usual inner product of a and b equals a ·b =

⊕n
i=1 aibi

in Fn
2. Next, we discuss relevant representations and properties of Boolean functions.

For more information about Boolean functions, we refer readers to [4].

2.2 Boolean Function Representations
A common way to uniquely represent a Boolean function f on Fn

2 is by using its truth
table (TT). The truth table of a Boolean function f is the list of pairs of function inputs
in Fn

2 and function outputs, where the size of the value vector equals 2n. The output
vector is the binary vector composed of all f (x),x ∈ Fn

2, with a certain order selected on
Fn

2. A common option is to use a vector ( f (0), . . . , f (1)), which contains the function
values of f , ordered lexicographically [4].

The Walsh-Hadamard transform Wf is another common representation of a
Boolean function f . The Walsh-Hadamard transform measures the correlation between
f (x) and the linear functions a · x, defined for all a ∈ Fn

2 as:

Wf (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x, (1)

where the sum is calculated in Z.

2.3 Properties and Bounds
A Boolean function f is balanced if its truth table vector is composed of an equal
number of zeros and ones. For the Walsh-Hadamard transform, a Boolean function f is
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Table 1: Nonlinearities of Boolean functions in odd dimensions [4].

n

condition 7 9 11 13

quadratic bound 56 240 992 4032

best-known 56 242 996 4040

upper bound 58 244 1000 4050

balanced if and only if:
Wf (0) = 0. (2)

The minimum Hamming distance between a Boolean function f and all affine
functions is the nonlinearity of f . The nonlinearity nl f of a Boolean function f can be
calculated from the Walsh-Hadamard values [4]:

nl f = 2n−1 − 1
2

max
a∈Fn

2

|Wf (a)|. (3)

Since the complexity of calculating the Walsh-Hadamard transform with a naive ap-
proach equals 22n, it is common to employ a more efficient method called the fast
Walsh-Hadamard transform, where the complexity is reduced to n2n.

By the Parseval relation, it holds that ∑a∈Fn
2
Wf (a)2 = 22n for any Boolean function

f . This implies that the nonlinearity of any n-variable Boolean function is bounded
above by the so-called covering radius bound:

nl f ≤ 2n−1 −2
n
2−1. (4)

Observe that Eq. (4) cannot be tight when n is odd. The functions whose nonlinearity
equals the maximal value from Eq. (4) are called bent. Bent functions exist only for n
even.

When n is odd, there is a slightly better bound that equals 2⌊2n−2 −2
n
2−2⌋ [14]. The

nonlinearity 2n−1 − 2
n−1

2 is called the quadratic bound1 since for n odd, it is a tight
upper bound on the nonlinearity of Boolean functions with algebraic degree at most two.
This bound is also called a bent concatenation bound, as it is a tight upper bound on the
nonlinearity of the concatenation of two bent functions f and g in n−1 variables. The
quadratic bound is the best nonlinearity value that can be reached for n ≤ 7, while for
n ≥ 9, better nonlinearity values exist, see [4]. We provide the best-known values for
nonlinearity in Table 1.

1When we speak of a quadratic bound concerning general Boolean functions, this is not strictly speaking a
bound but rather a value that we can try to exceed with the nonlinearity of certain functions.
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Table 2: The number of orbits for the rotation symmetric Boolean functions.

n

variables 7 9 11 13

gn 20 60 188 632

Table 3: The number of Boolean functions and rotation symmetric Boolean functions.

n

criterion 7 9 11 13

# general 2128 2512 22048 28192

# RS 220 260 2188 2632

2.4 Rotation Symmetric Functions
A Boolean function f is called rotation symmetric (RS) if it is invariant under any cyclic
shift of input coordinates:

(x0,x1, . . . ,xn−1)→ (xn−1,x0,x1, . . . ,xn−2).

The number of rotation symmetric Boolean functions is smaller than the number
of Boolean functions, as the output value remains the same for certain input vectors.
Stănică and Maitra used the Burnside lemma to deduce that the number of rotation
symmetric functions is 2gn , where gn equals [36]:

gn =
1
n ∑

t|n
φ(t)2

n
t , (5)

and φ is the Euler totient function, which counts the number of positive integers less
than n that are relatively prime to it. Thus, gn represents the number of orbits, where an
orbit is a rotation symmetric partition composed of vectors equivalent under rotational
shifts. We provide the number of orbits for the rotation symmetric Boolean functions
in Table 2. Notice that for n = 9, an exhaustive search is not practical. However,
considering rotation symmetric functions does allow an exhaustive search for larger
Boolean function sizes, or at least a “simpler” problem for heuristics. We list the search
space sizes for general Boolean functions and rotation symmetric functions in Table 3.

2.5 On Constructing Boolean Functions
In the process of generating Boolean functions with specific properties, there are several
options to consider. The first deals with the type of technique used to generate Boolean
functions. In general, we can use either algebraic constructions or computational
techniques. Moreover, within computational techniques, we can distinguish among
random search, specific heuristics, and metaheuristics. Each of those approaches has
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advantages and disadvantages. Random search represents a simple way to generate
diverse functions, but it commonly struggles when the required Boolean functions are
more rare (or need to fulfill multiple properties at the same time). Specific heuristic
techniques are capable of obtaining Boolean functions with excellent properties, but
such techniques are more difficult to develop. Finally, metaheuristics can reach excellent
results even when looking for rare Boolean functions, but do not require significant
expertise to develop (except, of course, in the part of appropriate fitness function
design). As such, metaheuristics could be positioned between random search and
specific heuristics as a trade-off between performance and ease of development.

3 Related Work
The history of using (meta)heuristics to design Boolean functions with specific properties
is rather rich and spans numerous works over almost three decades [10]. During that
time, researchers considered different Boolean functions and their properties. Some
represented well-established goals like obtaining bent [11], or balanced and highly
nonlinear functions [26, 32], while others considered more exotic settings like hyper-bent
functions [33] or quaternary bent functions [23]. Interestingly, when considering highly
nonlinear Boolean functions (but not necessarily bent ones), most works concentrate on
Boolean functions in even dimensions. Next, we briefly discuss a selection of related
works where we list results on Boolean functions in odd dimensions, where available.

Millan et al. were the first to apply a genetic algorithm (with hill climbing) to evolve
Boolean functions with high nonlinearity [26]. Clark and Jacob used a combination of
simulated annealing and hill climbing with a cost function motivated by the Parseval
identity to find functions with high nonlinearity and low autocorrelation [8]. The best
results for 9 inputs equal 236 and 238, achieved with genetic algorithms and simulated
annealing, respectively. Burnett et al. used custom heuristics to generate Boolean
functions with good cryptographic properties [3]. The authors reported a nonlinearity of
240 for Boolean functions with 9 inputs.

Picek et al. used genetic programming to find Boolean functions with high nonlin-
earity (the authors considered several fitness functions and different combinations of
cryptographic properties) [30]. Mariot and Leporati proposed using Particle Swarm
Optimization to find Boolean functions with good trade-offs of cryptographic proper-
ties [24]. The authors found Boolean functions in 9 inputs with nonlinearity equal to
236.

Stănică et al. used simulated annealing to search for rotation symmetric Boolean
functions [35]. The authors constructed Boolean functions with 9 variables and non-
linearity 240. Kavut et al. used a steepest descent-like iterative algorithm to construct
highly nonlinear Boolean functions [19]. The authors found imbalanced 9-variable
Boolean functions with a nonlinearity of 241. This represented a significant result
since before it, it was unknown whether the nonlinearity could exceed 240 for Boolean
functions with 9 inputs. Kavut et al. conducted an efficient exhaustive search of rotation
symmetric Boolean functions in 9 variables having nonlinearity greater than 240 [18].
They showed that there exist functions with nonlinearity 241, but there are no rotation
symmetric Boolean functions with larger nonlinearity.
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Kavut and Yucel used a steepest-descent-like iterative algorithm to construct imbal-
anced Boolean functions in 9 variables with nonlinearity 242 [20]. For this result, the
authors considered the generalized rotation symmetric Boolean functions class. Carlet
et al. used evolutionary algorithms to evolve rotation symmetric Boolean functions [6].
The authors reported balanced Boolean functions in 9 variables with nonlinearity 240.
Recently, Carlet et al. used evolutionary algorithms in combination with local search to
obtain Boolean functions in 9 inputs with nonlinearity 241 [7]. As far as we know, this
is the first time that EAs have found such a function.

The above-discussed works construct Boolean functions directly, i.e., from scratch,
making it aligned with primary construction principles. However, there are also works
where metaheuristics are used to obtain secondary constructions. Picek and Jakobovic
used genetic programming to evolve secondary constructions of bent Boolean func-
tions [29]. Mariot et al. followed the same principles with the goal of evolving hyper-
bent Boolean functions [23]. Carlet et al. considered genetic programming to evolve
secondary constructions of balanced, highly nonlinear Boolean functions [5]. Mariot et
al. used evolutionary algorithms to design secondary semi-bent and bent constructions
of Boolean functions based on cellular automata [25]. None of the related works consid-
ered evolving secondary constructions to obtain highly nonlinear Boolean functions in
odd sizes.

4 Experimental Setup
In this section, we present the details of the optimization algorithms considered in our
systematic evaluation. We start with a description of the common characteristics shared
by the algorithms, namely the encodings used to represent the genotype of the candidate
solutions and the fitness function to be optimized, which targets the nonlinearity property
of Boolean functions. Then, we report the remaining parameters of the algorithms that
are specific to each encoding.

4.1 Solution Encodings
The search space of our optimization problem of interest is the set of n-variable Boolean
functions Fn = { f : Fn

2 → F2}, with possible variations or reductions (e.g., if we restrict
our attention to rotation symmetric Boolean functions). As such, the phenotype of
a candidate solution is a specific mapping f : Fn

2 → F2, which can be represented in
different ways as discussed in Section 2. In the context of this article, we focus on the
truth table as a phenotype representation, since from there one can easily compute the
nonlinearity of a function by computing the Walsh-Hadamard transform. Hence, for any
given number of variables n ∈ N, the phenotype space is Pn = F2n

2 , that is, the set of all
2n-bit vectors.

Clearly, there are various ways to define a genotype for the candidate solutions
manipulated by an evolutionary algorithm, which must then be mapped to the truth
table-based representation of the phenotype. In what follows, we consider three such
genotype encodings: a straightforward bitstring encoding, a symbolic one based on
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Figure 1: Example of bitstring encoding for a 3-variable function. The genotype is a
bitstring of length 23 = 8 used as the output column of the truth table of the function,
once we sort lexicographically all vectors of F3

2.

GP syntax trees, both for directly synthesizing truth tables and for defining secondary
constructions, and a floating-point encoding.

4.1.1 Bitstring Encoding

The bitstring encoding is probably the most natural representation when optimizing
Boolean functions with EAs. Indeed, since the phenotype is already the truth table of
the function, one can consider the genotype as the fixed-size bitstring of size 2n that
encodes the output column of the table. In this case, once the order of the input vectors
of Fn

2 has been fixed (i.e., the lexicographic order), the transformation of the genotype
into the phenotype is simply the identity mapping. Figure 1 depicts an example of
bitstring encoding for a Boolean function of n = 3 variables.

Bitstring encoding can still be employed in rotation symmetric Boolean functions,
although the corresponding genotype is shorter than in the generic case. Indeed, one
only has to specify the output value of f for each rotation class representative. The
remaining input vectors obtained by cyclically shifting this representative can then be
assigned to the same output value. After repeating this step for each representative, the
full truth table of the function has been synthesized. Consequently, the length of the
bitstring encoding genotype for a rotation symmetric Boolean function of n variables
is given by gn, as defined in Eq. (5). For each rotation class, we take the first vector in
lexicographic order as a representative [35]. Figure 2 depicts an example of bitstring
encoding for a 3-variable rotation symmetric Boolean function. In this case, we have
four rotation classes, and four lexicographically smallest representatives are respectively
000, 001, 011, and 111. The full output column of the truth table of f is then expanded
by copying the bit of each representative in all positions that are equivalent by cyclic
shifts. Thus, the bits 000 and 111 are copied only in those same positions, while those
of 001 and 011 are copied respectively in 001, 010, 100 and 011, 110, 101.
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0 1 0 1

000 001 011 111

Genotype

110 0 1 0 0 1

000 001 010 011 100 101 110 111
Phenotype

Figure 2: Example of bitstring encoding for a 3-variable rotation symmetric function.
The genotype is a bitstring of length g3 = 4 whose loci refer to the rotation class
representatives.

4.1.2 Symbolic Encoding

As a second genotype representation, we experimented with symbolic expressions
evolved through GP. In this context, a Boolean function is encoded as a tree whose leaf
nodes represent the input variables x1, . . . ,xn ∈ F2 of an n-variable Boolean function.
The internal nodes, on the other hand, are Boolean operators that take the inputs received
from their children nodes as operands, and forward the corresponding output value to
their parent node. For instance, an internal node could stand for either an XOR, OR, or
AND (all taking the input of two children nodes), or a NOT (taking the input from a
single child node). The output of the overall function is given by the output evaluated at
the root node. The genotype-to-phenotype mapping consists of evaluating the tree at
all the 2n possible assignments of the leaf nodes, thus synthesizing the full truth table
of the function. Figure 3 provides an example of symbolic encoding for a 3-variable
Boolean function f : F3

2 → F2. In particular, the symbolic expression of the function is
given by: f (x1,x2,x3) = (x1 ⊕ x2)∧ (¬x3).

The symbolic encoding can also be adapted to represent rotation symmetric Boolean
functions, although in a less straightforward manner than for the bitstring case. In
particular, given the number of variables n ∈ N of the target function, we explored two
approaches:

• We evolve a GP tree for a function of a number of variables ñ so that the corre-
sponding truth table is large enough to index all rotation class representatives of n
variables. In other words, we have to choose ñ such that 2ñ ≥ gn. As an example,
consider the situation depicted in Figure 4a: for n = 4 one can evolve a Boolean
tree for a function of ñ = 3 variables, since 23 = 8 ≥ g4 = 6. The two additional
bits are then discarded. We call this approach GP/PART.

• We evolve a GP tree of the same size as the target function. However, we only
evaluate the tree based on the assignments of the leaf nodes that correspond to
the rotation class representatives, setting the other members in the class to the
same value. This approach simulates what we do with the bitstring encoding for
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x1 x2 x3
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x1 x2 x3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Phenotype

f (x)

0

0

1

0

1

0

0

0

Figure 3: Example of symbolic encoding for a 3-variable Boolean function. The
genotype is a Boolean tree where the leaf nodes correspond to the input variables x1,
x2, and x3. The output of the function is given by the root node, from which one can
reconstruct the full truth table by evaluating the tree over all 23 = 8 assignments of the
leaf nodes.

rotation symmetric functions. Figure 4b depicts an example for n = 4 variables.
We denote this approach as GP/FULL.

Further, we considered a third genotype encoding based on GP trees: the represen-
tation of a secondary construction. The phenotype is slightly changed as we are not
dealing with the truth table of a single Boolean function here, but rather with a family
of functions. Following the same approach proposed in [5], a secondary construction
takes as input a function of n variables and gives a new function of n+ 2 variables
as an output. From the point of view of the encoding, the leaves of the GP tree this
time represent either four distinct seed functions of n variables, or the independent
additional variables xn+1,xn+2. Thus, each tree always has six types of leaf nodes. The
internal nodes are, instead, Boolean operators that take the input from the child nodes
and forward the output to the parent node, with the root node representing the output
of the construction. Figure 5 reports an example of how the GP tree is used to define a
secondary construction.

4.1.3 Floating-point Encoding

The last type of genotype representation that we considered in our experiments is the
floating-point encoding, which is defined as a vector of continuous values. The genotype-
to-phenotype mapping thus requires translating a sequence of floating-point numbers
into a complete truth table with binary values. The idea behind this translation is that
each value of the floating-point genotype represents a substring of bits in the genotype.
To simplify the representation, all values in the floating-point vector are restricted to
the interval [0,1]. If the binary genotype size is denoted as gsize, the number of bits
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(a) GP/PART

(b) GP/FULL

Figure 4: Example of the two approaches to represent a rotation symmetric Boolean
function under the symbolic encoding (grey cells are not used).

that a single coordinate of the floating-point vector represents can vary according to the
following equation:

dec =
gsize
dim

, (6)

where the parameter dim denotes the size of the floating-point vector, and it can be
modified if the genotype size is divisible by its value.

The first step of the translation procedure consists of converting each floating-
point value in the genotype vector to an integer value. Since each floating-point value
represents dec bits as per Eq. (6), the size of the interval that maps to the same integer
value is defined as:

intsize =
1

dec
. (7)

Next, to obtain a distinct integer value for a given real number, every coordinate di of
the floating-point vector is divided by the interval size given by Eq. (7), generating a
sequence of integer values:

int_valuei =

⌊
di

intsize

⌋
. (8)

Finally, the last step of the translation process involves mapping the obtained integer
values into a binary string that can be used to construct the truth table of the individuals.
For this purpose, we tested a simple binary encoding of the integer values. As an
example, consider a genotype of 8 bits. Suppose we want to represent it with 4 real
values; in this case, each real value encodes 2 bits from the truth table. A string of two
bits may have 4 distinct combinations. Therefore, a single real value must be decoded
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Predefined functions:

f0 1001

f1 1010

Independent variables:

v0 0101

v1 0011

GP

Boolean construction function

IF

v0 f0 XOR

f1 v1

1010 1001 0101 1001Output:

Figure 5: An example of evolving Boolean construction using 4 seed functions of 2
variables, with the construction resulting in a n+2 = 4 variable Boolean function.
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into an integer value from 0 to 3. Since each real value is constrained to [0,1], the
corresponding integer value is obtained by dividing the real value by 2−2 = 0.25 and
truncating it to the nearest smaller integer. Finally, the integer values are translated into
the sequence of bits they encode. Following the above example, a floating-point vector
like [0.71; 0.93; 0.13; 0.48] would be mapped into the integer vector [2; 3; 0; 1], which
translates into the truth table “10110001” using a standard binary encoding. For further
details on floating-point representation of Boolean functions, see [6].

4.2 Fitness Function
As we stated in Section 1, the cryptographic property that we aim to investigate in this
paper is nonlinearity, i.e., the minimum distance of a Boolean function f : Fn

2 → F2 from
the set of all linear functions. Therefore, one simple choice for this task is to directly
define the nonlinearity as the fitness function to be optimized by our evolutionary
algorithms. However, one can come up with several other formulations, regardless of the
underlying genotype representation and search algorithm employed. In this paper, we
selected a fitness function based on the study of common choices in related works [10],
and our previous experience on similar problems. More variants are, of course, possible,
but they commonly include additional weight factors, making the tuning phase more
complex.

The main problem encountered when only maximizing the nonlinearity value is that
only the extreme values of the Walsh-Hadamard spectrum of a function are considered.
Therefore, the information carried by the whole spectrum is not exploited to drive the
evolution process. This choice makes the corresponding fitness landscape less smooth
to explore, since an evolutionary algorithm has to potentially modify several genes at
once in a candidate solution to ensure that the maximum absolute value of the spectrum
decreases. For this reason, the fitness used in our experiments considers the whole
Walsh-Hadamard spectrum of a Boolean function. In particular, we count the number of
occurrences of the maximal absolute value in the spectrum, denoted as #max_values.
As higher nonlinearity corresponds to a lower maximal absolute value, the optimization
objective is to minimize the occurrences of such a maximal value as much as possible.
The underlying assumption here is that by having fewer occurrences of the maximal
value in the spectrum, it becomes easier for the algorithm to reach the next nonlinearity
value. In this way, we provide the algorithm with additional information, making the
objective space more gradual. Formally, the fitness function is defined as:

f itness = nl f +
2n −#max_values

2n . (9)

Remark that the second term never reaches the value of 1: this case corresponds to the
situation where we effectively reach the next nonlinearity level.

The function defined in Eq. (9) can be used to evaluate the fitness of a single function,
which applies to most of the encodings described in the previous section. However, the
secondary construction encoding does not produce a single function as a phenotype;
rather, it is a family of functions obtained by evaluating a GP tree over a set of possible
seed functions plus two independent additional variables. Thus, only for this specific
encoding, we assess a GP tree that encodes a secondary construction by evaluating it
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on 10 groups of n-variable seed functions. The fitness is then the average fitness of the
resulting (n+2)-variable functions, computed according to Eq. (9).

4.3 Algorithms Parameters
We now describe the remaining parameters of the evolutionary algorithms considered in
our systematic evaluation that are specific to each of the adopted encodings, summarizing
the generic ones at the end.

4.3.1 Bitstring Encoding

Concerning the bitstring encoding, the variation operators that we employ are the simple
bit mutation, which flips a randomly selected bit, and the shuffle mutation, which
randomly shuffles the bits within a randomly selected substring. For crossover, we
employ the one-point and uniform crossover operators. Given two parent bitstrings,
the one-point crossover first selects a random crossover point. Then, a first offspring
bitstring inherits the substring from the first position up to the crossover point from
the first parent, and the substring from the crossover point to the last position from the
second parent. A second offspring bitstring is created by swapping the inheritance order
(first substring from the second parent, and second one from the first parent). On the
other hand, the uniform crossover operator creates an offspring bitstring by going from
left to right, and randomly copying at each position i either the bit from the first or the
second parent. Each time the evolutionary algorithm invokes a crossover or mutation
operation, one of the previously described operators is randomly selected with uniform
probability.

4.3.2 Symbolic Encoding

For the symbolic encoding, we employed the following set of Boolean operators for the
internal nodes of the trees: OR, XOR, AND, AND2, XNOR, IF, and NOT. The operator
AND2 is defined as x1AND(NOT x2), i.e., it corresponds to the usual AND gate but with
the second input complemented. The operator IF is ternary, and given x1,x2,x3 ∈ F2 it
is defined as follows: if x1 = 1 then it returns the second argument x2 in output, and
x3 otherwise. As remarked in other related works, this function set is common when
dealing with the evolution of Boolean functions with cryptographic properties [10, 6].
Notice that the same set of operators is used both for the direct search approach (i.e.,
when the GP tree is used to synthesize the truth table of a function directly) and in the
secondary construction approach. In the latter case, when a seed function is used as an
input for an internal node, the output will be a new Boolean function, possibly defined
on a large number of variables, if the other inputs include an additional independent
variable.

The genetic operators used in our experiments with tree-based GP are simple tree
crossover, uniform crossover, size fair, one-point, and context preserving crossover [34]
(selected uniformly at random), and subtree mutation. The idea of employing multiple
genetic operators was based on the evidence gathered from preliminary experiments.
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4.3.3 Floating-point Encoding

For the Floating-point (FP) genotype encoding, the number of bits that a single FP value
represents can vary according to Eq. (6). Following the settings employed in related
work [6], all FP-based algorithms use the same setting with dec = 3. Thus, a single
value in the genotype encodes three bits. The interesting aspect of the floating-point
representation is its versatility, since it can be used with any continuous optimization
algorithm. In our experiments, we considered the following algorithms: Artificial
Bee Colony (ABC) [17], Clonal Selection Algorithm (CLONALG) [2], CMA-ES [12],
Differential Evolution (DE) [27], Optimization Immune Algorithm (OPTIA) [9], and a
GA-based algorithm with floating-point chromosomes.

4.3.4 Common Parameters and Settings

We employ the same type of breeding strategy for the evolutionary algorithms used
with the bitstring, symbolic, and floating-point encoding: a steady-state selection with a
3-tournament elimination operator (denoted SST). In each iteration of the algorithm,
three individuals are chosen at random from the population for the tournament, and
the worst one in terms of fitness value is eliminated. The two remaining individuals in
the tournament are used with the crossover operator to generate a new child individual,
which then undergoes mutation with probability pmut = 0.5. Finally, the mutated child
replaces the eliminated individual in the population. Preliminary tuning tests indicated
that this combination of parameters exhibited the best performance, so we did not
experiment further with other tournament sizes or mutation probabilities.

Regarding the remaining parameters of all other search algorithms included in our
evaluation, we adopted the default values set in the ECF software framework.2 We
considered the spaces of Boolean functions from n = 7 to n = 13 variables as problem
instances. Finally, the termination condition is set at 106 fitness evaluations for all
encodings and instances. Each experiment is then repeated for 30 independent runs in
order to obtain statistically sound results.

To determine whether a statistically significant difference between the results ob-
tained by a group of different methods over the same problem instance exists, we
carried out a statistical test in two stages: first, we applied the Kruskal-Wallis test
with a significance value α = 0.05. If the p-value indicated significant differences, we
further performed a pairwise Mann-Whitney U Test between all methods with the same
α = 0.05, using Bonferroni correction since we considered multiple comparisons. In
particular, the null hypothesis for both tests was that the compared samples were drawn
from the same distribution. To summarize, we report in Table 4 the list of algorithms
and encodings considered in our evaluation, together with their shorthand forms used in
the next section.

2http://solve.fer.hr/ECF/.
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Table 4: List of algorithms and encodings used in our experimental evaluation.

Encoding Description Algorithm Description

FP Floating-point

FP/ABC Artificial Bee Colony
FP/CLONALG Clonal Selection Algorithm
FP/CMAES CMA-ES
FP/DE Differential Evolution
FP/OPTIA Immune Optimization Algorithm
FP/SST Continuous Genetic Algorithm

GP Symbolic GP/SST GP – direct search
GP/SCND GP – secondary construction

TT Bitstring TT/SST Genetic Algorithm
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Figure 6: Distribution of the best fitness value for size n = 7.

5 Experimental Evaluation
This section presents the results obtained in our experiments by evaluating the various
types of encodings and optimization algorithms described in the previous section. We
start with a comparison of the basic optimization algorithms on the three encodings.
Then, we consider the addition of a local search step and the restriction of the search
space to rotation symmetric Boolean functions.

5.1 Basic Optimization Algorithms
The results for the combination of the three encodings, four problem instances, and nine
optimization algorithms considered in our evaluation are summarized in Table 5. In
particular, each entry reports the maximum, average, and standard deviation of the best
fitness value obtained over the 30 independent runs of the corresponding experiment.
Further, the best average values are highlighted in bold for each problem instance. The
distributions of the best fitness values achieved by each optimization method are also
plotted in Figures 6 to 9, for each problem instance.

Overall, the table and the plots clearly show that GP scores the best results across
all four problem instances. Specifically, the difference in performance between GP and
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Table 5: Summary of the results of the various representations and optimization algo-
rithms (obtained fitness values).

Enc. Algorithm 7 9

max. avg. std. max. avg. std.

FP

ABC 55.85 55.05 0.31 234.95 233.84 0.42
CLONALG 56.63 56.62 0.01 235.98 235.01 0.18
CMAES 54.93 54.65 0.50 231.98 231.02 0.18
DE 54.93 54.90 0.03 231.98 230.79 0.48
OPTIA 56.64 56.57 0.19 232.99 232.85 0.34
SST 56.63 56.46 0.30 236.95 236.80 0.38

GP SST 56.69 56.64 0.03 240.72 240.64 0.03
SCND 56.53 56.53 0.00 240.51 240.51 0.00

TT SST 56.63 56.60 0.02 236.91 236.55 0.74

(continued) 11 13

Enc. Algorithm max. avg. std. max. avg. std.

FP

ABC 971.00 970.09 0.61 3827.00 3810.97 6.71
CLONALG 969.00 967.76 0.57 3888.00 3853.40 24.37
CMAES 964.00 963.00 0.52 3938.00 3934.23 1.41
DE 960.00 958.50 1.01 2836.00 2701.12 58.23
OPTIA 967.00 965.43 0.57 3918.00 3894.17 18.22
SST 978.97 976.78 1.42 3923.00 3911.70 7.20

GP SST 992.69 992.63 0.02 4032.69 4030.52 11.62
SCND 992.51 992.51 0.00 4032.55 4032.55 0.00

TT SST 978.96 974.44 1.88 3980.99 3977.22 2.51
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Figure 7: Distribution of the best fitness value for size n = 9.
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Figure 8: Distribution of the best fitness value for size n = 11.
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Figure 9: Distribution of the best fitness value for size n = 13.
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the other methods becomes more evident as the size of the problem increases. This
trend is mostly independent of the underlying search strategy, either direct search or the
evolution of secondary constructions. An additional benefit of GP with respect to the
other methods and encoding is that it achieved a very small standard deviation value,
which, in several cases, is the smallest among all the methods. Thus, the GP results
are not dispersed, and the algorithm is rather stable. This is particularly evident for
the secondary construction variant, which always scored a null standard deviation for
all problem instances, meaning that the best solution evolved by GP always produces
Boolean functions with the same nonlinearity value.

Concerning the TT and FP encoding, there is no method that is consistently better
than the others, depending on the specific problem instance. In particular, the choice
of the specific optimization algorithm had a significant impact on the performance
when considering the FP encoding. Also, in this case, there is no single method
that consistently scored the best results across all four problem sizes. However, the
continuous genetic algorithm (FP/SST) seems to be the floating-point heuristic that
achieved the best results overall.

Regarding the comparison with the best-known solutions, for size 7, each repre-
sentation obtained the best-known nonlinearity of 56. We attribute this finding to the
relatively small size of the search space for 7-variable Boolean functions. Indeed, for
larger problem instances, the obtained solutions are worse than the best-known ones
for those numbers of variables (see Table 1). It can be noticed, however, that the best
methods achieved the maximum nonlinearity allowed by the quadratic bound.

The empirical findings discussed above were also mirrored by the statistical tests.
Indeed, the Kruskal-Wallis test with α = 0.05 yielded a p-value of 0 over all four
problem instances. The Mann-Whitney U Test was then applied to investigate all
pairwise comparisons of the methods under investigation. For n = 7 variables, the
results demonstrate that although GP/SST achieves the best results, it does not perform
significantly better than the FP encoding with the CLONALG or OPTIA methods.
Instead, the TT representation was significantly worse than GP but not significantly
different from FP for some algorithms (namely, again CLONALG and OPTIA). Further,
GP with the secondary construction search strategy performed worse than GP/SST,
FP/CLONALG, and FP/OPTIA. We hypothesize that this effect is due to the small
search space for the seed functions, since for n = 7 they are defined over 5 variables.
Likely, the number of ways to combine highly nonlinear 5-variable functions is not
really large, making the problem more difficult for GP to come up with a suitable
secondary construction.

For the remaining problem instances of n = 9, n = 11, and n = 13, GP/SST achieves
significantly better results than all other methods. In particular, even if the boxplots are
barely distinguishable in Figures 7, 8, and 9, GP/SST scores a significantly higher fitness
than GP/SCND. Furthermore, in these three problem instances, there is no significant
difference between the TT and FP encodings when considering the result obtained by
the best algorithm. Additionally, for n = 13, TT/SST achieves equally good results as
CMA-ES under the FP encoding.

Based on the previously outlined observations and analyses, we can conclude that GP
with the direct search approach (GP/SST) is the most appropriate optimization algorithm
for optimizing highly nonlinear Boolean functions, since it consistently scored the best
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results with respect to the other considered methods. Unfortunately, even these best
results achieved by GP/SST fall short of the results reached by custom heuristics already
published in the literature.

5.2 Enhancements with Local Search and Rotation Symmetry
Since the problem instance of n = 9 variables was the smallest size where the opti-
mization algorithms evaluated in the previous section did not achieve the best-known
nonlinearity value of 241, we considered two approaches to improve their performance:
adding a local search step, and restricting the search space to rotation symmetric Boolean
functions only. More precisely, we focused only on the genetic algorithm with the bit-
string encoding (TT/SST) and the direct search approach with Genetic Programming
(GP/SST). The reason is that these two methods obtained the best overall results as
discussed in the previous sections. Moreover, even if GP/SCND proved to be a well-
performing heuristic over all problem instances, the secondary construction approach is
not straightforwardly amenable to the local search step, as well as to the restriction on
rotation symmetric functions.

We implemented the local search step with two different strategies. In the first one, a
mutation-based local search operator is applied on the genotype encoding of a Boolean
function. In particular, the operator acts on a single solution and performs a number of
random mutations. If a better solution is found after one of these mutations, the new
solution replaces the current one, and the operator is applied again. The termination of
this procedure occurs after a predefined number of mutations has been reached. The
operator is applied after each generation, and acts on the current best solution in the
population and on a number of other randomly selected solutions. In our experiments,
the number of solutions undergoing local search was set to 5% of the population size,
and the number of trials (random mutations per individual) was set to 25. This operator
is general, as it can be applied to any encoding.

The second local search strategy is instead specific to the bitstring encoding and
performs individual bit flips instead of random mutations. The difference with the first
strategy, when applied to the bitstring encoding, is that this second strategy works in
an exhaustive way. In particular, this local search operator performs all possible bit
flips of the current solution, and terminates only if there is no improvement (i.e., a local
optimum has been reached).

As mentioned above, we applied these two local search operators only to TT/SST
and GP/SST as the most efficient variants; in the TT/SST case, three combinations
were tested, with either the mutation (denoted as "-LS1") or bit flip operator (denoted
as "-LS2"), or both (denoted as "-LS3"). The results with these modifications were
not encouraging, despite the fact that our extended experimental design for this setting
included 1000 runs for every combination with a time limit of 2 000 seconds, which
corresponds to approximately 300 million evaluations per run. Further, the performance
of GP was not affected, as it always found the same nonlinearity value of 240 in every
run, with or without local search. The results for TT/SST slightly improved instead, and
are reported in Table 6.

After the experiments with the local search variants, we also considered a second
type of enhancement, namely the restriction of the search space to rotation symmetric
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Table 6: Results for the additional runs with the TT/SST and GP/SST algorithms and
LS operators, n = 9.

max. avg. std.

TT/SST 236.91 236.55 0.74
TT/SST-LS1 238.83 237.98 0.95
TT/SST-LS2 238.87 238.58 0.64
TT/SST-LS3 238.87 238.69 0.48

TT/SST-RI-LS1 241.75 240.75 0.05
TT/SST-RI-LS2 240.88 240.80 0.03
TT/SST-RI-LS3 240.90 240.79 0.04

GP/SST 240.72 240.64 0.03
GP/SST-PART 240.62 238.99 0.84
GP/SST-PART-LS 240.64 239.29 0.98
GP/SST-FULL 240.63 239.03 0.74
GP/SST-FULL-LS 240.61 238.90 0.85

Boolean functions. This constraint can be achieved by using the ad-hoc genotypes
described in Section 4.1 under the bitstring and symbolic encodings. In particular, in the
n = 9 problem instance under consideration, the bitstring encoding genotype for rotation
symmetric functions consists of only 60 bits, as opposed to 512 in the generic space of
all 9-variable Boolean functions. These results are also included in Table 6 and denoted
with the suffix "-RI" (Rotation Invariant) in the combinations related to TT/SST. For GP,
we used instead the two approaches to restrict the synthesis of the phenotype to rotation
symmetric functions starting from the syntactic trees. In the first approach (GP/PART),
we evolved trees for Boolean functions of n = 6 variables, since the corresponding
truth tables have size 26 = 64 bits, which is larger than the 60 required to specify a
9-variable rotation symmetric function. In the second approach, we evolved trees of
9-variable functions, but evaluated them only on the representatives of the 60 rotation
classes, filling the remaining inputs of the truth table accordingly. In both cases, we
also considered the variant where the LS operator is applied, respectively denoted as
GP/PART-LS and GP/FULL-LS.

One can see from Table 6 that enforcing rotation symmetry leads to improvements
in the results of the GA with the bitstring encoding (variants TT/SST-RI). This variant
also achieved the maximum nonlinearity of 241 for the TT-RI-LS1 combination.

The bottom part of Table 6 reports the descriptive statistics for the considered
GP combinations with rotation symmetry and local search. It can be noticed that
constraining the search space to rotation symmetric functions does not improve the
maximum fitness value on GP, whether the LS step is applied or not. More surprisingly,
one can see that the average performance of GP slightly drops on rotation symmetric
functions, with nonlinearity values of around 238 or 239, instead of 240 as in the original
version of GP.

To better outline the effect of the different LS strategies on the results, Figure 10
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provides the boxplots for the distributions of the best fitness value. It can be observed
that the application of the local search operators positively affects the results under the
TT encoding, especially the bit flip operator. On the other hand, the observation made
on Table 6 about the hindrance that LS introduces in GP is also corroborated by the
corresponding boxplots in Figure 10.

Concerning the statistical analysis of these distributions, the Kruskal-Wallis test
yielded again a p-value of 0, thereby indicating that this group of algorithms’ variants
perform significantly differently. The second stage of the analysis, through the Mann-
Whitney U test, demonstrates that, by using LS, it is possible to improve the results
significantly compared to the basic algorithm for the GA with bitstring encoding, but
not for GP. Regarding the different LS operators, the statistical analysis indicates that
there is no significant difference between them.

5.3 Discussion
We conclude our evaluation by discussing some insights emerging from the results
presented in the previous sections. Concerning GP, it is remarkable that the basic
version with the direct search approach is the overall best-performing algorithm, while
the variants that enforce rotation symmetry or apply a local search operator achieve
subpar results. This finding is particularly interesting, as it suggests that constraining
the search space to specific functions or exploiting the search process with local search
seems to benefit only genetic algorithms with a bitstring encoding. Indeed, it might be
the case that acting on a tree-based representation introduces more disruptive changes
than what is actually needed to slightly improve the nonlinearity values. After all, GP
already manages to find solutions with a nonlinearity close to the best-known one for
nine inputs. Hence, applying random mutations to a near-optimal tree could be more
detrimental than beneficial for a candidate solution in this context. A similar hypothesis
could apply to the rotation symmetry constraint: the tree-based encoding might simply
not be appropriate to evolve rotation symmetric Boolean functions with the encodings
we explored in this paper. In particular, the issue could lie in the fact that GP is “wasting”
genetic information, since the genotypes are larger than what is actually needed to
define a rotation symmetric function. In the first case, we evolve a GP tree such that the
corresponding Boolean function has a truth table which is larger than the size required
to define the bitstring of rotation classes. In the second case, we evolve a GP tree that
is only partially evaluated. This could imply that GP is evolving parts of candidate
solutions that, in retrospect, are not useful for the optimization process.

We now consider how our best results obtained with GA under the bitstring encoding
constrained to rotation symmetric functions compare with the custom heuristic approach
developed in [19]. The authors of that work reported that, among 200 million RSBFs of
nine variables evaluated with a steepest descent-like algorithm, five have nonlinearity
241. Clearly, this is more successful than what we achieved, as we found only one
such function over 300 million fitness evaluations. Therefore, the question becomes
where this difference in performance arises. We highlight three factors that might
contribute to this difference. First, although Kavut et al. also considered the sum of
square errors of the Walsh-Hadamard values, their overall objective function differs
from our fitness function. It could thus be the case that our fitness function yields a more
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Figure 10: Boxplot representation of the results for the application of LS operators on
the TT representation.

irregular landscape, making it more challenging for an EA to converge on a solution of
nonlinearity 241. Second, their steepest descent-like algorithm introduced a step where,
once the cost cannot be minimized further, backtracking is deterministically applied
by applying a move that corresponds to the smallest possible cost increase. Finally,
in our experiments, we did not use exclusively a local search algorithm, but rather we
combined it as an additional step of an evolutionary algorithm. Based on the results
that we obtained in our systematic evaluation, we conclude that local search is a crucial
process, which indicates that EA operators are either 1) too disruptive or 2) reach local
optima and cannot produce a small change required to improve the fitness value. As a
matter of fact, increasing the nonlinearity from 240 to 241 requires—in the best case
scenario—only a single change in the truth table representation.

6 Conclusions and Future Directions
In this paper, we systematically evaluated the design of highly nonlinear Boolean
functions defined over an odd number of variables via evolutionary algorithms. The
experiments included three solution encodings, four problem instances, and nine dif-
ferent search algorithms. Overall, the results indicate that GP scores the best results,
regardless of the fact that GP works with general Boolean functions. Unfortunately, even
the best results obtained by GP fall short of the best-known results reached with custom
heuristics, except for the smallest problem instance of n= 7 variables. Further, we added
several local search variants to our best EAs, i.e., GA with the bitstring encoding and
GP. Those modifications did not help GP but improved the GA results. Moreover, one
combination of the GA with bitstring encoding and local search operators even produced
an example of a 9-variable Boolean function with nonlinearity 241. Interestingly, the
results suggest that adding local search or narrowing the space to rotation symmetric
functions actually hamper the performance of GP.

There are several interesting avenues for future research on this problem. As a
general research theme, the fitness landscape of the optimization problems related
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to Boolean functions is poorly understood. To our knowledge, there exists only one
study that addressed it in the general case [16]. In this respect, two possible research
directions would be to 1) leverage the insights obtained in that study, concerning, e.g.,
the initialization strategy, and apply them to our evaluation framework to see if the
performances of our search algorithms are affected, and if so to what extent they are;
and 2) perform a fitness landscape analysis for the space of rotation symmetric Boolean
functions. This might help to better understand the dynamics of the optimization
algorithms considered in this study over that particular search space. In principle, such
an investigation could even help to shed light on why GA combined with local search
was the only metaheuristic able to produce a Boolean function with nonlinearity 241.

Further, there are countless other variations that one could consider in our experi-
mental setup: besides optimization algorithms based on a different metaphor, it could be
interesting to explore other variants of GA and GP, for instance, by developing crossover
and mutation operators that are more suitable for this type of problem. For instance, a
possible direction here would be to adapt the balanced crossover operators investigated
in [22] for GA to the setting of rotation symmetric Boolean functions. Further, one may
also consider semantically-aware operators for GP, which can tweak the genotype trees
by enforcing certain semantic constraints. In this regard, a concrete direction could be
to adapt the semantic mutation operators developed by Husa et al. [15] for evolving bent
functions to the case of odd-sized highly nonlinear Boolean functions.
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