
Evaluating Argon2 Adoption and Effectiveness in
Real-World Software

Pascal Tippe1⋆ and Michael P. Berner1

FernUniversität in Hagen
Hagen, Germany

Abstract. Modern password hashing remains a critical defense against
credential cracking, yet the transition from theoretically secure algo-
rithms to robust real-world implementations remains fraught with chal-
lenges. This paper presents a dual analysis of Argon2, the Password
Hashing Competition winner, combining attack simulations quantify-
ing how parameter configurations impact guessing costs under realistic
budgets, with the first large-scale empirical study of Argon2 adoption
across public GitHub software repositories. Our economic model, val-
idated against cryptocurrency mining benchmarks, demonstrates that
OWASP’s recommended 46 MiB configuration reduces compromise rates
by 42.5% compared to SHA-256 at $1/account attack budgets for strong
user passwords. However, memory-hardness exhibits diminishing returns
as increasing allocations to RFC 9106’s 2048 MiB provides just 23.3%
($1) and 17.7% ($20) additional protection despite 44.5×greater memory
demands. Crucially, both configurations fail to mitigate risks from weak
passwords, with 96.9-99.8% compromise rates for RockYou-like creden-
tials regardless of algorithm choice. Our repository analysis shows ac-
celerating Argon2 adoption, yet weak configuration practices: 46.6% of
deployments use weaker-than-OWASP parameters. Surprisingly, sensi-
tive applications (password managers, encryption tools) show no stronger
configurations than general software. Our findings highlight that a secure
algorithm alone cannot ensure security, effective parameter guidance and
developer education remain essential for realizing Argon2’s theoretical
advantages.

Keywords: password hashing · Argon2 · cryptographic adoption

1 Introduction

As reliance on digital systems continues to grow, ensuring secure user authenti-
cation has become a critical challenge in cybersecurity. Password hashing func-
tions play a pivotal role in protecting credentials, yet legacy algorithms like
SHA-256 exhibit persistent vulnerabilities when deployed in authentication sys-
tems. Despite their theoretical security properties, these algorithms are increas-
ingly ineffective against modern attacks that leverage GPU and ASIC-based
⋆ Corresponding author: firstname.lastname@fernuni-hagen.de

ar
X

iv
:2

50
4.

17
12

1v
1

 [
cs

.C
R

]
 2

3
A

pr
 2

02
5

2 Pascal Tippe and Michael P. Berner

hardware to test billions of password candidates per second. This gap between
theoretical robustness and practical resilience underscores the need for more
advanced cryptographic solutions. Argon2, the winner of the 2015 Password
Hashing Competition, represents a significant advancement in password hash-
ing design by introducing memory-hardness that increases computational costs
for attackers using specialized cracking hardware [2]. By requiring substantial
RAM allocation during hash computation (configurable via parameters), Ar-
gon2 creates asymmetric costs that favor defenders over attackers. However, its
effectiveness depends heavily on parameter selection, with configurations such as
the OWASP-recommended 46 MiB memory differing significantly from the RFC
9106 proposal of 2 GiB memory. This disparity highlights the importance of
standardized, context-aware parameterization frameworks that balance security
and performance. While Argon2’s theoretical advantages are well-documented
in academic literature, its adoption in real-world software remains inconsistent.
Our preliminary repository scans suggest a persistent reliance on older algo-
rithms like SHA-256 and PBKDF2, particularly in legacy systems where back-
ward compatibility concerns often outweigh security considerations. Even when
Argon2 is implemented, suboptimal parameter configurations are common, re-
flecting systemic barriers to cryptographic modernization. This study addresses
four key questions: (1) How do specific Argon2 parameter configurations compare
to SHA-256 in resisting GPU/ASIC-accelerated attacks under realistic password
strength assumptions? (2) What is the current state of Argon2 adoption among
software projects? (3) How have Argon2 parameters evolved over time to adapt
to increasing computational capabilities of potential attackers? (4) Do applica-
tions with heightened security requirements, such as password managers or file
encryption software, tend to implement stronger parameter configurations?

The remainder of this paper is organized as follows: Section 2 reviews related
work on password hashing functions and guessing attacks. Section 3 describes our
methodology, while Section 4 details our attack simulations. Section 5 presents an
analysis of offline password cracking results, followed by Section 6’s exploration
of real-world data collected from software repositories. Finally, Section 7 analyses
the gathered data and Section 8 discusses findings before concluding in Section
9.

2 Background and Related Work

Online platforms continuously suffer from breaches exposing user passwords en
masse. To mitigate this risk, traditional password storage relies on cryptographic
hashing to prevent credential exposure. Unlike encryption, deterministic hash
functions like SHA-256 produce fixed-length digests that cannot be feasibly re-
versed. However, attackers can enumerate password candidates until they find
a matching hash value. This attack vector fundamentally depends on two fac-
tors: the computational efficiency of the hash function and the statistical dis-
tribution of password guessability across user populations. To prevent attackers
from using precomputed rainbow tables and attacking multiple breached cre-

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 3

dentials simultaneously [14], defenders add a randomly generated string (called
salt) to passwords, forcing attackers to target each individual salted password
hash. While salting prevents batch attacks, it does not address the fundamental
vulnerability of fast hash algorithms to brute-force and dictionary attacks. In-
stead of exhaustively iterating over all possible character combinations, attackers
exploit users’ tendency to follow predictable patterns during password creation:
combining words, replacing characters with numbers, or appending special sym-
bols. Deprecated password metrics like Shannon entropy fail to capture these
human-chosen password patterns, leading researchers to develop more accurate
estimation techniques. The zxcvbn algorithm’s [19] pattern-aware entropy and
models like Markov chains [18] or context-free grammars [18] better reflect real-
world password weaknesses by analyzing dictionary matches, spatial keyboard
patterns, and breach recurrence patterns. Bonneau [6] formalized the concept
of guessability, establishing a direct connection to practical password strength
measurement by quantifying the average number of guesses required to breach
a target percentage of user accounts. This approach better captures systematic
risks since Dell’Amico et al. [8] determined an attacker would require 149,053,078
attempts on average to crack over half the passwords in three real-world datasets
(approximately 227.14). Bonneau [6] calculated median attack costs ranging be-
tween 219.8 and 221.6 attempts across multiple leaked datasets including Rock-
You to crack 50% of the passwords. Florencio and Herley [9] found an average
bit-strength of approximately 40.54 bits using naive calculations across half a
million users over three months.

Memory-hard functions represent a paradigm shift in password hashing by
imposing substantial RAM requirements. The interplay between memory-hardness
and guessability becomes apparent in Blocki et al.’s framework [5], where at-
tackers maximize compromised accounts within fixed budgets. The objective
is not to linearly increase costs for both defenders and attackers by iterating
hash functions, but to create asymmetric costs that disproportionately disad-
vantage attackers using specialized hardware such as ASICs. Argon2, the Pass-
word Hashing Competition winner in 2015, implements this approach through
three tunable parameters: memory cost (m), iterations (t), and parallelism (p).
Argon2 comes in three variants: Argon2d (fast but vulnerable to side-channels),
Argon2i (side-channel resistant but slower), and Argon2id (a hybrid approach).
This study focuses exclusively on Argon2id, which RFC 9106 recommends as
the default for password hashing. Its design prioritizes time-memory tradeoff
resistance, forcing attackers to spend either prohibitive time or memory re-
sources, directly impacting guessability economics. Blocki et al. [5] modeled this
increased strength against guessing attacks as an optimization problem, using
Bitcoin mining hardware and blockchain hashrate as proxies for determining at-
tacker strength, finding that memory-hard hash functions substantially increase
guessing costs. Argon2’s security relies on selecting appropriate values for its
parameters, yet many developers in user studies struggle to implement even ba-
sic password hashing correctly [13]. Furthermore, while OWASP recommends 46
MiB of memory for general use cases [15], the RFC 9106 standard [2] advocates

4 Pascal Tippe and Michael P. Berner

for significantly higher values (2048 MiB). This 44.5×difference reflects a tension
between practical deployment constraints and theoretical security requirements,
potentially leaving developers uncertain about which configuration is suitable
for their specific applications. Our work bridges this gap by analyzing real-world
Argon2 implementation patterns across GitHub repositories, quantifying the se-
curity impact of different parameter configurations through attack simulations,
and identifying systemic mismatches between academic parameter recommenda-
tions and developer implementation practices. This research extends prior work
by providing concrete evidence of how theoretical security advantages translate,
or fail to translate, into practical security improvements in deployed software.

3 Methodology

This study employs a comprehensive methodology to evaluate the technical per-
formance and real-world adoption of Argon2 as a password hashing algorithm.
The analysis is divided into two interconnected components: a security analysis
of Argon2 configurations compared to SHA-256 and an empirical investigation
into the adoption trends of Argon2 across software repositories on GitHub. By
combining cryptographic modeling, password strength estimation, attack simu-
lation, and repository analysis, this methodology provides a holistic view of both
theoretical efficacy and practical implementation.

3.1 Security Analysis Framework

The security analysis focuses on Argon2’s resistance to offline password cracking
under realistic attacker constraints. The threat model assumes an attacker with
offline access to hashed credentials and computational resources comparable to
large-scale cryptocurrency mining operations. Attackers are assumed to priori-
tize cost-efficiency, spending a fixed budget for cracking passwords. We leverage
public password datasets for strength estimation. To model cryptographic costs,
we analyze the economics of cryptocurrency mining as a proxy for attacker re-
sources. Bitcoin’s SHA-256 implementation serves as the baseline for traditional
hashing costs, while Monero’s RandomX, a memory-hard proof-of-work algo-
rithm based on Argon2d, provides insights into memory-dependent computation
costs. These models are validated using energy consumption benchmarks from
consumer-grade CPUs, ensuring real-world applicability. Password strength esti-
mation is conducted using zxcvbn’s pattern-aware entropy metric. The RockYou
2009 dataset, leaked cleartext passwords from an online platform, is used as the
baseline for password distributions, filtered to include only passwords meeting
modern length requirements (≥8 characters). For modeling enhanced password
policies, we generated a synthetic dataset by doubling the zxcvbn bit-strength
values from the filtered RockYou data. This transformation simulates passwords
with significantly higher guessing resistance (e.g., a 20-bit password becomes a
40-bit password) while preserving the overall distribution characteristics. Attack
simulations evaluate the effectiveness of different hashing configurations under

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 5

three budget scenarios for attackers: $0.1, $1, and $20 per targeted account.
Analyzed configurations include SHA-256 as a baseline and Argon2 implemen-
tations with both RFC 9106 recommended parameters (2048 MiB memory) and
OWASP-suggested hardened parameters (46 MiB memory).

3.2 Data Collection and Repository Analysis

To assess Argon2’s adoption in real-world software projects, we systematically
collect data from public repositories on GitHub using its REST API. GitHub
was chosen due to its prominence in open-source development and its exten-
sive repository metadata, which includes indicators such as stars that we use as
a proxy for repository quality. While acknowledging that user motivations for
starring repositories vary, prior research suggests that stars are more reliable
indicators of relevance than other metrics like number of forks [7]. The analysis
employs two complementary search methods: repository metadata search and
code search. Repository searches query titles, descriptions, and topics for key-
words related to password hashing algorithms (Argon2, bcrypt, scrypt, yescrypt
and PBKDF2). The selection was driven by their prominence as widely recog-
nized password hashing algorithms, providing a comparative baseline to evalu-
ate Argon2’s adoption and security properties against established standards with
distinct characteristics in memory-hardness and performance. Since GitHub lim-
its search results to 1,000 entries per query, searches are segmented by reposi-
tory creation date to capture a comprehensive dataset. Code searches identify
instances of password hashing algorithm implementations within source code
files. To address GitHub’s indexing limitations for code searches, results are seg-
mented by programming language. Languages were selected based on their sup-
port for symbol extraction on GitHub and manual reviews of preliminary data1.
To ensure accuracy in both search methods, filtering mechanisms are applied to
exclude false positives (e.g., repositories unrelated to password hashing or those
associated with cryptocurrencies). Automated exclusion based on keywords is
supplemented by manual refinement to further reduce noise in the dataset.

3.3 Manual Review and Parameter Analysis

Repositories identified through searches undergo manual review to extract Ar-
gon2 parameter configurations and classify software types. This step ensures
accuracy by accounting for variations in parameter naming conventions and li-
brary usage that automated tools might miss or misclassify. Additionally, this
process verifies that Argon2id is used appropriately within repositories and not
in contexts such as cryptocurrency mining. Repositories where parameter con-
figurations cannot be assessed or that serve non-productive purposes (e.g., spec-
ifications or benchmarking tools) are excluded from further analysis. To focus
1 Selected languages: Bash, C, C#, C++, CodeQL, Dart, Elixir, Erlang, Go, Haskell,

Java, JavaScript, Kotlin, Lua, PHP, Python, R, Ruby, Rust, Scala, Starlak, Swift,
TypeScript

6 Pascal Tippe and Michael P. Berner

on high-quality implementations, only repositories with significant number of
stars are included in the final dataset. The extracted parameter configurations
are analyzed to evaluate their alignment with recommended security practices.
Repositories are categorized by software type (e.g., web applications, password
managers), allowing comparisons between parameter strengths across different
application domains. To analyze trends in Argon2 adoption over time and across
software categories, statistical hypothesis testing is employed. Non-parametric
tests such as chi-square goodness-of-fit and independence tests examine whether
observed distributions deviate significantly from uniformity or exhibit associa-
tions between variables (e.g., repository type and parameter strength). A signif-
icance level of p=0.05 is used throughout the analysis.

4 Attack Simulation Framework

The attack simulation framework evaluates Argon2’s economic resistance to of-
fline password guessing by modeling adversarial cost structures under realistic
resource constraints. Our analysis compares two recommended parameter con-
figurations representing different security philosophies: the RFC 9106 recom-
mendation (2048 MiB memory) prioritizing ASIC resistance through substantial
memory demands, and OWASP’s pragmatic guidelines (46 MiB memory) bal-
ancing security with server resource limitations. These configurations create a
44.5×difference in memory allocation, enabling direct comparison in thwarting
large-scale attacks.

4.1 Parameter Configurations

To explore the trade-offs between security and resource efficiency, we analyze
two widely referenced Argon2 parameter configurations: the RFC 9106 recom-
mendation and OWASP’s pragmatic guidelines. The RFC 9106 configuration
prioritizes resistance to attacks by allocating 2048 MiB of memory per hash
computation, thereby imposing significant memory demands on attackers and
defenders. In contrast, OWASP’s configuration uses a reduced memory alloca-
tion of 46 MiB, reflecting a balance between security and server-side performance
constraints. These configurations represent distinct security philosophies, with
the former emphasizing robustness against specialized hardware and the latter
accommodating practical deployment scenarios. Both are the first recommended
configuration and use parameters t = 1 and p = 1 allowing a direct comparison.
The 44.5×difference in memory allocation between these configurations provides
a valuable basis for evaluating their relative effectiveness in thwarting large-
scale attacks. In our simulations, attackers are modeled as having fixed budgets
of $0.10, $1.00, and $20.00 per targeted account. These budgets reflect vary-
ing levels of attacker investment, from low-cost opportunistic attacks to more
resource-intensive campaigns targeting higher value accounts. The budgetary
constraints are used to calculate the number of hash computations an attacker
can afford under each parameter configuration, enabling direct comparisons of
their economic resistance.

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 7

4.2 Cost per Hash Evaluation

The computational cost of Argon2 is central to its ability to resist offline at-
tacks. To estimate this cost, we use cryptocurrency mining as a proxy for ad-
versarial resource expenditures due to its well-documented economic metrics
and operational similarities to password cracking. Specifically, we derive base-
line costs for SHA-256 from Bitcoin mining data and extrapolate Argon2 costs
using Monero’s RandomX algorithm, which incorporates Argon2d to create an
initial cache and extends it with additional computations inside a virtual ma-
chine. For SHA-256, Bitcoin’s current network hashrate (701.72 EH/s) and block
rewards as of 20 February 2025 [3] provide a per-hash cost estimate of approx-
imately $7.079 × 10−19. Argon2’s memory-hardness complicates direct bench-
marking. However, RandomX [16] serves as a functional analog due to its use of
approximately 2 GiB memory allocations and Argon2d usage as a base element.
Adjusting for RandomX’s additional computational overhead (conservatively es-
timated at 100×), we estimate Argon2’s base cost at $2.729 × 10−12 per hash
for 2 GiB configurations with the network statistics on 20. February 2025 (4.54
GH/s, 32 blocks per hour and 232.31$ per unit) [4]. This cost scales linearly
with reduced memory allocations, allowing us to model the economic impact of
different parameter settings.

To validate these estimates, we conducted energy consumption calculations
using processor thermal design power (TDP) values and measured hashes per sec-
ond on consumer-grade CPUs2. For example, using an energy price of $0.05/kWh
and considering only CPU power consumption, the cost per hash was calculated
as $4.17 × 10−7, which exceeds our baseline estimate derived from RandomX
mining data. This discrepancy underscores the pessimistic nature of our base-
line assumptions but also highlights the real-world feasibility of our cost model
for very resourceful attackers.

4.3 Dataset Preparation

The datasets used in this study are critical for simulating realistic attack sce-
narios and evaluating password strength distributions under different hashing
configurations. We employ two datasets: the RockYou dataset and a synthetic
dataset Dsyn derived from it. The RockYou dataset, leaked in 2009, contains
over 32.6 million user passwords and is an important resource in password se-
curity research due to its size and real-world origins [6,5]. To ensure consistency
and relevance to contemporary minimal security standards, we preprocessed this
dataset. First, all passwords were normalized to UTF-8 encoding using Python
scripts equipped with the chardet library to resolve character encoding inconsis-
tencies; entries with unresolvable issues were removed (affecting 242 passwords).
Next, passwords shorter than eight characters were excluded to align with mod-
ern minimum policy requirements, reducing the dataset by approximately 16.18

2 Intel Core i3-7130U, AMD FX-6300, Intel Core i5-10300H, Intel Core i5-9400F, AMD
Ryzen 5 2600X

8 Pascal Tippe and Michael P. Berner

million entries and yielding a curated subset of 16.42 million passwords. The
filtered RockYou dataset exhibits a median password length of nine characters
(M = 9.46, σ = 2.43). Notable outliers include lengthy HTML fragments or
URLs used as passwords that likely reflect user behavior anomalies rather than
deliberate choices. These entries were retained to preserve the dataset’s authen-
ticity despite their slight skewing effect on bit-strength calculations. Password
entropy was estimated using zxcvbn’s pattern-aware algorithm and showed a
mean (median) entropy of 21.9 (21.7) bits with a standard deviation of 9.6 bits
and 26.8 for the third quartile and 15.6 for the first quartile. Recognizing that
RockYou reflects pre-2010 user behavior patterns, we constructed Dsyn by sys-
tematically doubling the bit-strength values of each password in the RockYou
corpus while preserving its overall distribution shape. This approach accounts
for improved password policies and heightened user awareness observed in re-
cent years while maintaining compatibility with prior research methodologies.
The synthetic dataset serves as an updated benchmark for evaluating Argon2’s
performance in higher-security contexts. The doubled values align with results
from Komanduri et al. [12] showing that complex password requirements yield
on average 44.67 bit-strength passwords.

5 Attack Simulation Results

Our attack simulations show fundamental security tradeoffs between hashing
algorithms, parameter configurations, and password strength distributions. Fig-
ures 1 and 2 illustrate the compromise rates for SHA-256, Argon2 using OWASP’s
46 MiB configuration, and Argon2 with RFC 9106’s 2048 MiB configuration
across varied attacker budgets for both datasets

RockYou Dataset: As depicted in Figure 1, SHA-256’s susceptibility to
low-cost attacks is strong, with near-total compromises (99.77%) at just $0.10
per account, slightly worsens at a $1.00 budget (99.83%). Conversely, Argon2
introduces modest resistance. The 46 MiB parameters reduce compromise rates
to 98.81% at $1 budgets, while the 2048 MiB configuration cuts down success
to 96.89% under identical conditions, a notable 2.94% improvement compared
to SHA-256 protecting more than 475,000 accounts. While Argon2 impacts the
attackers success to a limited extent, the weak passwords are the decisive factor.

Synthetic Dataset (Dsyn): Figure 2 shows a shift when modeling stronger
user passwords and policies. Here, SHA-256 achieves higher resistance due to
improved password bit-strength. Due to the exponential effects of password bit-
strength, the gap between hashing algorithms widens. At $1.00 budgets, 88.31%,
50.74% and 38.92% of all passwords are compromised for SHA-256, Argon2 with
46 MiB and Argon2 with 2048 MiB. For the $20 budget, this rate increases
to 91.85%, 59.16% and 48.69%. This demonstrates that the stronger 2048 MiB
configuration does provide stronger protection compared to 46 MiB with a 11.82
(10.48) percentage points lower compromise rate under the $1 ($20) budget.
However, the largest difference is the change from SHA-256 to the lower Argon2
configuration indicating that it provides significantly more protection.

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 9

100 101 102 103

Password Bit Strength (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
he

 p
as

sw
or

ds

Password Cracking Success Rate
 with $0.1 Budget (Percentage)

100 101 102 103

Password Bit Strength (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Password Cracking Success Rate
 with $1 Budget (Percentage)

SHA256 Argon2 (46 MiB) Argon2 (2048 MiB)

Fig. 1. Password cracking success rates for the RockYou dataset under $0.1 and $1
budgets for SHA-256 and Argon2 configurations (46 MiB and 2048 MiB).

These results highlight the reliance on the strength of user passwords: For
RockYou’s median 21.7-bit passwords, even the strongest Argon2 configuration
couldn’t prevent attacker from cracking almost all passwords on small budgets.
However, simulations using Dsyn’s median 43.4-bit passwords show that Ar-
gon2 additionally protects 43.16% of all accounts compared to SHA-256 with
a $20 budget. Our results show for attackers, that an increasing budget yields
diminishing returns as the easy passwords are harvested fast while the increas-
ing bitstrengths make attacks exponentially harder. At the same time, this also
holds partially for defenders since strong parameter configurations do not help
for weak user passwords. Using Argon2 instead of SHA-256 makes the biggest
difference while the increasing server-side load does not proportionally protect
more passwords but also shows diminishing returns for defenders.

6 Real-World Data Collection

Following our analysis of Argon2’s theoretical security properties and its re-
silience under simulated attacks, we shift the focus to research questions 2–4.
We now analyze Argon2’s adoption trends through a systematic examination of
GitHub repositories.

6.1 Repository Search

The dataset was constructed through systematic GitHub [10] repository searches
for five password hashing algorithms (Argon2, bcrypt, scrypt, yescrypt, and

10 Pascal Tippe and Michael P. Berner

100 101 102 103

Password Bit Strength (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
he

 p
as

sw
or

ds

Password Cracking Success Rate
 with $1 Budget (Percentage)

100 101 102 103

Password Bit Strength (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Password Cracking Success Rate
 with $20 Budget (Percentage)

SHA256 Argon2 (46 MiB) Argon2 (2048 MiB)

Fig. 2. Password cracking success rates for the synthetic dataset (Dsyn) under $1 and
$20 budgets for SHA-256 and Argon2 configurations (46 MiB and 2048 MiB).

PBKDF2) across GitHub’s entire availability period (2008-2024). Table 1 shows
the number of repositories for the filtering steps. For each algorithm, we exe-
cuted temporal searches segmented by repository creation time, followed by a
filtering phase. Effectively, we decided to include 31 repositories from one user
for PBKDF2 and set the cutoff at 66 repositories and more per user. After
manual review, we created a keyword list3 related to common cryptocurrency
themes to exclude irrelevant projects. After the filtering, we checked random
samples from the results for each hashing algorithm and noticed that the 1,520
scrypt repositories still contained many repositories unrelated to password hash-
ing but included similar terms (i.e. scrypto, bash scrypt, python scrypt), some
of which we attribute to (intentional) misspellings. Therefore, we continued to
filter the results and created an additional keyword list to ensure relevancy with
words commonly used with hashing and key derivation functions: password, hash,
auth, kdf, key derivation, percival (the author of scrypt). 1,279 repositories of
these 1,520 contained none of these additional keywords which we judged as
too much. Therefore, we used an additional list containing similar names4 that
only excluded 439 repos. Among these 439 repos, all but three contained none
of the relevancy words and were subsequently excluded. The three outliers were
manually reviewed and one marked as relevant resulting in remaining 1,081 hits
(1, 520 − 439). Out of these, only 238 contained at least one relevancy word,

3 miner, mining, proof-of-work, proof of work, currency, coin, wallet, bitzeny, doge,
mint, blockchain, contract

4 scrypta, scrypto, scrypts, scrypted, scrypting, inscryption, scryptic, scrypture, ipsa-
scrypt

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 11

which led us to manually review the other results by analying the URL name
and project description. We excluded projects if they were surely not related to
password hashing, marked them as yes, if we clearly connected them, and coded
them as possible, if we could not conclude with high certainty. The latter was
the case for 326 repos that did not contain any description. This resulted in 595
repositories, including the 219 possible hits, identified as scrypt password hash-
ing repositories. Including the possible hits rather overestimates the prevalence
of scrypt password hashing than underestimating it. Since Argon2 was included
in five repositories with a creation date before 2015 (the year it won the Pass-
word Hashing Competition), we reviewed them manually. Two of them included
Argon2 later while the others are abandond or just include Argon2 references in
non-productive parts.

Table 1. Repository collection and filtering statistics per algorithm

Algorithm Initial Spam Mining Final
Repos Removed (%) Filtered (%) Count

Argon2 1,602 534 (33.33%) 36 (2.25%) 1,032
bcrypt 12,727 604 (4.75%) 58 (0.46%) 12,065
scrypt 2,396 528 (22.04%) 1,273 (51.13%)* 595
yescrypt 76 0 (0%) 36 (47.37%) 40
PBKDF2 1,006 0 (0%) 12 (1.19%) 994

* Includes extended relevance checks for scrypt repositories (see Subsection 6.1).

6.2 Code Search

The code search was performed using the GitHub Search API for programming
languages supporting symbol extraction and additional programming languages
that we assessed as relevant after our manual review of repositories, as listed in
Subsection 3.3. The primary search term for each query was the name of the
password-hashing algorithm itself, refined with negative keywords to exclude
cryptocurrency-related projects, which are outside the scope of this research.
These negative keywords were the same as used in the repository search (see
Subsection 6.1). Furthermore, we excluded files with the .md extension (to avoid
README files and other documentation) and files located within directories
containing test in their name to minimize irrelevant results. Due to the potential
for a single repository to contain multiple instances of a given hashing function
across different files, our search results often included duplicate entries for the
same repository. To address this redundancy and estimate the number of unique
repositories, we calculated a duplication quota based on the ratio of distinct
repository IDs within the first 1,000 search results. This quota was then applied
to the total number of search results to approximate the underlying number of
unique repositories implementing each hashing algorithm.

12 Pascal Tippe and Michael P. Berner

Table 2 shows the repository search results. Initial searches without pro-
gramming language differentiation yielded total code hits of 48,768 for Ar-
gon2, 519,168 for bcrypt, 36,592 for PBKDF2, 131,328 for scrypt, and 3,232
for yescrypt. Calculating repository redundancy required estimating a reposi-
tory duplication quota based on unique repositories within the first 1,000 re-
sults (5.9% for Argon2, 1.2% for bcrypt, 13.6% for PBKDF2, 26.2% for scrypt,
and 67.3% for yescrypt). This resulted in estimated total repositories of 45,891,
512,938, 31,615, 96,920, 1,057, respectively. The search separated by program-
ming languages and hash function has 115 combinations. For 52 combinations
the query results were below 1,000 and the repository number could be counted
directly without using the duplication quota. The overall results are shown in
Table 2. Since we could not conduct the additional filtering steps for scrypt that
we did for the repository search, we used the filtering ratio from the repository
search to estimate the filtered number of scrypt results. Table 3 shows the quotas
for different result sizes and hashing functions.

Table 2. Total hits and estimated number of repos, separately for the different
password hashing methods and searches.

Argon2 bcrypt PBKDF2 scrypt yescrypt

Code Search with Programming Language Differentiation:

Total Code Hits 41,464 226,768 75,521 88,211 905
Estimated Total Repos 33,170 213,012 64,645 64,416 531

(29,116*)

Simple Code Search:

Total Code Hits 48,768 519,168 36,592 131,328 3,232
Estimated Total Repos 45,891 512,938 31,615 96,920 1,057

(43,808*)

Repository Search Results:

Results from Repo Search 1,032 12,065 994 595 40

* After applying the scrypt false positive removal rate of 54.8% as determined in
Subsection 6.1 after only applying the initial cryptocurrency filter.

6.3 Parametrisation

For manual identification of Argon2 configurations, we decided to focus on high-
quality repositories only. From the 1,068 Argon2 repositories found in the repos-
itory search, we focused on repositories with at least three star ratings, result-
ing in 253 remaining repositories. We further excluded repositories that were
archived or not productive (e.g., described as homework assignments, demos or

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 13

Table 3. Repository redundancy quotas for password hashing methods from code
search analysis with programming language differentiation. For large result sets (>3,500
hits, n=30) and medium-sized sets (1,000–3,500 hits, n=26), quotas were estimated
from the first 1,000 results. For small result sets (<1,000 hits, n=52), exact quotas
were determined. Analysis covers 108 of 115 programming language and hash function
combinations.

Repo Redundancy Argon2 bcrypt PBKDF2 scrypt yescrypt Total

Estimated 5.50% 9.89% 11.83% 24.03% — 13.67%
(>3500, n=30) n=3 n=12 n=7 n=8 n=30

Estimated 32.59% 23.60% 26.97% 44.15% — 32.36%
(≤ 3500, n=26) n=9 n=4 n=7 n=6 n=26

Exactly 59.73% 51.17% 50.83% 64.11% 37.24% 50.87%
determined (n=52) n=11 n=7 n=9 n=9 n=16 n=52

Total 42.03% 24.84% 31.70% 44.96% 25.90% 33.89%
(n=108*) n=23 n=23 n=23 n=23 n=16* n=108*

* In 7 of the total 115 cases, there were no matches for yescrypt and therefore not
considered here.

trials). We further divided the remaining 206 repositories into four equal sets
based on their star count (3-4, 5-10, 11-30 and more than 30). We further ex-
cluded 21 repositories tied to cryptocurrency applications or password cracking.
Afterwards, we classified each project in the following categories: components
(libraries, wrapper, bindings), applications and sensitive applications (password
manager and file encryption). Then we proceeded to manually extract the Ar-
gon2id configuration with a focus on iterations (t) and memory (m). In 24 repos-
itories, we were unable to determine the parameters because they do not offer a
(complete) default parametrisation, are specifications or benchmarking tools. If
the software code used a library and didn’t modify the parameter settings, we
extracted the libraries default settings as parameters. In sum, parametrisation
data was collected for 161 repositories.

7 Real-World Implementations Analysis

7.1 Adoption

Figure 3 shows the number of repos for the hash functions per creation year. To
put this into the context of general repository developments, we decided to intro-
duce two more search terms, with VPN being related to computer security and
video editing unrelated to the field. The development of bcrypt aligns with that
of these additional search terms. Argon2 also shows continuous growth at a lower
rate since its inception in 2015. scrypt and PBKDF2 show notably less develop-
ment which we assume is due to the introduction of Argon2. Argon2 also man-

14 Pascal Tippe and Michael P. Berner

aged to overtake the number of new repositories from 2018 onwards for scrypt,
PBKDF2 and yescrypt. yescrypt, a competitor of Argon2 in the Password Hash-
ing Competition, did not succeed in keeping up with Argon2’s adoption and has
stagnating lower creation numbers. Focusing on the time between 2015 and 2024,
the average number of repositories with a creation date in the respective years has
a mean value of 102.7 for Argon2 (σ = 59.95), 85.3 for PBKDF2 (σ = 25.47) and
51 for scrypt (σ = 27.52). We used the Kruskal-Wallis test to determine a sta-
tistically significant difference between the three groups (H(2) = 6.07, p = .048)
and then conducted Dunn tests to compare the hashing functions with each
other. Argon2 and scrypt differ significantly (z = 2.13, p = .033) and PBKDF2
and scrypt differ significantly (z = 2.13, p = .033) while there is no statistically
significant difference between Argon2 and PBKDF2 (z = 0, p = 1.0). This indi-
cates that Argon2 clearly overtook scrypt, but due to the larger variance in the
number of Argon2 repositories created over the years no statistically significant
overall difference is evident between Argon2 and PBKDF2.

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

100

101

102

103

104

Nu
m

be
r o

f R
ep

os
ito

ry
 S

ea
rc

h
Hi

ts

Repository Search Hits by Year of Creation
argon2
pbkdf2
bcrypt
scrypt
yescrypt
vpn
video editing

Fig. 3. Repository search hits for various password hashing algorithms (2008-2024).

During the repository analysis, we found that 141 repositories offered multiple
hashing algorithms. The majority (93) implements exactly two functions (of the
five in the scope of this analysis), 33 offer three functions and 15 offer 4 functions.
From the possible 26 combinations, only 13 appear in our dataset. yescrypt
appears only in two of these 13 combination repos and is therefore excluded
from the following significance test. A chi-square goodness of fit test shows that
there is no clear evidence that the distribution differs from uniform distribution

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 15

(χ2(3) = 0.25, p = .969). Therefore, we did not find evidence that some of the
analysed hashing functions are overrepresented in combination repositories.

The code search had more uncertainties since the number of repositories was
estimated for search queries with more than 1,000 results based on the repo
redundancy quota in the accessible results. Table 3 shows that the determined
quotas clearly differ. Evidently, the estimated repository duplication quotas are
closer to the exactly calculated ones when the number of code search results
is smaller (below 3,500). This is plausible since the subset of 1,000 accessible
code search results will be more representative if the selection pool is smaller
(below 3,500 instead of more than 3,500). To ensure that the observed differ-
ences in repository duplication quotas are not systematically influenced by the
interplay between hashing method and the size of the result set, we perform a
chi-square test of independence, excluding yescrypt to avoid potential bias. The
nonsignificant result (χ2(6) = 8.36, p = .213) supports the validity of comparing
methods, indicating that the identified trends likely reflect genuine differences
rather than sampling artifacts. Overall, the results from the general code search
and the one segmented by programming languages supports the results from the
repository search as shown in Table 2. The repository search and simple code
search results generally followed a consistent pattern. However, PBKDF2 was an
exception to this trend, as the programming-segmented code search yielded more
PBKDF2 results than the simple code search. We could not identify a plausible
explanation for this anomaly. The other hash functions led to a smaller number
of estimated repos in the segmented code search since the redundancy quota
was more accurately calculated. The code search results support the repository
search results for the adoption of Argon2, confirming its growing prominence
among password hashing algorithms.

7.2 Parametrization over Time

During the data collection phase, we used the star count as a quality proxy
to focus on high quality repositories. We set the star count for at least 3 stars
to conduct the initial filtering. To test our assumption, we divided this initial
set of 253 repositories into four equal size classes: 3-4 stars, 5-10 stars, 11-30
stars and more than 30 stars. We created a contingency table with the star sets
and the number of productive and non-productive repositories that we filtered
in the following step. A chi-square independence test shows the distribution
is not independent (χ2(6) = 12.53, p = .006) and that higher star counts are
associated with less non-productive repositories. This supports our assumption of
the star count as a quality proxy. After extracting the parameter configurations
successfully from the selected 161 repositories (see 6.3), we noticed that the
configurations were clustered with the following most popular configurations:

– t = 3,m = 4096 KiB (33 times)
– t = 3,m = 65536 KiB (28 times),
– t = 2,m = 19456 KiB (11 times),
– t = 1,m = 65536 KiB (10 times),

16 Pascal Tippe and Michael P. Berner

– t = 2,m = 65536 KiB (9 times)

We attribute this especially to the default values of used libraries. We com-
pared the parameter strength by linearly extrapolating the OWASP Argon2 rec-
ommendations and classifying the extracted configurations as weaker or stronger.
Figure 4 shows the OWASP extrapolation and the observed respository config-
urations. 75 repositories were weaker and 86 stronger than the OWASP rec-
ommendations. To see the development over the years, we created a contin-
gency table shown in Table 4 and grouped the repository creation years 2013 -
2024 in three groups: before 2018, 2019-2021, 2022-2024. The grouping helped
to reach the minimum number of entries for the chi-square test and takes the
publication date of RFC 9106 and OWASP recommendations into account. A
chi-square independence test confirms that these factors are not independent
(χ2(2) = 8.42, p = .015). This shows an increase of parametrization strength
over time.

100 101 102 103 104 105

Time Cost (Iterations)

100

102

104

106

108

1010

M
em

or
y

Co
st

 (K
iB

)

Log-Log Plot of Time Cost vs Memory Cost
(Point Size Represents Frequency)

Legend
Frequency: 1
Frequency 10
RFC 9106 Recommendations
OWASP Recommendations (2023)
OWASP Extrapolation

Fig. 4. Log-log plot of time cost (t) versus memory cost (m). The size of each blue dot
represents the frequency of data points with a specific combination of t and m. The red
crosses represent OWASP recommendations, while the purple crosses represent RFC
9106 recommendations. The dashed red line extrapolates OWASP recommendations
using a linear regression in log-log space.

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 17

Table 4. Repository age and categorical strength of parameterization.

Repository Age

Parameterization ≤2018 2019–2021 2022–2024 Total
Strength

Weaker 38 (60.3%) 23 (41.1%) 14 (33.3%) 75 (46.6%)
Stronger 25 (39.7%) 33 (58.9%) 28 (66.7%) 86 (53.4%)

Total 63 (100.0%) 56 (100.0%) 42 (100.0%) 161 (100.0%)

7.3 Parametrization by Program Type

Table 5 shows the parametrization strength for the different software types.
Weaker configurations are more present for components while the configura-
tions are stronger for applications. A chi-square test confirms this hypothe-
sis by showing a statistically significant effect of the software type variable
(χ2(2) = 7.38, p = .007). When the applications are separated into sensitive
(file encryption, password managers) and normal password hashing applications,
there is no statistically significant effect (χ2(1) = 0.002, p = .967) between them.
So, the hypothesis that sensitive software programs use stronger parametriza-
tions could not be confirmed. To exclude effects from the star count on the
software type, we tested with a contingency table if there is a statistically sig-
nificant effect of the repository star count (divided in four equal sized groups)
on the software type (application vs. component) and determined no significant
effect (χ2(3) = 3.41, p = .332).

Table 5. Cross table: Software type x categorical strength of parameterization.

Parameterizations Sensitive
Application Application Component Total

Weaker 4 (26.7%) 6 (27.3%) 65 (52.4%) 75 (46.6%)
Stronger 11 (73.3%) 16 (72.7%) 59 (47.6%) 86 (53.4%)

Total 15 (100.0%) 22 (100.0%) 124 (100.0%) 161 (100.0%)

Additionally, we analysed how the parametrization is affected by the star
count. Surprisingly, stronger configurations dominate the repositories with lower
star counts (3-10), while repositories with more stars (more popular reposito-
ries) exhibit weaker configurations (see Table 6). A chi-square test confirmed
this effect as statistically significant (χ2(3) = 8.71, p = .033). While this seems
counterintuitive, we noticed that the star count (popularity) is tied to the age
as well. This hypothesis would fit to the finding from Subsection 7.2 that older
repositories exhibit weaker configurations than newer ones. Therefore, we tested
the influence of repository age on star count and confirmed with the chi-square

18 Pascal Tippe and Michael P. Berner

independence test that older repositories have a higher star count (χ2(6) =
32.53, p < .001). This is also intuitive since older projects have more time to
gain popularity and accrue stars. Finally, we tested the influence of repository
age on software type and found that there is a statistically significant effect such
that the number of components is higher for older repositories while the younger
repositories include more applications (χ2(2) = 20.25, p < .001). This weakens
the finding that components exhibit weaker configurations since the repository
age is a mitigating factor here as well, suggesting that the observed difference
may be more strongly associated with when repositories were created rather than
their functional purpose as components versus applications.

Table 6. Star categories and categorical strength of parameterization.

Repository Star Count

Parameterization 3–4 Stars 5–10 Stars 11–30 Stars >30 Stars Total
Strength

Weaker 13 (34.2%) 12 (35.3%) 28 (62.2%) 22 (50.0%) 75 (46.6%)
Stronger 25 (65.8%) 22 (64.7%) 17 (37.8%) 22 (50.0%) 86 (53.4%)

Total 38 (100.0%) 34 (100.0%) 45 (100.0%) 44 (100.0%) 161 (100.0%)

8 Discussion

8.1 Main Findings

Argon2’s security advantages over SHA-256 Our attack simulations vali-
date Argon2’s fundamental security advantage over SHA-256, even with modest
parameters. For synthetic datasets modeling modern password policies (Dsyn),
Argon2 (46 MiB) reduces compromise rates by 37.57% versus SHA-256 at $1
account budgets. However, memory allocation effectiveness exhibits diminishing
returns: while 2048 MiB configurations provided 23.3% (at $1) and 17.7% (at
$20) additional protection over 46 MiB, their 44.5×greater memory demands
impose impractical scaling costs for many systems. Crucially, no configuration
sufficiently mitigates risks for weak passwords, emphasizing that algorithm se-
lection cannot compensate for poor user credential practices.

Growing adoption trend Argon2 adoption has steadily increased since its
introduction in 2015, surpassing competing algorithms like scrypt and PBKDF2
in the number of new GitHub repositories created annually starting in 2018.
However, its adoption lags behind bcrypt, which remains the most widely im-
plemented password hashing algorithm likely due its older age and familiarity
of developers. Our analysis of over 161 manually reviewed repositories revealed
that Argon2 is present in a diverse range of software projects, with both appli-
cations (38 repositories) and components (124 repositories) incorporating it into

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 19

their cryptographic workflows. Interestingly, the frequency of Argon2’s coexis-
tence with other algorithms (e.g., bcrypt, PBKDF2, scrypt) in multi-algorithm
implementations underscores its growing acceptance as part of a broader cryp-
tographic toolbox. However, the absence of statistically significant overrepresen-
tation of any specific combinations suggests that Argon2 adoption is not yet
widespread enough to dominate as a preferred choice.

Parameter evolution Our analysis of Argon2 parameter configurations
in real-world implementations reveals a shift towards stronger configurations
over time. Before 2018, 60.3% of repositories adopted weaker-than-OWASP-
recommended settings, but this proportion decreased to 33.3% in repositories
created after 2022. This trend aligns with the publication of the RFC 9106
standard in 2021 and evolving OWASP guidelines, which have likely increased
awareness of the importance of using secure configurations. The observed clus-
tering of common configurations suggests a heavy reliance on default library
settings rather than deliberate customization by developers.

Context-depending Configuration Contrary to our expectations, sensi-
tive applications such as password managers and file encryption software did not
consistently implement stronger Argon2 parameter configurations compared to
general-purpose applications. While 73.3% of sensitive applications used stronger
settings than OWASP recommendations, this proportion was similar to general
application repositories (72.7%). This finding highlights unclear practices for
parameter selection, even among software with higher security stakes. Interest-
ingly, components (e.g., libraries and cryptographic bindings) exhibited weaker
parameterization (52.4% below OWASP standards), possibly due to the need to
balance performance and usability across diverse deployments. It is worth noting
that this correlates with older repositories implementing weaker configurations
on average and younger repositories increasingly being applications. Similarly,
repositories with a higher star count tend to implement weaker configurations
which is likely also connected to repository age.

8.2 Practical Recommendations

Our comprehensive analysis reveals that while Argon2 offers theoretical security
advantages, these are not fully realized in practice. To bridge this gap, we offer ac-
tionable recommendations. Argon2’s benefits are amplified when combined with
robust user passwords. Studies indicate that password meters and password poli-
cies significantly increase password strength, aiding users in creating more secure
credentials [12,17]. Developers should implement strength estimation tools, en-
force password policies, and integrate with techniques like password blacklisting
to ensure users generate stronger passwords. Facilitating secure implementation
requires simplifying the developer experience. Integrating comprehensive docu-
mentation and automated parameter selection tools into cryptographic libraries
can increase adoption [1]. Providing sane default configurations (OWASP and
RFC 9106 recommendations) directly within libraries streamlines the process,
reducing configuration errors. Additionally, automated checks in vulnerability

20 Pascal Tippe and Michael P. Berner

scanners or compilers could flag weak settings, ensuring password-hash harden-
ing remains a priority. Argon2 parameters may create a configuration challenge
for some developers. Implementing adaptive benchmarking tools, as noted in
some repositories, automates parameter selection tailored to local environments.
To protect servers from potential denial-of-service attacks resulting from inten-
sive hash computation, partial client-side hashing can be considered. Clients
precompute their passwords with Argon2 before transmitting the resulting hash
to the server, which then performs fast hashing functions [11]. While OWASP
suggests a conservative 46 MiB of memory on the client side, current devices
often possess capabilities to accommodate higher allocations, allowing for more
robust defense multipliers without compromising usability.

8.3 Limitation and Future Work

The economic models for hash computation costs use cryptocurrency mining
practices as a proxy for large-scale computational attacks. While this provides
a validated cost structure, it does not fully capture the nuances of different
attackers that can hardly compete with large centralized mining pools. Us-
ing cryptocurrency mining as a proxy for attacker costs introduces uncertainty
into our budget-scenario analyses, which could systematically underestimate the
true protection levels afforded by Argon2 in production environments. Also,
the used budget may vary significantly: While $1 might be appropriate for a
low-relevance credentials, accounts with cryptocurrency assets carry significantly
more wealth that in turn justifies substantially increased attack budgets. The
password datasets we employed (RockYou and Dsyn) serve as benchmarks for
password strength but carry inherent limitations. RockYou is decades old and
its password distribution might not accurately reflect current practices. While
our synthetic dataset addresses this by doubling bit-strength values, it remains
an approximation. Real-world password behavior, influenced by contemporary
policies, user awareness, and cultural factors, might deviate significantly from
our modeled datasets.

Our real-world study focuses on open-source projects hosted on GitHub. This
selection bias may skew our results towards projects developed in a particular
community culture, potentially missing trends in proprietary software or reposi-
tories on alternative platforms. The reliance on GitHub’s prominence means that
our findings might underestimate the adoption and implementation trends of Ar-
gon2 in closed-source or enterprise environments, where different regulations and
development practices could influence cryptographic choices. Moreover, devel-
oper motivations for starring repositories are heterogeneous (e.g., bookmarking,
acknowledgment of quality, personal interest), adding variability to our quality
proxy metric. Additionally, the manual extraction process restricted our param-
eter analysis to 161 high-star repositories, potentially missing patterns present
in a broader sample. While we believe this selection provides a representative
set of quality implementations, broader sampling might reveal different distribu-
tions in parameter configurations. Addressing these limitations requires further
research, potentially incorporating a broader range of software implementations,

Evaluating Argon2 Adoption and Effectiveness in Real-World Software 21

cost models derived from real-world attackers and conducting user studies with
programmers to explore Argon2 transition barriers.

9 Conclusion

This research evaluated Argon2’s cryptographic effectiveness for password hash-
ing and relevant implementation trends in real-world software environments.
Through attack simulations we demonstrated that Argon2 provides substan-
tial security advantages over SHA-256, with the 2048 MiB RFC 9106 config-
uration reducing compromise rates by 46.99% compared to SHA-256 at $20
attack budgets in datasets modeling modern password policies. The OWASP-
recommended configuration offers less protection for robust user passwords com-
pared to RFC 9106 values. However, even the strongest Argon2 configurations
cannot compensate for weak user passwords, demonstrating the need for robust
user passwords. Beyond technical performance, the analysis of GitHub reposi-
tories revealed that real-world adoption of Argon2 has grown steadily, surpass-
ing other modern algorithms like scrypt and PBKDF2 in new implementations
since 2018. Despite this, bcrypt remains the dominant choice, and parameter
configurations in many repositories still fall short of OWASP and RFC 9106 rec-
ommendations. Moreover, parameter strength has improved over time, aligning
with updated standards and adoption, but a significant number of implementa-
tions have weaker-than-recommended configurations. Sensitive applications do
not consistently implement stronger Argon2 configurations compared to oth-
ers, challenging assumptions about the correlation between software security
demands and cryptographic diligence. These results suggest that while Argon2
holds significant cryptographic advantages for password hashing, its real-world
security effectiveness depends on proper parameterization and user practices.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Acar, Y., Backes, M., Fahl, S., Garfinkel, S.L., Kim, D., Mazurek, M.L., Stransky,
C.: Comparing the Usability of Cryptographic APIs. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 154–171.
IEEE Computer Society (2017)

2. Biryukov, A., Dinu, D., Khovratovich, D., Josefsson, S.: Argon2 Memory-Hard
Function for Password Hashing and Proof-of-Work Applications. RFC 9106, IRTF
(2021), https://www.rfc-editor.org/info/rfc9106

3. Bitbo: Bitcoin Market and Mining Statistics. https://bitbo.io (2025), accessed:
2025-02-20

4. BitInfoCharts: Monero (xmr) statistics. https://www.bitinfocharts.com/
monero/ (2025), accessed: 2025-02-20

5. Blocki, J., Harsha, B., Zhou, S.: On the Economics of Offline Password Cracking.
In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 853–871 (2018)

https://www.rfc-editor.org/info/rfc9106
https://bitbo.io
https://www.bitinfocharts.com/monero/
https://www.bitinfocharts.com/monero/

22 Pascal Tippe and Michael P. Berner

6. Bonneau, J.: The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords. In: 2012 IEEE Symposium on Security and Privacy. pp. 538–
552 (2012)

7. Borges, H., Tulio Valente, M.: What’s in a GitHub Star? Understanding Repository
Starring Practices in a Social Coding Platform. Journal of Systems and Software
146, 112–129 (2018)

8. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password Strength: An Empirical Anal-
ysis. In: Proceedings of the 29th Conference on Information Communications. pp.
983–991. INFOCOM’10, IEEE Press (2010)

9. Florencio, D., Herley, C.: A Large-Scale Study of Web Password Habits. In: Pro-
ceedings of the 16th International Conference on World Wide Web. pp. 657–666.
WWW ’07, Association for Computing Machinery, New York, NY, USA (2007)

10. GitHub, Inc.: Github. https://github.com (2025), accessed: 2025-01-28
11. Harsha, B., Blocki, J.: Just In Time Hashing. In: 2018 IEEE European Symposium

on Security and Privacy (EuroS&P). pp. 368–383 (2018)
12. Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N.,

Cranor, L.F., Egelman, S.: Of Passwords and People: Measuring the Effect of
Password-Composition Policies. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. pp. 2595–2604. CHI ’11, Association for Com-
puting Machinery, New York, NY, USA (2011)

13. Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., Smith, M.: "If you
want, I can store the encrypted password": A Password-Storage Field Study with
Freelance Developers. In: Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems. pp. 1–12. CHI ’19, Association for Computing Ma-
chinery, New York, NY, USA (2019)

14. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) Advances in Cryptology - CRYPTO 2003. pp. 617–630. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003)

15. OWASP: Password Storage Cheat Sheet. https://github.com/OWASP/
CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_
Sheet.md (2023), accessed: 2025-02-02

16. tevador: RandomX: Proof of work algorithm based on random code execution.
https://github.com/tevador/RandomX (2023), accessed: 2025-01-10

17. Ur, B., Kelley, P.G., Komanduri, S., Lee, J., Maass, M., Mazurek, M.L., Passaro, T.,
Shay, R., Vidas, T., Bauer, L., Christin, N., Cranor, L.F.: How Does Your Password
Measure Up? The Effect of Strength Meters on Password Creation. In: Proceedings
of the 21st USENIX Conference on Security Symposium. p. 5. Security’12, USENIX
Association, USA (2012)

18. Weir, M., Aggarwal, S., Medeiros, B.d., Glodek, B.: Password Cracking Using Prob-
abilistic Context-Free Grammars. In: Proceedings of the 2009 30th IEEE Sympo-
sium on Security and Privacy. pp. 391–405. SP ’09, IEEE Computer Society, USA
(2009)

19. Wheeler, D.L.: Zxcvbn: Low-Budget Password Strength Estimation. In: Proceed-
ings of the 25th USENIX Conference on Security Symposium. pp. 157–173. SEC’16,
USENIX Association, USA (2016)

https://github.com
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/tevador/RandomX

	Evaluating Argon2 Adoption and Effectiveness in Real-World Software

