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Quantum secret sharing (QSS) enables secure distribution of information among multiple par-
ties but remains vulnerable to noise. We analyze the effects of bit-flip, phase-flip, and amplitude
damping noise on the multiparty QSS for classical message (QSSCM) and secret sharing of quantum
information (SSQI) protocols proposed by Zhang et al. (Phys. Rev. A, 71:044301, 2005). To scale
down these effects, we introduce an efficient quantum error correction (QEC) scheme based on a
simplified version of Shor’s code. Leveraging the specific structure of the QSS protocols, we reduce
the qubit overhead from the standard 9 of Shor’s code to as few as 3 while still achieving lower
average error rates than existing QEC methods. Thus, our approach can also be adopted for other
single-qubit-based quantum protocols. Simulations demonstrate that our approach significantly
enhances the protocols’ resilience, improving their practicality for real-world deployment.

I. INTRODUCTION

Consider a national government operating a secure
server that hosts highly sensitive data vital to national
security. Any mishandling or unauthorized access to this
information could lead to catastrophic consequences, un-
derscoring the risk of entrusting the server’s passkey to a
single individual. This prompts a fundamental question:
how can the passkey be stored securely? A promising so-
lution is to divide the passkey among multiple trusted
personnel, such that only a designated subset can collab-
oratively reconstruct and access it. Implementing this
approach necessitates robust protocols for both secure
distribution and reliable reconstruction of the key. Secret
sharing protocols [1–6] offer a well-established framework
to address this challenge.

Traditional secret sharing schemes derive their secu-
rity from the computational hardness of certain math-
ematical problems, including polynomial interpolation,
integer factorization, and discrete logarithms [4, 5, 7].
However, the advent of quantum computing poses a sig-
nificant threat to these classical foundations, as quantum
algorithms are capable of efficiently solving problems that
underpin the security of these schemes [8, 9].

Quantum Secret Sharing (QSS)[10–17], by contrast,
harnesses the principles of quantum mechanics—such as
superposition and entanglement—to distribute secrets in
a fundamentally different manner. Instead of depending
on the computational hardness of mathematical prob-
lems, QSS leverages intrinsic quantum properties[18, 19]
to provide enhanced security. This makes QSS partic-
ularly compelling in the emerging quantum era, where
conventional cryptographic methods may be rendered ob-
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solete by powerful quantum algorithms.
In a QSS protocol, the secret is encoded into multi-

ple quantum bits (qubits) and distributed among par-
ticipants. Due to the nature of quantum mechanics, a
participant holding only one share cannot extract any
meaningful information about the secret without disturb-
ing the quantum system, making unauthorized observa-
tion or interception detectable [19, 20]. To recover the
original secret, a predefined minimum number of partic-
ipants must collaborate and perform coordinated quan-
tum operations on their respective shares. A QSS scheme
that distributes the secret among n parties and requires
at least k of them to reconstruct it is referred to as an
(n, k)-QSS scheme.
Quantum noise [21–23] poses a major challenge to QSS,

as it can disturb the fragile quantum states that the sys-
tem relies on [22, 24, 25]. Arising from the fundamental
principles of quantum mechanics, such as uncertainty and
decoherence, quantum noise introduces fluctuations that
affect the transmission and measurement of quantum in-
formation. In the context of QSS, such noise can degrade
the quality of the distributed qubit shares, making it dif-
ficult for participants to retrieve a sufficient number of
intact shares for successful secret reconstruction. If too
many shares are corrupted, the protocol may fail to meet
the threshold required, rendering the secret unrecover-
able [20].
A key advantage of QSS is its inherent ability to detect

eavesdropping: any attempt by an unauthorized party to
intercept or measure the quantum shares typically intro-
duces detectable disturbances [20, 26]. However, exces-
sive quantum noise can obscure these disturbances, mak-
ing it difficult to distinguish between natural errors and
deliberate interference [20]. This compromises one of the
core security features of QSS and highlights the need for
robust noise mitigation strategies.
To mitigate the effects of quantum noise, a range

of strategies has been developed [27–30], among which
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quantum error correction (QEC) techniques play a cen-
tral role [29, 31–38]. QEC allows a quantum system to
detect and correct errors introduced by noise, thereby
preserving the integrity of the quantum information. In
the context of QSS, these techniques are essential for en-
suring that the distributed qubit shares remain usable.
By integrating QEC, QSS protocols become significantly
more resilient to noise, enabling authorized participants
to reliably reconstruct the secret even in the presence of
environmental disturbances.

The fundamental principle of QEC is to encode quan-
tum information in a way that distributes it across multi-
ple physical qubits. This redundancy enables the system
to detect and correct errors affecting individual qubits
without compromising the encoded information. For in-
stance, a single logical qubit, representing a unit of quan-
tum information, can be encoded into a group of physical
qubits. If one of these qubits is altered by noise, the error
can be identified through specific measurements on the
others, allowing the original quantum state to be accu-
rately restored.

One of the most notable quantum error correction
codes is Shor’s code [31], which was the first to demon-
strate that quantum information could be safeguarded
from errors by using ancillary qubits. Shor’s code en-
codes a single logical qubit into nine physical qubits, al-
lowing it to correct arbitrary errors affecting any one of
these qubits.

Our Contributions. In this article, we explore mul-
tiparty Quantum Secret Sharing of classical messages
(QSSCM) and secret sharing of quantum information
(SSQI) protocols [11] proposed by Zhang et al., which
utilize single-qubit states. These protocols are straight-
forward to implement, as they do not involve entangle-
ment generation or multi-qubit quantum operations, ex-
cept for the teleportation step in the SSQI protocol. In
these protocols, each participant performs simple Pauli
or Hadamard operations before forwarding the qubit to
the next party. However, the transmission channel be-
tween parties may introduce noise, potentially corrupting
the quantum state. To mitigate this, we employ Shor’s
9-qubit code for error protection. By exploiting the spe-
cific structure of the protocol, we demonstrate that cer-
tain parts of the code can be bypassed. In particular, we
only require the bit-flip and phase-flip error correction
codes, reducing the qubit overhead from 9 to 3. In gen-
eral. such 3-qubit abridged version of Shor’s code does
not correct amplitude damping noise. However, here it
works due to the structure of the QSS protocol. This
modified 3-qubit code can also be used for other single-
qubit-based QSS [13, 39, 40], quantum key distribution
(QKD) [41–44], quantum secure direct communication
(QSDC) [45–48] and quantum authentication (QA) [49–
53] protocols. Our results show that this modified code
effectively minimizes errors in the reconstructed secret.
Moreover, this modified code performs better than the
existing QEC codes.

Paper Outline. In Section II, we briefly revisit the multi-

party QSSCM protocol provided by Zhang et al. Then,
we discuss the quantum noise models and the QEC codes
we considered in Section III. The effect of noise on the
above QSSCM protocol has been discussed in Section IV.
The reduction of error after using QEC is shown in Sec-
tion V. In Section VI, we discuss the SSQI protocol under
noise and effect of QEC. Finally, in Section VII, we con-
clude our work.

II. REVISITING MULTIPARTY QSSCM

The QSSCM protocol [11] designed by Zhang et al. is
based on a previously developed protocol for quantum
secure direct communication by Deng and Long [45]. In
this scheme, a sender, Alice, splits her secret into en-
crypted shares and distributes them to different receivers.
Each receiver applies certain quantum operations to en-
sure security before passing the message along. The re-
ceivers can only recover the full message by working to-
gether, ensuring that no individual can access it alone.
Thus, it is an (n, n)-QSS protocol.
The multiparty QSSCM protocol [11] is provided as

Algorithm 1. Note that the states produced by Bob in
step 2, are the basis elements of the computational ba-
sis and the Hadamard basis. Also, all the operations
the participants apply are either commutative or anti-
commutative, producing a global phase ±1. Therefore,
ignoring the global phase, the ordering of the operations
may be changed in step 6 to get the Alice’s secret. Thus,
after applying the operations, the state of the qubits
would become UA|0⟩ up to global phase ±1, where UA

is the operation applied by Alice. Now, by measuring
these qubits on a computational basis, Bob and Charlie
can get the operation applied by Alice, revealing Alice’s
secret. Mathematically, the protocol grows as follows.

U†
BU

†
C · · ·U†

ZUAUZ · · ·UCUB |0⟩

=± U†
BU

†
C · · ·UAU

†
ZUZ · · ·UCUB |0⟩

= · · · = ±U†
BUAUB |0⟩

=± UAU
†
BUB |0⟩ = ±UA|0⟩, (1)

where, UA, UB and UC are the unitary operations by Al-
ice, Bob and Charlie, respectively.
Although the protocol works perfectly in the ideal sce-

nario, the noise in the communication channels corrupts
the qubits and makes it hard for the receivers to recon-
struct the shared secret. In Section IV and V, we discuss
the effect of channel noises on the protocol and how to
reduce the error in the reconstructed secret using QEC.

III. QUANTUM NOISE AND ERROR
CORRECTION

Quantum noise makes any quantum protocol hard to
implement [22]. It changes the state of a qubit and leads
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ALGORITHM 1. Multiparty QSSCM Scheme

1: Sender: Alice, Receiver: Bob, Charlie, Dave,. . . , Zach.
2: Bob prepares a batch of single qubits {|ψi⟩}i randomly from {|0⟩, |1⟩, |+⟩, |−⟩} and sends the qubits to the next receiver,

Charlie.
|ψi⟩ = UB |0⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩}.

3: After receiving these qubits, for each qubit, Charlie randomly chooses a unitary operator UC from {I, σy, H} and applies
this operator to the qubit. Here, I is the identity operator |0⟩⟨0| + |1⟩⟨1|, σy is Pauli Y operator |0⟩⟨1| − |1⟩⟨0| and H is
the Hadamard operator 1√

2
[|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|]. After this encryption, she sends the batch to Dave.

|ψi⟩ → UC |ψi⟩, UC ∈ {I, σy, H}.

4: Dave randomly encrypts the encoded photons using the same method as Charlie, then forwards them to the next receiver.
Each participant repeats this process until Zach completes his encryption. Once finished, Zach sends the fully encrypted
photons to Alice.

UC |ψi⟩ → UZ · · ·UDUC |ψi⟩, UZ , · · · , UD ∈ {I, σy, H}.
5: Alice performs some security check. Upon success, she discards the qubits used in security checking, and encodes her secret

by applying unitary UA, which is either I (for 0) or σy (for 1), on the remaining qubits. Finally, she forwards these qubits
to Charlie.

UD · · ·UC |ψi⟩ → UAUD · · ·UC |ψi⟩, UA ∈ {I, σy}.
6: If Bob and Charlie collaborate, they can reconstruct the secret. First, they apply the inverse of their respective operations

in step 2, 3 and 4. Then they measure the state in computational basis {|0⟩, |1⟩} to get the secret.

UAUD · · ·UC |ψi⟩ → U†
BU

†
C · · ·U†

ZUAUZ · · ·UCUB |0⟩ = UA|0⟩.

to an erroneous result at the end. Several QEC codes [31,
36, 54–64] to protect quantum information from noise.

A. Noise Models

There are several noise models [20, 22, 65, 66] avail-
able for quantum channels. However, as Pauli X (σx =
|0⟩⟨1| + |1⟩⟨0|) and Pauli Z (σz = |0⟩⟨0| − |1⟩⟨1|), along
with I and iσy = iσzσx, form a basis for single qubit
states, most of the single qubit noises, including depolar-
izing noise, can be easily transformed into a combination
of bit-flip and phase-flip noise [22]. So, in this work,
we are going to consider three common noises: bit-flip,
phase-flip and amplitude damping.

a. Bit-flip Noise A bit-flip noise flips a state in the
computational basis, i.e., it interchanges |0⟩ and |1⟩ up
to some probability, called bit-flip error probability. The
Kraus operators [67] of a bit-flip channel Cb with bit-

flip error probability pCb is given by
{√

1− pCb I,
√
pCbσx

}
.

The action of the channel on some density matrix ρ is as
follows

Cb(ρ) = (1− pCb )ρ+ pCbσxρσx. (2)

b. Phase-flip Noise A phase-flip noise flips the rela-
tive phase of a state in computational basis up to some
probability, called phase-flip error probability. This er-
ror interchanges the states |+⟩ and |−⟩. The Kraus op-
erators of a phase-flip channel Cp with phase-flip error

probability pCp is given by
{√

1− pCpI,
√
pCpσz

}
and the

corresponding channel action on some density matrix ρ

is as follows

Cb(ρ) = (1− pCb )ρ+ pCbσzρσz. (3)

c. Amplitude Damping Noise Amplitude damping
noise represents energy loss in a quantum system. It
models the process where a qubit interacts with its en-
vironment and loses energy. This type of noise is par-
ticularly relevant in systems like superconducting qubits
and optical quantum communication, where energy dis-
sipation is a major concern [68, 69]. Mathematically, the
action of an amplitude damping channel Ca with damp-
ing strength γ ∈ [0, 1] on some density matrix ρ can be
written as

Ca(ρ) = E0ρE
†
0 + E1ρE

†
1, (4)

where the Kraus operators are given by

E0 =

(
1 0
0

√
1− γ

)
, E1 =

(
0

√
γ

0 0

)
. (5)

Amplitude damping noise is crucial in quantum error
correction and fault-tolerant quantum computing as it
represents a primary source of decoherence in real-world
quantum devices [68].

B. Error-correcting Codes

For perfect protection of a qubit from an arbitrary
noise, we require at least five qubits, due to quantum sin-
gleton bound [70]. Although, some four- and three-qubit
codes have been proposed [56, 57] to protect a qubit from
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amplitude damping noise, they are classified as approx-
imate code, where error correction happens up to some
threshold. Here we use the Shor’s code [8], five-qubit
perfect code [54] and four-qubit approximate code [56].
By exploiting the structure of the QSSCM protocol, we
show that we can use the bit-flip and phase-flip codes
separately to get 3-qubit repetition code for perfect pro-
tection of single qubit error. We also show that this 3-
qubit repetition code outperforms the 4-qubit approxi-
mate code and the smallest perfect code of 5 qubits.

a. Shor’s Code Shor’s code [31], introduced by Pe-
ter Shor in 1995, was one of the first quantum error cor-
rection codes. It protects a single logical qubit from ar-
bitrary errors (bit-flip, phase-flip, and combinations of
both) by encoding it into nine physical qubits. The code
is composed of two parts as follows.

Bit-flip error correction: The first step of Shor’s
code involves encoding the logical qubit into three phys-
ical qubits. These qubits are encoded using a repetition
code, where each qubit is copied three times to correct

for bit-flip errors.
Phase-flip error correction: After the bit-flip error

correction, the next step involves encoding each of the
three qubits into another set of three physical qubits,
using a three-qubit phase-flip code, which consists of a
layer of Hadamard operation for change of basis, then
copying the states three times, and finally another layer
of Hadamard operation to go back to the original basis
(or, in other words, copying each qubit three times in
Hadamard basis). This helps to protect the information
from phase-flip errors.
Together, these two layers of encoding (bit-flip and

phase-flip corrections) allow Shor’s code to protect a log-
ical qubit from errors in both the bit and phase, as well
as combinations of both, making it more robust against
noise.
b. Five-qubit Perfect Code Five-qubit code [54] is

the smallest QEC code for perfect error correction. As
the name suggests, the five-qubit code [36] encodes a sin-
gle logical qubit using five physical qubits. The encoded
logical qubits are as follows.

|0L⟩ =
1

2
√
2
(−|00000⟩+ |00110⟩+ |01001⟩+ |01111⟩ − |10011⟩+ |10101⟩+ |11010⟩+ |11100⟩),

|1L⟩ =
1

2
√
2
(−|11111⟩+ |11001⟩+ |10110⟩+ |10000⟩+ |01100⟩ − |01010⟩ − |00101⟩ − |00011⟩).

(6)

For QSSCM protocol, Bob performs this encoding op-
eration on his qubits and sends the encoded states to
Charlie. Charlie applies random logical operators from
{IL, σyL, HL} corresponding to the physical operators
{I, σy, H}. Then Charlie sends the sequence to the next
party. Finally, after performing security checks, Alice ap-
plies logical identity IL for secret bit 0 and logical Pauli-Y

σyL for secret bit 1 and sends the sequence to Charlie.
Upon receiving the sequence, all the receivers apply the
logical operations they applied before Alice’s encoding.
At the end, the receivers perform the decoding, which

is simply the inverse of the initial encoding (6), followed
by the state recovery operation, whose Kraus operators
{Rk}k [71] are given by

R0 = |00⟩⟨00| ⊗ σ0 ⊗ |00⟩⟨00|, R1 = |00⟩⟨00| ⊗ σz ⊗ |00⟩⟨01|,
R2 = |00⟩⟨00| ⊗ σ0 ⊗ |00⟩⟨10|, R3 = |00⟩⟨00| ⊗ σ0 ⊗ |00⟩⟨11|,
R4 = |00⟩⟨01| ⊗ σ0 ⊗ |00⟩⟨00|, R5 = |00⟩⟨01| ⊗ σz ⊗ |00⟩⟨01|,
R6 = |00⟩⟨01| ⊗ σx ⊗ |00⟩⟨10|, R7 = |00⟩⟨01| ⊗ σx ⊗ |00⟩⟨11|,
R8 = |00⟩⟨10| ⊗ σ0 ⊗ |00⟩⟨00|, R9 = |00⟩⟨10| ⊗ σx ⊗ |00⟩⟨01|,
R10 = |00⟩⟨10| ⊗ σz ⊗ |00⟩⟨10|, R11 = |00⟩⟨10| ⊗ σx ⊗ |00⟩⟨11|,
R12 = |00⟩⟨11| ⊗ σz ⊗ |00⟩⟨00|, R13 = |00⟩⟨11| ⊗ σxσz ⊗ |00⟩⟨01|,
R14 = |00⟩⟨11| ⊗ σx ⊗ |00⟩⟨10|, R15 = |00⟩⟨11| ⊗ σz ⊗ |00⟩⟨11|,

where σ0 is the identity operator and σx, σz are the Pauli-
X and Pauli-Z operators, respectively. After discarding
the ancillary qubits and measuring the main qubit in the

computational basis, they get the secret shared by Alice.

c. Four-qubit Approximate Code The four-qubit ap-
proximate quantum error-correcting code [56] introduced
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by Leung et al. is designed to protect against amplitude
damping errors, which commonly occur in realistic quan-
tum systems due to energy loss. It encodes a single logical
qubit into four physical qubits as

|0L⟩ =
1√
2
(|0000⟩+ |1111⟩),

|1L⟩ =
1√
2
(|0011⟩+ |1100⟩).

(7)

Unlike conventional perfect QEC codes, this code does
not correct all possible single-qubit errors exactly, but
instead offers approximate correction optimized for am-
plitude damping noise. The recovery process involves
detecting which qubit experienced a damping event and
applying a conditional unitary to restore the state, re-
sulting in high-fidelity recovery despite the approximate
nature. This demonstrates that relaxing the strict crite-
ria of perfect quantum error correction can lead to more
efficient codes for specific noise models.

IV. EFFECTS OF NOISE ON MULTIPARTY
QSSCM PROTOCOL

Quantum states are fragile to noise. Therefore, study-
ing noises and investigating their actual effect on a pro-
tocol is crucial for implementing the protocol.

A. Effect of noise on 3-party QSSCM Protocol

There are three different channels, namely, Bob to
Charlie, Charlie to Alice and Alice to Charlie, in the

QSSCM protocol we are considering here. Any of these
three channels may get affected by the noise. Here, we
consider the bit-flip, phase-flip and amplitude damping
noise.

a. Bit-flip and Phase-flip Noise If a state is pre-
pared on a computational (Hadamard respectively) ba-
sis, from the discussion in Section IIIA, we can easily
see that the phase-flip (bit-flip respectively) noise does
not affect it. Therefore, over each channel, depending on
the transmitted state, there is only one effective error,
either bit-flip or phase-flip. Let us assume pB∗ , p

C
∗ and pA∗

are the error probabilities for the channels CB from Bob
to Charlie, CC from Charlie to Alice and CA from Alice
to Charlie, respectively. Here, ∗ in the suffix denotes the
bit-flip or phase-flip (whichever is applicable). Therefore,
a state ρ becomes

C(ρ) = (1− pC∗)ρ+ pC∗ρ
′ (8)

under the channel C, where ρ′ is the state obtained by
a bit-flip or phase-flip (whichever is applicable) error on
the state ρ. Note that, for any operator U applied by
Bob, Charlie or Alice on a prepared state ρ,

Uρ′ = (Uρ)′ (9)
holds, up to some global phase ±1. Thus, if Bob prepares
a state as ρ, after going through all three channels, the
final state (up to some global phase) would be

CA(CC(CB(ρ))) =CA(CC((1− pB∗ )ρ+ pB∗ ρ
′)) = CA((1− pC∗ )

[
(1− pB∗ )ρ+ pB∗ ρ

′]+ pC∗
[
(1− pB∗ )ρ

′ + pB∗ (ρ
′)′
]
)

=CA((1− pC∗ )
[
(1− pB∗ )ρ+ pB∗ ρ

′]+ pC∗
[
(1− pB∗ )ρ

′ + pB∗ ρ
]
)

=CA(
[
(1− pC∗ )(1− pB∗ ) + pC∗ p

B
∗
]
ρ+

[
(1− pC∗ )p

B
∗ + pC∗ (1− pB∗ )

]
ρ′)

=
[
(1− pA∗ )(1− pC∗ )(1− pB∗ ) + (1− pA∗ )p

C
∗ p

B
∗ + pA∗ (1− pC∗ )p

B
∗ + pA∗ p

C
∗ (1− pB∗ )

]
ρ

+
[
(1− pA∗ )(1− pC∗ )p

B
∗ + (1− pA∗ )p

C
∗ (1− pB∗ ) + pA∗ (1− pC∗ )(1− pB∗ ) + pA∗ p

C
∗ p

B
∗
]
ρ′. (10)

Here, the operations by Bob, Charlie and Alice have been
ignored due to (9), we can think that all the noise acts
before the unitary operations. Note that (10) is symmet-
ric for pA∗ , p

B
∗ and pC∗ . This implies that all three channels

CA, CB and CC act similarly under bit-flip and phase-flip
noise.

For simplicity, let us assume pA∗ = pC∗ = pB∗ = p. Then,
from (10), the probability of error for a single state will
be

e1 = 3p(1− p)2 + p3 = 3p(1− 2p) +O(p3). (11)

b. Effect of Amplitude Damping Noise We can see
that the amplitude damping channel Ca does not com-
mute or anticommute with the operations UA, UB and
UC . In this case, the final state would be

U†
BU

†
CC

A
a

(
UACC

a

(
UCCB

a

(
UB |0⟩⟨0|U†

B

)
U†
C

)
U†
A

)
UCUB .

(12)
There are 4 choices for UB , 3 choices for UC and 2 choices
for UA, producing 4∗3∗2 = 24 different final states, each
with probability 1

24 . Note that if the channels are con-
sidered as noise-free, these states would be either |0⟩⟨0|
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or σy|0⟩⟨0|σy = |1⟩⟨1|.
The probability of average error under the amplitude

damping channel is thus given by

ea1 =
1

12

(
3 + 8γ − 7γ2 + 2γ3 − 2(1− γ)3/2 − (1− γ)5/2

)
=

27

24
γ − 77

96
γ2 +O(γ3). (13)

The probabilities of errors for all 24 cases are explicitly
mentioned in Table I.

FIG. 1. Error on secret ea1,g as function (14) of damping
strengths γA, γB and γC for channels from Alice to Charlie,
from Bob to Charlie and from Charlie to Alice, respectively.
Observe that γA and γC affect similarly, while γB effects dif-
ferently.

For a more general case, when the damping strengths
of the channels CA, CB and CC are given by γA, γB and
γC , respectively, the probabilities of errors are given by

ea1,g =
(
4 + 2(γA + γB + γC)− 2(γAγB + γBγC + γCγA)

+ 2γAγBγC − (1− γA)(1− γC)
√
1− γB

− (1− γB)
√
(1− γA)(1− γC)

− 2
√
(1− γA)(1− γB)(1− γC)

)
/12. (14)

The probabilities of errors for different cases can be found
in Table II. From (14), we can see that the effects of γA
and γC are the same. However, γB creates more error
than γA and γC . The effect of γA, γB and γC can be seen
in Fig. 1.

B. Effect of noise on n-party QSSCM Protocol

There are n different channels in n-party QSSCM pro-
tocol. As we have already seen, all of these n channels
act similarly under bit-flip and phase-flip noise; for sim-
plicity, let us consider that they all have the same error

probability p. Then generalizing (10) and (11), we get
the error for a single qubit as

eg1 =
∑

i is odd ≤n

(
n

i

)
pi(1− p)n−i

=
1

2
((1− p+ p)n − (1− p− p)n)

=
1

2
(1− (1− 2p)n) . (15)

FIG. 2. The plots of the error eg1 as a function (15) of the
qubit error probability p are shown for n = 3, 4, 5, and 6.
For protocols involving an even number of channels, a higher
error probability increases the likelihood of an even number
of flips, which can paradoxically lead to a reduction in the
overall error. However, this does not happen for odd number
of channels, leading the error on secret to 1, as qubit error
probability reaches to 1.

Fig. 2 shows the plots of the error eg1 against error prob-
ability p for n = 3, 4, 5 and 6. Note that even number of
flips result in no error. Therefore, if the error probabil-
ity is high, the probability of even number of flips is also
high for even numbers of channels, reducing the overall
error.

V. IMPROVEMENT OF RESULT USING QEC

Quantum error correction (QEC) is a crucial technique
in quantum computing designed to protect quantum in-
formation from noise and errors that arise due to im-
perfections in quantum systems. Unlike classical error
correction, where bits are used to represent information,
quantum error correction must account for both bit-flip
and phase-flip errors, as well as more complex quantum
errors that affect quantum states, such as coherence.
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TABLE I. Errors in the final output generated by Bob and Charlie, under amplitude damping noise with damping strength γ,
for different operations applied by Alice, Bob and Charlie. Each of these cases may appear with probability 1/24.

Bob’s State Charlie’s Operation Alice’s Secret Error Probability

|0⟩⟨0|

I
0 0

1 γ

σy
0 2γ − γ2

1 γ − γ2

H
0 γ/2

1 γ/2

|1⟩⟨1|

I
0 3γ − 3γ2 + γ3

1 2γ − 3γ2 + γ3

σy
0 γ − 2γ2 + γ3

1 2γ − 2γ2 + γ3

H
0 (3γ − 2γ2)/2

1 (3γ − 2γ2)/2

|+⟩⟨+|

I
0

(
1− (1− γ)3/2

)
/2

1
(
1− (1− γ)3/2

)
/2

σy
0

(
1− (1− γ)3/2

)
/2

1
(
1− (1− γ)3/2

)
/2

H
0

(
1− 2γ + γ2 − (1− γ)5/2

)
/2

1
(
1 + γ2 − (1− γ)5/2

)
/2

|−⟩⟨−|

I
0

(
1− (1− γ)3/2

)
/2

1
(
1− (1− γ)3/2

)
/2

σy
0

(
1− (1− γ)3/2

)
/2

1
(
1− (1− γ)3/2

)
/2

H
0

(
1 + 2γ − γ2 − (1− γ)5/2

)
/2

1
(
1− γ2 − (1− γ)5/2

)
/2

Average Error
(
3 + 8γ − 7γ2 + 2γ3 − 2(1− γ)3/2 − (1− γ)5/2

)
/12

A. Shor’s Code as Repetition Code

Shor’s code is not only very easy to implement but it
is also efficient for the QSSCM code we are considering
here. As we already discussed in Section IVA, we do not
require to combine the bit-flip and phase-flip correction
together, rather we apply bit-flip correction for the states
|0⟩ and |1⟩ and phase-flip correction for the states |+⟩
and |−⟩. Therefore, we only require to repeat each state
three times, reducing the resource requirement for Shor’s
code from 9 to 3. This also makes the code resource
efficient compared to other QEC codes, where we can-
not separate bit-flip and phase-flip correction, requiring
at least 5 physical qubits due to the quantum singleton
bound [70]. As our modified Shor’s code is only repeating
the states, we would call it repetition code. Under this
QEC scenario, Alice, Bob and Charie randomly choose
one operation as described in the QSSCM protocol and

apply this operation on three consecutive qubits. During
decoding, the secret is decided based on majority voting
among three consecutive states. Thus the components of
the repetition code is as follow.

Encoding: Prepare three copies of each state during
state preparation.

State Recovery: Measure each state in proper ba-
sis, as prepared. Apply majority voting to decide the
measurement outcome.

Logical Operation: Apply each operation on three
consecutive states.

This repetition code can also be used for other single-
qubit-based quantum protocols [13, 39–53], where the
outcome of the protocol is a sequence of classical bits,
to improve the result.
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TABLE II. Errors in the final output generated by Bob and Charlie, under amplitude damping noise with damping strengths
γA, γB and γC corresponding to the channels from Alice to Charlie, from Bob to Charlie and from Charlie to Alice, respectively,
for different operations applied by Alice, Bob and Charlie. Each of these cases may appear with probability 1/24.

Bob’s State Charlie’s Operation Alice’s Secret Error Probability

|0⟩⟨0|

I
0 0

1 γA

σy
0 γA + γC − γAγC

1 γC − γAγC

H
0

(
1−

√
(1− γA)(1− γC)

)
/2

1
(
1−

√
(1− γA)(1− γC)

)
/2

|1⟩⟨1|

I
0 γA + γB + γC − γAγB − γBγC − γCγA + γAγBγC

1 γB + γC − γAγB − γBγC − γCγA + γAγBγC

σy
0 γB − γAγB − γBγC + γAγBγC

1 γA + γB − γAγB − γBγC + γAγBγC

H
0

(
1 + (2γB − 1)

√
(1− γA)(1− γC)

)
/2

1
(
1 + (2γB − 1)

√
(1− γA)(1− γC)

)
/2

|+⟩⟨+|

I
0

(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

1
(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

σy
0

(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

1
(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

H
0

(
1− γA − γC + γAγC − (1− γA)(1− γC)

√
1− γB

)
/2

1
(
1 + γA − γC + γAγC − (1− γA)(1− γC)

√
1− γB

)
/2

|−⟩⟨−|

I
0

(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

1
(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

σy
0

(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

1
(
1−

√
(1− γA)(1− γB)(1− γC)

)
/2

H
0

(
1 + γA + γC − γAγC − (1− γA)(1− γC)

√
1− γB

)
/2

1
(
1− γA + γC − γAγC − (1− γA)(1− γC)

√
1− γB

)
/2

Average Error

(
4 + 2(γA + γB + γC)− 2(γAγB + γBγC + γCγA) + 2γAγBγC

−(1− γA)(1− γC)
√
1− γB − (1− γB)

√
(1− γA)(1− γC)

−2
√

(1− γA)(1− γB)(1− γC)
)
/12

B. Repetition Code on QSSCM Protocol

If at most one from the measurements of three consec-
utive states gives erroneous output, the majority voting
decoder would provide the correct secret. However, if
more than one output is erroneous, this decoder would
provide the wrong secret bit. If e is the error for a single
qubit, the error after QEC would be given by

eQEC = 3e2(1− e) + e3. (16)

The error correction would be effective, if e > 0 and
eQEC < e, that is,

3e2(1− e) + e3 < e =⇒ 3e(1− e) + e2 < 1

=⇒ 2e2 − 3e+ 1 > 0

=⇒
(
e− 1

2

)
(e− 1) > 0

=⇒ e <
1

2
, as e ≤ 1. (17)

This is the condition for effective error correction using
the repetition code.
a. Bit-flip and Phase-flip Noise As we have dis-

cussed above, if more than one state from three consec-
utive states gets flipped, the state cannot be restored
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FIG. 3. Error on reconstructed secret is plotted against channel error probability p with and without repetition code. The plot
is generated from analytic equations (15) and (20) and the simulated results. It shows that if p < 0.5, the repetition code can
reduce the error in the reconstructed secret.

perfectly, leading to an error. Now, for 3-party QSSCM,
using (11), we can write the probability that at least two
out of three consecutive states get flipped as

ef = 3e21(1− e1) + e31 = 27p2 +O(p3), (18)

which is the final error probability using the repetition
code.

From (17), the condition for an effective error correc-
tion under bit-flip and phase-flip noise is given by

e1 <
1

2
=⇒ 3p(1− p)2 + p3 <

1

2

=⇒ 1

2

(
1− (1− 2p)3

)
<

1

2

=⇒ p <
1

2
. (19)

Therefore, if all three channels have an error probability
less than 1

2 , the repetition code can effectively reduce
the error, which is shown in Fig. 3(a). The result after
simulating QSSCM under bit-flip and phase-flip noise is
also shown in the same figure. The simulation plot also

shows that if p < 0.5, the repetition code can reduce the
error.
For n-party QSSCM protocol, using (15), we can write

the error on secret as

egf = 3(eg1)
2(1− eg1) + (eg1)

3

=
1

4
(1− (1− 2p)n)

2
(2 + (1− 2p)n) . (20)

Also, the condition for effective error correction becomes

eg1 <
1

2
=⇒ 1

2
(1− (1− 2p)n) <

1

2
=⇒ (1− 2p)n > 0

=⇒

{
p ∈ (0, 1)\ 1

2 , if n is even,

p ∈ (0, 1
2 ) if n is odd.

(21)

This result along with the simulations for n = 3, 4, 5 and
6 has been shown in Fig. 3.
b. Amplitude Damping Noise For amplitude damp-

ing noise, if only one from three consecutive outputs is
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FIG. 4. Error on reconstructed secret is plotted against damping probability γ with and without repetition code. The plot is
generated from analytic equations (13) and (22) and the simulated results. It shows that the repetition code can reduce the
error in the reconstructed secret for all values of the damping strength.

erroneous, the majority voting decoder would provide the
correct secret bit. However, if two or three outputs are er-
roneous, then the majority voting would fail. Using (13),
the probability of at least two out of three consecutive
outputs being erroneous can be written as

eaf = 3 (ea1)
2
(1− ea1) + (ea1)

3
=

3

32
γ2 +O(γ3). (22)

From (13) one can see that, ea1 satisfies the condition
for effective error correction (17) for γ ∈ (0, 1), that is,

ea1 <
1

2
for γ ∈ (0, 1). (23)

Also, ea1,g in (14) satisfies the effective error correcting
condition for all γA, γB , γC ∈ (0, 1). We have simulated
the 3-party QSSCM protocol with amplitude damping
noise. We see that the repetition code reduces the er-
ror in the reconstructed secret for all values of damping
strength except 0 and 1, where it is the same as the error
for the no-encoding scenario.

We have also simulated the n-party QSSCM protocol
for n = 3, 4, 5 and 6 under the amplitude damping noise.
The plots are shown in Fig. 4.

C. Five and Four-qubit QECs on QSSCM Protocol

In the previous section, we have applied encoding at
the beginning of the protocol, and the decoding includ-
ing recovery operation at the end of the complete pro-
tocol. As there is a single cycle of encoding, decoding
and state recovery operations, we call this as single-cycle
QEC. However, we can apply this QEC in multiple cycles,
which performs better than a single-cycle QEC [71–76].
One straightforward towards multiple cycles is to apply
a single cycle to each channel individually, first from Bob
to Charlie, then from Charlie to Dave, and so on. In this
scenario, each party can apply their physical operations
directly on the main qubits after the recovery operations.
Note that we cannot apply multiple cycles for the repe-
tition code we discussed in Section VA as that requires
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the knowledge about the basis on which Bob prepares the
state. However, the five-qubit perfect code [54] and the
four-qubit approximate code [56] being basis indepen-
dent, this problem does not arise, and we can perform
the multiple cycles. Fig. 5 and 6 show the performances
of the five-qubit perfect code and the four-qubit approx-
imate code in multi-cycle scenario for 3-party QSSCM
under Pauli (bit-flip and phase-flip) noise and amplitude
damping noise, respectively. Even the four-qubit and the
five-qubit code performs worse than the no-encoding sce-
nario. This is because, in the five-qubit code, all five
qubits are subjected to errors, resulting in a higher over-
all error rate compared to the single-qubit error in the
no-encoding case. In contrast, while the repetition code
also exposes three qubits to errors, QEC keeps the total
error rate below the threshold of the no-encoding sce-
nario.

FIG. 5. Plots show the simulated errors on reconstructed se-
cret against Pauli (bit-flip or phase-flip) error p. Observe that
repetition code performs better than existing J5, 1, 3K perfect
QEC [54]. Even the five-qubit codes perform worse than the
no encoding scenario. The reason is for five-qubit code, all the
five qubits are going through the error, making the error very
high compared to one-qubit error in no encoding scenario, and
the QEC fails to recover it. Although for the repetition code,
three qubits are going through the error, the QEC restricts it
below the no encoding threshold.

VI. SSQI PROTOCOL UNDER NOISE

Zhang et al. also proposed a SSQI protocol in the same
article [11] combining the above QSSCM protocol with
the standard teleportation protocol [77]. To perform the
secret sharing of a quantum state among n− 1 receivers,
Alice sends the state to Bob using the standard tele-
portation protocol. However, instead of announcing the
Bell-measurement outcomes, she shares these among the
other n−2 receivers except Bob using the QSSCM proto-

FIG. 6. Plots show the simulated error of the secret as a
function of the amplitude damping strength, γ. Notably, the
repetition code outperforms both the J5, 1, 3K perfect QEC
code [54] and the J4, 1K approximate QEC code [56]. Both
the four-qubit and five-qubit codes perform worse than the
no-encoding scenario. This is because, during quantum er-
ror correction, all qubits in these codes are exposed to noise,
resulting in a higher cumulative error than the single-qubit
error encountered without encoding. In contrast, although
the repetition code also subjects three qubits to noise, the
QEC process effectively suppresses the total error below that
of the no-encoding case.

col. Therefore, this SSQI protocol requires QEC for the
QSSCM part as well as for the standard teleportation.
Several fault-tolerant teleportation schemes [78–83] have
been proposed to deal with the noise during quantum
teleportation. However, if et is the error in the telepor-
tation process, and enoise and eQEC are the errors for the
QSSCM protocol, without and with QEC, respectively,
for effective error correction we require

fidelity with correction > fidelity without correction

=⇒ (1− eQEC)(1− et) > (1− enoise)(1− et)

=⇒ eQEC < enoise, (24)

which is the effective error correcting condition for the
QSSCM protocol. Therefore, all the results we have dis-
cussed in Section V are also valid for the SSQI protocol.

VII. CONCLUSION AND FUTURE WORKS

In this article, we investigate the effects of quantum
noise on the multiparty QSSCM and SSQI protocols pro-
posed by Zhang et al. [11]. The QSSCM protocol utilizes
single-qubit transmissions without the need for entan-
glement, offering a relatively simple and practical imple-
mentation. The SSQI protocol builds upon QSSCM to
enable the sharing of quantum information. Despite their
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simplicity, these protocols are highly vulnerable to quan-
tum noise, which can corrupt the transmitted qubits and
significantly hinder the accurate reconstruction of the se-
cret.

To address the vulnerability of the QSSCM proto-
col to quantum noise, we analyze the impact of various
noise models—including bit-flip, phase-flip, and ampli-
tude damping—on its performance. Our analysis demon-
strates how these noise sources introduce errors that de-
grade the fidelity of the reconstructed secret. To mitigate
these effects, we apply an optimized version of Shor’s 9-
qubit quantum error correction (QEC) code. By sepa-
rating the bit-flip and phase-flip correction processes, we
reduce the required resources from 9 qubits to just 3.
This simplified, repetition-based QEC approach signifi-
cantly lowers the error probability compared to conven-
tional QEC schemes, thereby enhancing the robustness of
the QSSCM protocol against quantum noise. In general,

such a 3-qubit abridged version of Shor’s code is not capa-
ble of correcting amplitude damping noise. However, in
this context, it proves effective due to the specific struc-
ture of the QSS protocol. Our findings and methodology
are equally applicable to the SSQI protocol, and we ar-
gue that the proposed QEC technique can be extended
to other single-qubit-based quantum protocols.

Future research could investigate more efficient quan-
tum error correction techniques—such as surface codes
or optimized encoding strategies—to further improve the
security and practicality of multiparty quantum secret
sharing in realistic, noisy environments. Additionally,
the application of repetition-based error correction could
be extended to other single-qubit-based quantum proto-
cols, including QSS, QKD, QSDC, and QA schemes, to
evaluate its effectiveness in enhancing their resilience to
noise.
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