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A pseudorandom quantum state (PRS) is an ensemble of quantum states indistinguishable from
Haar-random states to observers with efficient quantum computers. It allows one to substitute the
costly Haar-random state with efficiently preparable PRS as a resource for cryptographic protocols,
while also finding applications in quantum learning theory, black hole physics, many-body thermal-
ization, quantum foundations, and quantum chaos. All existing constructions of PRS equate the
notion of efficiency to quantum computers which runtime is bounded by a polynomial in its input
size. In this work, we relax the notion of efficiency for PRS with respect to observers with near-term
quantum computers implementing algorithms with runtime that scales slower than polynomial-time.
We introduce the T-PRS which is indistinguishable to quantum algorithms with runtime T'(n) that
grows slower than polynomials in the input size n. We give a set of reasonable conditions that a
T-PRS must satisfy and give two constructions by using quantum-secure pseudorandom functions
and pseudorandom functions. For T'(n) being linearithmic, linear, polylogarithmic, and logarithmic
function, we characterize the amount of quantum resources a T-PRS must possess, particularly on
its coherence, entanglement, and magic. Our quantum resource characterization applies generally
to any two state ensembles that are indistinguishable to observers with computational power T(n),
giving a general necessary condition of whether a low-resource ensemble can mimic a high-resource
ensemble, forming a T-pseudoresource pair. We demonstate how the necessary amount of resource
decreases as the observer’s computational power is more restricted, giving a T-pseudoresource pair

with larger resource gap for more computationally limited observers.

True randomness is a costly resource that lies at the
foundation of many information processing tasks, includ-
ing probabilistic computation and cryptography. How-
ever to an observer with limited computational resource,
one may design an object that looks random to this ob-
server, mimicking a truly random object. In quantum
information processing, the Haar-random state is a truly
random ensemble of quantum states that requires expo-
nential time to generate. A pseudorandom quantum state
(PRS) [1], on the other hand, is an ensemble of quantum
states which can be efficiently generated, but is indis-
tinguishable from Haar-random quantum states by any
efficient quantum algorithms up to a negligible probabil-
ity, even given multiple copies of them (see Fig. 1). Since
its inception in [1], many other constructions of PRS and
its variants has been proposed [2-11] and has direct ap-
plication as cryptographic primitives [7, 10-12], as well
as applications in quantum learning theory [13], black
hole physics [14-16], many-body thermalization [17], and
quantum chaos [18]. On the other hand, its connections
to quantum foundations such as entanglement [4, 19-21],
coherence [22], and magic [23] are also intriguing, par-
ticularly on how it can mimic high-resource states while
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actually possessing only a low amount of them, acting as
a pseudoresource [9, 22].

Existing results on PRS equates the notion of com-
putational efficiency for its indistinguishability to quan-
tum algorithms running at most in polynomial-time in
the number of qubits n of the PRS. Such pseudorandom-
ness in the classical regime over bitstrings with respect to
polynomial-time algorithms is widely applicable, as large-
scale classical computers that can run them are widely
available. However, quantum computers are much more
restrictive today where implementation of quantum al-
gorithms only available for small instances, thus limiting
the use of PRS. With this problem in mind, we raise
the questions of: How do one construct a PRS which
is indistinguishable to small-scale quantum computers?
What are the properties of such PRS constructions com-
putationally? What quantum properties do these PRS
have? Do these relaxed PRS constructions require lesser
resource? Can they mimic entanglement, magic, and co-
herence using lesser resource than polynomial-time PRS?

In this work, we address these questions by proposing
a framework that relaxes the polynomial-time compu-
tational indistinguishability of the usual notion of PRS
to indistinguishability for observers with more restric-
tive computational resource. We define the T-PRS, an
ensemble of states indistinguishable from Haar-random
states to quantum algorithms which runtime is bounded
by a function that belongs to a family T which scales
slower than polynomials. As in the usual polynomial-
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time PRS, the indistinguishability property of T-PRS
holds up to a negligibly small probability, even when
multiple copies are given to the distinguisher algorithm.
We characterize the negligibly small probability and
how many copies of states can the algorithm process
such that it cannot arbitrarily increase its probability
of distinguishing the T-PRS from Haar-random states,
given its T-bounded runtime. Using these character-
izations, we give two explicit constructions of T-PRS
by using quantum-secure pseudorandom permutations
and quantum-secure pseudorandom functions, inspired
by constructions in [4, 6]. For these constructions we
consider T as a function f(n) and polynomials of a func-
tion poly f(n), where n is the number of qubits of the
PRS.

We then analyze pair of quantum state ensembles in-
distinguishable to T-bounded observers, one possessing
high-resource and the other low-resource, which we call
a T-pseudoresource pair. For observers with quantum
algorithms which runtime is bounded by function T(n)
given by linearithmic (O(nlogn)), linear (O(n)), poly-
logarithmic (O(poly logn)), and logarithmic (O(logn))
functions, we show that the necessary amount of resource
(entanglement, coherence, and magic) in the low-resource
ensemble decreases with T(n). Since the T-PRS are in-
distinguisable from Haar-random ensemble to size-T cir-
cuits, they are able to mimic high amount of entangle-
ment, coherence, and magic of the Haar-random ensem-
ble, with smaller amount of these resources compared to
previous constructions of PRS. We show the pseudore-
source gaps between T-PRS and Haar-random ensem-
ble for different T. Compared to the recently proposed
pseudorandom density matrices (PRDM) [9] which mimic
high amount of entanglement, coherence, and magic with
zero amount of these resources, the gap between per-
ceived and actual resource of T-PRS lies in between that
of PRDM and PRS.

Below we give an outline of this paper. In Section I,
we lay out the framework to define the notion of pseudo-
randomness and indistinguishability with respect to ob-
servers with limited computational resource character-
ized by class of function T. Particularly, we discuss how
the negligible probabilities with respect to T can be de-
fined in Section I A to define the notion of computational
indistinguishability wiht respect to T, and finally T-PRS
in Section I B. In Section II, we give two constructions of
T-PRS inspired by the subset phase state [4] and sub-
set state [6]. In Section III, we discuss pseudoresource
state ensembles with respect to the observer’s computa-
tional power characterized by T. Here we give a lower
bound on the expected amount of resource of the low-
resource ensemble and an upper bound on resource gap
between the high and low-resource ensembles for coher-
ence (Section IITA), entanglement (Section IIIB), and
magic (Section 1T C).
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FIG. 1. In this illustration, we consider T-indistinguishable
n-qubit pair of ensembles {|ix)}x and {|¢k)}r (as defined in
Section IB). A quantum algorithm A is given input of either
t copies of |¢) randomly sampled from {|¢;)}r or ¢-copies
of |p) randomly sampled from {|pg)}r such that it outputs
A(Ex[|vr)]) € {0,1} or A(Ex[|x)]) € {0,1} indicating which
ensemble the input state belongs to. If the runtime of A given
t copies of n-qubit state input is given by s(n) € O(T(n)),
then A cannot guess which ensemble the input belongs to,
expect for a negligible probability (as defined in Section T A).

I. COMPUTATIONAL PSEUDORANDOMNESS
AND INDISTINGUISHABILITY

Randomness is widely associated with the degree of
uniformity in the frequency of each possible output from
a particular source. A source with perfect uniformity in
the frequency of its outputs, therefore is a perfectly ran-
dom source. Pseudorandomness, on the other hand, is a
source which is not perfectly random but is indistinguish-
able from a perfect random source. Statistically, this can
be quantified by “how far” the distribution of a source
is from the uniform distribution or by how different the
characters of these two distributions are. However these
statistical measures do not take into account the compu-
tational cost of distinguishing such distributions.

In quantum systems, the objects that one concerns
with are quantum states. A perfect randomness can
therefore be associated with an ensemble of quantum
states which is distributed uniformly over all possible
quantum states for a given system dimension. This is
captured by the Haar-random quantum state {|¢)}.
Thus a pseudorandom quantum state (PRS) is a quantum
state ensemble {|i)}, which is indistinguishable from
Haar-random state to observers with bounded computa-
tional resource. The notion of indistinguishability holds
up to some neglibible probability even if the observers
are given a bounded number of copies of states allowed
by how much computational resource it has.

The usual n-qubit PRS is concerned with an observer



with an access to a quantum computer to implement any
quantum algorithm A which runtime is bounded by some
polynomial in n. Here for t-copies of n-qubit input state
|T)®" to A, it spits out output A(|7)®") which is either 0
or 1, indicating whether it received PRS inputs (7 = ) or
Haar-random inputs (7 = ¢). Given polynomially many
t(n) € O(polyn) copies of PRS [|¢) and Haar-random
states |¢) over an n-qubit system, the probability of A
distinguishing [¢)® (") and |p)®* (™) is negligible:

|PrLA()*¢) = 1] = Pr[A(p)*™) = 1] <ni(n) (1)

where 7 is a negligible function, i.e. a function that scales
slower than ﬁ for all polynomial g € poly. For an

illustration of this scenario see Fig. 1. We denote the set
of all such function 7 as negl,,, . Note that in eqn. (1),
the input size to algorithm A is N = nt(n) (i.e. #(n)
copies of n-qubit states), which is polynomial in n. Hence
if runtime of A is a polynomial s(N) in N, then it runs for
s(nt(n)) given input [1)® (™) or |©)®4™)  where s(nt(n))
is a polynomial in n since composition of polynomials is
a polynomial. Note how here we distinguish between the
number of qubits n of individual state ) and the total
number of qubits N of multiple copies of states [))®".
For the rest of this section we will build a formal frame-
work generalizing the polynomial-time indistinguishabil-
ity discussed above. In particular, we want to consider
observers with different computational power by replac-
ing algorithms with runtime bounded by a polynomial
by those which runtime if bounded by some nondecreas-
ing function s : N - N belonging a class of functions
T. Namely, we want the runtime of A on N-qubit in-
put to be bounded by s(N) € O(T(N)) !. Hence the
number of copies t(n) of n-qubit states |7) must satisfy
s(N) = s(nt(n)) € O(T(n)). With such observers, then
we need to formulate a different notion of negligibility
that still impose the restriction that any such observer
with computational resource bounded by T cannot arbi-
trarily increase the probability of distinguishing n-qubit
states |¢) and |p) given t(n) copies of them. Therefore
in summary, for a class of function T we want to im-
pose these requirements on the observer’s computational

1 We give some explanation for our notation. For arbitrary class
of functions T we sometimes write T(n) instead of T to em-
phasize the variable of the functions in T, i.e. function f(n) in
T(n). Also for some parts in the rest of the paper, we often write
arithmetic operations over set of functions to indicate arithmetic
operations over arbitrary function in these sets, which is a stan-
dard convention in writing asymptotics. For example, we write
O(f(n))+negl,, 1, = o(l(n)) when we mean g(n)+h(n) = g(n) for
some g € O(f(n)), h € negly,,1, , and g € o(l(n)). In some parts,
we write the latter to make clearer arguments, however in parts
where the context is clear we write in the former. We also use this
notation on arbitrary class of functions T (e.g. O(T) + negly).
Note also that sometimes T may indicate a single function, e.g.
T = logn, as opposed to a family of function as in the case of
T = poly n where T is the set of all polynomials in n.

power, negligibility, and number of copies with respect
to the number of qubits n of an individual copy of states
in question:

1. Given any number of copies t(n) of any n-qubit
state |T) as an input to any algorithm A chosen by
the observer, the runtime of computing its output
A(7)®*™) is bounded by s(n) € O(T(n)).

2. For the observer with computational resource
bounded by T, the negligible probability n(n) of
its chosen algorithm A distinguishing |¢) and |p)
given t(n) copies of them is preserved even when
composing A with other algorithm A’ it has access
to or by running A repeatedly with total runtime
still bounded as O(T(n)).

After we have these requirements characterized, we then
introduce the T-PRS, quantum state ensembles which
are indistinguishable from Haar-random states to ob-
servers with access to quantum algorithms which runtime
is bounded by s(n) € O(T).

A. Negligible distinguishability

For polynomial-time observers, the corresponding set
of negligible functions negl,,,, are chosen such that when
the observer repeat the experiment polynomial number
of times (since it has access to polynomial-depth al-
gorithms), it cannot arbitrarily increase the probabil-
ity of distinguishing [1/)®*("™) and |¢)®*("™). This notion,
which motivates the polynomial-time indistinguishabil-
ity of eqn. (1), consists of two components: (1) a set of
functions N which signifies negligible probability of dis-
tinguishability and (2) another set of repeat functions R
which signifies how many repetition of the experiment
is allowed. We will come back later to which set of re-
peat function R is allowed for different observers. For-
mally, the aforementioned two criteria for neglibility can
be stated as the following closure properties.

Definition 1 (Closure properties). Consider a pair of
sets N and R of non-decreasing functions g: N - N. We
say that N satisfy the closure properties with respect to
repeat functions R if for all n;,72 € N, it holds that:

1. n1(n) +n2(n) e N, and
2. r(n)n1(n) e N for any r € R.

Remark 2. The first closure property concerns two al-
gorithms A and A" with probabilities of distinguishing
PRS and Haar-random states bounded by 71 and 72, re-
spectively (in the sense of eqn (1)). This property guar-
antees that the two algorithms combined together still
give a negligible probability. Particularly if we denote
the event S as a successful distinction from algorithm .4
and event S’ for algorithm A’ the probability of one or
both of them being successful is

Pr[Sv S <Pr[S]+Pr[S']<ni(n) +n2(n) e N  (2)



where the first inequality is given by the union bound.

On the other hand, the second property concerns an
algorithm A that is run repeatedly (n) number of times.
This property guarantees that whenever the probabil-
ity of successfully distinguishing PRS and Haar-random
states Pr[S] is bounded above by 71y, repeating it r(n) €
R many times still give a negligible probability. More
precisely by using the union bound, the probability of
some repetition of experiment being successful is

r(n)
Pr[S1v v S, m] < Zl Pr[S;] <r(n)m(n)e N (3)

where S; indicates the event of successful distinction in
the i-th repetition of the experiment.

In classical cryptography, negligible functions N =
negl, ., with respect to polynomial-time observers has
been shown in [24, Proposition 3.6] to satisfy the clo-
sure properties with respect to R = O(poly (n)). Here
a polynomial-time observer may repeat the experiment
any polynomial number of times, since product between
any two polynomials is a polynomial. Therefore, the clo-
sure properties prohibit any such observers from arbi-
trarily increasing the probability of distinguishing PRS
from Haar-random states. For more discussion on in-
distinguishability in classical pseudorandomness, see [24,
Chapter 8.8].

Now we formalize the notion of negligibility with re-
spect to a class of functions T.

Definition 3 (T-negligible functions). For a set of N
N functions T € {f : N — N}, a function : N - [0,1] is
T-negligible whenever for all g € ©(T) it holds that

1

g(n) @

n(n) <

for all but finitely many n € N. The set of all T-negligible
functions is denoted as negly.

Before we discuss how T-negligible functions negly
plays a role in formulating indistinguishability for ob-
servers with different computational power, we will go
through a few examples of negligible functions.

Remark 4 (Polynomial-time negligible functions). For
T = polyn, we show that we will recover the usual
negligible function with respect to a polynomial-time
algorithms. Namely a function 7 € negl,,, satisfies
n(n) < g(n)™! for all g € ©(polyn). Since for all such
function g there exists some ¢ > 0 and N € N such that
n> N = g(n) < n° therefore n must satisfy

1
n(n) < —. ()
n
for all ¢ >0 and all but finitely many n.

Example 5 (Linearithmic-time negligible functions).

For T = nlogn, a function 7 € negl, ., satisfies n(n) <

4

g(n)™! for all g € ©(nlogn). In this case, for all such
function ¢ there exists some ¢ > 0 and N € N such that
n >N = g(n) < enlogn. Thus, n must satisfy

n(n) < (6)

cnlogn
for all ¢ > 0 and for all but finitely many n.

Example 6 (Polylog-time negligible functions). For T =
poly logn, a function 1 € negl ), g, satisfies n(n) <
g(n)™ for all g € ©(poly logn). Thus for all ¢ > 0, a
poly log n-negligible function 1 must satisfy

n(n) (7)

PO
(logn)*
for all but finitely many n.

Note that for polynomial-time negligible functions, we
can set the set of repeat functions R as the set of poly-
nomially bounded functions, i.e. R = O(polyn). This
makes sense since the observer is restricted to algorithms
A(|r)) which runtime is bounded by some polynomial in
n (for some arbitrary state |7)). Now for observers with
access to algorithms with runtime bounded by function
s € O(T) this is not necessarily true. For example, for
O(T) = O(n) we have an algorithm A(|7)) that runs in
time s(n) € O(n). If we set R = O(n) and construct
an algorithm A" which repeats A(|7)) by r(n) = n times
(hence taking input of 7(n) copies of |7)), then A" has a
total runtime of 7(n)s(n) = ns(n) € O(n?). This is not
allowed since the observer is restricted only to algorithms
that runs in O(n). Thus we want R to be the set of func-
tions that signify the most number of repetition of any
O(T) time algorithm that the observer can do. We now
formulate this additional criteria.

Definition 7 (Repetition consistency). The set of repeat
functions R is consistent with T if for any s € O(T) we
have r(n)s(n) € O(T) for all r e R.

Now we show that T-negligible functions neglq for
O(T) =O(f(n)) and for O(T) = O(poly f(n)) does have
nice properties with respect to some corresponding repeat
functions. Namely they satisfy closure properties crite-
ria in Definition 1 and repetition consistency criteria in
Definition 7.

Proposition 8. The set of f(n)-negligible functions
negly,) for any non-decreasing, non-constant function
f + N = N satisfy the closure properties with respect to
the set of repeat functions K, where K is the set of con-
stant functions. Moreover K is consistent with f(n).

Proof. By the definition of f(n)-neglibible function, it
holds for i € {1,2} that n;(n) < ﬁ for all g(n) «
O(f(n)). Thus for any c1,co > 0, there exists N1, No € N
such that n > N; = ni(n) < ¢/f(n). We set N =

max{Ny, Nao} for each pair of ¢, ¢y so that

m(n) +ma(n) < s+ 2 (8)

fn)  f(n)



Hence for any ¢ = ¢1 + ¢co > 0 there exists N € N such that
n>N = n(n)+n(n) <c/f(n). Thus we have shown
the first closure property 71(n) +n2(n) € negly(,,).

To show the second closure property, again note that
for any ¢; > 0 there exists V € N such that n > N =

m(n) < ffil). Thus for a constant function r(n) = ¢ for

some ¢ > 0 and for any ¢; we have
C1

f(n)
for all but finitely many n. Thus r(n)n1(n) € negly(,.

Lastly to show that K is consistent with f(n), simply
note that for a constant function r € K we have r(n) =
¢ for some ¢ > 0. Thus for any s € O(f(n)) we have
r(n)s(n) = c¢s(n), which is in O(f(n)).

r(n)m(n) <c 9)

Proposition 9. The set of poly f(n)-negligible func-
tions negly,,. r(,) for any non-decreasing, non-constant
function f : N - N satisfy the closure properties with
respect to repeat functions O(poly f(n)).  Moreover
O(poly f(n)) is consistent with poly f(n).

Proof. By the definition of poly f(n)-neglibible function,
it holds for ¢ € {1,2} that n;(n) < ﬁn) for all g(n) «
O(poly f(n)).

Thus for any cy,co > 0, there exists

N1, Ny € N such that n > N; = n;(n) < W We set
N = max{Ny, Ny} for each pair of ¢1,cy so that
M)+ m(n) <t (10)
f(n)er — f(n)e

Hence n1(n) + n2(n) is bounded by the inverse of some
polynomial in f(n) for all but finitely many n. Thus
we have shown the first closure property n;(n) + n2(n) €
neglpoly f(n)-

To show the second closure property, again note that
for any ¢; > 0 there exists IV € N such that n > N =
m(n) < W Now note that for a function r(n) e

O(poly f(n)), there exists some ¢ > 0 and N € N such
that n> N = r(n) < f(n)¢. So we can pick any ¢; larger
than ¢ so that we can obtain

F(n)m (n) < ﬁ (11)

for all ¢’ = ¢; — ¢ and for all but finitely many n. Thus
7’(”)771(") € neglpoly f(n)-

Lastly to show that O(poly f(n)) is consistent with
poly f(n), simply note that for a function g(n) e
O(poly f(n)) there exists some ¢ > 0 such that g(n) <
f(n)¢ for all but finitely many n. Thus for any
r,s € O(poly f(n)) there exists some ¢ > 0 such that
r(n)s(n) < f(n)¢ for all but finitely many n, which
shows that r(n)s(n) is in O(poly f(n)). O

B. T-Pseudorandom Quantum States

Before we define PRS with respect to observers with
different computational resource, recall that in the usual

polynomial-time PRS, the polynomial-time algorithm A
used by the observer may receive an input of at most
polynomially many ¢(n) € O(polyn) copies of n-qubit
state |7). As we have discussed the runtime of A(]7)®!(™))
is still bounded by some polynomial, since composition
of polynomials is itself a polynomial. When the observer
is restricted to algorithms that runs in O(T), it is not
the case in general that the runtime of A(|7)®*(™)) is still
bounded by some function s(n) € O(T) if t(n) € O(T).
For example if the observer has access to algorithms
A which runtime bounded by some function s(N) €
O(N), where N is the number of input qubits to A
and t(n) € O(n), then given t(n) copies of n-qubit state
I7), A(|7)®*™)) runtime is bounded by s(nt(n)) € O(n?).
This is not allowed since we require that the observer only
has access to quantum algorithms with runtime bounded
by some function in O(n). To remedy this, we restrict
the number of copies t(n) of n-qubit state |7) such that
s(nt(n)) e O(T(n)) for any s(N) e O(T(N)).

Putting together this criterion on the number of copies
with the criteria for T-negligible functions, we can now
formally define what it means for two ensembles to be
indistinguishable with respect to T.

Definition 10 (T-indistinguishability). Two ensem-
bles of n-qubit states {|¢)}y and {|¢)}, are T-
indistinguishable whenever for any quantum algorithm
A with N-qubit input outputting either 0 or 1 with run-
time bounded by function s(N) € O(T(N)) and for all
function t(n) such that s(nt(n)) € O(T(n)), it holds that

|PrLA([9)*¢) = 1] = PrA(|p)* ™) = 1][ < n(n) (12)

for some T-negligible function 7 € negly.

Now we give the definition of a T-PRS: a PRS which
are indistinguishable from Haar-random states to ob-
servers with an access to O(T)-time algorithms.

Definition 11 (T-pseudorandom quantum states
(T-PRS)). Consider a set of N » N functions T ¢ {f :
N — N}. For n € N, an ensemble of n-qubit states {|¢) :
ke K, } over keyspace K,, with |IKC,| =1(n) e O(T(n)) is
a T-pseudorandom state (T-PRS) if it satisfies:

1. There exists a uniform quantum circuit {G,, }, with
size g(n) € O(poly n) that outputs an n-qubit quan-
tum state G, (k) = |¢x) given input k.

2. Ensemble {[¢))}, and n-qubit Haar-random state
ensemble {|¢)}, are T-indistinguishable as defined
in Definition 10.

3. The set of negligible functions negly must satisfy
the closure properties with respect to some repeat
function R consistent with T as defined in Defini-
tion 1 and Definition 7.

Note that here the bound for the T-PRS generator is
the same as the polynomial-time PRS, namely that we



demand the generator must be a polynomial-size circuit
regardless of T bound on the computational resource of
the observer. This can be thought of as a scenario where
the generator belongs to a party with more computa-
tional resource than the observer, which is the focus of
this work. A more general scenario where the compu-
tational resource of the generator is also bounded by T
for any choice of T is left as an open question for future
work.

II. T-PSEUDORANDOM QUANTUM STATE
CONSTRUCTIONS

In this section we give two different constructions of
T-PRS. The first construction is inspired by the subset
phase state construction proposed in [4], whereas the sec-
ond construction takes inspirations from the subset state
proposed in [6]. These constructions use quantum-secure
pseudorandom phase functions (QPRPF) and quantum-
secure pseudorandom permutations (QPRP) as primi-
tives. As their name indicate, these functions (permu-
tations) are efficiently computable functions (permuta-
tions) that are indistinguihable from truly random func-
tions (permutations) to efficient quantum algorithms.
Following what we have done so far in generalizing ef-
ficiency of quantum algorithm to T-efficient, where its
runtime is bounded by some function s € O(T), we first
need the analogous notion of T-QPRPF and T-QPRP.

Definition 12 (Quantum-secure pseudorandom phase
functions and quantum-secure pseudorandom permuta-
tions). For keyspace K and n € N, a family of phase
functions F' = {fy : {0,1}"™ - {0,1} }kex isa T - quantum-
secure pseudorandom phase function (T-QPRPF) if fj is
computable in O(T(n)) time and for all quantum algo-
rithm A running in O(T(n)) time, it holds that

| PrIAM (") = 1] =P A (1) = 1] [ = n(n) . (13)

A family of permutations = {0} : {0,1}" - {0,1}" }rex
is T - quantum-secure pseudorandom permutation (T-
QPRP) if o, is computable in O(T(n)) time and for all
quantum algorithm A running in O(T(n)), it holds that

| PrLA% (1) = 1] = Pr[ A% (17) = 1]] = neglp(n) - (14)

Here, ry and r, are uniformly-random phase function
and uniformly-random permutation, respectively, and
A% A% denotes quantum algorithm A with oracle ac-
cess to ak,agl and r,, 1t

By using T-QPRPF and T-QPRP we will now show
the constructions of T-pseudorandom subset phase states
and T-pseudorandom subset states.

A. T-pseudorandom subset phase states

Definition 13. For a subset of n-bit string S ¢ {0,1}"
and binary function f : {0,1}" - {0,1}, an f, S-subset
phase state is defined as

ﬁ % (1), (15)

For permutation o : [n] - [n] (where [n] :={1,...
an f,o-subset phase state is defined as

1 - o
Vo > ()@, (20m7™))
ze{0,1}™
(16)

where p, : {0,1}" - {0,1}" permutes the order of n-bit
string w as po (W) = Wy (1) - - - We(n)-

lvrs) =

W)f,o) =

Now we will describe how one can construct a subset
phase state that is a T-PRS. First we will describe the
generator circuit of the n-qubit f, S-subset phase state.

Lemma 14 ([4]). An n-qubit f,S-subset phase state
with |S| = 2™ can be generated by a circuit with depth

O(polyn).

This is shown in [4] by a construction of a circuit that
takes n-qubit input and apply hadamard gates on the
first m qubits, then apply the permutation o, and then
the phase oracle Uy.

It is shown in Theorem 2 of [4] that the trace distance
between an n-qubit truly random subset phase state and
an n-qubit Haar-random ensemble {|p)} is bounded as:

t2
d1v(Br e[l e X061 B [leXel™]) < O(557)

(17)
for t < 2™ < 2" where ry is uniformly-random over all
phase functions ry: {0,1}" - {0,1} and rg is uniformly-
random over all subsets of size |S| = 2 and p is the
n-qubit Haar measure. Uniformly-random subset phase
state can be equivalently obtained by uniformly-random
permutation r, and uniformly-random phase function

rf,
R N (A L (18)

where

1 O —m
)= o= 30 (DO D (0)
! 2m IE{O,l}m
(19)
Now we will show how to determine the size of subset S ¢

{0,1}™ for the T-PRS subset phase state construction.

Proposition 15. Let f : N - N be a non-decreasing
function that grows at most polynomially. It holds that:

1. For number of copies t := t(n) € O(1) and size of
subset |S| = 2™ = 2" ¢ w(f(n)), the trace dis-
tance in eqn. (17) is f(n)-negligible.



2. For number of copies t :=t(n) € O(poly f(n)) and
size of subset |S| = 2™ := 2™(") e w(poly f(n)), the
trace distance in eqn. (17) is poly f(n)-negligible.

Proof. For O(T) = O(f(n)), set the number of copies as
t(n) € O(1) and size of subset as 2™(") e w(f(n)). Hence
there exists ¢ >0 and N such that n > N = t(n) < c and
for all ¢/ > 0 there exists N such that n > N = 2™ >

c f(n) (or equivalently, m(n) > log(c’f(n))). Hence it
holds that for all ¢/ > 0 and for some ¢ > 0,
t(n)? c?
< 20
20 < () 2
for all but finitely many n, which implies that ;Snn(lz) €
o(f(n)™"). Thus for any g(n) € O(&) with ¢ == t(n) €

O(1) and 2™ :="(Me w(f(n)) we have g(n) € o(f(n)™),
and therefore g(n) is a negly(s(,)) function. So by
eqn. (17) the trace distance between t(n) € O(1) copies of
n-qubit subset phase state ensemble with |S| = w(f(n))
and t(n) € O(1) copies of n-qubit Haar-random ensemble
is T-negligible.

Now consider O(T) = O(poly f(n)) and t(n) €
O(poly f(n)) and subset size |S| = 2™(™) e w(poly f(n)).
Thus for all ¢’ >0 and for some ¢ > 0 it holds that

) f)*
2m)  f(n)?

for all but sufficiently many n.

(21)

Since ¢ > 0 can
t(n)?
Zm(n)
which implies that

be arbitrarily large therefore for all g(n) € O(
it holds that g(n) e o(m),
g(n) € negl gy r(n)- Therefore by eqn. (17) the trace
distance between t(n) € O(poly f(n)) copies of n-qubit
subset phase state ensemble with |S| = w(poly f(n)) and
t(n) € O(poly f(n)) copies of n-qubit Haar-random en-
semble is T-negligible. O

Remark 16. Note that the reason that we con-
sider t(n) € O(1) and t(n) € O(polyf(n)) is
to satisfy the f(n)-indistinguishability and poly f(n)-
indistinguishability, respectively. Particularly by the
definition of T-indistinguishability in Definition 10, we
need an algorithm A with runtime s(N) € O(T(N))
given N-qubit input to run in s(nt(n)) time where
s(nt(n)) € O(T(n)) given t(n) copies of an n-qubit
state |7). For T(n) = f(n), s(nt(n)) € O(f(n)) is
satisfied when t(n) = O(1). On the other hand for
T(n) = poly f(n), s(nt(n)) € O(poly f(n)) is satisfied
when t(n) = O(poly f(n)).

Finally, by using Lemma 14 and Proposition 15 we

obtain a subset phase state T-PRS construction.

Theorem 17. Let f : N - N be a non-decreasing func-
tion that grows at most polynomially. It holds that:

1. A subset phase state ensemble {|1s,)} .o with sub-
set size |S| e w(f(n)) is a f(n)-PRS given number
of copies t:=t(n) e O(1).

2. A subset phase state ensemble {|{¢,5)} f,o with sub-
set size |S| € w(poly f(n)) is apoly f(n)-PRS given
number of copies t :=t(n) € O(poly f(n)).

Proof. These subset phase states can be generated in
O(n) by Lemma 14, so we only need to show that it is
T-indistinguishable to Haar-random state ensembles for
negligible functions negly satisfying the closure proper-
ties with respect to repeat functions R that is consistent
with T € {f(n), poly f(n)}.

First note that for T(n) = f(n), an algorithm A with
runtime s(N) € O(f(N)) given N qubit input has a run-
time of s(nt) € O(f(n)) given ¢ € O(1) copies of n-qubit
states. Then to show f(n)-indistinguishability we use a
hybrid argument with:

1. Hybrid 0: ¢ copies of size |S| € w(f(n)) subset phase
state ensemble {|¢f )}, with f(n)-QPRPF f
and f(n)-QPRP ¢ as an input to A.

2. Hybrid 1: t copies of size |S| € w(f(n)) subset
phase state ensemble {|t)r, r;)}r, r, for uniformly
random permutation and phase function r,,ry, re-
spectively, as an input to A.

3. Hybrid 2: t copies of Haar random ensemble {|p)}
as an input to A.

Clearly, for t € O(1) algorithm A outputs A(|7)®") in
s(nt) € O(f(n)) since the input size is a just constant
multiple of n. Now we show that

[ PrLA(r0)*) = 1] = PrA(9)*) = 1]] < n(n)

(22)
for n(n) € negly(,,), namely that the Hybrid 0 and Hybrid
3 are f(n)-indistinguishable. We will use negligible func-
tion negly(,y with respect to repeat function R = O(1).
Note that R = O(1) is consistent with O(f(n)) since for
any s(n) € O(f(n)) and any r(n) € O(1)) it holds that
r(n)s(n) € O(f(n)).

Now note that hybrid 0 and hybrid 1 are O(f(n))-
indistinguishable since random permutation r, is indis-
tinguishable from O(f(n))-PRP o to all algorithms run-
ning in O(f(n)) and random function r is indistinguish-
able from O(f(n))-PRP o to all algorithms running in

O(f(n)), i.e.

[ PrLA(10)*) =11 = Pr [A(e, ,)*) = 1]] < n(n)

(23)
for some 79 € negly(,,y. Combining eqn. (23) above with
part 1 of Proposition 15 that hybrid 1 and hybrid 2 are
f(n)-indistinguishable:

[PrLA(2)®) =11 = Pr [A(le,..)*) = 1] <m(n)
(24)



for some n; € negly(,), then by triangle inequality we
have

| PrLA(Rer, ) ) = 1] - PrA()*™) = 1]

<[ Prialvre)®) =10- Pr AR =)0 =10]

+[PrA9)®) = 1] = Pr [A(le,.x)*) =1]]
<o(n) +m (n)

since 1o, 1M1 € negly(,,), by the first closure property (Defi-
nition 1) of negly(,, it holds that 1o (n)+n:(n) € negly(,).

For T(n) = poly f(n), the proof is identical to the
T(n) = f(n) case above. First, an algorithm 4 with
runtime s(N) e O(poly f(N)) given N qubit input
has a runtime of s(nt(n)) € O(poly f(n)) given t(n) €
O(poly f(n)) copies of n-qubit states, since s(nt(n)) =
poly (f(npoly f(n))) is a polynomial since f does not
grow faster than polynomials. Then to show poly f(n)-
indistinguishability we use the same hybrid argument
as above, but with poly f(n)-QPRPF f and poly f(n)-
QPRP o, and number of copies t(n) € O(poly f(n)).
Here we use negligible functions negl,;, #(n) and repeti-
tion function R = O(poly f(n)) which is consistent with
poly f(n) since for any r(n), s(n) € O(poly f(n)) it holds
that r(n)s(n) € O(poly f(n)) again because f does not
grow faster than polynomials.

As the case for T(n) = f(n) above, we can show that
hybrid 0 with subset phase state input [¢# ) and hybrid 1
with [¢)r, r, ) input (both with ¢(n) € O(poly f(n)) copies
thereof) are poly f(n)-indistinguishable since we are us-
ing poly f(n)-QPRPF f and poly f(n)-QPRP o. Hybrid
1 and Hybrid 2 are also poly f(n)-indistinguishable by
Proposition 15. Thus we can show that subset phase
state ensemble {|t)f )}, and Haar-random ensemble
{le)} are poly f(n)-indistinguishable by using triangle

inequality and the closure property of negl,, r¢ny. O

B. T-pseudorandom subset states

In this section we will give the subset state T-PRS
construction.

Definition 18. An n-qubit subset state |S) for S ¢
{0,1}™ is given by

1
S)=— x) .
) ISIESH 26)

Note that a subset state is similar to the subset phase
state construction in Section ITA in that we take the
uniform superposition of n-bit strings in a subset S ¢
{0,1}™. However, all of the individual terms here are
phaseless. This implies that the generator for an n-qubit
subset state can be also constructed by the O(polyn)
generator circuit of subset phase state in Lemma 14 using
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T-PRP, but without the phase oracle Uf. We denote this
construction of subset state as {|S,)}, for T-PRP 0.
Similar to the subset phase state, the lemma below
gives an upper bound to the trace distance between an
n-qubit random subset state ensemble {|S)}s over all
subsets of size |S| = m and the n-qubit Haar-random en-

semble {|p)},.

Lemma 19 (|6, Theorem 1]). For subset S ¢ {0,1}"™ with
|S| =m and for some positive integers n,t it holds that

tm t?

®t ®t mmn o
i Bk B kel <o) < 0( ) 21
where subset S is uniformly sampled from all possible (an)
size-m subsets of {0,1}" and ¢ is Haar-random.

Now we show how to determine the size of subset S ¢
{0,1}" to construct a T-PRS.

Proposition 20. Let f : N - N be a non-decreasing
function that grows at most polynomially. It holds that:

1. For number of copies t := t(n) € O(1) and subset
size |S| = m(n) satisfying w(f(n)) <m(n) < o(2"),
the trace distance in eqn. (27) is f(n)-negligible.

2. For number of copies t := t(n) € O(poly f(n)) and
subset size |S| = m(n) satisfying w(poly f(n)) <
m(n) < o(2"), the trace distance in eqn. (27) is
poly f(n)-negligible.

Proof. First, set t := t(n) = O(1) and m := m(n) such that
w(f(n)) <m(n) <o(2"). We will evaluate the first term
O(tm/2™) of the upper bound in Lemma 19. Note that
for all ¢ > 0 there exists N such that n > N = m(n) < ¢2".
Therefore for any g(n) € O(t(n)m(n)/2™), it must hold
that g(n) e O(27").

Secondly, for the second term of the O(t?/m) upper
bound in Lemma 19, for all ¢ > 0 there exists N € N such
that n > N = 1/m(n) < ¢f(n) since m(n) € w(f(n)).
Thus for all ¢ > 0 and some constant ¢’ it holds that

t(n)? t
)

for all but finitely many n. Therefore for all h(n) €
O(t?/m), it holds that h(n) € o(f(n)™').
Putting both terms together, by Lemma 19 we obtain

m 2 1 1
0(’;—”)+0(%)<0(27)+0(m) (29)

which implies that

m(n) (28)

dﬂ(Esnsxsm , Ewuwwt]) eneglosony . (30)

hence proving the claim.
Now for t := t(n) € O(poly f(n)) and w(poly f(n)) <
m(n) < o(2"), we first look at the O(tm/2™) term. Note



that for all ¢ > 0 and for some ¢’ it holds that tm =
t(n)m(n) < f(n)¢ 2" for all but finitely many n. Thus
for all g(n) € O(tm/2") it holds that g(n) € O(2™"). Now
for the O(¢?/m) term, note that for some ¢’ > 0 and for
all ¢ >0 it holds that

t(n)?
m(n)

O
f(n)e
for all but finitely may n. Since ¢ > 0 can be arbitrar-
ily large, therefore it holds that for any g(n) € O(t*/m)
we have g(n) € o(m). Finally putting both terms
together we have

<

(31)

tm t* 1
Ol—)+0(—)<0(2™ _). 32
Since the right hand side of the inequality is a poly f(n)-

negligible function negl,;, r(,), thus the trace distance
in eqn. (27) is poly f(n)-negligible. O

Note that here we use similar ¢(n) as in Proposition 15
for subset phase state for the same reasoning (see Re-
mark 16).

Finally, by using Proposition 20 and the same O(n)
construction as the subset phase state (without the phase
oracle) we obtain a subset state T-PRS construction.

Theorem 21. Let f: N - N be a non-decreasing func-
tion that grows at most polynomially. It holds that:

1. A subset state ensemble {|s)}, with subset size
|S| = m(n) such that w(f(n)) <m(n) <o(2") is a
f(n)-PRS given number of copies t:=t(n) e O(1).

2. A subset state ensemble {|t,)}s with subset size
|S| = m(n) such that w(poly f(n)) < m(n) < o(2")
is a poly f(n)-PRS given number of copies t :=
t(n) € O(poly f(n)).

Proof. Since {|s)}» can be generated by an O(n) cir-
cuit similar to the subset phase state construction, we
only need to show its T-indistinguishability from Haar-
random ensemble {|¢)} for negligible functions negly. sat-
isfying the closure properties with respect to repeat func-
tions R that is consistent with T € {f(n), poly f(n)}.

The T-indistinguishability proof for subset states is
similar to that of subset phase state in Theorem 17.
First for T(n) = f(n), an algorithm A with runtime
s(N) € O(f(N)) given N qubit input has a runtime of
s(nt) € O(f(n)) given t € O(1) copies of n-qubit states.
We use a hybrid argument with:

1. Hybrid 0: ¢ copies of size |S| = m(n) such that
w(f(n)) < m(n) < o(2") subset state ensemble
{[to)}o with f(n)-QPRP o as an input to A.

2. Hybrid 1: t copies of size |S| = m(n) such that
w(f(n)) <m(n) <o(2"™) subset phase state ensem-
ble {|t)¢, }}r, for uniformly random permutation r,
as an input to A.

3. Hybrid 2: ¢ copies of Haar random ensemble {|p)}
as an input to A.

Clearly, for t € O(1) algorithm A outputs A(|7)®") in
s(nt) € O(f(n)) since the input size is a just constant
multiple of n. We use negligible function negls,) with
respect to repeat function R = O(1), which is consis-
tent with O(f(n)) since for any s(n) € O(f(n)) and any
r(n) € O(1)) it holds that r(n)s(n) € O(f(n)).

Now note that hybrid 0 and hybrid 1 are O(f(n))-
indistinguishable since random permutation r, is in-
distinguishable from O(f(n))-PRP o to all algorithms
running in O(f(n)) and random function ry is f(n)-
indistinguishable from O(f(n))-PRP o to all algorithms
running in O(f(n)). Along with part 1 of Proposition 15
that hybrid 1 and hybrid 2 are f(n)-indistinguishable,
then by triangle inequality we have that

| LA )1 ) = 1] - Pr[A(J) ™) = 1] 53

<no(n) +mni(n)

for some 79,71 € negly(,,y. By the first closure property
(Definition 1) of negly(,) it holds that ng(n) +ni(n) €
negle(,y-

For T(n) = poly f(n), the proof is identical to the
T(n) = f(n) case above. First, an algorithm A
with runtime s(IN) € O(poly f(N)) given N qubit in-
put has a runtime of s(nt(n)) € O(poly f(n)) given
t(n) € O(poly f(n)) copies of n-qubit states, since
s(nt(n)) = poly (f(npoly f(n))) is a polynomial since
f does not grow faster than polynomials. Then to
show poly f(n)-indistinguishability we use the same hy-
brid argument, but with poly f(n)-QPRP ¢ and num-
ber of copies t(n) € O(poly f(n)). Here we use negli-
gible functions negl, ., f(,) and repetition function R =
O(poly f(n)) which is consistent with poly f(n) since for
any r(n),s(n) € O(poly f(n)) it holds that r(n)s(n) €
O(poly f(n)) again because f does not grow faster than
polynomials.

As the case for T(n) = f(n) above, we can show that
hybrid 0 with subset state input |¢),) and hybrid 1 with
[¥rand, ) input (both with ¢(n) € O(poly f(n)) copies
thereof) are poly f(n)-indistinguishable since we are us-
ing poly f(n)-QPRPF f and poly f(n)-QPRP o. Hy-
brid 1 and Hybrid 2 are also poly f(n)-indistinguishable
by Proposition 20. Thus we can show that subset state
ensemble {|i),)}, and Haar-random ensemble {|p)} are
poly f(n)-indistinguishable by using triangle inequality
and the closure property of negl, ., ¢(n)- O

III. T-PSEUDORESOURCES

While pseudorandomness alludes to how true random-
ness can be mimicked using lesser amount of random-
ness, pseudoresources indicates how objects possessing
large amount of resources can be mimicked by those with
small amount of resources [4, 9, 22, 23]. In the quantum



regime, the study of pseudoresources show how quantum
states with high amount of quantum resources such as co-
herence, entanglement, and magic can be substituted by
states with low resource. This is done mainly by using
computational indistinguishability between two ensem-
bles of states as we have discussed in Section I. However,
so far only polynomial-time indistinguishability has been
studied with respect to pseudoresources. As we have seen
so far on how the polynomial-time bounded observers can
be replaced by observers which computational runtime is
bounded by some class of function T, it is natural to do
this generalization to pseudoresources as well.

For a given resource, we can assign a resource mea-
sure? @ which assigns a (real-number) value Q(7)) to a
quantum state |¢)). Note that here we only consider pure
quantum states. Furthermore, for a resource measure )
and quantum state ensembles {|¢)} and {|)}, we define
the resource gap between {|p)} and {|)} as

Ag({le)}. (1)) = [Eo[Q(e)] - Ey[@)]] . (34)

For computationally indistinguishable ensembles {|p)}
(as in Definition 10 and {|¢))} where expected resource
E,[Q(¢)] is larger than the expected resource E,[Q(¢)],
this indicates that ensemble {|1))} acts as a pseudore-
source, mimicking the high-resource ensemble {|p)} with
respect to some computationally-bounded observer.

As we will see later in this section, we can use T-PRS
to obtain larger resource gaps for coherence (Table I), en-
tanglement (Table II), and magic (Table III), compared
to the usual pseudoresource gap from polynomial-time
PRS. While results on pseudorandom density matrices
(PRDM) in [9] has shown that the largest amount of
resource gap can be obtained from a mixed-state gen-
eralization of polynomial-time PRS, i.e. Ey[Q(¢)] =0,
T-PRS give intermediate resource gaps between those
obtained from polynomial-time PRS and PRDM.

A. Coherence resource gap

For an n-qubit state p, the relative entropy of coher-
ence [27, 28] of p is defined as

C(p) = H(Pdiag) - H(p) ) (35)

2 Specifically, a resource measure Q usually is required to satisfy
certain properties. The most common required properties are:
(1) Faithfulness: @ must assign a 0 value to a prescribed set of
“free states” F, i.e. Q(p) =0,Ype F, and (2) Monotonicity: Q
must satisfy Q(p) > Q(C(p)) for any state p and any C belonging
to a prescribed set of “free operations” O. Other nice properties
of @ such as convexity, subadditivity, and continuity could also
be demanded. This is part of the study of quantum resource theo-
ries which we will not go into detail. We will instead use resource
measures that are commonly used in the literature. Readers who
are interested to find out more about resource theory may refer
to [25, 26].
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which takes value between 0 and n. Here H(p) =
-Tr(plogp) is the von Neumann entropy of density ma-
trix p. Relative entropy of coherence of p admits an oper-
ational interpretation as the asymptotic rate of how many
copies single-qubit maximally coherent state can be ob-
tained for every p to distill a using incoherent operations
(see [27],]28, Section III.C]).

Now let us consider the Hilbert-Schmidt coherence dis-
tance of quantum state p, given by

Ca(p) = min|lp - ollfs =1 - Tr(p’la) ~ (36)

for projector .2 = ®7_; [00X00| + [11X11]. For all state
p, the Hilbert-Schmidt coherence distance Cy(p) takes
value between 0 and 1 - 27" and satisfy the relation

C(p) > ~log(1 - Ca(p)) . (37)

Proposition 22. For any T-indistinguishable ensembles
{lo)} and {[Y)} such that E,[Ca(lp))] > 1 - 277 >
Ey[C2(|10))] for some function v:N - N, it holds that

1

B CUD]2 -log( gy +vesin()) . (39

and
Ao}, (1)) = O) +1og oy + () - (39

Proof. We can use the projector I.o as an efficient distin-
guisher with acceptance probability of p(p) = Tr(p®?11.)
given two copies of p as input. The expected av-
erage acceptance probability for {|¢)} is E,[p(p)] <
277(")  whereas the average acceptance probability for

{[9)} is Eg[p()] = 1 - Ey[Ca(ly))] > 277, Since

these ensembles are computationally indistinguishable
and Ey[p(¢)] 2277 > E,[p(p)], it holds that

Ey[p(¥)] =Ee[p(p)] = n(n), (40)

for n € negly, which implies that

Ey[p(¥)] = Eu[p(e)] +n(n)

> 277 4 p(n) . (1)

Now by using the relation C(p) > -log(l — Ca(p))
(eqn. (37)) we obtain

Ey[C([¢)] 2 Ey[-log(1 - C2([4)))]
=Ey[-logp(y)]

1
= —log(zy(n) +77(n)) .

which gives us eqn. (38). Lastly by observing that the
maximum value of the relative entropy of coherence is

(42)



max, C(p) = O(n) and combining it with eqn. (38) we
get

Ao (o)) ()
B ox (i )
1

=0(n) +log (Q“f(") + n(n))

which gives us eqn. (39). O

If we set ensemble {|p)} as the Haar-random state, its
expected coherence and expected Hilbert-Schmidt coher-
ence distance are

E,[C(¢)]= Y = O(n)
k=2
and (44)
Eo[Ca(p)] = 1- s 2 1-0(27™),

respectively. The following are the expected coherence of
ensemble {|¢)} that is T-indistinguishable to the Haar-
random ensemble {|p)} to observers with different com-
putational power T. The results are summarized in Ta-
ble I.

1. For a poly-time observer (i.e. T(n) = polyn =
n®M) it holds that
1
0(2—11) + _ 2—O(logn) , (45)

polyn

since polyn = nPM) = 20(M)logn _ 90(ogn) 514
since O(27™) grows slower than 270°8")  Thus,
by Proposition 22, we obtain

Ey[C()] 2 ~log(279Ue™)) = y(logn) , (46)
which agrees with the bound in [22, Appendix .

2. For a linearithmic time observer (i.e. T(n) =
O(nlogn), first note that for g(n) € O(nlogn),
it holds that there exists ¢ > 0 and N € N such
that g(n) < enlogn if n > N, which is equivalent to
g(n) € O(1)nlogn. Thus we can obtain the equiv-
alence O(nlogn) = 20(MD+log(nlogn) which gives

1
O(nlogn)
_ 0(2—n) i 2—0(1)—10g(n10gn) (47)

o2™)+

_ 2—0(1)—10g(n logn)

as any g(n) € O(2™) also satisfy g(n) e«
2-O)-log(nlogn) -~ Thyg by Proposition 22, the ex-
pected relative entropy of coherence of {|i)} is
lower bounded as

Ey [C()] > -log (2*0(1)*10g(nlogn))

=w(1l) +log(nlogn) . (48)
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3. For a linear-time observer (i.e. T(n) = O(n)), by
using the equivalence O(n) = 2001987 we have

1
0(2—77,) i W _ 2—0(1)710gn ) (49)

Thus the expected relative entropy of coherence of
{|¥)} is lower bounded as

Ey[C(¥)] 2 -log (2—O<1>—logn)
=w(l)+logn.

(50)

4. For polylogarithmic time observer (i.e. T(n) =
O(poly log(n))), first note that polylogn =

logo(l)n = 210g(10g0(1> n) = 90(oglogn) = Hepce we
obtain
2*"/(") + T(n)*l — 0(2—n) + 27O(loglogn) )
_ 2—O(loglogn) ) (5 )
Then by using Proposition 22 this gives
E.[C > —1lo 2—O(log10gn)
$[C(11)] 2 ~log ( ) 52)
=w(loglogn) .
5. For logarithmic time observer (ie. T(n) =

O(logn)), we have the equivalence O(logn) =
20()+loglogn which gives

O(Q—n) i 270(1)—10g10gn _ 2—0(1)—10g10gn ’ (53)
since O(27") grows slower than 2-C(1)-loglogn

Thus the expected relative entropy of coherence of
{|1))} is lower bounded as

Ey[C(3)] 2 ~log (270(1)*10g10gn)

(54)
=w(1l) +loglogn .

B. Entanglement resource gap

Here we use entanglement entropy as a measure of
how much entanglement does a quantum state has. En-
tanglement entropy of a bipartite n-qubit pure quantum
state 1) over system partition A ® B with dimensions
dimA =2"4 and dim B = 2"5 and ns +ng = n is given
by

E() = H(Tra([9X¢]) = H(Trp([9X¢]) (55)

where Try (Trp) denotes a partial trace on system A
(system B). Note that the equality between the entropy
of |¢) reduces to system A and B follows from the fact
that the entropy of bipartite A : B pure quantum states
reduced to either of the systems A or B is equal.
Operationally, it has been shown that the entangle-
ment entropy of a bipartite pure state [¢)) correspond
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T Ey[C(¥)] Ac({e}, {¥}) <
O(polyn) w(logn) O(n) - w(logn)
O(nlogn) |w(1)+log(nlogn)|O(n) - (w(1l) +log(nlogn))

O(n) w(1) +logn O(n) - (w(1) +logn)
O(poly logn) w(loglogn) O(n) —w(loglogn)
O(logn) w(1) +loglogn O(n) — (w(1) +loglogn)

TABLE I. Left column: Computational power T of the observer. Center column: Expected relative entropy of coherence of
ensemble {|¢)} that is indistinguishable from {|p)} to T-time observers. Right column: Upper bound of coherence gap Ac
between Haar-random ensemble {|¢)} and ensemble {|¢))}. The quantities in the center and right columns can be obtained
directly from Proposition 22 by setting 277" = O(2™™) and setting T(n) as in the left column. Note that as the computational
power of the observer increases, one can see that the average amount of coherence of the pseudo-random ensemble E,[C/()]
decreases, so that the pseudo-coherence gap increases. Namely, it cost less coherence to fool a computationally weaker observer.

T(n) Ey[E())] As({p}, {¥}) <
O(polyn) w(logn) O(n) - w(logn)
O(nlogn) |w(l)+log(nlogn)|O(n) - (w(1) +log(nlogn))

O(n) w(1) +logn O(n) — (w(1) +logn)

O(poly logn) w(loglogn) O(n) - w(loglogn)
O(logn) w(1) +loglogn O(n) — (w(1) +loglogn)

TABLE II. Left column: Computational power T of the observer. Center column: Expected entanglement entropy Ey[E ()] =
f(n) of n-qubit ensemble {|i)} over partition A : B with dim A = 2"4 and dim B = 2" with na <np and na € Q(f(n)) and
na+np =n of ensemble {|¢p)} that is indistinguishable from {|¢)}} to a T-observer. Right column: Upper bound of entanglement
gap Ag between Haar-random ensemble {|p)} and ensemble {|¢))}. The quantities in the center and right columns can be

obtained directly from Proposition 23 by setting 277(") = O(2™™) and setting T(n) as in the left column, with negligible
functions negl.

and

Au({le)}, (1)) = O() +log (s +1(m) - (59)

to both [29, 30]: (1) the entanglement cost of |¢), i.e.
the asymptotic rate of how many two-qubit maximally
entangled states |¢) is needed to obatain a copy of [¢)
using only local operations and classical communications

(LOCC) operations, and (2) the distillable entanglement
of |}, i.e. the asymptotic rate of how many copies of |¢)
can be obtained per copy of |1} using LOCC operations.

A useful tool used to show a lower bound of entan-
glement entropy of PRS [1, 4] is the SWAP test. The
SWAP test takes two copies of quantum states p and
outputs “accept” with probability

pw(p) = 5(L+ () = 51+ 27200 (56)

where Hy(p) = -Tr(p?) is the quantum collision entropy.
Now we state our result characterizing the entanglement
entropies of two indistinguishable ensemble of quantum
states.

Proposition 23. Consider a T-computationally indis-
tinguishable ensembles {|p)} and {|)}} over n qubit
system partitioned as A ® B where dimA = 2™4 and
dim B = 2"8 and ng < np and na +np = n, such that
E [H2(pa)] > &(n) > Ey[Ha(a)] for some function
& :N - N. It holds that

B [B(0)]2 log (5 +a(m)  (57)

for somen e negly. Here, by taking the expected entangle-
ment entropy of n-qubit ensemble {|1)} as a function in
n: Ey[E(Y)] = f(n), we also assume that na € Q(f(n)).

Proof. First we use the fact that H(p) > Ha(p) for all
states p and then express the collision entropy Hs in
terms of the accept probability of the SWAP test in
eqn. (56) to obtain

H(p) > Hz(p) = —log(2psw(p) - 1) .

Indistinguishability between ensembles {|¢}} and {|¢)}
to a T-bounded observer implies that

[Ey[psw (¥4)] - Eplpsw(a)]| = n(n) ,

for some n € negly by taking the SWAP test as a
constant-size quantum circuit acting as a distinguisher.
Since E,[Ha(pa)] > &(n) > Ey[Ha(14)] by assumption,

we have

(59)

(60)

Ey[psw(®a)] = Ex[psw(pa)] +n(n)

G272 () (61)



By eqn. (59) and eqn. (61) the average entanglement
entropy of ensemble {|)} can be lower bounded as

Ey[E(¥)] = Ey[H(¥a)]
>Ey[Hz(¢a)]
= Ey[ - log(2psw(va) -1)]  (62)

> ~1og ey +1(m))

which can be rewritten as

£y [B()] 2 ~log (o5 +

T(ln) ) (63)

since n(n) < ﬁ for all geT. O

If {|¢)} is a Haar-random ensemble, then its expected
entanglement entropy and expected Rényi-2 entangle-
ment entropy over partition A : B with dim A = 2"4 and
dim B = 2"8 with ng <np and n4 + np =n is given by

E,[E(p)] = min{na,ngz} - O(1) = na - O(1)

and (64)
Ey[Ha(¢4)] = - log

which gives £(n) € O(na) € O(n).

Now we give a lower bound for expected entanglement
entropy of n-qubit ensemble {|1)} with low-entanglement
that is T-indistinguishable from n-qubit Haar-random
ensemble {|p)} for different T. The results are summa-
rized in Table II. The derivations are similar to that of
relative entropy of coherence.

1. For a poly-time observer (i.e. o(T) =
O(poly (n))), it holds that for n € negl, ,,
L) <0@™)+ L = 90tesm) (65)
2¢(n) polyn ’
Hence by Proposition 23,
E.[E > — 1 2—O(logn
SLB()] 2 ~log(2-00") .
=w(logn),

which matches the bound in [4].

2. For linearithmic-time (O(nlogn)) observer, it
holds that for 7 € negl

nlogn

1 n
ety *1(n) <O+ O(nlogn) (67)

_ 0(2—n) n 2—0(1)—10g(nlogn)
Hence by Proposition 23,

Ey[E(¢)] 2 ~log (0(2—") + 2_0(1)—10g(n10gn)) .
=w(1) +log(nlogn) .
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3. For linear-time observer (O(n)), it holds that for
’rl € negl'n/

+n(n) <0O(2™) +

1 -O(1)-logn
SeO) n) -2 (69)

Hence by Proposition 23,

E¢[E(¢)] > —log (0(2*”) + 270(1)710gn)
=w(1l) +logn .

4. For polylogarithmic-time observer (O(poly logn)),
it holds that for 7 € negl

poly logn
1 -n -O(loglogn)
%+n(n) <O(2™™)+2 (71)
Hence by Proposition 23,

Ey[E(¥)] > -log (0(2‘") + 2—0(10810gn)) )

= w(loglogn) .

5. For logarithmic-time observer (O(logn)), it holds
that for n € negly,,,

1
2£(n) +77(n) <O(2 rL)+2—O(1) loglogn (73)

Hence by Proposition 23,

Ey[E(Y)] > —IOg(O(Q—n) + 2—0(1)_10g10gn)
=w(1) +loglogn .

(74)

C. Magic resource gap

Stabilizer Rényi-« entropy [31, 32] of n-qubit state p
is given by

Ma(p) =

log(;n Zp (Tr(Pp))Qa) . (75)

where P,, is the set of all n-qubit Paulis modulo phases
—I,+il.

Here we use the Hadamard test [23, 33] which uses
2« copies (for odd «) of n-qubit state p accepts with
probability

1+ Tr(H(2oc)p®2a)

P (p) = 5

(76)

where T1(2®) = 2% > Pep, P®2®_ Note that we can express
the stabilizer Rényi-a entropy in terms of II?®) as

1 « «
Mo (p) = 1_a1ogﬁ(n<2 ) 2 ) (77)



Hence accepting probability of the Hadamard test using
2« copies and the stabilizer Rényi-« entropy can be ex-
pressed in terms of one another as

~log (2p(2a)(p) - 1)
" and (78)
(2“)(p) _ ,(1 + 2(1—04)Mu(/))) )

M, (p)—

Proposition 24. Let o > 2 be an odd integer with
a = h(n) such that s(nh(n)) € O(T(n)) for all s €
O(T(n)). Then, for T-computationally indistinguishable
ensembles {|¢)} and {|)} such that E,[Mq(p)] > 7(n) >
Ey[Muo ()] for some function 7:N — N, it holds that

g-(a-1)7(n)

log(neglp(n)) + =y . (79)

a-1

Eib [Ma(l/})] 2=

and
o-(a=1)7(n)

log(neglp(n)) + T e

a-1

A, ({le)} {l¥)}) < O(n) + :
(80)

Proof. For n-qubit quantum state ensembles {|¢))} and
{lp)} that are T-indistinguishable, therefore for any
quantum algorithm A with runtime bounded by s € O(T)
it must hold that

[ES[A@P) = 1] - B [A(e®™) =1]| = n(n)  (81)
for any t(n) such that s(nt(n)) € O(T(n)) and 7 € negly.

Thus if C is the Hadamard test circuit and o =t(n)/2 we
have

(B[P ()] - Eo[p ()] = n(n), - (82)

for some 7 € neglp. Thus by eqn. (78) it holds that

1

5|2(1—a)IEw[Ma<1z;)] - 2(1—06)E¢[Ma(50)]‘ =n(n). (83)
Since E [Ma(¢)] > 7(n) > Ey[My(v)] and o > 1 we
have

9 (B [Ma(¥)] _ 9-(a-DE[Ma ()] 4 970

84

<27 (@ D7) 4 9n(n) . (84)
Note that since E,[Tr(II(®)y2@)] = 2(1-)Es[Ma ()]
this also puts a bound on Ew[Tr(H(QO‘)q/J@Qa)] and

Ey[p$™ ()]

3In the proof of Lemma S1 of [23] it is shown that
Tr(I(20)p®2%) ¢ o((poly n)~') whenever E[Ma ()] € Q(n) for
n(n) € negl,,, (n) (which is true for Haar-random ensemble
{l¢)}). This can be obtained from eqn. (84) by setting 7(n) €
Q(n). Then this gives us Tr(I1(20)®2a) = 9(1-)2(n) 4 95 () ¢
o((polyn)~1) since n(n) € neglyq1, (n) = o((polyn)™1) and the
2(1=2)2(n) term is dominated by o((polyn)~1).
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By applying log to both sides of the preceding inequal-
ity and dividing both sides by —(a—1), we obtain a lower
bound the expected stabilizer Rényi entropy of ¢ as

log(2_(a_1)7(n) +2n(n))
a-1
log(2n(n)) +1og (1+ 250"
a-1
log(neglp(n)) + log (1 +
a-1
log(negly (n)) + 200

E )

a-1

Ey[Ma(¥)] 2 -

g-(a-1)7(n) )

nogly (1)

(85)
since log(a+b) =loga+log(1+b/a) and log(1+a) < a for
all 0 < a < 1 and since 27 is a T-negligible function. Thus,
we have shown the first statement of Proposition 24.

To show the stabilizer Rényi entropy gap in Proposi-
tion 24, we take {|¢)} to be the Haar-random ensemble
and {|¥)} to be a T-PRS. The expected stabilizer Rényi
entropy of the Haar random state is given by [23, Lemma
s2],[34]

for « =2
fora>3 "’

n-2+0(27"),
o 02T,

= f(n) € ©(n) and 7 €

0] - { "

Hence we can set E,[M, ()]
O(n) to obtain

Anr, ({9} {0)) = [Eo[Ma(0)] - By [Ma ()]

2—(a—1)7(n)
neglr(n)

(86)

log(negly(n)) +

a-1

<f(n)+

(87)
which concludes the proof. O

First, recall the stabilier Rényi entropy of the Haar-
random ensemble {¢} in eqn. (86), E,[M.(¢)] € O(n).
Thus if we set {|¢)} to be the Haar-random ensemble we
can set 7(n) € O(n). So for any T(n) that grows shower
than polynomials, it holds that

2—((1—1)7’(71)
———e0(27"). (88)
neglp(n)

Now, similar to what we have done for relative en-
tropy of coherence and entanglement entropy, we give
a lower bound for expected stabilizer Rényi-a entropy
of n-qubit ensemble {|1)}} with low-magic that is T-
indistinguishable from n-qubit Haar-random ensemble
{|¢)} for different T along with the magic gap between
Haar-random ensemble and T-PRS. The results are sum-
marized in Table III.

1. For poly-time observers (T(n) = polyn), we have
n € negl,,y, i.e. n(n) < 27w(°87) and o = t(n) €
O(polyn), hence

o-(a=1)7(n)

~ log(neglp(n)) + negly (1)

a-1

, w(logn) (89)
a-1
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T(n) Eu[Moa()] | Am, ({9}, {¥}) <
O(polyn) ) O(n) - =CE
O(n logn) w(1)+log(nlogn) O(n) _ w(@)+log(nlogn)

a-1 a-1

O(n) w(1)+logn O(n) _ w(@)+logn

a-1 a-1
O(poly logn) | “0EZER. | O(n) - “(ERED
O(logn) w(l)giflogn O(n) _ w(l)-;lf%logn

TABLE III. Left column: Computational power T of the observer. Center column: Expected stabilizer a-Rényi entropy (for
odd integer « > 2) of ensemble {|¢)} that is T-indistinguishable from {|p)}. We assume that Right column: Upper bound of
stabilizer a-Rényi entropy gap A, between Haar-random ensemble {|p)} and ensemble {|i))}. The quantities in the center
and right columns can be obtained directly from Proposition 24 by setting 7(n) € O(n) and setting T(n) as in the left column.

g-(a-1)7(n)

since Sy

e O(2™).

2. For linearithmic-time observers, note that f €
O(nlogn) means that for all ¢ > 0 there exists
N e N such that n > N - f(n) > ecnlogn. Thus
for such function f, it holds that for all ¢ > 0
there exists N € N such that n > N = log f(n) >
logenlogn = loge + log(nlogn). In other words,
log f(n) > w(1) + log(nlogn). Thus, since we
have 7 € negly ;104 Which implies that n(n) <
1/w(nlogn), we obtain

g-(a=1)(n)
) log(negly o5, (7)) + Sy
a-1
_ —logn(n) -0(2™")
a-1 (90)
N logw(nlogn)
a-1
~ w(1) +log(nlogn)
- a-1 '
3. For linear-time observers we have
~(a=1)7(n)
~ log(neglp(n)) + 2neg1T(n)
a-1
_ —logn(n) -0(27")
a-1 (91)
logw(n)
> —_—
a-1
_w(l) +logn
- a-1 '
4. For polylogarithmic-time observers we have
—(a=1)7(n)
B log(negly(n)) + w
a-1
_ ~logn(n) - O(2™)
a-1 (92)
log 2—w(10g logn)
>
a-1

_w(1) +loglogn
- a-1 '

5. For logarithmic-time observers we have

log(neglr () + Ler s
- a-1
_ ~logn(n) -0(27")
a-1
S logw(logn)
a-1
_w(1) +loglogn

a-1

IV. DISCUSSION

In this work, we extend the notion of pseudorandom-
ness for quantum states from the regime of polynomial-
time quantum computers to smaller sized quantum com-
puters.  We propose a framework to construct T-
pseudorandom states (T-PRS), a PRS that is compu-
tationally indistinguishable from Haar-random states to
observers with quantum algorithms which runtime is
bounded by a class of functions T. We derive crite-
ria of such PRS for different classes of functions T that
scales slower than polynomials and give explicit construc-
tions. Then we define the notion of T-pseudorandom
pair, which is a pair of quantum state ensembles pos-
sessing different amount of quantum resource, but are
indistinguishable to observers with quantum algorithms
which runtime bounded by T. For particular classes
of functions T(n): linearithmic O(nlogn), linear O(n),
polylogarithmic O(poly logn), and logarithmic O(logn),
we show that the necessary amount of quantum re-
sources (coherence, entanglement, and magic) that the
low-resource ensemble must have decreases with T(n).
As one can construct such a pair with T-PRS and Haar-
random ensemble, we further show how the gap between
the Haar-random ensemble’s resource and the T-PRS’s
resource increases as T(n) decreases. This demonstrated
how T-PRS can mimic high-resource states using lesser
resource for computationally weaker observers .

Such parameterization with respect to some class of
function T that bounds the computational power of the



observer could in principle be extended to other quan-
tum pseudorandom objects, such as pseudorandom den-
sity matrices [9], pseudorandom function-like states [7, 8],
pseudorandom unitaries [1, 22, 35, 36], and pseudo-
random isometries [37]. Such T-pseudorandom den-
sity matrices, T-pseudorandom function-like states, T-
pseudorandom unitaries, and T-pseudorandom isome-
tries can be constructed using our framework in Section I
by (1) characterizing how many copies that the observer
are allowed to have and (2) specifying the negligible prob-
ability of the observer distinguishing them from their re-
spective truly random object.

On the other hand, interesting questions can be asked
about pseudoresources and a full-fledged computational
resource theory. The field of resource theory [25, 26]
study how quantum resources such as coherence, entan-
glement, and magic can be characterized and manipu-
lated. However, how much computational resource is re-
quired to prepare states and perform quantum operations
have largely been left out of the picture. We have shown
in Section III that perceived quantum resource is rela-
tive to how much computational resource the observer
has access to. It is interesting to explore on how one can
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formulate a computational resource theory, where quan-
tification of a quantum resource is relative to the com-
putational power of the observer and where states and
operations are further characterized by their computa-
tional complexity. In such resource theory, which states
and operations are considered as resourceful is relative to
some computationally bounded observer. Thus one can
characterize the effective amount of resource that a quan-
tum state has relative to this observer. A recent work
in this direction has been done for entanglement [38], it
would be interesting to see how an extension to other
quantum resources and to a full computational resource
theory where resourceful states and operations are char-
acterized computationally can be made.
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