
Automatically Generating Rules of Malicious
Software Packages via Large Language Model

XiangRui Zhang∗, XueJie Du∗, HaoYu Chen∗, Yongzhong He∗, Wenjia Niu∗, Qiang Li∗†
∗School of Cyberspace Security, Beijing Jiaotong University, China

Abstract—Today’s security tools predominantly rely on prede-
fined rules crafted by experts, making them poorly adapted to
the emergence of software supply chain attacks. To tackle this
limitation, we propose a novel tool, RULELLM, which leverages
large language models (LLMs) to automate rule generation for
OSS ecosystems. RULELLM extracts metadata and code snippets
from malware as its input, producing YARA and Semgrep
rules that can be directly deployed in software development.
Specifically, the rule generation task involves three subtasks:
crafting rules, refining rules, and aligning rules. To validate
RULELLM’s effectiveness, we implemented a prototype system
and conducted experiments on the dataset of 1,633 malicious
packages. The results are promising—RULELLM generated 763
rules (452 YARA and 311 Semgrep) with a precision of 85.2% and
a recall of 91.8%, outperforming state-of-the-art (SOTA) tools
and scored-based approaches. We further analyzed generated
rules and proposed a rule taxonomy: 11 categories and 38
subcategories.

I. INTRODUCTION

Open source software (OSS) has become a cornerstone of
software development, enabling developers to build applica-
tions efficiently by reusing codebases, libraries, and tools.
Meanwhile, OSS ecosystems are suffering new security chal-
lenges, including malware infiltration, supply chain attacks,
and vulnerabilities in third-party dependencies. Attackers can
exploit vulnerabilities in popular packages, distribute malware,
or insert malicious code into legitimate software. Recently, the
number of security incidents in OSS ecosystems has increased
significantly, with an annual growth rate of 742% in the past
five years [1, 2, 3], e.g., 0 incidents in 2018, 249 incidents
in 2019, and 690,211 incidents in 2023. For instance, LOG4J
vulnerabilities [4] brought great risks to software systems and
third-party packages relying on this library. This attack prop-
agated across downstream projects, potentially compromising
thousands of applications, and underscoring the systemic risks
inherent in the OSS ecosystem.

To address these risks, developers and security analysts
rely on software detection tools to discover underlying risks
in OSS ecosystems. Most software detection tools, such as
SemGrep [5], YARA [6], and AppInspector [7], predominantly
rely on malware signatures and predefined rules. Those tools
are designed for pattern-matching malware and analyzing
suspicious files based on textual or binary features. In par-
ticular, predefined rules leverage built-in specific patterns,
strings, and features to identify underlying threats. However,
crafting detection rules requires manual effort and domain

†Qiang Li is the corresponding author; email: liqiang@bjtu.edu.cn

knowledge, which is not scalable for large and diverse software
packages in OSS ecosystems. Moreover, as the number of
malware grows, manual written rules struggle to keep pace
with emerging threats, lacking adaptability in software supply
chain (SSC) attacks.

In this work, we introduce large language models (LLMs) to
automate rule generation, serving as a supplement to existing
security tools. Nowadays, the LLM offers an innovative ap-
proach to enhance security detection and analysis capabilities,
including vulnerability identification [8] and repair [9, 10],
static analysis [11, 12], and reverse engineering [13]. For
example, Li et al. [11] investigated LLMs’ capabilities in static
analysis for automatically repairing zero-shot vulnerabilities,
and Wang et al. [10] explored project-level vulnerability
detection via LLMs (e.g., ChatGPT or CodeLlama). In con-
trast, we propose leveraging LLMs to enhance security tools’
capabilities by automating the creation of rules that are tailored
to detect both known and emerging threats.

However, directly utilizing LLMs for rule generation poses
three technical challenges. First, many malicious packages
share similar code bases, leading to redundancy and inaccura-
cies in the generated rules. Second, LLMs struggle to process
the extensive source code of many malicious packages, which
may exceed their input limitations. Third, due to the inherent
generation characteristics of LLMs, such as hallucinations,
they may produce rules that are unsuitable for direct use
in development environments. Additionally, some malware
employs obfuscation techniques to conceal its intent, further
complicating detection.

To address those challenges, we propose a novel tool,
RULELLM, designed to automatically generate YARA &
Semgrep rules for detecting risks in OSS ecosystems. Rather
than relying solely on LLM, RULELLM decomposes rule gen-
eration into different subtasks: crafting, refining, and aligning
rules. In the crafting stage, RULELLM extracts independent
code blocks from malware and creates coarse-grained rules
based on these blocks. In the refining stage, redundant or
ineffective rules are merged, ensuring higher specificity and
accuracy. To mitigate the risk of hallucinations of LLMs,
RULELLM integrates a specialized LLM-based agent to refine
rules. The agent’s feedback loop allows for dynamic refine-
ment of the generated rules. The outputs of RULELLM include
YARA and Semgrep rules that are ready for direct deployment
in security workflows.

To validate the effectiveness of RULELLM, we imple-
mented a prototype system based on several open-source

1

ar
X

iv
:2

50
4.

17
19

8v
1 

 [
cs

.S
E

] 
 2

4 
A

pr
 2

02
5



libraries. Our dataset comprised 3,200 malware packages
collected from GuardDog [14], which were reduced to 1,633
unique packages after deduplication. We also selected 500 of
the most commonly used legitimate packages from [15]. We
benchmarked RULELLM against multiple baselines, including
state-of-the-art (SOTA) tools, scored-based approaches, and
several diverse LLMs (GPT-3.5, GPT-4o, Llama, Claude).
Experimental results demonstrate that RULELLM generated
763 rules (452 YARA and 311 Semgrep) with a precision of
85.2% and a recall of 91.8% in identifying malicious packages,
significantly outperforming the baseline tools. Notably, the
generated rules are fully compatible with existing systems and
can be directly deployed to scan software packages without
errors. Furthermore, we conducted a systematic analysis of the
generated rules and proposed a comprehensive rule taxonomy.
The taxonomy consists of 11 categories and 38 subcategories,
offering insights into the characteristics and applications of the
rules.

In short, our contributions are as follows:
• We have proposed RULELLM, a novel tool [16] that

automatically generates YARA and Semgrep rules for
OSS ecosystems.

• We have generated 452 YARA and 311 Semgrep rules
that are well-formatted and can be directly deployed
in existing tools. Experimental results demonstrated that
RULELLM outperforms SOTA tools.

• We have released RULELLM’s tool and 763 compatible
rules to the research community, as a supplement to
security detection tools.

Roadmap. The rest of the paper is organized as follows.
Section II illustrates the background of LLM and rule-based
detection tools. Section III and IV present the design of
RULELLM, including the malware information extraction and
rule generation. Section V evaluates RULELLM on real-world
malicious packages and compares it with existing tools. Sec-
tion VI discuss the limitations of RULELLM and its generated
rules. Section VII discusses related work, and Section VIII
concludes the paper.

II. BACKGROUND

In this section, we provide background about LLMs,
YARA/Semgrep rules, and the technical challenges.

A. Large Language Model

Large Language Models (LLMs) [17, 18, 19, 20] acts
as a generation model that outputs a sequence of tokens
to complete given input sequences. For instance, an LLM
can generate a sequence of prediction tokens (an answer) in
response to a sequence of input tokens (a question). Tokens
refer to common characters with a unique numeric identifier,
up to a pre-training corpus. The input to an LLM is typically
structured as a prompt, which defines the sequence of input to-
kens. Different prompts (inputs) can lead to diverse capacities
of LLM and determine its effectiveness across various tasks.
Hence, researchers and developers use prompt engineering to

rule base64 : base64{
        meta:
            description = "Base64 encoded blob"
        strings:
            $a = /([A-Za-z0-9+/]{4}|\{2,}([A-Za-z0-9+/]{3})=)?\b/
        condition:
            $a
        }

rules:
  - id: detect-torrent-client-info-retrieval
   languages: [python]
   message: "Detected torrent client.........."
   patterns:
     - pattern: |
          $CLIENT.torrents_info(torrent_hashes=$HASH)
    metadata:
      Detect torrent client info retrieval

TABLE I: The upper part is a YARA rule, and the below part
is a Semgrep rule.

design robust and effective prompts to improve the capacity
of LLMs on a wide range of complex tasks.

Here, we illustrate several techniques in prompt engineering
for LLMs. (1) Task decomposition is to break down a larger
task into the large, complex task into smaller, manageable
subtasks. Then, LLMs execute each subtask sequentially to
ensure the completion of the entire task. (2) Chain-of-thought
introduces intermediate reasoning steps to execute a task,
enabling LLMs to “think step by step” [21]. (3) Tree-of-
thought generates multiple thoughts at each step, forming
a decision tree. Then, LLMs use search algorithms, such
as breadth-first search (BFS) or depth-first search (DFS), to
navigate and execute the task [22]. (4) Self-reflection is to
use LLMs to evaluate their own prior outputs to provide
feedback and improve subsequent results. For instance, pre-
vious works [23, 24] leverage human feedback, such as error
corrections, to fine-tune LLMs for enhanced performance. In
short, prompt engineering is about obtaining the “best” results
of LLMs when we don’t retrain the model.

In this paper, we propose leveraging prompt engineering
techniques to enable LLMs to automatically generate rules for
security detection tools.

B. YARA & Semgrep Rule

Today’s security tools use rule-based detection manner
to discover potential vulnerabilities, malware, and security
threats. Tools leverage these rules to scan OSS packages and
to find suspicious entities, such as specific file structures,
suspicious functions, unusual network activity, or indicators
of insecure configurations.

YARA & Semgrep rules are two widely used rule formats
in cybersecurity, both employing pattern-matching techniques
to detect malicious behaviors and threats. A YARA rule is a
structured, text-based format with a ‘*.yar’ file extension. It
typically consists of four main components: a rule name, a
‘meta’ section, a ‘Strings’ section, and a ‘Condition’ section.

2



Malicious 
Packages 'setup' file

Scrape JSON via API

configuration file pkg-info

parameters

egg-info

metadata

Version

Summary

Name

Home-page

Author

email

License

Description

dependency

sources

Fig. 1: Extracting the metadata of the software package.

In contrast, a Semgrep rule is written in YAML format with a
‘*.yaml’ file extension and comprises four key components: a
‘metadata’ section, a ‘pattern’ section, a ‘languages’ section,
and a ‘message’ section. Table I illustrates two examples of
YARA and Semgrep rules. The YARA rule detects base64-
encoded blobs, while the Semgrep rule identifies torrent infor-
mation retrieval. Both rule formats are designed for clarity and
efficiency, offering robust mechanisms for integrating security
checks into development workflows.

However, rule-based detection approaches face several lim-
itations. First, writing a YARA&Semgrep rule relies on ex-
pert knowledge and manual effort, making it challenging to
keep up with the rapidly evolving threat landscape. Second,
YARA&Semgrep rules are not specifically designed for OSS
ecosystems. YARA rules focus on identifying patterns in
files and binaries, whereas Semgrep rules analyze structured
source code. Our investigation shows 4,574 YARA and 2,841
Semgrep rules, with most related to email, cloud, mobile, and
APT attacks. Only 380 rules (46 YARA and 334 Semgrep)
are related to OSS packages. Third, the growing prevalence
of malware and supply chain attacks in OSS ecosystems
has made it increasingly challenging to develop rules that
comprehensively address all possible risks.

C. Technical Challenges

Directly leveraging LLM to generate rules presents three
key technical challenges, outlined as follows:

• Malicious packages frequently exhibit diverse behaviors,
including privilege escalation, information leakage, code
obfuscation, and remote network operations, further com-
plicating accurate rule creation. Additionally, attackers
may use anti-analysis techniques to conceal malicious
behavior, making it difficult for LLMs to capture features.

• The LLM has a context length limitation that determines
the maximum volume of information of LLMs’ prompts.
Many malicious packages have several source code files
with token counts that exceed the LLM’s context length,
resulting in incomplete analyses.

• Due to the strict syntax and structural requirements of the
rules, LLM may involve errors and hallucinations when
generating YARA and Semgrep rules.

To address these technical challenges, we propose
RULELLM, a tool that automatically generates YARA and
Semgrep rules without any manual effort. The generated rules
can be directly utilized in existing security tools.

Malware Code

code segment

CodeBERT

Groups

code segment

code segment

... ... ... 

vector

vector

vector

Fig. 2: Extracting the package code.

III. MALWARE KNOWLEDGE EXTRACTION

In this section, we present the methodology that automat-
ically extracts metadata and code snippets from a malicious
package.

A. Package Metadata

Package metadata is information that package authors main-
tain within the project. Specifically, metadata lists depen-
dencies, URLs, versions, package names, and descriptions,
which are useful for finding and installing packages from OSS
ecosystems. There are 3 manners to extract its metadata. Fig-
ure 1 depicts the process of the metadata extraction, including
the ‘egg-info’, ‘package-info’, and ‘setup’ files. (1) The ‘pkg-
info’ file is similar to the project’s configuration file, which
describes the package’s installation and use. (2) The ‘setup’
file defines the metadata and configuration for a package. This
file is essential for making the package installable via the
OSS ecosystem. (3) The ‘egg-info’ contains the descriptive
information of the package on the OSS ecosystem, which
provides an API endpoint for retrieving package metadata. For
instance, an API endpoint from the NPM ecosystem is shown
as https://registry.npmjs.org/{package name}, and its response
is a JSON file for the package metadata. Given a malicious
package, we extract its metadata in those ways. Note that we
use the package metadata as the LLM’s input rather than the
original package.

The rationale behind this is that the metadata of the ma-
licious package is different from the benign package. First,
malicious packages may have minimal, fake, or no author
information, but benign packages usually have valid author
names, emails, and sometimes links to their profiles or orga-
nizations. Second, malicious packages often have excessive
or unusual dependencies, sometimes including outdated or
obscure packages that aren’t typically used in benign software.
Third, malicious packages often use typo-squatting or looka-
like names (e.g., ‘reqests’ instead of ‘requests’). Descriptions
may be vague or directly copied from the legitimate package
to mislead users. In contrast, benign packages usually have
clear, unique names and detailed descriptions. Hence, rules
may be associated with the package metadata, and RULELLM
generates the detection rules based on malicious packages’
metadata.

B. Malicious Code Snippets

Malicious packages often contain code specifically crafted
to perform unwanted or harmful actions on a system. For

3



IOC

Crafting Rule Refining Rule Aligning Rule 

{ Basic Unit 1 }

Rule

{ Basic Unit k }

File Operation
Network

Encryption
Privilege
Evasion

Rule

Rule

Rule Optimiz
ation

string
regular exp.

'and', 'or'
Ruel Format

missing part
syntax 

undefined part
reg exp error
invalid field
encoding

{ Basic Unit 2 }

... ...

... ...  consistency

Rule

Fig. 3: RULELLM: the architecture of the LLM-based rule generation: (1) crafting basic-unit rules, (2) refining rules, and (3)
aligning rules.

example, an unusual ‘setup.py’ or post-install command that
executes unwanted code during package installation. We pro-
pose to extract distinguished code snippets from the malicious
package to represent the malicious behavior, as shown in
Figure 2.

Unpacking. To obtain malicious code, we first need to
download the package and unpack it to a folder. Unpacking
refers to extracting a package’s contents from a compressed or
archived format into usable files and folders. This operation
involves various tasks, such as decompression, file extraction,
and directory creation. After unpacking a software package,
we obtain the source code files, e.g., the file in the PyPI
ecosystem uses the extension ‘.py’, while that in the NPM
ecosystem uses the extension ‘.js’.

Vectorization. For the source code, we leverage embedding
technical to convert source code into numerical vectors. The
embedding represents the content and characteristics of source
code in a real-valued continuous vector space. We use lexi-
cal analysis techniques to process the source code: splitting
code segments, numerical representation, and concatenation.
(1) Splitting. The source code Scode is divided into code
segments. For example, Scode = {code1, code2, ..., coden},
where codei presents a code segment, and n is the number
of code segments. Note each code segment has a fixed length,
denoted as a threshold. (2) Numerical representation. The pre-
trained model converts each code segment into numerical rep-
resentations, which contain information about the structure and
semantics of the code. The formula is vi = f(codei), where
vi presents a vector of a code segment. (3) Concatenation.
We concatenate all numerical representations into a single
vector, where Vcode = {v1, v2, ..., vn} represents the source
code Scode. Specifically, we use 512 as the length threshold to
split the source code. The pre-trained model is CodeBert [25],
and we use the NumPy [26] to join all numerical arrays into
one vector.

Group. We utilize a clustering algorithm to group similar
malware code snippets into the same cluster. The similarity
between two code snippets is measured using the Euclidean
distance in vector space. For implementation, we employ the
Scikit-learn library [27] to apply the K-Means algorithm.
In the initialization phase, we set the random seed for the
centroids to 42 and define the maximum number of iterations

for the K-Means algorithm as 500. Clusters with an intra-
similarity below 0.85 are discarded, as they lack sufficient
homogeneity. Conversely, clusters with an intra-similarity of
0.85 or higher are retained. After clustering, the similarity
among code snippets within a cluster is high, whereas the
similarity between different clusters is minimal. RULELLM
generates rules by analyzing and synthesizing code snippets
within each retained cluster.

IV. RULE GENERATION

Our target is to generate YARA & Semgrep rules that
can be seamlessly integrated into existing security tools and
effectively detect threats without errors. Figure 3 presents
the architecture of RULELLM, which utilizes an LLM to
automate rule generation. The rule generation is divided into
three subtasks: crafting rules, refining rules, and aligning rules.
(1) This component involves randomly selecting several basic
units from code or metadata groups. In terms of those basic
units, the LLM crafts rules to cover possible features and
patterns associated with malicious packages. (2) The LLM
audits all coarse-grained rules from the first subtask. Then, the
LLM merges rules into a scalable and effective rule. (3) An
LLM-based agent determines whether the generated rule can
pass the compilation process. The agent is equipped with two
creation functions that compile rules. If a rule successfully
compiles, we output the finalized rule. If a rule fails, the
compiler outputs error messages, and the agent leverages error
messages as the guideline to fix rules. In the following, we
elaborate on the details of those components in RULELLM.

A. Crafting Rules

Basic Unit We divide the metadata and code of malware
into basic units, which serve as the foundation for creating
coarse-grained rules.

(1) Metadata is extracted as a JSON format as described in
Section III-A. The entire metadata of a package is treated as a
base unit. Several metadata attributes may indicate malicious
behaviors, including malicious dependency libraries, empty
descriptions, zero versions, and typosquatting. Table II lists
four audit categories for package metadata. 1 Empty infor-
mation: the package has an empty description. 2 Release zero:
the package has a version like 0.0 or 0.0.0. 3 Typosquatting:

4



TABLE II: Identifying malicious behaviors from basic units.

Metadata Description

Empty information an empty description
Release zero a version like 0.0 or 0.0.0
Typosquatting similar name to a popular package
Dependencies malicious dependency libraries

Code Description

IOC Identify compromised indicators or
technical behaviors in code segments

File Find file operations like ‘open()‘, ‘write()‘,
‘remove()‘ or suspicious file paths

Network Detect API calls or requests for
C2 server connections or data exfiltration

Encryption Identify the use of encryption algorithms
like ‘AES‘, ‘RSA‘, or base64 encoding

Privilege Identify privilege escalation like
‘setuid()’, ‘setgid()’ or ‘CreateProcess()’

Anti-debug
/Anti-analysis

Detect functions for debuggers, sandbox
environments or VM detection techniques

the package has a similar name to a popular package. 4 De-
pendencies: the package has malicious dependency libraries.
We only focus on the suspicious parts of the metadata.

(2) Code is organized into different groups as described in
Section III-B, where snippets within the same group exhibit
high similarity. However, due to the LLM’s input length
limitation and the complexity of the code, entire code snippets
cannot be directly processed. Each code snippet is divided
into multiple basic units to address this. A basic unit repre-
sents a code block: a module, a function body, and a class
definition. Based on the definition provided in the Python
documentation 1, our extraction process follows these steps: 1
Use regex to identify whether the code begins with a specific
string (e.g., ’def ’, ’class ’, ’if ’, ’for ’, ’while ’, ’try:’, ’with
’, :); 2 Add the following code to the basic unit; 3 Continue
adding code until the next matched string is found; 4 Extract
a new basic unit if its size exceeds 4000 characters. Each
basic unit is self-contained and encapsulates specific behaviors
or functionalities of the package. This division ensures that:
the length of each basic unit is manageable for the LLM; the
code complexity is reduced; and each unit remains meaningful
for rule generation. Breaking down the code into basic units
enables the LLM to efficiently analyze and generate rules
without being constrained by input length or complexity.

The LLM audits the code snippet to determine whether
the package exhibits potential malicious places, as outlined
in Table II. 1 Indicators of Compromise (IoC): Information
that indicates a high probability of unauthorized access to the
system, such as DNS requests or IP addresses. 2 File Oper-
ation: Detection of suspicious file read and write operations
within the code. 3 Network Activity: Identification of API
calls or requests made to malicious servers or IP addresses. 4
Encryption Function: Detection of functions used for evasion
or obfuscation techniques within the code. 5 Privilege Opera-
tion: Identification of operations related to privilege escalation.

1https://docs.python.org/3/reference/executionmodel.html

TABLE III: The prompt in the LLM: instructions are used in
the system role; Blue indicates user input; Orange indicates
the (YARA|SemGrep) rule example; {...} indicates omitted
content due to the page limitation.

Prompt on rule generation from the basic unit.

System role is as follows:
Task. As a senior malware code analyst, please analyze the following
code samples from the same malware cluster and design effective
{YARA|SemGrep} rules. These samples are variants from the same
malware family.
Sample 1: {user input}
Sample 2: {user input}
Thought Process:
1. Initial Analysis: { ... ... }
2. In-depth Analysis: { ... ... } refer to Table II
3. External Knowledge Analysis: { ... ... }
4. Understanding and Validation: { ... ... }
Output.
1. Analysis Result {*.txt format}
2. Write {YARA|SemGrep} rules based on the analysis result.

User’s information is as follows:
Input: {Basic Unit One}
Input: {Basic Unit Two}
Few Shot: {rule file}

6 Anti-debug/Anti-analysis Operation: Detection of functions
designed to prevent sandbox environments or debuggers.

Multiple Similar Units. After partitioning, the LLM audits
multiple similar basic units irather than a single one. This
approach ensures that the generated rules are scalable and
general, avoiding reliance on specific implementation details
such as hardcoded strings or individual files. Several similar
units are chosen from the same group. While these units
may exhibit slight differences in their code blocks, the LLM
identifies and extracts common behaviors and features. This
strategy enhances the rule’s ability to generalize across various
malicious patterns, improving its effectiveness and adaptabil-
ity.

Prompt plays an important role in guiding the LLM to
generate the expected results through a series of instructions.
Table III lists the prompt used for the basic unit rule creation.
The prompt follows the Chain-of-Thought (CoT) methodol-
ogy, which divides the task into a series of linear steps.
Specifically, the task is divided into 4 steps: initial analysis,
in-depth analysis, external knowledge analysis, and validation.
(1) Initial analysis: Perform a code audit on the basic unit
and provide a summary of the code. (2) In-depth analysis:
Extract features or strings from the code based on the criteria
listed in Table II. (3) External knowledge analysis: Determine
whether the input matches known malicious behavior patterns,
such as worm propagation, ransomware encryption, or remote
command execution. If a match is identified, existing patterns
are leveraged to construct a rule. (4) Validation: Ensure
reasoning consistency and confirm that the rule covers the
potential behaviors exhibited by the code.

Output. This component in RULELLM produces two out-
puts. The first output is a detailed analysis result, saved in the
‘*.txt‘ format. This file provides a summary of the insights into

5



TABLE IV: The prompt in the LLM: instructions are used in
the system role.

Prompt on refining rules.

System role is as follows:
Task. You are a {YARA|SemGrep} rule expert. Your task is to analyze
and optimize the input rules. Please follow these steps to ensure the rules
are complete and efficient:
Analysis result: {user input}
Rule: {user input}
Thought Process:
1. Self-reflection: { ... ... }
2. Optimize Rules: { ... ... }
Output:
{YARA|SemGrep} rules

User’s information is as follows:
Input: {Analysis Result} refer to Section IV-A
Input: {YARA|SemGrep rule} refer to Section IV-A

the thought process. The second output is a rule in either the
YARA or Semgrep format. To guide the LLM, we leverage the
few-shot learning technique by providing correct rule formats
as references during rule generation. It is important to note
that despite these measures, LLMs still introduce errors or
hallucinations in the generated outputs.

B. Refining Rules

Two outputs from the previous stage (coarse-grained rules
and analysis results) serve as the inputs for this task. The
prompt (Table IV) provides the guidelines for this process.
Specifically, the task is divided into 2 steps: rule analysis and
rule optimization.

Self-reflection. We employ the self-reflection technique to
guide the LLM in auditing coarse-grained rules. This approach
leverages the LLM’s capability to evaluate and critique its own
prior outputs, enhancing overall performance [23, 24]. In the
context of RULELLM, the self-reflection component ensures
that the rules align with the analysis results. If discrepancies
or inconsistencies are identified, the LLM revises the rules
accordingly to maintain alignment and accuracy.

Rule Optimization. During this step, coarse-grained rules
are optimized and merged into a single, scalable rule. This pro-
cess ensures that the resulting rule is both effective and general
enough to detect a broader range of malicious behaviors while
maintaining efficiency. Several guidelines are followed in this
subtask:

1) The string section should encapsulate malicious be-
haviors, such as API calls, file operations, and network
activities. If this is not the case, the string section
should be revised based on the analysis results.

2) Standard naming conventions are applied to the string
section to enhance consistency and readability. When
the string sections of multiple rules show similarities,
regular expressions are used to manage potential variants.

3) Logical combinations (all of them, any of them,
or regular expressions) are employed to merge rules. If
two rules overlap in scope, the rule with smaller coverage
is removed.

compile rules 

LLM Agent Tool Interface

error message

Rule {YARA | SemGrep}

Fig. 4: Error correction module: an agent-based LLM fixes
errors based on a tool interface.

4) The combined rule adheres to the required structure and
format. A valid rule begins with the keyword rule
followed by a unique identifier. Each YARA rule contains
three sections: meta, strings, and condition.

5) The LLM minimizes resource-intensive operations (e.g.,
regular expressions) to optimize rule execution, ensuring
efficiency without unnecessary overhead.

Output. This component outputs a calibrated rule in YARA
or Semgrep format.

C. Aligning Rules

Due to the inherent limitations of LLM, errors or halluci-
nations in generated rules are inevitable. To address this, we
propose an LLM-based agent designed to correct rule errors, as
illustrated in Figure 4. Specifically, the agent utilizes the tool
to compile the rules. A blue color indicates that the generated
rule has passed the verification process, while red indicates
that it has failed. If a rule fails, the agent refines it further by
analyzing the error messages.

Tool. Although LLMs are capable of reading and generating
text or images, they cannot interact with external environments
or perform tasks such as searching or code execution. To
overcome this limitation, we equip the agent with tools that en-
able communication between the LLM and the rule compiler.
Specifically, we propose two manually created tools: one for
compiling YARA rules and another for compiling Semgrep
rules. The compiler does not raise an exception when a rule
is correct; however, it will raise exceptions for issues such as
syntax or compilation errors. These tools are implemented as
a Python file, which can be stored and updated as needed.

Memory serves as the core of the agent, connecting tools,
LLMs, and task execution. It is used to store short-term
information during processing. Specifically, error messages
generated by the rule compiler are treated as observations and
stored in memory. The agent retrieves these error messages
and feeds them into the task execution component. Each time
a rule compilation fails, new error messages are generated. If
a rule fails to compile multiple times, the memory history can
grow excessively. To address this, the memory module retains
only the two most recent compilation error messages.

Prompt. We design a prompt to guide the LLM-based
agent in fixing rules, as detailed in Table V. The agent’s tool
generates error messages, which RULELLM uses to address
and correct rule issues. RULELLM adheres strictly to the

6



TABLE V: The prompt in the LLM: 6 instructions are used in
the system role; Red indicates error messages from the agent’s
observations.

Prompt on the rule fix.

Task. You are a {YARA|SemGrep} rule expert. Your task is to fix and
optimize the input YARA rules. Please follow these steps to ensure the
rules are complete, syntactically correct, and efficient:
Error message: {error info}
Analysis result: {user input}
Rule: {user input}
Instruction.
1. Missing or Incomplete Parts: { ... ... }
2. Syntax Errors: { ... ... }
3. Undefined Strings in Conditions: { ... ... }
4. Regular Expression Issues: { ... ... }
5. Invalid ‘meta’ Field Values: { ... ... }
6. File Encoding Issues: { ... ... }

User’s information is as follows:
Input: {Analysis Result}
Input: {YARA|SemGrep rule}

Agent’s observation is as follows:
Error: {error result}

TABLE VI: The details of the dataset for OSS malicious
packages.

Category Pkg. Num. Deduplicated Num. Avg. LoC

Malware 3,200 1,633 424
Legitimate 500 500 3,052

requirements and error messages to refine the rules, follow-
ing these steps: (1) Ensure the rule contains all necessary
components: ‘meta’, ‘strings’, and ‘condition’. (2) Check for
syntax issues such as unmatched brackets, unclosed quotes,
and other errors. (3) Verify that all strings referenced in the
condition section are properly defined in the ‘strings’ section.
(4) Validate the correctness, efficiency, and expected matching
behavior of all regex patterns. (5) Confirm that the meta fields
are well-formatted and meaningful. (6) Ensure the rule is UTF-
8 encoded without a BOM and that line endings align with the
target environment. If a rule successfully compiles, RULELLM
outputs the corrected rule. Otherwise, it attempts to fix the rule
up to five times.

V. EVALUATION

In this section, we conducted a series of experiments to
validate the effectiveness of RULELLM in generating rules for
detecting malicious packages. Then, we provided a systematic
analysis of those generated rules.

A. Experimental Setting

Implementation. We have implemented a prototype system
of RULELLM via several open-source libraries. RULELLM’s
input is a malicious package, and the output is its corre-
sponding YARA & Semgrep rules. RULELLM uses regular
expression matching to extract the package metadata, where
we use the re library [28] to implement the regex. RULELLM
use the tokenize [29] library to convert source code to tokens,

TABLE VII: The details of baselines.

Category Method
Existing Rules
from SOTA Tools Yara scanner [6], Semgrep scanner [5]

Score-based Approach Prior works [31, 32]

Diverse LLMs GPT-3.5 turbo, GPT-4o [17]
Claude-3.5-Sonnet [19], Llama-3.1 70B [33]

and the CodeBERT embedding model to generate code’s
vectors. We leverage the Scikit-learn [27] library to implement
the clustering algorithm to divide code fragments. RULELLM
uses the LangChain [30] module to automatically generate
rules based on the extracted metadata and code fragments.

Dataset. Table VI lists the details of the dataset, including
3,200 malware packages and 500 legitimate packages. The
malware comes from the GuardDog [14] that provides PyPI
malicious packages to the public via the GitHub repository.
The legitimate packages come from the most popular PyPI
packages (by download count) over one year [15]. We find
there are many duplicate packages in the malware dataset,
where their signatures are the same. After deduplicated, the
number of malware is 1,633. The average number of malware
code (LOC, Line of code) is 424 lines. For the legitimate
packages, the average number of code segments is 3,052 LoC.
It is obvious that the number of code segments in the malware
packages is much smaller than that in the legitimate packages.
The reason is straightforward: malware packages are designed
for a specific purpose, such as data theft, backdoor access, or
surveillance, and don’t require extensive functionality.

Baselines. We compare RULELLM with several baselines:
SOTA tools, automatic rule generation, and diverse LLMs.
Table VII lists the details of the baselines.

(1) Existing Rules from SOTA Tools. The first category
involves existing rules from YARA [6] and Semgrep scan-
ners [5]. YARA scanner uses 4,574 YARA format rules to
find risks and threats, covering vulnerabilities, malware, shells,
mobile applications, emails, etc. Semgrep scanner uses 2,841
Semgrep format rules to find risks and threats, covering
third-party software, cloud services, network communications,
systems, network applications, etc. Those rules were written
by developers, security professionals, or researchers. We use
those rules to compare the effectiveness of rules generated by
RULELLM.

(2) Score-based Approach. So far, there is no approach
for generating rules to target OSS malware. Instead, several
score-based approaches [31, 32] and tools [34] can generate
signatures from binary files. Hence, we revise the score-based
approach to adapt to OSS malware. (1) First, we use 3 types of
scores to measure the importance of strings: isolation forest,
information entropy, and TF-IDF (Term Frequency-Inverse
Document Frequency). Each score is assigned a specific
weight: isolation forest is given a weight of 1.2, TF-IDF has
a weight of 1.0, and information entropy is weighted at 0.8.
(2) Next, we apply a clustering algorithm (Section III-B) to
partition both malware and legitimate packages (Table VI) into

7



TABLE VIII: Performance of RULELLM compared to base-
lines.

Rule Type Accuracy Precision Recall F1

RULELLM 81.4% 85.2% 91.8% 88.4%
Yara scanner 41.6% 35.0% 23.4% 28.0%
Semgrep scanner 56.2% 70.9% 32.0% 44.0%
Score-based 84.5% 47.8% 66.6% 55.7%

different code groups. (3) In each iteration, we pick up two
groups (one from malware and one from legitimate) and use 3
scores to calculate the importance of strings between the two
groups. (5) Strings with high scores (above a 0.9 threshold)
are picked up into the ‘string’ part of the YARA format rule.
The remaining parts of the rules are generated through a rule
template.

(3) Diverse LLMs. We use several large language models
(LLMs) to generate rules, including GPT-3.5 turbo, GPT-
4o [17], Claude-3.5-Sonnet [19], Llama-3.1:70B [33]. The
first three LLMs belong to online services, and Llama-3.1
belongs to the local LLM. We leverage APIs of online LLMs
to generate rules. For Llama-3.1-70B, we deploy it on the
local server. We inspect the diverse efforts of different LLMs
on rule generation.

B. Performance

Effectiveness of Rules. First, we evaluate the effectiveness
of rules generated by RULELLM for detecting malicious
and legitimate packages. Table VIII lists the comparative
performance of rules generated by RULELLM against various
baselines, including Score-based, YARA scanner, and Semgrep
scanner. We use 4 metrics to represent the performance,
including accuracy, precision, recall, and F1 score. RULELLM
achieved promising performance, with an accuracy of 81.4%,
precision of 85.2%, recall of 91.8%, and F1 score of 88.4%,
outperforming most other methods. Both scanners show sig-
nificantly lower performance compared to RULELLM, with
the Yara scanner performing the worst, achieving only 41.6%
accuracy and an F1 score of 28.0%. The Score-based method
performs well in accuracy (84.5%) but falls short on other
metrics, indicating possible overfitting or reliance on specific
criteria that may not generalize well. RULELLM demonstrates
superior performance compared to the baselines, as evidenced
by its high recall, precision, and F1 score. It effectively
balances the identification of true positives and minimization
of errors.

We further inspect the malware detection performance along
with the number of matched rules. Figure 5 depicts the
performance distribution (accuracy, precision, recall, and F1)
of YARA rules, with the X-axis representing the number
of matched rules. It is evident that when the matched rule
number is equal to 1, the malware detection achieves the best
performance. In addition, performance decreases continuously
as the number of matched rules increases. This is because
YARA-generated rules are highly specific and do not share
similar patterns. Figure 6 shows the performance of Semgrep

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Matched rule num

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Precision
Recall
Accuracy
F1

Fig. 5: YARA rule: the malware detection’s performance along
with the matched number.

2 4 6 8 10 12
Matched rule num

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Precision
Recall
Accuracy
F1

Fig. 6: Semgrep rule: the malware detection’s performance
along with the matched number.

rules relative to the number of matched rules. We observe
that the performance of Semgrep-generated rules changes
only slightly with the number of matched rules. When the
number of matched Semgrep rules is equal to 9, malware
detection reaches its peak performance. This can be attributed
to the fact that Semgrep rules focus on code structures and
static analysis, while YARA rules are centered on signatures
and specific patterns. Hence, the Semgrep rules have broader
patterns than the YARA rules. Overall, the number of matched
rules (Figures 5 and 6) in malware detection demonstrates that
RULELLM can effectively generate both YARA and Semgrep
rules.

Table IX compares the performance of rules generated by
various LLMs, including GPT-3.5-turbo, GPT-4o, Claude-3.5-
Sonnet, Llama3.1:70b. GPT-4o achieves the highest perfor-
mance across all metrics, with an accuracy of 81.4%, precision
of 85.2%, recall of 91.8%, and an F1 score of 88.4%. Both
Llama3.1:70b and GPT-3.5-turbo show moderate performance,
with an accuracy of 72.6% and 74.5%. Notably, Claude-3.5-
Sonnet’s precision is lower at 75.0%, though its recall is
relatively higher at 95.9%. These results suggest that GPT-4o
excels at generating rules that are both precise and effective,
capturing a high number of true positives and maintaining low
false positives.

Malware Variant Detection. We further inspect whether
rules generated by RULELLM can detect variants of OSS
malware. We use the clustering algorithm (Section III-B) to
divide malware packages into different groups. In each group,
we use two malware packages to generate YARA rules, and the
rest packages are unknown variants. We use those generated
rules to detect unknown variants in the same group. The

8



TABLE IX: Performance of Rules Generated by different
LLMs.

Rule Type Accuracy Precision Recall F1 Score
GPT-3.5 turbo 72.6% 78.4% 68.0% 72.8%
GPT-4o 81.4% 85.2% 91.8% 88.4%
Claude-3.5-Sonnet 75.0% 77.3% 95.9% 85.6%
Llama-3.1:70B 78.2% 68.0% 72.6% 77.4%

TABLE X: Ablation Experiment: impact of each component’s
effectiveness in RULELLM.

Approach Precision Recall
LLMs alone 62.9% 56.8%

LLM + Rule Alignment 79.2% 84.3%
LLM + Basic-unit Rule +
Rule Alignment 81.90% 90.0%

LLM + Basic-unit Rule +
Combination + Rule Alignment 85.2% 91.8%

overall detection rate is 90.32%, and the average detection
rate is 96.62%. The results demonstrate that rules generated
by RULELLM can detect potential variants.

Ablation Experiment. We validate the impact of each
component in RULELLM (Figure 3): basic-unit rule creation,
rule combination, and rule alignment. Specifically, we use 4
approaches: (1) LLMs alone; (2) LLM + rule alignment; (3)
LLM + basic-unit rule + rule alignment; and (4) LLM + basic-
unit rule + combination + rule alignment. To ensure a fair
comparison, all prompts and their requirements (Table III-V)
are consistently used in LLM. Table X lists each component’s
effectiveness in RULELLM. Directly using LLM to generate
rules leads to a significantly low recall (56.8%) and rela-
tively moderate precision (62.9%). Without the RULELLM’s
help, LLMs struggle with the rule generation task, missing
a substantial portion of the rules. LLM + Rule Alignment
can significantly improve both the precision and recall of
generated rules. The reason is that the rule alignment can
fix errors in rule formats, and this approach can find more
useful rules. LLM + Basic-unit Rule + Rule Alignment yield
a substantial increase in recall, jumping to 90.0%. The basic
unit rules help this approach capture a broader range of true
positives. RULELLM (a combination of various components)
shows the highest performance across both precision and
recall. Thus, RULELLM’s effectiveness is not merely a result
of using an advanced LLM; it stems from a combination of
specialized techniques, optimizations, and a tailored agent-
based architecture that improves rule quality.

C. In-depth Analysis

We provide an in-depth analysis of the rule quality, includ-
ing the rule number, the precision per rule, and the coverage
per rule.

Rule number. Table XI shows the rule number comparison
between RULELLM and SOTA tools. RULELLM can generate
two types of rules: Yara format and Semgrep format. We can
see that RULELLM has 452 rules in the Yara rule format

TABLE XI: The rule number between RULELLM and SOTA
tools.

Category SOTA Tool RULELLM
All Rules OSS Malware

Yara Rule Format 4,574 46 452
Semgrep Rule Format 2,841 334 311

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Precision

0
50

100
150
200
250

Nu
m

be
r o

f R
ul

es

Fig. 7: YARA rule’s precision: the precision distribution for
all rules generated by RULELLM.

and 311 rules in the Semgrep rule format. In comparison,
SOTA tools have 4,574 total rules and 46 OSS malware
rules in the Yara format (2,841 total rules and 334 malware
rules in the Semgrep format). Rules from tools (Semgrep and
Yara scanners) were written by security experts, requiring
domain-specific knowledge and manual efforts. In addition,
most of the YARA and Semgrep rules are not designed for
OSS malware. Yara scanners are designed for signatures and
are difficult to deal with malware deformation, and Semgrep
scanners usually support taint analysis and string matching.
Although the rule amount from RULELLM is smaller than
that of SOTA tools, RULELLM shows the best performance
(detailed in Table VII). Rules generated by RULELLM have
broader detection coverage to recognize a variety of patterns,
behaviors, or anomalies in malicious packages.

Precision per rule. We inspect the precision performance
of every rule generated by RULELLM. Figure 7 depicts
the distribution of 452 YARA rules’ performance, where the
X-axis is precision, and the Y-axis is the rule number. It
is observed that 278 YARA rules have a high precision,
nearly 98.2%, and the rest rules have various precisions. For
each rule, the high precision indicates a high confidence in
malware and threat detection. If a package matches a rule with
high precision, it is confident that the package is malicious.
Note that 65 YARA rules (452-387) do not match with any
malicious packages.

Figure 8 depicts the distribution of 311 Semgrep rules’
performance. Similarly, 158 Semgrep rules have a high pre-
cision, nearly 97.1%. We also find that nearly 40 Semgrep
rules have close 0% precision and 62 Semgrep rules (311-
249) do not match with any malicious packages. In terms of
manual inspection, those rules use a highly specific taint-code
structure, leading to poor performance.

Coverage per rule. Next, we use the number of detected

9



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

0
20
40
60
80

100
120
140
160

Nu
m

be
r o

f R
ul

es

Fig. 8: Semgrep rule’s precision: the precision distribution for
all rules generated by RULELLM.

0 200 400 600 800 1000
Number of Detected Malware

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 9: YARA rule’s coverage: the CDF of the detected
malware per rule generated by RULELLM.

malware packages to reflect the coverage of rules generated
by RULELLM. A high number of detected malware packages
indicates that a rule has broad coverage and identifies common
patterns, while a low number of detected malware packages
suggests that a rule is more specific and suited to a narrow set
of patterns. Figure 9 shows the CDF of the detected malware
number for YARA rules. It is evident that many YARA rules
detect a small number of malware packages, whereas 80%
rules cover fewer than 10 packages. However, 10 YARA rules
detect over 100 malware packages, indicating broader and
more common patterns. For example, a rule related to the fake
version can detect 568 malware packages and a rule related
to the C2 server can detect 185 malware packages. In short,
most YARA rules use a specific string or regex, minimizing
false positives by focusing on unique identifiers or signatures.

Figure 10 shows the CDF of detected malware number
for Semgrep rules. It is observed that Semgrep rules have a
broader range for detecting malware packages compared to
YARA rules. Only 40% of Semgrep rules cover fewer than 10
malware packages, whereas other Semgrep rules with broader
patterns may result in a higher false positive rate. In contrast,
broad Semgrep rules have a high recall (detailed in Figure 6).
Semgrep rules can be advantageous for identifying a broad
spectrum of threats at the initial stage.

Overall, YARA rules differ from Semgrep rules in their
matching patterns and targets. A broad rule is useful for a
quick scan but risks false positives, whereas a specific rule
excels in precision but may miss underlying threats.

0 200 400 600 800 1000
Number of Detected Malware

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 10: Semgrep rule’s coverage: the CDF of the detected
malware per rule generated by RULELLM.

TABLE XII: YARA rules: detailed breakdown of rule cate-
gories and subcategories

Category Name Subcategory Name Count

0. Metadata Related

Package Metadata Manipulation 92
Version Number Deception 17
Fake Dependency Metadata 18
Author Information Spoofing 29

1. Malicious Behavior

Privilege Escalation 21
Process Manipulation 25
System Configuration Changes 70
Persistence Mechanisms 87

2. Dependency Library

System Library Abuse 25
Network Library Misuse 43
Crypto Library Exploitation 7
UI/Graphics Library Abuse 8

3. Setup Code

Malicious Setup Scripts 56
Build Process Manipulation 11
Installation Hook Abuse 39
Configuration Tampering 28

4. Network Related

C2 Communication 66
Data Exfiltration Channels 51
Malicious Downloads 61
DNS/Protocol Abuse 15

5. Obfuscation &
Anti-Detection

Code Obfuscation 72
Anti-Analysis Techniques 67
Sandbox Evasion 9
String/Pattern Hiding 35

6. Data Exfiltration

Credential Theft 8
Environment Data Stealing 31
Configuration File Extraction 2
Sensitive Data Harvesting 53

7. Code Execution
Shell Command Execution 54
Script Injection 29
Process Creation 1

8. Application

Messaging Platform Abuse 35
Social Media API Exploitation 2
Cloud Service Misuse 18
Development Tool Abuse 5

9. Malware Family Known Trojan Families 12
Backdoor Families 2

10. Other Rules Unknown or Undetermined 13

D. Rule Analysis

We manually inspect the content of generated rules and
categorize them into 11 categories and 38 subcategories. The
categorization relies on the nature of the rules and profes-

10



0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fig. 11: Heatmap: the overlapping degree between different
categories; the number indicates the rule category in Table XII.

sional experience. Table XII provides a detailed breakdown
of various rule categories and their respective subcategories,
along with the count of rules in each subcategory. It is
evident that the category with the highest number of rules
is “Malicious Behavior” with a total of 203 rules, followed
closely by “Network Related” with 193 rules. “Malicious
Behavior” encompasses actions that directly harm the system
or escalate privileges. “Network Related” includes behaviors
that involve network communication, such as command and
control (C2) communication or data exfiltration. The high
counts in categories underscore the complexity and prevalence
of these threats from OSS malware. Conversely, low counts in
certain categories (e.g., “Configuration File Extraction”) may
indicate less common or less complex threats. In short, our
generated rules highlight the diverse range of rule categories
and subcategories used to detect and mitigate various security
threats.

(1) Non-exclusive category. The rule category and subcate-
gory are not mutually exclusive, and a rule can belong to mul-
tiple categories and subcategories. The total number of YARA
rules in Table XII is 1,217, compared to 452 YARA rules in Ta-
ble XI. Figure 11 depicts the overlapping rules among different
categories. For example, the ‘Malware Setuptools PostHook’
rule covers two categories: “Setup Code Rule’ and “Network
Related Rule”. The reason is that RULELLM extracts rules
from malicious packages, whereas a malware package may
exhibit behaviors, e.g., a ransomware package might encrypt
files while also exfiltrating data.

(2) Large Detection Range. Several rule categories have
a large detection range: “Obfuscation & Anti-Detection”,
“Metadata-Related”, “Code Execution”, “Network Related”,
and “Data Exfiltration”. Rules in those categories have a large
range, where more than 1,000 packages are detected. In the
“Code Execution” category, a rule detected 23.41 malware
packages on average; in the “Obfuscation & Anti-Detection”
category, a rule detected 19.50 malware packages on average.
It concluded that some techniques(e.g., common code snippets,
network behaviors, or obfuscation patterns) are generic and
widely in OSS malware.

(3) Narrow Detection Range. Several rule categories have a
narrow detection range: “Malware Family”, and “Application”.
Rules in those categories have a small range, less than 5 pack-
ages per rule. The reason is that those malware packages are
less well-known. Malware families are popular in conventional
malware samples with different architectures and compilers,
leading to binary polymorphism. However, OSS malware is
a software package to organize artifacts and components.
Malware families are not common in OSS malware. In brief,
low-detection categories center around fewer but more specific
matches of malware packages.

VI. DISCUSSION & LIMITATIONS

Data Leakage [35, 36] leads to the concern of the
RULELLM’s performance. If the LLM uses the GuardDog
dataset to pre-train the model with the same target, the validity
of the performance in RULELLM may be overstated. There
are 2 manners to mitigate the impact of data leakage of
LLMs. First, we can use malicious packages whose release
time is newer than the cutoff date of model pre-training. In
our experiments, there are 78% malicious packages whose
release time is newer than Dec./2023, and GPT-4o’s cutoff
date is Oct./2023. There is a high probability that those
malicious packages do not have data leakage issues. Second,
even though LLM uses the GuardDog dataset to pre-train
the model, the LLM still struggles with the rule generation
task. Our experimental results (Table X) show that directly
using LLM to generate rules leads to a significantly low recall
(56.8%) and relatively moderate precision (62.9%).

LLMs’ Limitations. RULELLM’s performance mainly re-
lies on the reasoning ability of LLMs. However, as LLMs
are trained on general datasets when handling specialized
knowledge such as malicious packages, inaccuracies are in-
evitable. This can result in the generated rules being overly
broad, leading to a high number of false positives, or only
capable of identifying particular samples. In our RULELLM,
the LLM can achieve 85.2% precison. Another problem is
the hallucinations caused by LLMs, where some rules may
be fabricated content, or confuse truth and falsehood. The
reason for fabricated rules is that the LLM lacks a definitive
ground truth for unknown malicious packages and unseen
risks. Due to context length limitations, LLMs struggle to
handle excessively long malicious code, such as obfuscated
code or payload with base64 encoding.

Retrieval Augmented Generation (RAG) can provide ex-
ternal knowledge (e.g., databases) to LLMs for improving per-
formance and mitigating hallucinations. RULELLM belongs
to a knowledge-intensive domain, where RAG can update
security knowledge to guarantee the generated rule quality.
This work only integrates prompt engineering (task decompo-
sition, CoT, reflection, and few shots) into RULELLM without
RAG. Note that prompt engineering and RAG are not mutually
exclusive and can complement each other to improve LLMs’
capabilities.

Fine-Tuning is to train a pre-trained LLM on a domain-
specific dataset. RULELLM can achieve a better performance

11



when we tailor an LLM to the rule generation task. Specif-
ically, there are three requirements for fine-tuning LLM: (1)
a pre-trained model (e.g., Llama 3.1), (2) a labeled domain
dataset; and (3) training the LLM with Transformers. However,
we lack a labeled domain dataset for fine-tuning LLM. The
labeled data should be in the supervised format, denoted as (a
malicious package, a rule).

VII. RELATED WORK

Software Supply Chain Attack. Nowadays, OSS ecosys-
tems have millions of packages [37, 38, 39], and the package
dependencies are becoming very complex [40, 41, 42, 43].
Malicious packages [44, 45, 46, 47, 48, 45] often contain
code specifically crafted to perform unwanted or harmful
actions on a system, including obfuscated code, data exfil-
tration, self-execution, typosquatting, dependency confusion,
and backdoors. Pfretzschner and ben Othmane [49] proposed a
detection algorithm for dependency-based attacks on Node.js,
and Staicu et al. [50] proposed a deep understanding of the
injection attack on Node.js. Ladisa et al. [51] proposed a
general taxonomy of conceptual attack vectors in the OSS
ecosystem. Guo et al. [45] collected malicious packages in
PyPI ecosystems, leveraged the case study to analyze the
malicious behaviors.

Vulnerable packages [52, 53] refer to software libraries
or components that contain security flaws, misconfigurations,
or weaknesses that can be exploited by malicious actors.
Alfadel et al. [54] studied a collection of 550 vulnerabilities
affecting 252 PyPi packages, and their analysis showed that
vulnerabilities grew over time, and the most common was
XSS vulnerabilities. Ponta et al. [55] proposed a code-centric
scheme for detecting, analyzing, and mitigating vulnerabilities
in software packages. Woo et al. [56] traced a reported
vulnerability back to its origin in the codebase, and combined
static analysis, metadata extraction, and historical codebase
tracking to identify the original vulnerability.

OSS ecosystems leak sensitive data and compromise users’
privacy, caused by flaws, insecure configurations, and im-
proper use of third-party dependencies. Vaidya et al. [57]
pointed out private information is leaked in the code of soft-
ware packages, including key files and API keys embedded in
the code. Xiao et al. [58] proposed an attack that abuses hidden
attributes, which attackers can exploit to obtain confidential
data, bypass security checks, and launch denial-of-service
attacks.

Large Language Model is primarily based on the Trans-
former architecture with extensive pre-training on large-scale
training data, and it has demonstrated remarkable advances
across various domains. Previous works [21, 22, 59] proposed
a planner to extend LLMs’ capabilities for dealing with
complex tasks, such as generalization and reasoning using
task decomposition techniques such as Chain-of-thought [21]
and Tree-of-thought [22]. Yao et al. [59] proposed a general
strategy of self-reflection (called ReAct) based on the feedback
of LLMs to improve their reasoning skills. Similarly, Reflex-
ion [23] and Chain of Hindsight [24] use human feedback

(e.g., errors) to fine-tune LLMs. Another distinct approach is to
use external resources to build an autonomous agent, enabling
LLMs to interact with the environment (tools or APIs). Wang
et al. [60] proposed an embodied lifelong learning agent based
on LLMs. Huang et al. [61] let an LLM self-improve its
reasoning without supervised data by asking the LLM to lay
out different possible results.

Meanwhile, LLMs can be applied in the software engi-
neering domain, such as OpenAI Codex [18] and GitHub
Copilot [62]. Many prior works leveraged LLMs to resolve
specific tasks in the software engineering domain [63, 64,
65, 66, 67, 68]. Ma et al. [63] and Sun et al. [64] explored
the capabilities of LLMs when performing various program
analysis tasks, including control flow graph construction, call
graph analysis, and code summarization. There are many prior
works using LLMs to resolve specific tasks in the security
domain [69, 70]. Pearce et al. [13] proposed to leverage
LLM to help security professionals reverse engineer the binary
application for automatically repairing vulnerabilities. Li et
al. [11] presented LLM capabilities in the static analysis of
finding vulnerabilities. Feng and Chen [71] proposed to use
LLM to replay Android bugs automatedly. Pearce et al. [9]
examined zero-shot vulnerability repair using LLMs.

Security Rules. Security detection tools are widely used
in the software engineering domain to detect security vul-
nerabilities, malicious packages, and privacy leaks. YARA-
scanner [6, 31, 32] is a tool for leveraging YARA rules
to analyze the malicious features in the software package.
AppInspector [7] includes 16 aspects and a total of 712 rules,
which are used to check regular expression-based malicious
patterns (e.g., reverse shell) in the text of each file in the
package. Semgrep [5] is a tool for pattern matching and
searching in structured data, which can be used to detect
sensitive information leakage, configuration errors, etc.

VIII. CONCLUSION

In this paper, we demonstrate that LLMs can be an effective
tool for generating rules in OSS ecosystems. RULELLM
leverages LLMs to systematically analyze metadata and code,
creating accurate YARA & Semgrep rules without manual
efforts, achieving a precision of 85.2% and a recall of 91.8%.
Through its prototype implementation, RULELLM has proven
its effectiveness and adaptability, showcasing its capability to
enhance current security practices and outperform established
tools. Our work holds promise for future advancements in OSS
security, particularly as a scalable solution to evolving SSC
threats.

ACKNOWLEDGEMENT

We are grateful to our shepherd Xinda Wang and anony-
mous reviewers for their insightful feedback. The work was
partially supported by the National Natural Science Founda-
tion of China (No. 62272029 and No. 61972024).

REFERENCES

[1] Sonatype. (2021) State of the software supply chain. https://ww
w.sonatype.com/resources/state-of-the-software-supply-chain-
2021.

12

https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021


[2] E.Roth. (2021) Open source developer corrupts widely-used
libraries, affecting tons of projects. https://www.theverge.c
om/2022/1/9/22874949/developer-corrupts-open-source-librar
ies-projects-affected.

[3] I. Pashchenko, D.-L. Vu, and F. Massacci, “Preliminary findings
on foss dependencies and security,” 2020.

[4] C. org. (2022) Apache Log4j Vulnerability. https://www.cisa.g
ov/news-events/news/apache-log4j-vulnerability-guidance.

[5] semgrep org. (2019) SemGrep rules for the security static
analysis. https://github.com/semgrep/semgrep.

[6] N. Naik, P. Jenkins, R. Cooke, J. Gillett, and Y. Jin, “Evaluating
automatically generated yara rules and enhancing their effec-
tiveness,” in 2020 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2020, pp. 1146–1153.

[7] M. org. (2023, accessible) The tool identifies coding features of
first or third party software components. https://github.com/m
icrosoft/ApplicationInspector.

[8] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and
G. Stringhini, “Llms cannot reliably identify and reason about
security vulnerabilities (yet?): A comprehensive evaluation,
framework, and benchmarks,” arXiv preprint arXiv:2312.12575,
2023.

[9] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt,
“Examining zero-shot vulnerability repair with large language
models,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2339–2356.

[10] X. Wang, R. Hu, C. Gao, X.-C. Wen, Y. Chen, and Q. Liao,
“A repository-level dataset for detecting, classifying and repair-
ing software vulnerabilities,” arXiv preprint arXiv:2401.13169,
2024.

[11] H. Li, Y. Hao, Y. Zhai, and Z. Qian, “The hitchhiker’s guide
to program analysis: A journey with large language models,”
arXiv preprint arXiv:2308.00245, 2023.

[12] X. Shang, S. Cheng, G. Chen, Y. Zhang, L. Hu, X. Yu, G. Li,
W. Zhang, and N. Yu, “How far have we gone in stripped
binary code understanding using large language models,” arXiv
preprint arXiv:2404.09836, 2024.

[13] H. Pearce, B. Tan, P. Krishnamurthy, F. Khorrami, R. Karri, and
B. Dolan-Gavitt, “Pop quiz! can a large language model help
with reverse engineering?” arXiv preprint arXiv:2202.01142,
2022.

[14] E. Wang. (2020) The CLI tool that allows to identify malicious
PyPI and npm packages. https://github.com/DataDog/guarddog.

[15] H. van Kemenade. (2024) Top PyPI Packages. https://hugovk.g
ithub.io/top-pypi-packages/.

[16] X. Zhang, “Malware detection rule generator.” https://github.c
om/zhang-xr/RuleLLM, 2024.

[17] O. Org. (2023) The OpenAI API is used for a range of models
and fine-tune custom models. https://platform.openai.com/docs
/introduction.

[18] ——. (2023) OpenAI Codex: AI system that translates natural
language to code. https://openai.com/blog/openai-codex.

[19] A. Org. (2023) Claude is a next generation AI assistant. https:
//claude.ai/.

[20] G. Org. (2023) Google’s Gemini family for the multi-modal
model. https://poe.com/Gemini-Pro.

[21] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi,
Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits
reasoning in large language models,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 24 824–24 837, 2022.

[22] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving
with large language models,” arXiv preprint arXiv:2305.10601,
2023.

[23] N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and
S. Yao, “Reflexion: Language agents with verbal reinforcement
learning,” in Thirty-seventh Conference on Neural Information

Processing Systems, 2023.
[24] H. Liu, C. Sferrazza, and P. Abbeel, “Languages are rewards:

Hindsight finetuning using human feedback,” arXiv preprint
arXiv:2302.02676, 2023.

[25] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-
trained model for programming and natural languages,” arXiv
preprint arXiv:2002.08155, 2020.

[26] Numpy. (2009) numpy: Randomly permute a sequence.
[Online]. Available: http://docs.scipy.org/doc/numpy/reference
/generated/numpy.random.permutation.html

[27] Scikit-learn. (2007) Machine learning library for the python
language. http://scikit-learn.org/stable/index.html.

[28] F. Jeffrey. (2009) Regular expression operations. https://docs.p
ython.org/3/library/re.html.

[29] NLTK. (2001) A suite of libraries and programs for symbolic
and statistical natural language processing. http://www.nltk.org/.

[30] LangSmith. (2023) LangChain, a unified platform for
debugging, testing, evaluating, and monitoring your LLM
applications. [Online]. Available: https://blog.langchain.dev/a
nnouncing-langsmith/

[31] E. Raff, R. Zak, G. Lopez Munoz, W. Fleming, H. S. Ander-
son, B. Filar, C. Nicholas, and J. Holt, “Automatic yara rule
generation using biclustering,” in Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security, 2020, pp. 71–
82.

[32] M. Brengel and C. Rossow, “{YARIX}: Scalable {YARA-
based} malware intelligence,” in 30th USENIX Security Sym-
posium (USENIX Security 21), 2021, pp. 3541–3558.

[33] M. Org. (2023) Llama 2: open source, free for research and
commercial use. https://llama.meta.com/llama2/.

[34] A. Org. (2023) Vovk — Advanced Yara rule generator. https:
//github.com/malienist/vovk?tab=readme-ov-file.

[35] C. Xu, S. Guan, D. Greene, and M.-T. Kechadi, “Benchmark
data contamination of large language models: A survey,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.04244

[36] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins, D. Chen,
and L. Zettlemoyer, “Detecting pretraining data from large
language models,” arXiv preprint arXiv:2310.16789, 2023.

[37] E. Constantinou and T. Mens, “An empirical comparison
of developer retention in the rubygems and npm software
ecosystems,” Innovations in Systems and Software Engineering,
vol. 13, no. 2, pp. 101–115, 2017.

[38] Y. Ma, “Constructing supply chains in open source software,”
in 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion). IEEE, 2018, pp.
458–459.

[39] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus,
“World of code: an infrastructure for mining the universe of
open source vcs data,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 143–154.

[40] A. Serebrenik and T. Mens, “Challenges in software ecosystems
research,” in Proceedings of the 2015 European Conference on
Software Architecture Workshops, 2015, pp. 1–6.

[41] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the npm
ecosystem,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 995–1010.

[42] N. Zahan, L. Williams, T. Zimmermann, P. Godefroid, B. Mur-
phy, and C. Maddila, “What are weak links in the npm supply
chain?” arXiv preprint arXiv:2112.10165, 2021.

[43] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study
of dependency management and its security implications,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 1513–1531.

[44] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio,

13

https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://github.com/semgrep/semgrep
https://github.com/microsoft/ApplicationInspector
https://github.com/microsoft/ApplicationInspector
https://github.com/DataDog/guarddog
https://hugovk.github.io/top-pypi-packages/
https://hugovk.github.io/top-pypi-packages/
https://github.com/zhang-xr/RuleLLM
https://github.com/zhang-xr/RuleLLM
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://openai.com/blog/openai-codex
https://claude.ai/
https://claude.ai/
https://poe.com/Gemini-Pro
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.permutation.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.permutation.html
http://scikit-learn.org/stable/index.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
http://www.nltk.org/
https://blog.langchain.dev/announcing-langsmith/
https://blog.langchain.dev/announcing-langsmith/
https://llama.meta.com/llama2/
https://github.com/malienist/vovk?tab=readme-ov-file
https://github.com/malienist/vovk?tab=readme-ov-file
https://arxiv.org/abs/2406.04244


and W. Lee, “Towards measuring supply chain attacks on
package managers for interpreted languages,” arXiv preprint
arXiv:2002.01139, 2020.

[45] W. Guo, Z. Xu, C. Liu, C. Huang, Y. Fang, and Y. Liu,
“An empirical study of malicious code in pypi ecosystem,” in
2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2023, pp. 166–177.

[46] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s
knife collection: A review of open source software supply
chain attacks,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, C. Maurice, L. Bilge, G. Stringhini,
and N. Neves, Eds. Cham: Springer International Publishing,
2020, pp. 23–43.

[47] E. Wyss, A. Wittman, D. Davidson, and L. De Carli, “Wolf
at the door: Preventing install-time attacks in npm with
latch,” in Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS
’22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 1139 – 1153. [Online]. Available:
https://doi.org/10.1145/3488932.3523262

[48] P. Ladisa, H. Plate, M. Martinez, O. Barais, and S. E.
Ponta, “Towards the detection of malicious java packages,”
in Proceedings of the 2022 ACM Workshop on Software
Supply Chain Offensive Research and Ecosystem Defenses,
ser. SCORED’22. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 63 – 72. [Online]. Available:
https://doi.org/10.1145/3560835.3564548

[49] B. Pfretzschner and L. ben Othmane, “Identification of
dependency-based attacks on node. js,” in Proceedings of the
12th International Conference on Availability, Reliability and
Security, 2017, pp. 1–6.

[50] C.-A. Staicu, M. Pradel, and B. Livshits, “Understanding and
automatically preventing injection attacks on node. js,” in
Network and Distributed System Security Symposium (NDSS),
2018.

[51] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxon-
omy of attacks on open-source software supply chains,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE, 2023,
pp. 1509–1526.

[52] A. Decan, T. Mens, and E. Constantinou, “On the impact
of security vulnerabilities in the npm package dependency
network,” in Proceedings of the 15th international conference
on mining software repositories, 2018, pp. 181–191.

[53] ——, “On the evolution of technical lag in the npm package
dependency network,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2018,
pp. 404–414.

[54] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis
of security vulnerabilities in python packages,” in 2021 IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 446–457.

[55] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-
centric and usage-based analysis of known vulnerabilities in
open-source software,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2018,
pp. 449–460.

[56] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “{V0Finder}:
Discovering the correct origin of publicly reported software
vulnerabilities,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3041–3058.

[57] R. K. Vaidya, L. De Carli, D. Davidson, and V. Rastogi,
“Security issues in language-based sofware ecosystems,” arXiv
preprint arXiv:1903.02613, 2019.

[58] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee,
“Abusing hidden properties to attack the node. js ecosystem,” in
30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 2951–2968.

[59] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and
Y. Cao, “React: Synergizing reasoning and acting in language
models,” arXiv preprint arXiv:2210.03629, 2022.

[60] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu,
L. Fan, and A. Anandkumar, “Voyager: An open-ended em-
bodied agent with large language models,” arXiv preprint
arXiv:2305.16291, 2023.

[61] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han,
“Large language models can self-improve,” arXiv preprint
arXiv:2210.11610, 2022.

[62] M. Org. (2023) Copilot: The AI developer tool. https://github
.com/features/copilot.

[63] W. Ma, S. Liu, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie,
and Y. Liu, “The scope of chatgpt in software engineering: A
thorough investigation,” arXiv preprint arXiv:2305.12138, 2023.

[64] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng,
S. Huang, Y. Chen, Q. Zhang et al., “Automatic code sum-
marization via chatgpt: How far are we?” arXiv preprint
arXiv:2305.12865, 2023.

[65] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large
language models reason about program invariants?” in Interna-
tional Conference on Machine Learning. PMLR, 2023, pp.
27 496–27 520.

[66] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing
162 out of 337 bugs for 0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

[67] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman
et al., “Evaluating large language models trained on code,”
arXiv preprint arXiv:2107.03374, 2021.

[68] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta,
S. Yoo, and J. M. Zhang, “Large language models for soft-
ware engineering: Survey and open problems,” arXiv preprint
arXiv:2310.03533, 2023.

[69] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large lan-
guage models to self-debug,” arXiv preprint arXiv:2304.05128,
2023.

[70] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and
G. Stringhini, “Can large language models identify and rea-
son about security vulnerabilities? not yet,” arXiv preprint
arXiv:2312.12575, 2023.

[71] S. Feng and C. Chen, “Prompting is all your need: Automated
android bug replay with large language models,” arXiv preprint
arXiv:2306.01987, 2023.

14

https://doi.org/10.1145/3488932.3523262
https://doi.org/10.1145/3560835.3564548
https://github.com/features/copilot
https://github.com/features/copilot

	Introduction
	Background
	Large Language Model
	YARA & Semgrep Rule
	Technical Challenges

	Malware Knowledge Extraction
	Package Metadata
	Malicious Code Snippets

	Rule Generation
	Crafting Rules
	Refining Rules
	Aligning Rules

	Evaluation
	Experimental Setting
	Performance
	In-depth Analysis
	Rule Analysis

	Discussion & Limitations
	Related Work
	Conclusion

