
Quantum Autoencoder for Multivariate Time Series
Anomaly Detection

Kilian Tscharke∗‡, Maximilian Wendlinger∗, Afrae Ahouzi ∗, Pallavi Bhardwaj†,
Kaweh Amoi-Taleghani†, Michael Schrödl-Baumann†, Pascal Debus∗

∗Fraunhofer Institute for Applied and Integrated Security (AISEC), Garching near Munich, Germany
†SAP SE, Walldorf, Germany

‡{firstname.lastname}@aisec.fraunhofer.de

Abstract—Anomaly Detection (AD) defines the task of identi-
fying observations or events that deviate from typical – or normal
– patterns, a critical capability in IT security for recognizing in-
cidents such as system misconfigurations, malware infections, or
cyberattacks. In enterprise environments like SAP HANA Cloud
systems, this task often involves monitoring high-dimensional,
multivariate time series (MTS) derived from telemetry and log
data. With the advent of quantum machine learning offering
efficient calculations in high-dimensional latent spaces, many
avenues open for dealing with such complex data. One approach
is the Quantum Autoencoder (QAE), an emerging and promising
method with potential for application in both data compression
and AD. However, prior applications of QAEs to time series AD
have been restricted to univariate data, limiting their relevance
for real-world enterprise systems.

In this work, we introduce a novel QAE-based framework de-
signed specifically for MTS AD towards enterprise scale. We the-
oretically develop and experimentally validate the architecture,
demonstrating that our QAE achieves performance competitive
with neural-network-based autoencoders while requiring fewer
trainable parameters. We evaluate our model on datasets that
closely reflect SAP system telemetry and show that the proposed
QAE is a viable and efficient alternative for semisupervised AD
in real-world enterprise settings.

Index Terms—quantum computing, machine learning, time
series, anomaly detection, autoencoder, multivariate

I. INTRODUCTION

Anomaly Detection (AD) refers to the process of identifying
patterns or events that deviate from typical – or normal – be-
havior [1]. It plays a critical role in IT security and many other
domains, as anomalies often correspond to potential security
breaches, frauds, or system failures [2], [3]. Modern enterprise
infrastructure, such as SAP HANA Cloud and other large
scale cloud native applications, rely on continuous monitoring
to ensure optimal performance, availability, and reliability.
With increasing system complexity and scale, observability
platforms generate large volumes of telemetry data, including
structured multivariate time series (MTS) and unstructured
log streams. While traditional rule-based alerting systems are
still widely used, they are inherently limited: they depend on
manually defined thresholds, cannot adapt to complex dynam-
ics, and often fail to detect subtle or novel anomalies. As
infrastructure grows more distributed and dynamic, automated
data-driven AD becomes increasingly vital for maintaining
operational health.

A core challenge in enterprise observability, particularly in
the context of SAP cloud systems, lies in effectively detecting
anomalies in high-dimensional MTS data. Unlike univariate
time series, MTS AD must account for temporal dependencies
as well as correlations across variables, increasing modeling
complexity [3]. In real-world scenarios, labeled anomalies are
rare or unavailable, necessitating semisupervised or unsuper-
vised approaches that can learn from normal behavior alone.
These challenges drive the need for scalable, accurate, and
adaptive AD techniques for enterprise telemetry.

In recent years, deep learning-based approaches – especially
autoencoders (AEs) – have shown promise in modeling com-
plex system dynamics for AD. An AE is a neural network
trained to reconstruct input data after compressing it into a
latent representation. When trained on normal data only, it can
effectively model the system’s baseline behavior. At inference
time, inputs that the AE reconstructs poorly (i.e., with high
error) are flagged as anomalous. This provides an unsupervised
way to capture system dynamics and detect deviations without
requiring labeled anomalies.

However, neural network-based AEs face limitations when
applied to high-dimensional enterprise data. They often require
large architectures with many parameters, which increases
training time and may reduce generalization through over-
fitting. Quantum machine learning (QML) has emerged as a
promising avenue to address these challenges by exploiting
the unique capabilities of quantum computing. Quantum algo-
rithms operate in Hilbert space with dimensionality that grows
exponentially with the number of qubits, potentially enabling
more compact representations and faster processing of com-
plex, high-dimensional data than classical methods [4]. This
potential has motivated explorations of quantum-enhanced
AD, especially as NISQ quantum hardware becomes available.

Among QML approaches, the Quantum Autoencoder (QAE)
is particularly well suited for semisupervised AD, making it a
promising candidate for enterprise health monitoring. In this
work, we apply QAEs to public MTS datasets that closely
resemble telemetry data from SAP HANA Cloud systems.
The model assigns anomaly scores to input windows, enabling
the detection of irregular patterns without requiring labeled
anomalies during training. This study marks an initial step
toward integrating QML into enterprise observability pipelines
by introducing a novel industrial application of QML and

ar
X

iv
:2

50
4.

17
54

8v
1 

 [
qu

an
t-

ph
] 

 2
4 

A
pr

 2
02

5



exploring its feasibility for real-time AD in high-dimensional
MTS data. To evaluate the proposed QAE, we compare its
performance against classical AE baselines using six standard
metrics: AUC, precision, recall, F1-score, accuracy, and bal-
anced accuracy.

The remainder of this work is structured as follows: The
next Section I-A offers a comprehensive review of research in
the field of QAEs and their application to AD. Our contribu-
tions are detailed in Section I-B. The following Preliminaries
(Section II) presents the fundamentals required to understand
this work, specifically anomalies, MTS, the window-based
approach to AD, and neural-network AEs. Next, the Pro-
posal (Section III) introduces our QAE method for MTS
AD. Afterwards, the Experiments (Section IV) describe the
implementation of the (Q)AE and give an overview of the
datasets used for the benchmark. In the Results and Discussion
(Section V), we analyze the performance of our QAE and the
results of the benchmark. Finally, Conclusion and Outlook
(Section VI) highlights the key results of this work and
provides future research directions.

A. Related Work

The QAE was originally proposed by Romero et al. [5]
in 2017, and mimics classical AEs using quantum circuits
to encode and reconstruct quantum states. They applied the
model to compress ground states of the Hubbard model and
molecular Hamiltonians. Kottmann et al. [6] extended this
concept to AD by showing that QAEs could identify quantum
phase transitions. Their QAE relied solely on a variational
quantum eigensolver to prepare the ground states and an
encoder to decouple a subset of the qubits – the trash qubits
– from the rest of the system, effectively compressing the
original ground state into a smaller number of qubits. The trash
qubits were then measured and used to calculate a compression
metric, which simultaneously served as an anomaly score. The
training of the model is done by a classical feedback loop,
where the calculation of the loss is the only part performed
on a quantum computer. They demonstrated the feasibility of
generating the phase diagram of the one-dimensional extended
Bose–Hubbard model with dimerized hoppings using a single
training sample.

Recently, QAEs have been explored for AD across a variety
of domains, demonstrating the versatility of QAEs in handling
AD tasks under diverse and often imbalanced conditions.
Applications include detecting anomalies at the Large Hadron
Collider (LHC) [7], [8], identifying network intrusions [9], and
flagging fraudulent credit card transactions [10]. In addition,
QAEs have been employed as quantum baselines in com-
parative studies evaluating the performance of various QML
models for AD tasks [11].

Finally, Frehner and Stockinger [12] applied QAEs to clas-
sical time series data, demonstrating that they can outperform
neural-network AEs in AD tasks while requiring orders of
magnitude fewer trainable parameters. They further validated
their approach on real quantum hardware, showing that the
QAE maintains its AD performance despite hardware-induced

noise. However, their study was limited to univariate time
series and relied only on subsets of the full datasets. The
extension of QAEs towards MTS data of industrially-relevant
size remains an open challenge – one that this work aims to
address.

B. Contributions

In this paper, we propose the first QAE architecture tailored
for MTS AD. Our main contributions are as follows:

• We design a parameter-efficient, problem-agnostic QAE
that jointly encodes multivariate temporal features, en-
abling the model to capture inter-variable dependencies.

• We demonstrate that our QAE achieves competitive
performance on two MTS and one univariate dataset.
Notably, the SMD dataset closely reflects telemetry data
from SAP systems, underscoring the model’s potential
for real-world deployment in enterprise health monitoring
and observability pipelines.

• We demonstrate that our approach requires signifi-
cantly fewer trainable parameters than a reasonably-
sized neural-network AE, while maintaining comparable
performance.

Overall, our work demonstrates that QAEs can be ef-
fectively extended to multivariate settings, paving the way
for quantum-enhanced AD in real-world scenarios such as
IT infrastructure monitoring, industrial control systems, and
cyber-physical networks.

II. PRELIMINARIES

In the following, the fundamentals required to understand
the proposal of this work are presented. First, a definition of
an anomaly is given, and different types of anomalies are
described. Next, MTS is formally defined before explaining
the window-based AD approach. Finally, the general structure
of an AE is given, setting the basis for our proposed QAE
architecture.

A. Anomalies

Anomalies are patterns or observations that deviate from
the expected behavior of a system [1]. These deviations may
signal critical events such as faults, intrusions, or system
failures, making their detection essential in various application
domains such as IT security. Depending on how they manifest
in the data, anomalies can be broadly categorized into three
types: point anomalies, contextual anomalies, and collective
anomalies.

1) Point Anomalies: Point anomalies are individual obser-
vations that deviate significantly either from their immediate
neighbors (local outliers) or from the overall distribution of
the dataset (global outliers). For example, an unexpected spike
in network traffic during off-peak hours may be flagged as
a point anomaly. Such anomalies typically indicate isolated,
unexpected events.



2) Contextual Anomalies: Contextual anomalies arise when
a data point appears normal in a global sense but is anomalous
within a specific context, which is often defined by temporal
or spatial attributes. For instance, high CPU usage in data
centers may be expected during business hours or periods
of high website traffic, however, such usage outside these
time windows or in the absence of corresponding traffic may
indicate anomalous behavior. Detecting contextual anomalies
requires an understanding of both the data and the context in
which it occurs.

3) Collective Anomalies: Collective anomalies involve a
sequence or group of data points that together form an
anomalous pattern, even if the individual points appear to be
normal. For example, a prolonged period of low CPU usage
on a server that normally handles high loads might suggest a
malfunction, although each individual reading could fall within
the normal range. Detecting such patterns typically requires
models that can capture temporal dynamics and inter-variable
dependencies, making MTS analysis particularly well-suited
for this type of anomaly.

B. Multivariate Time Series

A time series is an ordered set of observations indexed
by time, typically collected at regular intervals [13]. In a
univariate time series, each observation xt ∈ R for 0 ≤ t ≤ T
is a scalar, forming a sequence X = (x0, x1, . . . , xT ). In
contrast, a multivariate time series consists of d-dimensional
vectors at each time step, denoted as X = (x0,x1, . . . ,xT )
with xt ∈ Rd. The latter formulation enables the modeling of
both temporal dependencies and inter-variable relationships,
which are particularly important in applications such as system
monitoring, finance, and IT security [3]. Thus, anomalies can
manifest in MTS even if each variable considered individu-
ally seems normal on its own, due to potentially anomalous
interactions among them.

C. Window-Based Anomaly Detection

While point anomalies can often be trivially detected us-
ing just rule-based approaches based on mean and standard
deviation, contextual anomalies require, as the name implies,
sufficient contextual information for detection. A common and
effective strategy for detecting collective anomalies in MTS is
to partition the data into potentially overlapping windows of
fixed length L and stride S. Each window Wi is defined as

Wi = (xi,0,xi,1, . . . ,xi,L−1), (1)

for i = 0, 1, . . . , N , where N = T−L
S + 1. Each Wi ∈ RL×d

thus represents a segment of L consecutive time steps, cap-
turing the temporal dynamics and multivariate structure of
the input sequence. For multivariate AD, all time steps of a
window i are concatenated into a single flattened vector wi,
which serves as the input to the AD models.

In the window-wise labeling paradigm, each window is
associated with a binary label yi ∈ {0, 1}, where yi = 1
indicates the presence of at least one anomalous observation
within the window. While this type of preprocessing keeps

the temporal order within each window intact, it can also be
interpreted as reframing AD from a sequence-level task to a
point-level task, where each point is now a higher-dimensional
point corresponding to a full window. This enables the use of
a broader range of machine learning techniques beyond those
specialized in sequences.

D. Autoencoders

The following section gives a brief definition of AEs, a
neural-network-based approach suited for semi- and unsuper-
vised learning. A more in-depth explanation is given in [14],
[15]

Fig. 1: General architecture of an AE consisting of encoder
and decoder with the bottleneck layer.

The AE consists of an encoder and a decoder, as shown in
Figure 1. Formally, let x ∈ Rd represent an input vector, e.g.,
a flattened MTS window. The encoder function fθ(·) maps x
to a latent representation h ∈ Rp as follows:

h = fθ(x) = s(Wx+ b), (2)

where W ∈ Rp×d is the weight matrix, b ∈ Rp is the bias
vector, and s(·) denotes a nonlinear activation function such
as the sigmoid or ReLU. In most cases, the latent dimension
is chosen to be smaller than the input dimension, i.e., p < d,
resulting in what is commonly referred to as the information
bottleneck. This design enforces a compression of the input
data, encouraging the AE to learn a compact representation
that captures the most salient features of the original input.

Subsequently, the decoder function gθ′(·) maps the latent
representation h back to the reconstructed input x′ ∈ Rd:

x′ = gθ′(h) = s′(W′h+ b′), (3)

where W′ ∈ Rd×p and b′ ∈ Rd are the decoder’s weight
matrix and bias vector, respectively, and s′(·) is the decoder’s
activation function.

The training objective is to minimize a reconstruction error
or loss that quantifies the difference between the input x and
its reconstruction x′. A common choice for this loss function
is the mean squared error (MSE):

L(x,x′) = ∥x− x′∥2. (4)

By minimizing this error, the AE learns to capture the un-
derlying structure of normal data. Since anomalies typically



deviate from this learned distribution, they are reconstructed
with higher error, making the loss a natural candidate for an
anomaly score.

III. QUANTUM AUTOENCODER FOR MULTIVARIATE TIME
SERIES ANOMALY DETECTION

This section introduces the QAE architecture for MTS AD,
drawing upon the framework proposed by Kottmann et al.
[6]. Unlike classical AEs, which consist of separate encoder
and decoder networks, the QAE for AD does not require
an explicit decoder. Instead, after encoding the input data
into a parameterized quantum circuit, a designated subset
of qubits – the trash qubits – is measured, and the result
is used to compute the loss function. The core principle of
this approach is to train the variational parameters of the
quantum circuit such that, for normal data, the trash qubits
become disentangled from the rest of the system and collapse
to the |1⟩-state. This behavior indicates that the essential
information of the input data has been compressed onto the
remaining unmeasured qubits, and the trash qubits do not carry
information about the input as their state is independent from
it. Once the QAE is trained, it can effectively detect anomalies
since anomalous data cannot be compressed as efficiently, and
hence the trash qubits cannot be decoupled from the rest of
the system. For anomalous data, the trash qubits deviate from
the |1⟩-state, resulting in an increased loss.

A. Quantum Autoencoder Architecture

The QAE is an n-qubit parametrized quantum circuit con-
sisting of a series of variational and entangling gates (defined
as a general unitary U ) followed by a measurement of the
trash qubits S. The output of the model f is the sum of the
probabilities of the trash qubits being in the |0⟩-state given by

f(x;w, b) =
1

2

∑

s∈S

(1 + ⟨Zs⟩) (5)

where ⟨Zs⟩ is the Z-expectation value of trash qubit s after
applying U , i.e.

⟨Zs⟩ =
〈
0
∣∣U(x;w, b)†ZsU(x;w, b)

∣∣ 0
〉
. (6)

Here, U(x;w, b) is the parametrized unitary that encodes both
the data x and the trainable parameters (weights w and bias
b with w, b ∈ RL×n×3).

This circuit employs data reuplod-encoding [16], an en-
coding strategy where the input data is encoded multiple
times throughout the circuit. Such an approach enhances the
expressivity of the quantum model, allowing it to approxi-
mate a broader class of functions. Theoretical analyses have
shown that repeated data encoding interleaved with trainable
operations can expand the accessible frequency spectrum of
the model, thereby increasing its capacity to represent intri-
cate functions [17]. This makes data re-uploading a valuable
technique in designing expressive QML models.

Our unitary for this encoding strategy consists of L layers
of general single-qubit rotation gates followed by a sequence
of CNOT gates forming an entangling block. The rotation gate

R is parametrized by three angles, allowing the realization of
arbitrary single-qubit rotations [18]. Commonly, R is defined
and decomposed into three base rotations as

R(ϕ, θ, ω) =

[
e−i(ϕ+ω)/2 cos(θ/2) −ei(ϕ−ω)/2 sin(θ/2)
e−i(ϕ−ω)/2 sin(θ/2) ei(ϕ+ω)/2 cos(θ/2)

]

= RZ(ω)RY (θ)RZ(ϕ) (7)

Paired with the trainable parameters w and b, we can thus
write the individual unitaries used in the QAE as

Uj(x; wj , bj) = R (wj ◦ x+ bj) . (8)

As detailed, these unitaries are stacked into L layers, including
an entangling block at the end of each layer to allow inter-qubit
dependencies via entanglement. Note the subtle difference
between individual unitaries Uj used inside the circuit’s layers
and the general unitary U defining the whole state progress of
the zero states as a result of circuit operations.

An exemplary circuit consisting of 8 qubits and 2 trash
qubits, including the parametrized layers and measurement,
is shown in Figure 2.

Parametrized layer

|0⟩ R(w11x11 + b11)

Ent.

· · · R(wL1xjk + bL1)

Ent.

|0⟩ R(w12x12 + b12) · · · R(...)

|0⟩ R(w13x13 + b13) · · · R(...)

|0⟩ R(w14x14 + b14) · · · R(...)

|0⟩ R(w15x15 + b15) · · · R(...)

|0⟩ R(w16x16 + b16) · · · R(...)

|0⟩ R(w17x17 + b17) · · · R(...)

|0⟩ R(w18x18 + b18) · · · R(...)

︸ ︷︷ ︸
L layers

Fig. 2: The QAE is realized using a trainable re-upload encod-
ing architecture including multiplicative weight and additive
bias parameters. Detailed explanation in text.

B. Model Training and Inference

In the semi-supervised setting, the model is trained solely
on data assumed to be normal. The model’s output itself is
used as a loss function, delivering minimal loss if the trash
qubits are in |1⟩:

L = f(x;w, b), (9)

During inference, a sample is classified as normal if the output
loss is below a predefined threshold; otherwise, it is labeled as
anomalous. Unlike in the original formulation by Kottmann et
al. [6], where the loss is minimized when the trash qubits
are in the |0⟩ state, we define our loss to be minimized
when the trash qubits are in the |1⟩ state. This modification
improves trainability under our reupload-encoding strategy,
which differs from the encoding employed in [6].



To illustrate the importance of this change, consider the
alternative loss function minimized when the trash qubits
occupy the |0⟩ state:

f(x;w, b) =
1

2

∑

s∈S

(1− ⟨Zs⟩) , (10)

For this loss function, the model exhibits a trivial global
minimum. By setting all weights and biases to zero, the output
state remains invariant for any input:

Ul(x;w = 0, b = 0) |0⟩⊗n
= CNOT ·R⊗n(0 · x+ 0) |0⟩⊗n

= CNOT |0⟩⊗n
= |0⟩⊗n

, (11)

for any layer Ul composed of single-qubit rotations R and
any arbitrary sequence of CNOTs. As a result, all trash qubits
remain in the |0⟩ state, leading to ⟨Zs⟩ = 1 for all s ∈ S, and
consequently zero loss according to Equation (10).

Although this solution perfectly classifies normal data, it
fails to capture meaningful distinctions in the input space and
thus cannot detect anomalies. Even if the quantum circuit starts
from a nontrivial initial state, the model can exploit the re-
uploading encoding by using the bias terms to map the state
back to |0⟩⊗n, while keeping all weights zero.

In contrast, our modified loss function requires the model to
map the trash qubits to the |1⟩ state. Achieving this configu-
ration is nontrivial due to the presence of CNOT gates, which
introduce entanglement as soon as a single qubit deviates
from |0⟩. Therefore, the model cannot simply default to an
identity operation or a fixed pattern. When combined with
regularization of weights and biases, our formulation avoids
trivial solutions and encourages the model to learn nontrivial,
data-dependent representations – thus enabling effective AD.

IV. EXPERIMENTS

A. Quantum Autoencoder

We use the same QAE architecture and hyperparameters for
all datasets. The hyperparameters of the model were optimized
using the machine-1-1 of SMD and are summarized in Table I.
Training and evaluation were performed on a statevector
simulator specifically optimized for efficient batch processing
[19]. To improve the trainability of the model, the weights
and biases are initialized with values close to zero [20]. While
the simulator is deterministic, the initialization of weights and
biases introduces a probabilistic component. However, due to
their near-zero initialization, the model is expected to exhibit
low sensitivity to these initial values. Anomalies were defined
using the 99th percentile of the training reconstruction error.

B. Datasets

The MTS datasets SMD and Pasta, and the univariate time
series dataset MSCM used for the benchmark of the QAE and
their preprocessing are now described in more detail. Table II
lists the statistics of the datasets. After splitting the data into
train and test sets, the anomalous windows in the train set are
removed.

TABLE I: Hyperparameters of QAE.

Parameter Value

qubits 8
layers 100
measure qubits [0,1]
reg param weights 10−2

reg param bias 10−4

torch seed 42
scaler MinMaxScaler
clipping [0,1]
epochs 200
batch size 32
learning rate 10−3

early stop threshold 10−5

patience 10
threshold 99th percentile of train error

1) Server Machine Dataset: The Server Machine Dataset
(SMD) [23] is a large-scale MTS dataset collected over
five weeks from 28 different machines grouped into three
categories within a production datacenter of a major internet
company. Its high temporal resolution, substantial duration,
and multivariate structure make it a strong benchmark for
evaluating semisupervised AD models in realistic, industrial
settings. Notably, the dataset closely reflects the telemetry
characteristics of SAP systems, making it particularly relevant
to our use case. Given the focus of this work on MTS-based
AD, SMD serves as a primary dataset for empirical evaluation.

Each machine in SMD constitutes a separate subset, and
models are trained and evaluated independently on each. The
dataset is partitioned equally into a training set and a test
set. Anomalies are present only in the test set, and labels
are provided at each timestamp to indicate whether a point is
anomalous. Additionally, SMD includes interpretation labels
that identify which dimensions contributed to each detected
anomaly – offering fine-grained diagnostic information beyond
binary classification.

In our experiments, we selected the following five features
that contribute to most of the anomalies according to the
interpretation labels for all machines: load_1, disk_r,
disk_svc, disk_w, and disk_wb. While the interpreta-
tion of these feature names is not properly documented in the
original publication, in a general cloud telemetry context, those
features most likely refer to the ”Average number of processes
waiting for CPU execution over 1 minute”, ”Number of Disk
Read Operations”, ”Average time to complete a disk I/O re-
quest”, ”Number of Disk Write Operations”, and ”Disk Write
Bytes”, respectively. With a window size of 100 time steps and
5 features per time step, this results in an input dimensionality
of 500. Observations are sampled at one-minute intervals and
are evenly spaced in time. No separate validation set is used,
as the hyperparameter tuning is performed solely for machine-
1-1.

C. Pasta Dataset

The Pasta dataset [22] consists of real-world daily sales data
collected from an Italian grocery store between January 1,



TABLE II: Overview of the datasets used for benchmarking.

Statistics Preprocessing Splits
Timestamps Dim. Gran. Win Stride % Test An. # Train # Test

Dataset Subset

MSCM [21]

api-01 6192 1 1h 10 5 0.05 705 246
app1-01 358 1 1h 10 5 0.62 39 13
app1-02 710 1 1h 10 5 0.74 84 27
app1-04 705 1 1h 10 5 0.36 33 28
app1-05 699 1 1h 10 5 0.38 64 29
app1-06 684 1 1h 10 5 0.13 48 31
app1-08 710 1 1h 10 5 0.48 74 27
app2-04 1118 1 1h 10 5 0.07 133 44
app2-05 1118 1 1h 10 5 0.32 98 44
app2-06 1116 1 1h 10 5 0.09 128 43
app2-07 1109 1 1h 10 5 0.16 88 43
ingress-02 15840 1 1m 10 5 0.02 1900 632
machine-01 20160 1 1m 10 5 0.02 2363 805

Pasta [22]
B1 1798 42 1d 10 5 0.98 51 89
B3 1798 21 1d 10 5 0.65 109 89
B4 1798 10 1d 10 5 0.40 100 89

SMD [23]

machine-1-1 56959 5 - 100 50 0.12 568 568
machine-1-2 47389 5 - 100 50 0.07 472 472
machine-1-3 47406 5 - 100 50 0.08 473 473
machine-1-4 47414 5 - 100 50 0.08 473 473
machine-1-5 47412 5 - 100 50 0.03 473 473
machine-1-6 47378 5 - 100 50 0.28 472 472
machine-1-7 47395 5 - 100 50 0.15 472 472
machine-1-8 47398 5 - 100 50 0.11 472 473

2014, and December 31, 2018. It includes 118 univariate time
series representing the demand for various pasta products. In
addition to the quantity sold, each data point indicates whether
a promotion was active, although no further details on the
promotion type or discount level are available. The time series
follows a natural hierarchical structure across three levels. At
the top (Level 0) is the fully aggregated store-level demand
series. This is disaggregated into four brand-level series (B1 to
B4) at Level 1. Each brand-level series is further subdivided at
Level 2 into individual item-level time series, corresponding
to specific pasta products. The bottom-level series contains
42, 45, 21, and 10 items, respectively, for B1 through B4,
capturing fine-grained sales dynamics across different pasta
types and brands.

For this work, we combine the individual products within
each brand into a single MTS, where the number of dimen-
sions equals the number of products of that brand. A time point
is labeled as anomalous if at least one product from the brand
is under promotion at that time. After segmenting the data
into fixed-size windows and applying window-wise labeling,
this approach results in a high proportion of anomalous
windows, as shown in Table II. For brand B2, all windows
in test sets were labeled as anomalous, rendering the subset
unsuitable for evaluation. Consequently, B2 was excluded from
the experiments.

1) Microsoft Cloud Monitoring Dataset: The Microsoft
Cloud Monitoring (MSCM) [21] dataset is a collection of real-
world univariate time series derived from production telemetry
signals across Microsoft services and clients. It was developed
to support the design, evaluation, and improvement of AD
algorithms used in Microsoft’s internal cloud monitoring tools.
The dataset comprises 67 time series from eight application

domains, including API query rates, database latencies, crash
rates, and usage statistics. Each time series contains minute-
or hour-level granular observations and is labeled at the times-
tamp level to indicate the presence of anomalies. Anomalies
were identified and annotated by domain experts using a
dedicated labeling tool, with some time series intentionally
containing no anomalies to test false positive robustness. As
the dataset consists of univariate series with low inter-series
correlation, it is not suitable for evaluating MTS AD models.
Nevertheless, it provides a valuable benchmark for assessing
detection accuracy on diverse, real-world, production-scale
telemetry signals. After partitioning the datasets into training
and test sets and segmenting them into windows, we excluded
all subsets that did not contain any anomalies in the test
splits. This filtering step ensures meaningful evaluation of AD
performance. As a result, our experiments are conducted on
the 13 subsets listed in Table II. The trained model on ingress-
02 was corrupted, hence this subset could not be used for the
benchmark.

D. Neural-Network Autoencoder

For benchmarking purposes, three neural-network-based
AEs of varying sizes are used as baselines. Specifically,
the AEs are configured with hidden layer architectures of
[3], [16, 8], and [256, 128], respectively, and employ the
ReLU activation function. All other hyperparameters are kept
consistent with those of the QAE in Table I to ensure a fair
comparison.

The motivation for evaluating AEs of different sizes lies
in comparing models with varying representational capacities.
For the SMD dataset, the smallest AE ([3]) has a comparable
number of trainable parameters to the QAE, while the medium



([16, 8]) and large ([256, 128]) AEs have significantly more.
This design allows us to investigate whether performance
improvements stem from architectural differences or simply
increased model capacity. A detailed comparison of the num-
ber of trainable parameters across datasets is provided in
Table III.

TABLE III: Number of trainable parameters of the models.

Dataset QAE AE [3] AE [16, 8] AE [256, 128]

MSCM 2 400 60 288 70 656
Pasta B1 2 400 2 520 13 696 280 576
Pasta B3 2 400 1 260 6 976 173 056
Pasta B4 2 400 600 3 456 116 736
SMD 2 400 3 000 16 256 321 536

V. RESULTS AND DISCUSSION

We evaluate four models – our proposed QAE and three
classical neural network-based AEs with increasing model
capacity – across two MTS datasets and one univariate time
series dataset, and six performance metrics: AUC, precision,
recall, F1-score, accuracy, and balanced accuracy.

A. SMD Dataset

The results on the large-scale MTS dataset SMD, which
closely reflects telemetry data from SAP systems, are pre-
sented in Table IV in Section A in the appendix. Overall,
the performance of the models shows that the SMD dataset
is challenging for both our QAE and neural-network-based
AEs. Our proposed model, QAE, performs competitively
with the classical baselines, achieving the second-highest
mean accuracy (0.74) across all subsets. Furthermore, the
QAE model achieves higher mean balanced accuracy than the
small AE and medium AE models (0.67 vs. 0.63 and 0.64),
despite using fewer trainable parameters. QAE demonstrates
consistently strong performance across several SMD subsets.
On m-1-6, it achieves the highest values in all evaluation
metrics except recall, where it still performs well with a score
of 0.98. It also attains the highest accuracy on subsets m-1-
4, m-1-6, and m-1-7, and maintains an accuracy above 0.80
on most other subsets, except for m-1-5, where all models
struggle. These reliable, good accuracies highlight its ability to
detect anomalies in a semi-supervised setting. This advantage
becomes particularly relevant when the decision threshold is
selected based solely on the training data – a common and
realistic constraint in semisupervised AD scenarios. In such
cases, the QAE demonstrates good robustness and generaliza-
tion, effectively distinguishing between normal and anomalous
patterns without relying on access to labeled anomalies before
the inference stage.

The reconstruction loss distributions of QAE for two rep-
resentative subsets are shown in Figure 3. For m-1-1, the
reconstruction errors of anomalous test samples are clearly
higher than those of the normal test samples. This is evident
from the median of the anomalies (dashed line), which aligns
with the upper extreme of the reconstruction errors for normal

data. Furthermore, the lower quartile of the anomalous distri-
bution lies above the upper quartile of the normal distribution,
indicating a strong separation between the two classes. This
clear distinction is reflected in the high AUC and accuracy
achieved by QAE on this subset. In contrast, the distribution
of reconstruction errors on m-1-5 reveals substantial overlap
between normal and anomalous test samples. Additionally,
the reconstruction loss for the training data is significantly
lower than that of the normal test samples, and the resulting
threshold – determined from training data – is positioned near
the lower end of both test distributions. As a consequence,
the model struggles to separate the two classes effectively.
These observations suggest that QAE is overfitting on m-1-5,
learning to reconstruct the training data too well while failing
to generalize to unseen normal and anomalous samples. This
lack of generalization reduces the separability of the classes
and results in the lower AUC and accuracy observed for this
subset.

B. Pasta Dataset

The results on the Pasta dataset are presented in Table V
in Section A in the appendix. In contrast to SMD, the Pasta
dataset features fewer subsets and smaller sample sizes but
introduces challenges due to the higher dimensionality of the
time series and high class imbalance, particularly for B1.
Our proposed model, QAE, performs competitively with the
classical baselines, achieving the highest mean accuracy
(0.72) among all models, and achieving a mean AUC only
0.01 worse than that of the large AE, despite the QAE having
drastically fewer trainable parameters, as shown in Table III.
The mean performance of the QAE is superior to the one of
the small AE in all metrics but precision and comparable to the
one of the medium AE, which has more trainable parameters
than our QAE. Considering individual subsets, QAE achieves
the best AUC on B1 and only 0.01 less AUC than the large AE
on B2. In comparison, the large AE obtains the highest mean
AUC (0.79), F1-score (0.80), and recall (1.00), but at the cost
of lower balanced accuracy and less consistent performance
across subsets. AE [3] and AE [16, 8] show strong precision
but generally lower recall, which leads to lower F1-scores
and balanced accuracies overall. These results indicate that
QAE performs comparably to the AEs, particularly for the
semisupervised setting when the threshold is selected based
solely on the training data.

The reconstruction loss distributions of the QAE and the
large AE on subset B1 are shown in Figure 4. It is important to
note that the test set for this subset is highly imbalanced, con-
taining approximately 98% anomalous samples. For the QAE,
the majority of anomalous test samples exhibit reconstruction
errors above the threshold. However, around one quarter of the
anomalies fall below the threshold, while the few normal test
samples are located near the threshold. As a result, the model
struggles to separate the classes perfectly, but still achieves a
moderate balanced accuracy of 0.67. In contrast, the large AE
fails to distinguish between normal and anomalous samples.
The reconstruction errors of both classes lie mostly above the



(a) machine-1-1 (b) machine-1-5

Fig. 3: Violin plots illustrating the distribution of reconstruction errors of QAE on two different machines of the SMD dataset.

threshold, and their distributions overlap substantially. This
complete lack of separability prevents effective classification
and results in a balanced accuracy of 0.50 – equivalent to
random guessing.

C. MSCM Dataset

The results on the MSCM dataset are presented in Table VI
in Section A in the appendix. As a diverse collection of real-
world univariate time series from production cloud systems,
MSCM provides a benchmark for evaluating AD models
across a range of signal types and anomaly sparsity levels.

All models demonstrate strong overall performance, with
mean AUC values exceeding 0.89. The proposed QAE
achieves a mean AUC of 0.91, matching the performance of
the medium-sized AE and outperforming both the small and
large AEs in this metric. When compared to the large AE –
which contains significantly more trainable parameters – QAE
achieves better performance across all metrics except recall,
highlighting its efficiency and competitiveness.

In terms of mean accuracy, QAE ranks second (0.87), just
behind the medium AE (0.89). It shows particularly strong
results on the subsets app1-01, app1-02, app1-05, app2-05,
app2-06, app2-07, and m-01, where it achieves the highest
accuracy and F1-score among all models.

Overall, QAE performs on the same level as the classical
AEs, and the relatively weak performance of the large AE
shows that parameter count is not the most important factor
for model performance for this dataset.

VI. CONCLUSION AND OUTLOOK

In this work, we proposed a QAE architecture tailored
for AD in MTS, motivated by the practical challenges of
monitoring enterprise systems such as SAP HANA Cloud. We
extended the QAE concept to handle MTS input, enabling it
to model complex temporal and inter-variable dependencies
using a parameter-efficient quantum circuit design.

Our experimental results demonstrate that the performance
of the QAE on MTS data – while not ideal – can compete
with that of neural-network AEs, even when using significantly
fewer trainable parameters. In particular, the QAE performs
well when the decision threshold must be derived solely from

normal training data – an increasingly common requirement
in enterprise monitoring pipelines. Furthermore, our QAE em-
ploys a fixed architecture and identical hyperparameters across
all MTS and univariate datasets, highlighting the problem-
agnostic nature of the approach. This design choice under-
scores its potential for deployment across diverse domains
without the need for task-specific tuning of the circuit ansatz
or hyperparameters.

While promising, our results also reveal challenges such
as overfitting or moderate performance on certain subsets.
This limitation suggests that improvements are needed in
circuit design or regularization strategies to promote better
generalization across varied data distributions.

As a first step toward integrating quantum models into
enterprise observability pipelines, our approach opens the door
to several promising directions. Future work includes scaling
the architecture to larger MTS inputs, deploying it on real
quantum hardware, and investigating approaches to mitigate
overfitting and improve training dynamics. With continued
progress in QML and quantum hardware availability, QAEs
may eventually offer a practical, resource-efficient alternative
for real-time AD in complex industrial systems.

ACKNOWLEDGMENT

SAP would like to acknowledge the Federal Ministry for
Economic Affairs and Climate Action (abbreviated BMWK),
for funding this work under the QCHALLenge Project
(01MQ22008). Fraunhofer AISEC would like to acknowledge
the Munich Quantum Valley, which is supported by the Bavar-
ian state government with funds from the Hightech Agenda
Bayern Plus.

REFERENCES

[1] L. Ruff et al., “A unifying review of deep and shallow
anomaly detection,” Proceedings of the IEEE, vol. 109,
no. 5, pp. 756–795, 2021. DOI: 10.1109/JPROC.2021.
3052449.

https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1109/JPROC.2021.3052449


(a) QAE (b) AE [256, 128]

Fig. 4: Reconstruction errors of QAE and the large AE on B1 of the Pasta dataset.

[2] Z. Zamanzadeh Darban et al., “Deep learning for time
series anomaly detection: A survey,” ACM Computing
Surveys, vol. 57, no. 1, pp. 1–42, Oct. 2024, ISSN: 1557-
7341. DOI: 10.1145/3691338. [Online]. Available: http:
//dx.doi.org/10.1145/3691338.

[3] F. Wang et al., “A survey of deep anomaly detection in
multivariate time series: Taxonomy, applications, and
directions,” Sensors, vol. 25, no. 1, 2025, ISSN: 1424-
8220. DOI: 10 . 3390 / s25010190. [Online]. Available:
https://www.mdpi.com/1424-8220/25/1/190.

[4] J. Biamonte et al., “Quantum machine learning,” Na-
ture, vol. 549, no. 7671, pp. 195–202, 2017, ISSN: 1476-
4687. DOI: 10.1038/nature23474. [Online]. Available:
https://doi.org/10.1038/nature23474.

[5] J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quan-
tum autoencoders for efficient compression of quantum
data,” Quantum Science and Technology, vol. 2, no. 4,
p. 045 001, 2017. DOI: 10 . 1088 / 2058 - 9565 / aa8072.
[Online]. Available: https://dx.doi.org/10.1088/2058-
9565/aa8072.

[6] J. Kottmann et al., “Variational quantum anomaly de-
tection: Unsupervised mapping of phase diagrams on
a physical quantum computer,” Physical Review Re-
search, vol. 3, no. 4, p. 043 184, 2021.

[7] V. S. Ngairangbam, M. Spannowsky, and M. Takeuchi,
“Anomaly detection in high-energy physics using
a quantum autoencoder,” Phys. Rev. D, vol. 105,
p. 095 004, 9 2022. DOI: 10 . 1103 / PhysRevD . 105 .
095004. [Online]. Available: https:/ / link.aps.org/doi/
10.1103/PhysRevD.105.095004.

[8] C. Duffy et al., Unsupervised beyond-standard-model
event discovery at the lhc with a novel quantum au-
toencoder, 2024. arXiv: 2407 . 07961 [quant-ph].
[Online]. Available: https://arxiv.org/abs/2407.07961.

[9] M. Hdaib, S. Rajasegarar, and L. Pan, “Quantum deep
learning-based anomaly detection for enhanced network
security,” Quantum Machine Intelligence, vol. 6, no. 1,
p. 26, 2024, ISSN: 2524-4914. DOI: 10.1007/s42484-
024-00163-2. [Online]. Available: https://doi.org/10.
1007/s42484-024-00163-2.

[10] C. Huot et al., “Quantum autoencoder for enhanced
fraud detection in imbalanced credit card dataset,” IEEE
Access, vol. 12, pp. 169 671–169 682, 2024. DOI: 10.
1109/ACCESS.2024.3496901.

[11] K. Tscharke, S. Issel, and P. Debus, “Semisupervised
anomaly detection using support vector regression with
quantum kernel,” in 2023 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE),
IEEE, Sep. 2023, pp. 611–620. DOI: 10.1109/qce57702.
2023.00075. [Online]. Available: http://dx.doi.org/10.
1109/QCE57702.2023.00075.

[12] R. Frehner and K. Stockinger, Applying quantum au-
toencoders for time series anomaly detection, 2024.
arXiv: 2410 . 04154 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2410.04154.

[13] A. Blázquez-Garcı́a et al., “A review on outlier/anomaly
detection in time series data,” ACM Comput. Surv.,
vol. 54, no. 3, Apr. 2021, ISSN: 0360-0300. DOI: 10.
1145/3444690. [Online]. Available: https://doi.org/10.
1145/3444690.

[14] P. Vincent et al., “Extracting and composing robust
features with denoising autoencoders,” in Proceedings
of the 25th International Conference on Machine Learn-
ing, ser. ICML ’08, Helsinki, Finland: Association for
Computing Machinery, 2008, pp. 1096–1103, ISBN:
9781605582054. DOI: 10 . 1145 / 1390156 . 1390294.
[Online]. Available: https://doi.org/10.1145/1390156.
1390294.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016, http : / / www .
deeplearningbook.org.

[16] A. Pérez-Salinas et al., “Data re-uploading for a univer-
sal quantum classifier,” Quantum, vol. 4, p. 226, Feb.
2020, ISSN: 2521-327X. DOI: 10.22331/q-2020-02-06-
226. [Online]. Available: http://dx.doi.org/10.22331/q-
2020-02-06-226.

[17] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of
data encoding on the expressive power of variational
quantum-machine-learning models,” Physical Review A,
vol. 103, no. 3, Mar. 2021, ISSN: 2469-9934. DOI: 10.

https://doi.org/10.1145/3691338
http://dx.doi.org/10.1145/3691338
http://dx.doi.org/10.1145/3691338
https://doi.org/10.3390/s25010190
https://www.mdpi.com/1424-8220/25/1/190
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/2058-9565/aa8072
https://dx.doi.org/10.1088/2058-9565/aa8072
https://dx.doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/PhysRevD.105.095004
https://doi.org/10.1103/PhysRevD.105.095004
https://link.aps.org/doi/10.1103/PhysRevD.105.095004
https://link.aps.org/doi/10.1103/PhysRevD.105.095004
https://arxiv.org/abs/2407.07961
https://arxiv.org/abs/2407.07961
https://doi.org/10.1007/s42484-024-00163-2
https://doi.org/10.1007/s42484-024-00163-2
https://doi.org/10.1007/s42484-024-00163-2
https://doi.org/10.1007/s42484-024-00163-2
https://doi.org/10.1109/ACCESS.2024.3496901
https://doi.org/10.1109/ACCESS.2024.3496901
https://doi.org/10.1109/qce57702.2023.00075
https://doi.org/10.1109/qce57702.2023.00075
http://dx.doi.org/10.1109/QCE57702.2023.00075
http://dx.doi.org/10.1109/QCE57702.2023.00075
https://arxiv.org/abs/2410.04154
https://arxiv.org/abs/2410.04154
https://doi.org/10.1145/3444690
https://doi.org/10.1145/3444690
https://doi.org/10.1145/3444690
https://doi.org/10.1145/3444690
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1103/physreva.103.032430


1103/physreva.103.032430. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevA.103.032430.

[18] M. Schuld and F. Petruccione, “Quantum computing,”
in Machine Learning with Quantum Computers. Cham:
Springer International Publishing, 2021, pp. 79–146,
ISBN: 978-3-030-83098-4. DOI: 10.1007/978- 3- 030-
83098 - 4 3. [Online]. Available: https : / / doi . org / 10 .
1007/978-3-030-83098-4 3.

[19] K. Tscharke, S. Issel, and P. Debus, “Quack: Quantum
aligned centroid kernel,” in 2024 IEEE International
Conference on Quantum Computing and Engineering
(QCE), IEEE, Sep. 2024, pp. 1425–1435. DOI: 10.1109/
qce60285.2024.00169. [Online]. Available: http://dx.
doi.org/10.1109/QCE60285.2024.00169.

[20] K. Zhang et al., “Escaping from the barren plateau
via gaussian initializations in deep variational quan-
tum circuits,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems,
ser. NIPS ’22, New Orleans, LA, USA: Curran Asso-
ciates Inc., 2022, ISBN: 9781713871088.

[21] M. Corporation, Cloud monitoring dataset, 2024. [On-
line]. Available: https : / /github.com/microsoft /cloud-
monitoring-dataset.

[22] P. Mancuso, V. Piccialli, and A. M. Sudoso, “A ma-
chine learning approach for forecasting hierarchical
time series,” Expert Systems with Applications, vol. 182,
p. 115 102, 2021, ISSN: 0957-4174. DOI: https : / /doi .
org/10.1016/j.eswa.2021.115102. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S0957417421005431.

[23] Y. Su et al., “Robust anomaly detection for multivariate
time series through stochastic recurrent neural network,”
in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
ser. KDD ’19, Anchorage, AK, USA: Association for
Computing Machinery, 2019, pp. 2828–2837, ISBN:
9781450362016. DOI: 10 . 1145 / 3292500 . 3330672.
[Online]. Available: https://doi.org/10.1145/3292500.
3330672.

https://doi.org/10.1103/physreva.103.032430
http://dx.doi.org/10.1103/PhysRevA.103.032430
http://dx.doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1109/qce60285.2024.00169
https://doi.org/10.1109/qce60285.2024.00169
http://dx.doi.org/10.1109/QCE60285.2024.00169
http://dx.doi.org/10.1109/QCE60285.2024.00169
https://github.com/microsoft/cloud-monitoring-dataset
https://github.com/microsoft/cloud-monitoring-dataset
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115102
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115102
https://www.sciencedirect.com/science/article/pii/S0957417421005431
https://www.sciencedirect.com/science/article/pii/S0957417421005431
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672


APPENDIX A
DETAILED RESULTS

TABLE IV: Results for the SMD dataset.

Dataset SMD
Subset 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 mean

QAE

AUC 0.97 0.62 0.84 0.86 0.72 0.74 0.75 0.65 0.77
Precision 0.38 0.31 0.73 0.71 0.03 0.34 0.87 0.44 0.48
Recall 0.96 0.15 0.49 0.71 1.00 0.98 0.36 0.15 0.60
F1 0.55 0.20 0.58 0.71 0.06 0.51 0.50 0.23 0.42
Acc. 0.81 0.92 0.94 0.95 0.03 0.46 0.89 0.89 0.74
Bal. Acc. 0.87 0.56 0.74 0.84 0.50 0.62 0.67 0.57 0.67

AE [3]

AUC 0.88 0.87 0.84 0.91 0.77 0.72 0.78 0.51 0.79
Precision 0.43 1.00 0.89 1.00 0.05 0.29 1.00 0.24 0.61
Recall 0.59 0.21 0.41 0.37 0.87 0.99 0.08 0.17 0.46
F1 0.49 0.35 0.56 0.54 0.10 0.45 0.15 0.20 0.36
Acc. 0.86 0.94 0.95 0.95 0.52 0.32 0.86 0.85 0.78
Bal. Acc. 0.74 0.61 0.70 0.68 0.69 0.52 0.54 0.55 0.63

AE [16, 8]

AUC 0.96 0.86 0.88 0.90 0.86 0.67 0.81 0.70 0.83
Precision 0.45 0.68 1.00 1.00 0.03 0.33 1.00 0.72 0.65
Recall 0.99 0.52 0.08 0.21 1.00 0.88 0.19 0.25 0.51
F1 0.62 0.59 0.14 0.35 0.06 0.48 0.32 0.37 0.37
Acc. 0.85 0.95 0.92 0.94 0.03 0.46 0.88 0.91 0.74
Bal. Acc. 0.91 0.75 0.54 0.61 0.50 0.59 0.60 0.62 0.64

AE [256, 128]

AUC 0.98 0.86 0.87 0.89 0.84 0.73 0.82 0.76 0.84
Precision 0.28 0.12 0.81 0.50 0.03 0.28 0.92 0.29 0.40
Recall 1.00 0.94 0.67 0.82 1.00 1.00 0.33 0.62 0.80
F1 0.44 0.21 0.73 0.62 0.06 0.44 0.48 0.39 0.42
Acc. 0.69 0.51 0.96 0.92 0.03 0.29 0.89 0.79 0.64
Bal. Acc. 0.82 0.71 0.83 0.87 0.50 0.50 0.66 0.71 0.70

TABLE V: Results for the Pasta dataset.

Dataset Pasta
Subset B1 B3 B4 mean

QAE

AUC 0.85 0.71 0.76 0.78
Precision 0.99 0.89 0.68 0.85
Recall 0.84 0.41 0.72 0.66
F1 0.91 0.56 0.70 0.72
Acc. 0.83 0.58 0.75 0.72
Bal. Acc. 0.67 0.66 0.75 0.69

AE [3]

AUC 0.71 0.55 0.77 0.68
Precision 0.98 1.00 0.75 0.91
Recall 0.54 0.26 0.67 0.49
F1 0.70 0.41 0.71 0.60
Acc. 0.54 0.52 0.78 0.61
Bal. Acc. 0.52 0.63 0.76 0.64

AE [16, 8]

AUC 0.76 0.67 0.90 0.78
Precision 1.00 1.00 0.96 0.99
Recall 0.57 0.28 0.67 0.51
F1 0.73 0.43 0.79 0.65
Acc. 0.58 0.53 0.85 0.66
Bal. Acc. 0.79 0.64 0.82 0.75

AE [256, 128]

AUC 0.75 0.72 0.92 0.79
Precision 0.98 0.65 0.44 0.69
Recall 1.00 1.00 1.00 1.00
F1 0.99 0.79 0.62 0.80
Acc. 0.98 0.65 0.49 0.71
Bal. Acc. 0.50 0.50 0.58 0.53



TABLE VI: Results for the MSCM dataset.

Dataset MSCM
Subset api-01 app1-01 app1-02 app1-04 app1-05 app1-06 app1-08 app2-04 app2-05 app2-06 app2-07 m-01 mean

QAE

AUC 0.90 0.88 0.90 0.82 0.90 1.00 0.94 0.94 0.99 0.86 0.83 0.95 0.91
Precision 0.60 0.78 0.86 0.47 1.00 0.36 0.77 0.33 1.00 1.00 1.00 0.52 0.72
Recall 0.25 0.88 0.95 0.80 0.82 1.00 0.77 0.67 0.93 0.75 0.71 0.88 0.78
F1 0.35 0.82 0.90 0.59 0.90 0.53 0.77 0.44 0.96 0.86 0.83 0.65 0.72
Acc. 0.96 0.77 0.85 0.61 0.93 0.77 0.78 0.89 0.98 0.98 0.95 0.98 0.87
Bal. Acc. 0.62 0.74 0.76 0.65 0.91 0.87 0.78 0.78 0.96 0.88 0.86 0.93 0.81

AE [3]

AUC 0.89 0.90 0.71 0.81 0.90 1.00 0.95 0.95 0.99 0.81 0.84 0.96 0.89
Precision 0.75 0.78 0.82 0.57 1.00 0.67 1.00 0.50 1.00 1.00 0.83 0.44 0.78
Recall 0.25 0.88 0.70 0.80 0.82 1.00 0.69 0.67 0.93 0.50 0.71 0.94 0.74
F1 0.38 0.82 0.76 0.67 0.90 0.80 0.82 0.57 0.96 0.67 0.77 0.60 0.73
Acc. 0.96 0.77 0.67 0.71 0.93 0.94 0.85 0.93 0.98 0.95 0.93 0.97 0.88
Bal. Acc. 0.62 0.74 0.64 0.73 0.91 0.96 0.85 0.81 0.96 0.75 0.84 0.96 0.81

AE [16, 8]

AUC 0.91 0.95 0.66 0.89 0.89 1.00 0.95 0.96 0.96 0.90 0.86 0.95 0.91
Precision 0.62 0.78 0.82 0.56 1.00 0.80 1.00 0.40 1.00 1.00 1.00 0.44 0.79
Recall 0.83 0.88 0.70 1.00 0.82 1.00 0.69 0.67 0.93 0.50 0.71 0.94 0.81
F1 0.71 0.82 0.76 0.71 0.90 0.89 0.82 0.50 0.96 0.67 0.83 0.60 0.77
Acc. 0.97 0.77 0.67 0.71 0.93 0.97 0.85 0.91 0.98 0.95 0.95 0.97 0.89
Bal. Acc. 0.90 0.74 0.64 0.78 0.91 0.98 0.85 0.80 0.96 0.75 0.86 0.96 0.84

AE [256, 128]

AUC 0.92 0.82 0.57 0.92 0.87 1.00 0.93 0.98 0.94 0.89 0.85 0.96 0.89
Precision 0.57 0.62 0.73 0.62 1.00 0.67 0.63 0.16 0.48 1.00 1.00 0.41 0.66
Recall 0.67 1.00 0.95 1.00 0.82 1.00 0.92 1.00 0.93 0.50 0.71 0.76 0.86
F1 0.62 0.76 0.83 0.77 0.90 0.80 0.75 0.27 0.63 0.67 0.83 0.53 0.70
Acc. 0.96 0.62 0.70 0.79 0.93 0.94 0.70 0.64 0.66 0.95 0.95 0.97 0.82
Bal. Acc. 0.82 0.50 0.47 0.83 0.91 0.96 0.71 0.80 0.73 0.75 0.86 0.87 0.77


	Introduction
	Related Work
	Contributions

	Preliminaries
	Anomalies
	Point Anomalies
	Contextual Anomalies
	Collective Anomalies

	Multivariate Time Series
	Window-Based Anomaly Detection
	Autoencoders

	Quantum Autoencoder for Multivariate Time Series Anomaly Detection
	Quantum Autoencoder Architecture
	Model Training and Inference

	Experiments
	Quantum Autoencoder
	Datasets
	Server Machine Dataset

	Pasta Dataset
	Microsoft Cloud Monitoring Dataset

	Neural-Network Autoencoder

	Results and Discussion
	SMD Dataset
	Pasta Dataset
	MSCM Dataset

	Conclusion and Outlook
	Appendix A: Detailed Results

