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Abstract

Variational Autoencoders (VAEs) have played a key role in
scaling up diffusion-based generative models, as in Stable
Diffusion, yet questions regarding their robustness remain
largely underexplored. Although adversarial training has
been an established technique for enhancing robustness in
predictive models, it has been overlooked for generative
models due to concerns about potential fidelity degradation
by the nature of trade-offs between performance and robust-
ness. In this work, we challenge this presumption, introduc-
ing Smooth Robust Latent VAE (SRL-VAE), a novel adver-
sarial training framework that boosts both generation qual-
ity and robustness. In contrast to conventional adversarial
training, which focuses on robustness only, our approach
smooths the latent space via adversarial perturbations, pro-
moting more generalizable representations while regular-
izing with originality representation to sustain original fi-
delity. Applied as a post-training step on pre-trained VAEs,
SRL-VAE improves image robustness and fidelity with min-
imal computational overhead. Experiments show that SRL-
VAE improves both generation quality, in image reconstruc-
tion and text-guided image editing, and robustness, against
Nightshade attacks and image editing attacks. These results
establish a new paradigm, showing that adversarial train-
ing, once thought to be detrimental to generative models,
can instead enhance both fidelity and robustness.

1. Introduction

Variational Autoencoders (VAEs) [12] have been em-
ployed as a compressor in the success of latent genera-
tive models [15, 19, 22, 24], which have demonstrated sur-
prising capabilities in generating high-quality images. The
VAEs compress high-dimensional images into a latent space
that retains semantic and structural information, which is
continuous [24] or discrete [4] space for high-quality gener-

*Equal contribution
†Work done during an internship at KAIST

𝒵
Diffusion 

Model
෨𝒵

SD-VAE

SRL-VAE (Ours)

𝑥
𝒵

Diffusion 
Model

෨𝒵

Original Same representation

𝜠𝜽 𝓓𝝓

𝜠𝜽𝟎 𝓓𝝓𝟎

Original Reconstructed

Reconstructed

(a) Diffusion-based generative process of clean image

𝒵
Diffusion 

Model
෨𝒵

𝑥
𝒵

Diffusion 
Model

෨𝒵

Perturbed Wrong representation

Robust representation

𝜠𝜽 𝓓𝝓

𝜠𝜽𝟎 𝓓𝝓𝟎

Perturbed

SD-VAE

SRL-VAE (Ours)

(b) Diffusion-based generative process of perturbed image

Figure 1. Concept figure of SRL-VAE. Compared to SD-VAE,
SRL-VAE maintains similar representations for clean examples
while achieving robust representation against perturbed examples.

ative modeling. Despite their effectiveness as a compressor
in generative models, prior work has largely overlooked the
representational role of VAEs, primarily focusing on gen-
erative aspects to improve performance by proposing ar-
chitectures [22], training objectives [19, 37], or regulariza-
tion [38]. However, obtaining an effective compressor is
one of the key components to achieving higher-quality gen-
erations while also ensuring robustness with efficient com-
putational costs.

To obtain effective VAEs for both higher fidelity and bet-
ter robustness, representation space of VAEs needs to be ro-
bust and capable of capturing better structural latent. We
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Figure 2. Training objective of Smooth Robust Latent Vari-
ational Autoencoders (ours). A novel adversarial training ap-
proach in the latent space of VAE with originality regularization.

were inspired by adversarial training [20, 39] to build ro-
bust representations. Adversarial training [20, 39] has ini-
tially been recognized as an effective method for improving
adversarial robustness in predictive models against adver-
sarial attacks, particularly in classification tasks. In fact,
adversarial training builds robust and smooth representa-
tions [14] so that it could have better generalization [10, 36]
from leveraging a min-max formulation. However, adver-
sarial training in generative modeling remains largely un-
explored, partly because generative models have tradition-
ally prioritized fidelity and diversity over robustness. More-
over, adversarial training is challenging to optimize and of-
ten leads to large performance degradation where trade-offs
are clear [2, 39]. As a result, the adoption of adversarial
training in VAEs and similar generative models has been
limited, as it is frequently perceived as a significant trade-
off.

In this work, we introduce a novel adversarial training
framework for VAEs that enhances both generation quality
and robustness by constructing smooth latent space. Un-
like conventional adversarial training, which primarily tar-
gets predictive robustness, our approach leverages adver-
sarial perturbations to smooth the latent space and promote
more generalizable representations of VAEs (Figure 1). Our
approach consists of two key steps: (1) maximizing the
VAE loss to introduce adversarial perturbations in the latent
space, exposing the model to challenging variations, and
(2) minimizing both the VAE loss and an originality loss to
preserve the original representation structure while building
smooth latent space, ensuring a stable training and robust-
ness as shown in Figure 2. Furthermore, our approach is ap-
plied as a post-training step on pre-trained VAEs, requiring
only a small amount of additional computational resources,

making it an efficient and practical solution for improving
generative models.

By bridging adversarial training and generative model-
ing, our work introduces a new perspective on the impor-
tance of obtaining robust, high-quality representations of
VAEs in generative models. Our method enables VAEs
to generate outputs of comparable or, in some cases, even
higher quality (Figure 1a) while being extremely effective
against various types of adversarial attacks during the gen-
eration process (Figure 1b). This demonstrates that adver-
sarial training is not merely a defensive mechanism that sac-
rifices performance but rather a powerful strategy for en-
hancing generative models with robustness, paving the way
for future advancements in robust generative learning.

The main contributions can be summarized as follows:

• Unlike prior adversarial training methods, which pre-
dominantly focus on classification models, we introduce
the first adversarial training approach tailored for VAEs,
demonstrating its ability to improve both generation qual-
ity and robustness simultaneously.

• We show that adversarial training, when combined with
an originality loss, fosters a smoother latent space,
leading to more stable and generalizable representa-
tions, which enhance image fidelity and deliver surpris-
ingly strong performance against various types of attacks.

• Through extensive experiments, we demonstrate signifi-
cant improvements in both fidelity and robustness across
multiple tasks. Specifically, we evaluate image quality
through image reconstruction and generation, and assess
robustness by evaluation against adversarial attacks on
text-guided image editing and adversarial poisoning at-
tacks, establishing the effectiveness of our approach in
enhancing both generative performance and robustness.

2. Related Works
Latent Generative Models Variational Autoencoders
(VAEs) [12] are generative models that learn compact la-
tent representations by regularizing the latent distribution
through a Kullback–Leibler (KL) divergence term. While
VAEs enable smooth interpolation and efficient sampling,
they often produce blurry outputs due to limitations in
the latent space. To address this, Vector Quantized VAE
(VQ-VAE) [33] introduces a discrete codebook of embed-
dings, preventing latent space collapse and improving re-
construction quality. VQ-GAN [4] further enhances this
framework with adversarial training, guiding the decoder
towards sharper and more realistic outputs. Building on
these approaches, Latent Diffusion Models (LDMs) [24]
apply diffusion processes in a compressed latent space ob-
tained from a pretrained autoencoder, significantly reducing
computational costs while preserving high fidelity. Cross-
attention mechanisms enable flexible conditional genera-
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tion from various inputs, as demonstrated in Stable Diffu-
sion [24]. Recent work also explores enhancing the interac-
tion between autoencoders and diffusion models, address-
ing spectral properties of latent spaces [31] and introduc-
ing equivariance regularization for better generative perfor-
mance [13]. However, prior works have largely overlooked
the quality of latent representations in VAEs in terms of fi-
delity and robustness. We address this by applying adver-
sarial training to enhance the latent space, improving both
generation quality and robustness.

Adversarial Training Szegedy et al. [32] first revealed
the vulnerability of deep neural networks (DNNs) to ad-
versarial attacks, showing that imperceptible perturbations
could mislead models. Goodfellow et al. [5] introduced
adversarial training with the Fast Gradient Sign Method
(FGSM), demonstrating that training on adversarial and
clean samples improves robustness. Madry et al. [20] ex-
tended this with Projected Gradient Descent (PGD) ad-
versarial training, formulating it as a minimax optimiza-
tion problem. TRADES [39] further refined robustness by
enforcing consistency between clean and adversarial sam-
ples via Kullback-Leibler divergence minimization. Re-
cent works leveraged unlabeled data [2] or generative mod-
els [6] to enhance adversarial robustness by exposing di-
verse distribution. Beyond supervised settings, adversar-
ial self-supervised learning (SSL) emerged as an alterna-
tive perspective to obtain robust representation [9, 11], us-
ing contrastive learning or self-supervised learning by in-
troducing adversarial examples that maximize given losses
without any class information. However, all these meth-
ods focus on building a robust representation for predictive
models to have robust decision boundaries, which did not
consider generative models. Unlike prior works, our ap-
proach suggests adversarial training for VAEs, demonstrat-
ing that it can enhance both generation quality and robust-
ness.

3. Variation Autoencoders with Smooth Robust
Latent Encoding

In this section, we first revisit the preliminary of Varia-
tional Autoencoder (VAE) and adversarial training (AT) in
section 3.1. Then, we propose our smooth robust latent VAE
approach with theoretical motivation in Section 3.2.

3.1. Preliminary

Variational autoencoder (VAE) A Variational autoen-
coder (VAE) is a latent space compressor that encodes
high-dimensional image data into a lower-dimensional la-
tent space. Given an input image x, the encoder Eθ(x)
compresses the image to a latent variable z, and the de-
coder Dϕ(z) reconstructs x as x̂ = Dϕ(z). We employ

a VAE [24] that is optimized primarily for high-fidelity re-
construction. The training objective is defined as follows:

LVAE(x) = Lrec(x, x̂) + Lgan(x̂) + Lreg(x), (1)

where Lrec combines pixel-wise loss (L1 distance loss or
L2 distance loss) and perceptual loss (LPIPS loss). LPIPS
loss is a similarity loss of learned perceptual image patches
that calculates the similarity distance based on features ex-
tracted from a pre-trained VGG model [30]. The Lgan

is an adversarial loss that encourages the generation of
more realistic outputs by leveraging a discriminator net-
work. Lastly, Lreg is a regularization term which is fol-
lowing KL-divergence:

Lreg(x) = LKL(qθ(z|x)||p(z)), (2)

where p(z) is the prior distribution, and set to a standard
normal distribution N (0, I). KL regularization in recent
latent diffusion models ensures smooth sampling and inter-
polation by encouraging a well-structured latent space.

Adversarial training Adversarial training is a technique
for obtaining robust models against adversarial attacks by
solving a min-max optimization problem. First, we define
an adversarial perturbation, δ, which is applied to an in-
put x. Then, the min-max optimization problem is formu-
lated with 1) generating the perturbation δ by maximizing
the model’s given loss L, while 2) simultaneously minimiz-
ing the training loss under this perturbation. Several ap-
proaches [34, 39] exist for generating effective adversarial
perturbation in the min-max optimization problem. Here,
we employ projected gradient descent attacks [20] that max-
imize the training loss, as follows.

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δtL

))
, (3)

where B(0, ϵ) is the ℓ∞ norm-ball of radius ϵ, Π is the pro-
jection function to the norm-ball, α is the step size of the
attacks, and sign(·) is the sign of the vector. Also, δ repre-
sents the perturbations accumulated by αsign(·) over mul-
tiple iterations t. Then, minimization is defined as follows,

min
ω

Ex∼D
[
L(x+ δt)

]
, (4)

where ω is a parameter of model f , x is training samples
from dataset D and L is training objectives which employ
perturbed samples x+ δ.

3.2. Smooth Robust Latent VAE
Theoretical motivation Adversarial training has been
widely used in predictive models to improve robustness
against adversarial attacks, yet its application in generative
models remains under-explored. In predictive tasks, robust-
ness is achieved by ensuring that perturbed inputs x + δ
produce outputs similar to those of the original inputs x.
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Figure 3. Concept of smooth latent space. A smooth latent space
ensures that perturbed examples are mapped closely to their origi-
nal counterparts, enabling the VAE to extract robust features.

This is typically enforced by a Lipschitz constraint, which
guarantees that small changes within an ϵ-norm ball result
in only minor variations in the output, thereby creating a
smooth representation space. Motivated by this, we propose
that applying adversarial training to VAEs can similarly pro-
mote a smooth and well-structured latent space, leading to
improved generation quality and robustness (Figure 3).

Furthermore, in latent-based generative models, the en-
coder acts as an information bottleneck, compressing high-
dimensional inputs into latent codes z = Eθ(x). Motivated
by the Information Bottleneck (IB) principle, we believe
that an optimal latent representation should capture only
the essential features for accurate reconstruction while dis-
carding noisy features and clearly distinguishing different
inputs. In VAEs, this results in a latent space that is both
expressive and compact. By applying adversarial training,
our approach forces the encoder to extract only the cru-
cial features for high-quality reconstruction and to maintain
clear separations among examples. Specifically, adversar-
ial training encourages each input’s latent representation to
be confined within a secure ϵ-ball, creating a large margin
between different examples. This leads to a tighter infor-
mation bottleneck and a more structured latent space, ulti-
mately enhancing both image fidelity and generalization.

Smooth Robust Latent VAE We propose Smooth Robust
Latent VAE (SRL-VAE), which enhances latent representa-
tion quality by applying adversarial training to the encoder.
Additionally, to ensure compatibility with pre-trained dif-
fusion models such as the UNet in latent diffusion models
(LDMs), our approach emphasizes preserving the original
latent structure while refining it for improved performance.

We formulate a min-max optimization framework for
VAEs. In particular, to generate adversarial perturbations,
we define the maximization step using a projected gradient
descent (PGD) formulation as follows:
δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δt(LMSE(Dϕ(Eθ(x+ δt)), x)

+λ · LLPIPS(Dϕ(Eθ(x+ δt)), x))
))

,

(5)
where LMSE, and LLPIPS is L2 distance loss and LPIPS per-
ceptual loss between adversarial examples and original ex-

amples, respectively.
Then, the minimization step is formulated to ensure that

the outputs from the perturbed examples are similar to the
original examples, while preserving the original latent space
distribution. This is expressed as follows:

Ltotal = αLorig(x, θ, θ0) + LMSE(Dϕ(Eθ(xadv)), x)

+λLLPIPS(Dϕ(Eθ(xadv)), x)
(6)

where xadv = x + δ from equation 5, and α, λ control
the balance between latent consistency and reconstruction
quality.

The originality loss Lorig acts as regularization to pre-
serve the latent distribution of clean inputs by minimizing
the difference from the pre-trained encoder:

Lorig(x, θ, θ0) = ∥µ− µorig∥22 + ∥ log σ2 − log σ2
orig∥22,

(7)
where µ and σ2 represent the mean and variance of the la-
tent distribution produced by the current encoder parame-
terized by θ, and µorig and σ2

orig represent the mean and
variance produced by the pre-trained encoder parameterized
by θ0, respectively, when given input x. By minimizing this
objective, the encoder learns robust latent representations
that maintain the original latent distribution, ensuring com-
patibility with downstream components and enabling stable,
high-fidelity generation with enhanced robustness.

4. Experiment

In this section, we first describe our experimental setup,
including datasets, training details, and evaluation details in
Section 4.1. We then present the image quality performance
of our SRL-VAE in Section 4.2, demonstrating both its re-
construction quality and diffusion generation quality. In
Section 4.3, we evaluate the robustness of our latent space
against various types of perturbations and different attacks
in diffusion models. Lastly, we conduct ablation studies and
analyze the latent space of SRL-VAE in Section 4.4.

4.1. Setup

Training details We further fine-tune a pre-trained Stable
Diffusion Variational Autoencoder (SD-VAE) on a subset
of 100K images from the LAION-Aesthetic dataset [27],
resized to 256×256 resolution. During fine-tuning, only
the encoder is updated while keeping the decoder frozen to
maintain compatibility with the pre-trained diffusion model.
The model is optimized with a batch size of 20 for a total
of 5K steps. For adversarial training, we use the Projected
Gradient Descent (PGD) attack under an ℓ∞ perturbation
bound of ϵ = 8/255 with 10 iterations per attack and a step
size of 0.02. We apply the originality loss with a weight of
α = 0.01, selected through hyperparameter tuning.
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Dataset VAE PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓

COCO SD-VAE 23.68 0.74 0.14 8.79
Ours 24.46 0.76 0.15 7.92

ImageNet SD-VAE 23.53 0.73 0.15 3.71
Ours 24.48 0.74 0.16 3.09

Table 1. Quantitative evaluation of reconstruction quality on
the MS-COCO and ImageNet validation sets. SRL-VAE con-
sistently outperforms the baseline VAE across PSNR, SSIM, and
FID metrics, indicating superior fidelity.

Evaluation To assess the image quality of SRL-VAE, we
evaluate both reconstruction quality and generation quality.
For reconstruction quality, we use the MS-COCO [17] val-
idation set (5,000 images) and the ImageNet [3] validation
set (50,000 images), with all images resized to 256×256.
We measure Fréchet Inception Distance (FID) [7], Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) [35], and Learned Perceptual Image Patch Simi-
larity (LPIPS) [40] to quantify the model’s ability to accu-
rately reconstruct images. For generation quality, we com-
pare SRL-VAE with SD-VAE within the Diffusion Trans-
former [22] (DiT-B/2) framework. We train DiT models
on ImageNet-1000k (1,280K images) for 10 epochs (50K
steps) with a batch size of 256 and evaluate their perfor-
mance using Inception Score (IS) [25] and FID.

To validate the robustness of SRL-VAE against adver-
sarial perturbations, we conducted two experiments. First,
we evaluated the model’s resilience to adversarial attacks
that target the training process to maliciously manipulate
the diffusion model [18, 29]. Specifically, we tested Night-
shade [29], which poisons a concept C so that it generates
images resembling a destination concept A. To determine
attack success, we measured the CLIP [23] similarity be-
tween the generated image and its generating prompt C, as-
sessing how far the image deviates from the intended con-
cept of C. If the CLIP score was lower than the thresh-
old τ = 0.25, we considered the attack successful. Sec-
ond, we assessed the robustness of SRL-VAE against de-
fensive perturbations from PhotoGuard [26], MIST [16] and
Glaze [28], which prevent unauthorized image edits. In a re-
alistic image-to-image editing scenario, we compared SRL-
VAE and SD-VAE, measuring FID and CLIP similarity with
the original generation results to evaluate robustness.

4.2. Smooth Robust Latent VAE
Image reconstruction quality To evaluate the effective-
ness of our proposed SRL-VAE, we measure its perfor-
mance on image reconstruction tasks compared to the base-
line VAE in both COCO dataset [17] and ImageNet dataset
(Table 1). Our SRL-VAE consistently achieves superior
performance across most of the metrics compared to the
original VAE. The higher PSNR and SSIM scores indi-

cate that images reconstructed by SRL-VAE preserve more
structural and visual details, whereas the lower FID scores
demonstrate enhanced perceptual realism of the generated
images. These results collectively confirm that adversarial
training within our SRL-VAE significantly enhances image
fidelity, underscoring the improved quality and robustness
of the learned latent representations.

Diffusion generation quality We further evaluate the dif-
fusion generation capabilities with our SRL-VAE within the
Diffusion Transformer (DiT) framework [22]. Our primary
objective is to confirm that our adversarial training approach
does not compromise generation performance, particularly
in the diffusion process. The original DiT model with a
standard SD-VAE achieves an IS of 12.49 and a FID of
91.54. In comparison, DiT with our SRL-VAE achieves
slightly improved performance, with an IS of 12.87 and an
FID of 91.27, demonstrating that our method does not de-
grade diffusion generation quality. This result highlights
that integrating SRL-VAE into the diffusion generation pro-
cess is both seamless and adaptable, preserving image qual-
ity while simultaneously providing additional benefits such
as improved latent space representation and enhanced ro-
bustness against perturbations, as discussed in Section 4.3.

4.3. Robustness on Perturbations
In this section, we assess the robustness of SRL-VAE

by integrating our encoder into existing frameworks and
evaluating against two distinct categories of perturbation-
based approaches. First, we test against the Nightshade at-
tack [29], a malicious adversarial perturbation-based data
poisoning technique designed to disrupt specific outputs of
diffusion models by injecting a few poison samples into
training data. Second, we evaluate robustness by measuring
the neutralization scale against defensive perturbation meth-
ods such as PhotoGuard [26], Glaze [28], and Mist [16],
which are initially designed to protect intellectual property
by adding imperceptible perturbations. Our experiments
demonstrate that our SRL-VAE effectively neutralizes both
types of perturbation-based approaches.

Robustness in Nightshade malicious attack Night-
shade [29] is a prompt-specific poisoning attack that can
maliciously control generative outputs with only a small
number of adversarial samples. To demonstrate the robust-
ness of our method against this attack, we fine-tune a pre-
trained diffusion model on 10K images from the LAION-
Aesthetic while varying the poisoning ratio of Nightshade
poisoned samples or perturbation bound ϵ. In Figure 4(a),
we fixed ϵ = 8/255 and varied the poisoning ratio. With
our SRL-VAE, the diffusion model remained resistant to
the attack, whereas the model using SD-VAE was easily
attacked even at low poisoning ratios. In Figure 4(b), we
fixed the number of poisoned samples at 100 and changed ϵ.
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Figure 4. Robustness on Nightshade attack. (a) and (b) demonstrate robustness evaluation against the Nightshade poisoning attack. SRL-
VAE maintains low attack success rates across varying poisoning ratios and perturbation bounds. (c) Qualitative examples demonstrate
that SRL-VAE preserves intended generation even under attacks.

Clean
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Photoguard Glaze Mist NightshadeClean

Figure 5. Visual examples of reconstruction under various perturbations. SD-VAE struggles to reconstruct images with added per-
turbed noise, whereas ours robustly handles both clean and various perturbed images.

Even under a higher perturbation bound (ϵ=15/255, which is
clearly visible), SRL-VAE retained its robustness beyond its
training bound. The qualitative examples demonstrate that
our SRL-VAE successfully prevents a poisoned cake image
from being transformed into a car, preserving its original
appearance as a cake, as shown in Figure 4(c).

These results highlight the effectiveness of our approach
in mitigating poisoning attacks without introducing addi-
tional overhead. While purification-based defenses [1, 8,
21, 41] can serve as a solution for poisoning attacks, apply-
ing them to every image in large datasets incurs high com-
putational costs due to the difficulty of identifying poisoned
images within the dataset. Moreover, with the rise of pub-
licly available data and the trend of data sharing, the size
of training datasets keeps growing, making it inefficient,
sometimes nearly impossible, to purify every single image.
In contrast, our method modifies only the VAE and does

VAE Metric Photoguard MIST Glaze

SD-VAE FID ↓ 221.1 146.1 86.40
CLIP ↑ 0.7231 0.7909 0.8410

Ours FID ↓ 68.42 60.50 57.32
CLIP ↑ 0.8832 0.8933 0.9065

Table 2. Evaluation of image-to-image editing robustness un-
der various perturbation defenses. SRL-VAE significantly im-
proves FID and CLIP scores across all methods, indicating better
visual quality and semantic alignment.

not introduce any additional runtime overhead compared to
purification-based defenses.

Robustness against various type of perturbations To
demonstrate the robustness of our SRL-VAE against var-
ious types of adversarial perturbations, we evaluated its
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Photoguard MIST

Our VAE

“A toddler on a tricycle wearing a superhero cape.”

Glaze

Figure 6. Comparison of image-to-image editing results un-
der defensive perturbations. SRL-VAE produces valid and high-
quality edited outputs based on the given prompts, while the base-
line VAE fails to preserve the original semantics.

ability to reconstruct perturbed images processed by Pho-
toGuard [26], MIST [16], and Glaze [28]. These methods
were originally devised to protect images via adversarial
perturbations, we repurpose these methods to measure the
extent to which these protections are neutralized, thus eval-
uating our VAE’s latent space resilience. As shown in 5,
the base SD-VAE struggles to reconstruct images with var-
ious perturbations, whereas our SRL-VAE successfully en-
codes both clean and perturbed images into its latent space,
enabling accurate reconstructions. Subsequently, we fur-
ther demonstrate SRL-VAE’s robustness by showcasing its
image-to-image editing performance on these same pro-
tected images. For this experiment, we constructed an edit-
ing dataset of 100 images from ImageNet, each resized to
512×512. As shown in Figure 6, the protection methods
successfully disrupt the editing results of the original VAE,
producing outputs that are significantly different from the
source images. In contrast, SRL-VAE generates valid edited
images based on the provided prompt “A toddler on a tricy-
cle wearing a superhero cape”, demonstrating strong robust-
ness. Specifically, we measure the FID and CLIP similar-
ity between the image-to-image results of the original and
protected images. As shown in Table 2, SRL-VAE consis-
tently outperforms the baseline VAE across all protection
methods, achieving lower FID scores and higher CLIP sim-
ilarity. These results demonstrate that SRL-VAE preserves
better visual quality and semantic consistency, even when
editing images protected by strong perturbation defenses.

4.4. Analysis
Ablation studies on loss component To understand the
contributions of each loss component, we perform abla-
tion studies employing different loss functions. Specifically,
we compare three loss types using adversarial loss without

VAE Variant PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓
SD-VAE 23.68 0.74 0.14 8.79

Full SRL-VAE 24.46 0.76 0.15 7.92
+ w/o originality loss 26.55 0.78 0.23 15.46

Table 3. Ablation study of SRL-VAE loss components.

VAE PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓
SD-VAE 19.67 0.5906 0.6691 109.5

α = 0.1 21.79 0.6562 0.5520 75.85
α = 0.01 27.23 0.7635 0.3244 28.47
α = 0.001 28.38 0.7834 0.3064 19.90

Table 4. Ablation study of an α hyper-parameter. Smaller
α values improve the reconstruction quality of perturbed Photo-
guard [26] images, enhancing robustness.

originality regularization (Equation 8), and our proposed
SRL-VAE.

Lwo-originality = LMSE(Dϕ(Eθ(xadv)), x)

+λLLPIPS(Dϕ(Eθ(xadv)), x)
(8)

The experimental results in Table 3 indicate that originality
regularization significantly contributes to leverage the orig-
inal performance of SD-VAE.

Ablation studies on hyper-parameter α In Equation 6,
we regularize the originality loss using the hyperparameter
α. α acts as a controller, regulating the influence of ro-
bustness during optimization. As α increases, the impact of
robustness decreases in the overall objective function, lead-
ing to decreasing robustness, as shown in Table 4. However,
to preserve generation performance on clean images, we set
α to 0.01, achieving an optimal balance between high fi-
delity on clean images and robustness against perturbations.
Moreover, originality loss plays a critical role in maintain-
ing compatibility with pre-trained diffusion models, making
it an important component of our approach.

Latent space analysis We analyze the latent space
learned by our SRL-VAE using two analysis approaches,
which are loss surface visualization and t-SNE visualiza-
tion of latent distributions. First, we visualize the loss
surfaces of SD-VAE and SRL-VAE by applying perturba-
tions along two random directions on the input image. For
each perturbed input, we compute the mean squared error
(MSE) between the latent representations of the perturbed
and clean inputs and normalize the loss values for com-
parison. As shown in Figure 7, the SRL-VAE exhibits a
smoother loss landscape compared to SD-VAE, indicating
enhanced robustness and improved latent space smoothness
through adversarial training. In other words, a smoothness
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SD-VAE Ours

3D Loss Surface Visualization

Figure 7. Comparison of the loss surfaces of SD-VAE and SRL-
VAE under encoder input perturbations. SRL-VAE shows a
smoother and more stable loss landscape, highlighting its im-
proved robustness and smooth latent representation.

of latent space ensures that perturbed examples are ade-
quately mapped to the similar region as their corresponding
original examples in the latent space.

Additionally, we use t-SNE visualization to analyze la-
tent samples from both original inputs and Gaussian-noise-
added inputs, allowing us to directly assess the robustness
of distributions in the VAE’s latent space. As shown in Fig-
ure 8, the visualization reveals tighter clusters for the latent
distributions of original and Gaussian-noise-added inputs
in our SRL-VAE while the original SD-VAE demonstrates
random scatters, highlighting that our model’s latent space
is more robustly constructed as intended.

Perturbed image compression in latent space To fur-
ther analyze the structure of the latent space learned by
our SRL-VAE, we perform a Principal Component Anal-
ysis (PCA) on latent vectors, following Kouzelis et al. [13].
Specifically, we apply PCA on latent representation vec-
tors obtained from the original SD-VAE and our SRL-VAE,
derived from adversarially perturbed examples, using three
types of perturbations, Photoguard, Mist, and Glaze. As
shown in Figure 9, our SRL-VAE produces more structured
and significantly smoother latent vector distributions com-
pared to the original VAE on perturbed inputs. Furthermore,
our SRL-VAE consistently generates robust latent vectors
regardless of the type of perturbation. This suggests that
adversarial training plays a crucial role in constructing bet-
ter latent representations, enabling our SRL-VAE to encode
features more reliably even under adversarial perturbations.

5. Conclusion
In this work, we first introduce an adversarial training

framework for Variational Autoencoders (VAEs) that en-
hances both generation quality and robustness by encod-
ing a smooth latent space. Unlike conventional adversarial
training in classification models, which has a clear trade-off

SD-VAE Ours

3D t-SNE of VAE Latent Space (w/ Gaussian Noise)

Figure 8. 3D t-SNE visualization of latent representations un-
der Gaussian noise. SRL-VAE exhibits tighter and more consis-
tent clusters than the baseline VAE, demonstrating improved ro-
bustness in latent space.

Original Photoguard MIST Glaze

SD-VAE

Ours

Figure 9. PCA visualization of latent representations under ad-
versarial perturbations. Compared to SD-VAE, which exhibits
distorted latent structures, SRL-VAE produces smoother, more or-
ganized, and well-separated distributions. This highlights its su-
perior robustness and stability against diverse perturbations.

between performance and robustness, our approach lever-
ages adversarial perturbations with an originality regular-
ization term to preserve the learned latent space from the
pre-trained model, ensuring smooth latent encodings in
VAEs and enhancing both fidelity and robustness. Our
method is a post-training step, requiring minimal compu-
tational resources, making it an efficient and practical solu-
tion for recent diffusion-based generative models. Exten-
sive experiments demonstrate that our approach not only
improves image quality, but also significantly enhances ro-
bustness against diverse types of adversarial attacks, such as
poisoning and perturbation attacks. By bridging adversarial
training and generative modeling, our work highlights the
importance of obtaining a robust, high-quality latent space
in VAEs, opening new directions for future research in ro-
bust generative modeling.
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Supplementary Material

A. Experimental details
A.1. Implementation details

Since there is no official fine-tuning script available for
SD-VAE1, we implemented our own fine-tuning script us-
ing the diffusers library. The SD-VAE is based on the
Latent Diffusion Model (LDM) [24], and we analyzed its
structure to derive meaningful insights into the training pro-
cedure. This implementation provided the flexibility needed
to adapt the training process to our specific objectives.

To better understand fine-tuning methods, we examined
the sd-ft-mse and sd-ft-emamodels released by Sta-
bility AI via Hugging Face, which are fine-tuned versions of
the SD-VAE decoder. The models are trained to enhance the
detail of the image, with a particular focus on human facial
features. SDXL retains a structure largely similar to SD-
VAE but is trained with a larger batch size on an internal
dataset, further demonstrating the scalability of VAE-based
architectures.

As most related works are based on SD-VAE, we
adopted it as the primary baseline for our experiments.
Furthermore, we confirmed that the proposed adversar-
ial training method generalizes effectively to other VAE
architectures, including SDXL-VAE, indicating its broad
applicability. Our VAE encoder fine-tuning is relatively
lightweight and was conducted using four A5000 GPUs
with 24GB of VRAM each, taking approximately 7 hours
to complete. Our training configuration is in Table 5:

Hyperparameter Value

Batch size 20
Total training steps 5000
Learning rate 1× 10−4

Optimizer AdamW
ϵ-bound (ℓ∞ norm) 8/255
PGD iterations 10
PGD attack step size 0.02
Originality loss weight (α) 0.01

Table 5. Training Configuration.

A.2. Evaluation details
Image reconstruction quality We adopted evaluation
metrics consistent with prior studies to measure the recon-

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

struction quality of VAEs. Specifically, we utilized the MS-
COCO validation set (5,000 images) and ImageNet valida-
tion set (50,000 images), resizing all images to 256×256
pixels, as commonly done in prior studies. Minor numer-
ical discrepancies with prior results may occur due to dif-
ferences in code implementations. For evaluation, we em-
ployed LPIPS with a VGG backbone to measure perceptual
similarity. Torchmetrics was used to compute Fréchet In-
ception Distance (FID), and Scikit-image was utilized for
calculating Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM). Pre-trained VAE models
were loaded and processed using the Diffusers library.

Diffusion generation quality To evaluate the diffusion
generation quality, we utilized the official DiT implemen-
tation [22] and trained the model on ImageNet-1000K for
10 epochs using four A100 GPUs. For the computation
of standard evaluation metrics such as Inception Score
(IS) and Fréchet Inception Distance (FID), we used the
sample ddp.py script provided by the official repos-
itory. This script supports parallel sampling of a large
number of images and automatically generates a .npz file
that is compatible with ADM’s TensorFlow-based evalua-
tion suite. We followed the standard protocol of generating
50,000 samples to ensure comparability with prior work.

Robustness in Nightshade malicious attack In our
Nightshade attack experiments, we utilized the official im-
plementation code. Instead of the original LIPIPS pertur-
bation, we employed L∞ perturbation, which is more visu-
ally noticeable to the human eye yet provides more stable
results. We tested eight concept pairs (Poisoned concept
C, Destination concept P ), namely (cake, car), (cat, dog),
(hat, horse), and (boat, bird), including their reversed pairs,
and reported the average attack success rate. All models
were trained for 10 epochs, altering only the poisoning ra-
tio, with a batch size of 32 and a learning rate of 1× 10−5.
For evaluation, we generated 100 images for each trained
model using the prompt “A photo of [C].” We then set the
threshold τ = 0.25 for the CLIP classifier to a reasonable
value based on human inspection.

Robustness against various type of perturbations For
image-to-image experiments against various perturbations,
we used the Stable Diffusion v1.5 model with a strenght
value of 0.5. Editing prompts were extracted using BLIP
and appropriately modified. We observed that higher
strength values lead to more extensive image modifications,
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as they correspond to starting the reverse diffusion process
from noisier latents (i.e., later timesteps), which can dimin-
ish the effectiveness of adversarial perturbations. To bal-
ance the degree of modification and the preservation of the
original content, we set the strength value to 0.5. A brief
description of the perturbation-based defense methods can
be found in Appendix A.3.

A.3. Details of perturbation methods
PhotoGuard [26] protects images by adding imperceptible
perturbations that disrupt the latent diffusion pipeline. It in-
troduces two types of attacks: the encoder attack and the
diffusion attack. The encoder attack perturbs the input im-
age so that the encoder E maps it to a misleading latent
representation. Formally, the perturbation is computed as:

δenc = arg min
∥δ∥∞≤ϵ

∥E(x+ δ)− ztarg∥22 . (9)

This causes the diffusion model to generate irrelevant
outputs, effectively preventing inpainting and style imita-
tion. The diffusion attack, on the other hand, directly targets
the entire generation process, aiming to produce a specific
target image xtarg as output:

δdiff = arg min
∥δ∥∞≤ϵ

∥f(x+ δ)− xtarg∥22 . (10)

While more powerful, the diffusion attack requires back-
propagation through the full denoising process and is com-
putationally expensive. In our work, we adopt only the en-
coder attack, since the diffusion attack in PhotoGuard is tai-
lored to a specific inpainting model.

MIST [16] extends the idea of adversarial perturbations
by aiming for broader transferability across diffusion-based
image imitation pipelines. While PhotoGuard applies en-
coder or diffusion attacks separately, MIST combines both
approaches through a joint loss function. Specifically, it in-
troduces two loss terms: a textural loss, which maximizes
the distance between latent representations of clean and per-
turbed images, and a semantic loss, which increases the dif-
fusion model’s denoising error. The combined objective is
optimized via projected gradient descent:

δ = arg max
∥δ∥∞≤ϵ

[
w · Et,ε ∥ε− ϵθ(x

′
t, t)∥

2
2

− ∥E(y)− E(x+ δ)∥2
]

(11)

where E is the encoder, x′
t is the perturbed latent at step

t, and y is a target image. This joint formulation improves
transferability, making MIST effective against a range of
downstream applications, including style transfer, textual
inversion, and DreamBooth. In contrast to PhotoGuard’s

model-specific attacks, MIST focuses on general-purpose
protection. Our experimental results show that SRL-VAE
maintains robustness against MIST perturbations, high-
lighting the importance of a robust VAE bottleneck in de-
fending against advanced attacks.

Glaze [28] defends against style mimicry by applying im-
perceptible perturbations. Specifically, it computes a pertur-
bation δx that shifts the feature representation of an original
artwork x toward that of a style-transferred version Ω(x, T )
in the feature space of a pretrained encoder Φ, where T de-
notes a visually distinct target style:

δx = argmin
δx

Dist(Φ(x+ δx),Φ(Ω(x, T )))

s.t. |δx| < p (12)

where p is a perceptual distortion bound measured by
LPIPS. This ensures that the cloaked image remains visu-
ally similar to the original, while altering its representation
in the model’s latent space. When a model is trained on such
cloaked images, it learns distorted style representations that
blend the artist’s original style with the target style, leading
to degraded mimicry performance. Glaze is released as a
utility tool, so its perturbation logic is a black box. Nonethe-
less, our experiments show that SRL-VAE is robust against
Glaze, indicating that our method generalizes well even to
black-box defenses.

A.4. Perturbation Strength Selection
For practical deployment, perturbations should remain

imperceptible to human observers while effectively disrupt-
ing model performance. To ensure realistic scenarios, we
fix the perturbation magnitude for each method as follows:
ϵ = 16/255 for PhotoGuard, ϵ = 8/255 for MIST, and
the strongest available setting provided by the official util-
ity tool for Glaze. This configuration balances perceptual
quality and defensive efficacy, preventing diffusion models
from successfully learning and replicating protected image
styles.

B. More experimental results
We provide additional qualitative results in our experi-

ments. Figure 10 shows results under the Nightshade attack.
While the baseline model produces manipulated outputs,
SRL-VAE preserves the original prompt concept, demon-
strating strong robustness. Figure 11, 12 and 13 show
image-to-image editing results on adversarially protected
images, comparing the outputs of SRL-VAE and the base-
line SD-VAE. These examples further demonstrate the ro-
bustness of SRL-VAE in reconstructing and editing per-
turbed inputs while preserving semantic consistency and vi-
sual quality.
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Ours

SD-VAE

Figure 10. Examples generated from models that were attacked using Nightshade.
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Figure 11. Comparison of image-to-image editing results on protected images (Photoguard).
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Figure 12. Comparison of image-to-image editing results on protected images (MIST).
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Figure 13. Comparison of image-to-image editing results on protected images (Glaze).
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