
ar
X

iv
:2

50
4.

16
65

1v
2

 [
cs

.C
R

]
 1

2
Ju

n
20

25

MAYA: Addressing Inconsistencies in Generative Password Guessing
through a Unified Benchmark

William Corrias
Sapienza University of Rome

Rome, Italy
corrias@di.uniroma1.it

Fabio De Gaspari
Sapienza University of Rome

Rome, Italy
degaspari@di.uniroma1.it

Dorjan Hitaj
Sapienza University of Rome

Rome, Italy
hitaj.d@di.uniroma1.it

Luigi V. Mancini
Sapienza University of Rome

Rome, Italy
mancini@di.uniroma1.it

Abstract—Recent advances in generative models have led to their
application in password guessing, with the aim of replicating the
complexity, structure, and patterns of human-created passwords.
Despite their potential, inconsistencies and inadequate evalua-
tion methodologies in prior research have hindered meaningful
comparisons and a comprehensive, unbiased understanding of
their capabilities. This paper introduces MAYA, a unified, cus-
tomizable, plug-and-play benchmarking framework designed to
facilitate the systematic characterization and benchmarking of
generative password-guessing models in the context of trawling
attacks. Using MAYA, we conduct a comprehensive assessment
of six state-of-the-art approaches, which we re-implemented and
adapted to ensure standardization. Our evaluation spans eight
real-world password datasets and covers an exhaustive set of
advanced testing scenarios, totaling over 15, 000 compute hours.
Our findings indicate that these models effectively capture
different aspects of human password distribution and exhibit
strong generalization capabilities. However, their effectiveness
varies significantly with long and complex passwords. Through
our evaluation, sequential models consistently outperform other
generative architectures and traditional password-guessing tools,
demonstrating unique capabilities in generating accurate and
complex guesses. Moreover, the diverse password distributions
learned by the models enable a multi-model attack that outper-
forms the best individual model. By releasing MAYA, we aim
to foster further research, providing the community with a new
tool to consistently and reliably benchmark generative password-
guessing models. Our framework is publicly available at https:
//github.com/williamcorrias/MAYA-Password-Benchmarking.

1. Introduction

Despite the rise of increasingly secure authentication
methods, traditional passwords remain the most widely used
mechanism due to their usability and familiarity [9], [37].
However, users often utilize and reuse simplistic passwords
across services, making them vulnerable to a variety of
attacks [14], [8], [46], [19], [13]. As a result, password
security has long been a focus of research. Brute-force
and dictionary attacks remain the most prevalent password-
cracking techniques, primarily exploiting weaknesses such
as the use of weak or reused passwords. Tools like John

The Ripper (JTR) [49] and Hashcat [25] enhance these
techniques by applying transformation rules to dictionaries of
passwords, generating variations based on common patterns.
Yet, effective transformation rules are complex to design and
require extensive contextual knowledge and manual labor.

Beyond these limitations, traditional Machine Learning
password guessing techniques, such as Probabilistic Context-
Free Grammars (PCFGs) [31], [12], [63], [24] and Markov
Models [38], [15], [22], [62], generate passwords based on
statistical likelihood derived from real-world observed data.
While these methods have demonstrated considerable effec-
tiveness, they are fundamentally constrained by structural
assumptions. Specifically, Markov Models, which rely on
fixed-length n-grams, are inherently limited when modeling
long-range dependencies and complex patterns. Likewise,
PCFGs impose rigid template structures that constrain the
diversity and flexibility of the generated password space.

In recent years, research has increasingly focused on
harnessing advancements in generative models to enhance
password guessing techniques [29], [45], [42], [48], [40],
[65], [61], [55]. Unlike traditional approaches, these models
aim to learn and replicate the complexity, structure, and
patterns of human-created passwords without relying on
prior assumptions. Nevertheless, the current literature suffers
from inconsistencies, inadequate evaluation practices, and a
lack of rigorous, standardized characterization of generative
models’ behaviors. Proposed approaches are often evaluated
using inconsistent methodologies across studies and are
tested in non-uniform, often simplistic settings, hindering
meaningful comparisons and limiting a full understanding
of their capabilities. As a result, critical aspects remain
underexplored: how models behave across different settings,
what types of passwords they tend to generate, how human-
like their guesses are, whether they genuinely capture the
underlying complexities of human password behavior, and
where potential blind spots may lie. These limitations under-
score a broader absence of systematic model characterization.

To address these gaps, we introduce MAYA1 , a unified
and customizable plug-and-play benchmarking framework.

1. The name "MAYA " is inspired by A. Schopenhauer’s philosophical
concept of "the veil of Maya", representing an illusion that obscures true
reality. Similarly, our framework aims to unveil the potential of password-
guessing generative models, which has remained obscured until now.

https://github.com/williamcorrias/MAYA-Password-Benchmarking
https://github.com/williamcorrias/MAYA-Password-Benchmarking
https://arxiv.org/abs/2504.16651v2

While MAYA is specifically designed to support fair compari-
son and in-depth characterization and evaluation of generative
password-guessing models in trawling attack scenarios, it
builds upon a general, standardized, and rigorous evaluation
methodology that can be applied across a wide range of guess-
ing attacks, regardless of the underlying guessing approach.
Using MAYA, we systematically evaluate six state-of-the-art
generative models, each re-implemented with standardized
data preprocessing, dependencies, and configurations. We
focus on trawling password attacks, as they represent the
most general and widely applicable setting. Our experimental
setup spans eight real-world password datasets for training
and testing, and covers a wide range of evaluation scenarios,
totaling over 15, 000 hours of computation.

Our key findings include: (a) Increasing password
length yields diminishing returns in reducing guessability;
similarly, increasing the number of generated passwords
offers reducing improvements in successful guesses,
as models tend to exhaust easily guessable passwords
early in the generation process. (b) Rule-based tools are
competitive on smaller datasets and traditional machine
learning models excel on challenging ones. However, the
best-performing generative models, on average, outperform
both. (c) Generative models do not always require large
datasets to effectively model data distribution. While some
architectures benefit from larger datasets, others exhibit
minimal improvement or even a decrease in performance as
the training data increases. (d) Models can successfully guess
passwords even when trained on datasets from different
communities and/or cultures compared to the test set,
highlighting strong generalization capabilities and suggesting
the existence of common structures underlying human-
created passwords across disparate groups. (e) While all
models demonstrate strong capabilities in guessing common
and simple passwords and a decrease in performance for
rarer passwords, sequential models are the only ones that
remain effective in guessing longer passwords and more
complex patterns. (f) Different architectures learn generation
functions with different probability distributions over the
codomain, enabling their combination into a multi-model
attack that outperforms individual models. (g) Generative
models effectively capture various aspects of human-
created passwords, generating high-quality and diverse
passwords while minimizing mode failures. However, some
models struggle to accurately replicate the length distribution.

This paper makes the following contributions:

• We analyze eight real-world leaked password datasets,
providing a detailed characterization of each and examin-
ing the impact of factors such as dataset size, geographic
origin, linguistic and cultural background, and temporal
span on the resulting password distributions.

• We propose a rigorous and standardized evaluation
methodology for trawling password-guessing attacks,
addressing key methodological gaps in prior work. Our
proposal enables fair comparisons, a rigorous empirical
evaluation, and a comprehensive characterization of

each approach.
• We develop MAYA, a fully customizable, plug-and-

play framework for evaluating generative password-
guessing models in trawling attack scenarios. To support
reproducibility and encourage further research, we
publicly release our code and data at https://github.
com/williamcorrias/MAYA-Password-Benchmarking.

• Leveraging MAYA, we characterize and benchmark six
state-of-the-art generative models across eight datasets
and a diverse set of testing scenarios, addressing seven
key research questions. Our evaluation spans over
15,000 compute hours.

• We provide insights to guide future research in enhanc-
ing model password-guessing capabilities and integrat-
ing them into other password-related domains.

2. Motivation

The current body of research on generative password-
guessing models suffers from several notable limitations.
First, existing evaluation methodologies are inconsistent
across studies, hindering meaningful comparisons. Second,
evaluations often lack methodological rigor, typically relying
on overly simplified scenarios that fail to provide a compre-
hensive or unbiased assessment of model performance. Third,
there is a lack of systematic characterization, which restricts
our understanding of what these models learn and how they
behave under different conditions. These limitations motivate
the need for a unified and comprehensive benchmarking
framework that enables fair comparisons, subjects models to
advanced and realistic scenarios, and offers a deeper insight
into their underlying capabilities.

2.1. Lack of Consistency

Each existing approach adopts its own evaluation method-
ology, as models are neither trained nor assessed on the
same data and under identical settings. These methodological
inconsistencies encompass various factors, including data
preprocessing algorithms, file encoding, vocabulary, maxi-
mum password length, the number of generated passwords,
and the size of the training and testing datasets. As a
result, fair comparisons across studies are challenging. For
instance, differing data preprocessing methods lead to distinct
training and testing distributions, making direct comparison
challenging. Likewise, evaluating models with different
maximum password lengths introduces inherent bias, as
shorter passwords are generally easier to guess. Analogous
considerations apply to other settings as well. Such inconsis-
tencies highlight the necessity for a standardized evaluation
methodology to serve as a foundation for future research.

2.2. Lack of Rigorousness

Existing research often suffers from an insufficiently
rigorous evaluation. Models are typically evaluated using
overly simplistic metrics, such as the percentage of guessed

https://github.com/williamcorrias/MAYA-Password-Benchmarking
https://github.com/williamcorrias/MAYA-Password-Benchmarking

passwords or the number of unique passwords generated,
within restricted and similarly simplistic scenarios, often
relying only on widely used datasets like RockYou or
LinkedIn. Consequently, the current literature offers an
incomplete evaluation that is biased toward these simplistic
settings, underscoring the need for more robust methodology
incorporating diverse datasets, varied scenarios, and more
complex settings that reflect a broader spectrum of real-world
contexts.

2.3. Lack of Characterization

The methodological issues outlined above lead to a
broader problem: the lack of a systematic characterization of
password-guessing models. Beyond aggregate performance
metrics, current research fails to offer in-depth insights into
crucial aspects of generative models, such as the human-
likeness of generated passwords, the structural properties of
real passwords these models capture, the types of passwords
they generate (and those they fail to generate), the distinct
distributions that different models learn, and how model
behavior varies across different experimental conditions. Such
insights are essential for a comprehensive understanding of
these models, their true capabilities, and potential applica-
tions beyond password guessing.

2.4. Why Trawling Attacks

Password attacks are typically categorized based on the
adversary’s scope: targeted and trawling. Targeted attacks aim
to compromise specific user accounts by leveraging personal
identifiable information (PII), and have gained increasing at-
tention in recent years due to their growing effectiveness [35],
[61], [43], [60], [27], [64]. In contrast, trawling attacks seek
to guess as many user passwords as possible within a dataset,
without targeting any specific individual. This attack model
has long been the focus of password security research, with
numerous techniques developed over time, including rule-
based systems, PCFGs, Markov models, traditional neural
networks, and deep generative models. In this work, we
focus exclusively on trawling attacks, as they represent
the most general and widely applicable class of password-
guessing attacks, providing a broad evaluation framework.
Moreover, since targeted attacks can be viewed as trawling
attacks conditioned on PII, our evaluation methodology can
effectively support both lines of research.

3. MAYA

This section presents MAYA, our unified and plug-and-
play benchmarking framework tailored for password-guessing
generative models in the context of trawling attacks. The
framework offers an intuitive environment for training and
testing generative models with minimal setup, enabling the
research community to move in a unified direction. It also
includes a comprehensive set of experimental settings, pro-
viding thorough benchmarking and detailed characterization

across multiple key metrics. MAYA features a highly modular
and easily extendable architecture that enables the integration
of new models and customized testing scenarios to support
future research. While MAYA focuses on generative models,
its underlying evaluation methodology (Section 3.1) provides
a standardized testing environment that is applicable to
all types of trawling password-guessing methods, ranging
from traditional techniques to the latest approaches. MAYA
currently implements six state-of-the-art password-guessing
generative models (Section 3.2), eight real-world password
datasets (Section 4), and a comprehensive set of testing
scenarios aimed at answering seven key research questions
(Section 3.3).

3.1. Methodology

MAYA addresses the methodological shortcomings iden-
tified in Section 2 by introducing a standardized and rigorous
evaluation methodology. This methodology enables fair
comparisons across approaches and supports thorough bench-
marking and detailed characterization of trawling password-
guessing methods.

3.1.1. Standardized Data Preprocessing and Settings.
We propose the following procedure to standardize data
preprocessing: (1) open and read datasets using UTF-8
encoding while ignoring errors, (2) remove passwords that
exceed the specified maximum length, contain non-ASCII
characters, or include characters that are not in the provided
vocabulary. (3) split the dataset following the standard 80%
training and 20% testing ratios, (4) remove duplicates from
the testing dataset, and (5) remove from the training dataset
any overlap with the testing dataset. This approach ensures
wide language compatibility through UTF-8 encoding, avoids
double-counting by eliminating duplicates, and provides a
fixed, consistent testing set across experiments. We note
that existing works typically define the training set first,
and then derive the testing set by removing any overlapping
samples. This approach is undesirable, as varying the training
set leads to changes in the testing set as well, thereby
limiting the comparability across experiments. We further
define our vocabulary to include all uppercase and lowercase
letters, digits, and the following widely-accepted symbols:
~!@#$%^&*(),.<>/?’"{}[]\-_=+;: ‘.

3.1.2. Advanced Evaluation Scenarios. We have designed
a set of advanced and realistic evaluation scenarios to accu-
rately and comprehensively assess the models’ capabilities
and limitations, with the goal of providing a complete and
nuanced understanding of their performance. Each scenario
has been envisioned to address one of the seven research
questions outlined in Section 3.3.

3.2. Models

We selected six state-of-the-art generative models for
trawling password guessing, aiming to provide a compre-
hensive evaluation of different architectural approaches:

(1) FLA [40], based on an LSTMs, (2) PassGAN [29],
and (3) PLR-GAN [45], both GAN-based approaches, (4)
PassFlow [42], a flow-based model, (5) VGPT2 [7], which
combines a VAE with GPT2-derived encoder and decoder
blocks, and (6) PassGPT [48], an autoregressive transformer
model based on the GPT2 architecture. To ensure stan-
dardization, each model was adapted and re-implemented
in strict accordance with the procedures described in the
respective papers, minimizing discrepancies arising from
implementation variations. We provide further implementa-
tion details in Appendix A. We validated the accuracy of
our implementations by comparing our results with those
reported in the original papers.

FLA. FLA [40] (Fast, Lean, and Accurate), was the first
approach to apply neural networks to the password-guessing
task. It is the only approach we selected based on a
recurrent neural network, specifically an LSTM, allowing
us to examine how models designed for sequential data
processing perform compared to other, more recent generative
architectures.

PassGAN. PassGAN [29] is based on a Generative Ad-
versarial Network (GAN) architecture, which, unlike other
designs, follows an adversarial training approach. As they are
implicit models, GANs learn to generate data by capturing
the underlying distribution of the training set without ex-
plicitly defining a probability distribution, offering a unique
perspective in password generation.

PLR-GAN. PLR-GAN [45] is an enhanced version of
PassGAN and represents the current state-of-the-art for
GAN-based methods. PLR-GAN further adopts a Dynamic
Password Guessing (DPG) strategy, which allows the model
to adapt its guesses based on the distribution of successfully
guessed passwords, increasing the likelihood of generating
relevant guesses.

PassFlow. Passflow [42] represents the first and only attempt
to integrate flow-based generative models into the field of
password guessing. Flow networks [44] offer an explicit
latent space and an invertible mapping between a data point
and its latent representation, enabling complex operations
such as interpolation and exact latent variable inference.
PassFlow adopts and further enhances DPG by integrating
Gaussian Smoothing in the generation process, reducing
the likelihood of generating duplicated passwords while
maintaining the benefits of DPG.

VGPT2. VGPT2 [7] combines a Variational Autoencoder
(VAE) with an encoder-decoder architecture based on GPT2.
The VAE provides an explicit representation of the latent
space, while GPT2 excels at processing sequential infor-
mation and capturing long-term dependencies, making it a
unique approach to analyze.

PassGPT. PassGPT [48] proposes a GPT-2-based language
model for password generation. Similarly to FLA, PassGPT

employs a sequential generation process. However, GPT-2
is built upon an attention mechanism, which allows it to
capture long-range dependencies more effectively.

3.3. Research Questions

This section presents the research questions and scenarios
that guided the design of our evaluation, enabling the
comprehensive characterization of model behavior and further
comparison of their performance.

RQ1 - How Do Different Settings Influence Models
Performance?. Generative password-guessing models have
two primary settings: the maximum password length and
the number of generated passwords. This RQ explores the
impact of these two factors on guessing performance. We test
three different maximum lengths (8, 10, and 12) and eleven
generation quantities, from 106 to 5× 108. For each dataset,
all models were trained three times—once per length—and
evaluated across all generation quantities.

RQ2 - Are Generative Models Truly Better than Tradi-
tional Tools?. Despite recent advancements in generative
architectures, there is limited evidence indicating whether
generative models outperform traditional approaches, and few
direct experimental comparisons have been conducted. We
address this gap by conducting a comprehensive evaluation
of generative models on 8 different datasets and comparing
them to traditional tools such as John the Ripper (JtR) and
Hashcat, offering a thorough, direct comparison between
generative and rule-based methods.

RQ3 - How Sensitive are Models to Training Dataset Size?.
In real-world scenarios, attackers often have limited or partial
access to leaks. Therefore, evaluating model performance
across varying training data subset sizes is essential for
gaining a clear understanding of the effectiveness of gener-
ative models. This RQ examines the ability of generative
models to reconstruct the full target data distribution starting
from varying portions of the source dataset and execute
a successful attack. We explore this capability by training
models on up to seven different data subsets on four distinct
datasets.

RQ4 - Can Models Generalize To Different Communities
and/or Cultures?. A common real-world scenario involves
attackers obtaining leaked passwords from a distribution
different from their intended target, often due to cultural or
community differences. This RQ investigates whether gener-
ative models can effectively generalize to unseen password
distributions. We assess this capability through extensive
cross-dataset analysis, testing the models on datasets distinct
from those used during training. Specifically, we examine
their ability to guess passwords across (1) different com-
munities (i.e., same language but different online services)
and (2) different cultures (i.e., different languages and
cultural backgrounds), which, as demonstrated in Section 4.2,
significantly impacts password distributions.

RQ5 - Are Models Limited to Guessing Only Simple and
Common Passwords?. Simple passwords are easily guessed
using traditional tools, whereas rare and complex passwords
present a significantly greater challenge. The ability of
generative models to arbitrarily sample from different areas
of the password distribution offers the potential to guess
even rare and complex passwords. We explore this RQ by
dividing and categorizing the test dataset based on password
frequency and assessing each model’s performance on the
different subsets. Additionally, we analyze how well the
models perform in guessing passwords of varying lengths
and patterns.

RQ6 - To What Extent Do the Distributions Learned by
Different Models Align? Can We Combine Models to
Maximize Effectiveness?. Generative models are trained to
generate data that matches the target distribution, learning this
distribution either implicitly or explicitly. However, it remains
unclear to what extent distributions learned by different
models align, as various factors influence the learning process.
If the distributions are not fully aligned, a multi-model attack
could enhance guessing capabilities.

RQ6.1 - To What Extent Do the Distributions
Learned by Different Models Align?. We explore the
first part of this RQ using two metrics computed across all
model pairs (M1,M2): Jaccard Index and Mergeability Index.
Jaccard Index measures the ratio between the intersection and
union of the passwords generated by each model, providing
a metric for the overall diversity of all passwords generated
by M1 and M2. Additionally, we introduce the Mergeability
Index, which quantifies the ratio between the marginal gain
achieved by combining the outputs of M1 and M2 over
the best performance between M1 and M2 (see Eq. 2).
This metric assesses the weighted improvement gained by
combining M1 and M2, compared to using only the best-
performing model.

RQ6.2 - Can We Combine Models to Maximize
Effectiveness?. We follow an iterative elimination approach
to gain valuable insights into whether and to what extent
combining multiple models enhances guessing effectiveness.
We begin by combining passwords generated by all models
and progressively remove those generated by the least
effective model in terms of additional matched passwords.
This process allows us to iteratively refine and identify
effective combinations of models for any desired number of
models to combine.

RQ7 - Do Models Truly Capture the Characteristics
of Human-Like Passwords?. Despite ample research, it
remains unclear to what extent the distribution learned
by generative models aligns with that of human-created
passwords. Evaluation metrics such as guess percentage are
inherently limited, as they only measure whether generated
passwords match the test data, without offering insights
into the distribution of non-matching guesses. A major
challenge in answering this RQ is how to quantify the
distance between generative models’ password distribution
and the overall distribution of human-like passwords. In

TABLE 1: Details of the selected datasets.

Dataset #Pass #Unique Loc Lang Year Service

Rockyou [51] 32.600.024 14.311.994 USA EN 2009 Gaming
Linkedin [2] 60.650.662 60.591.405 Global EN 2012 Social
Mail.ru [1] 3.723.472 2.260.454 RU RU 2014 Mail
000webhost [11] 15.269.739 10.587.879 USA EN 2015 Forum
Taobao [56] 7.492.035 6.165.957 CHN ZH 2012 Ecomm
Gmail [41] 4.912.520 3.122.573 RU RU 2014 Mail
Ashley Madison [66] 375.846 375.738 CA EN 2015 Social
Libero [17] 667.680 418.400 IT IT 2016 Mail

related fields, metrics such as Fréchet Inception Distance
(FID) [28] and Inception Score (IS) [50] are commonly used
to assess the generated data [10]. However, these metrics
rely on pre-trained classifiers and are unsuitable for the
password domain. We address this gap by identifying and
adopting four alternative metrics: (1) CNN Divergence [21],
(2) IMD [57], (3) α-Precision β-Recall Authenticity [4], and
(4) MTopDiv [6]. These metrics were carefully selected for
their ability to capture different aspects of the considered
distribution. Appendix B provides a detailed explanation of
each metric. We computed these metrics for each model
across all datasets and averaged the results, offering a
comprehensive assessment of the human-likeness of the
generated passwords. Additionally, we complement this
analysis by examining the length distribution of the generated
passwords and comparing it to that of real passwords.

4. Datasets

Our framework incorporates eight real-world leaked
password datasets, carefully chosen to ensure diversity in size,
geographic origin, language, time of leakage, and service
type. In the following sections, we provide a detailed de-
scription of each dataset and perform a statistical analysis to
examine the distribution and characteristics of the passwords
across these datasets, providing insights that form the basis
for our subsequent experiments.

4.1. Datasets Selection

Table 1, presents the datasets selected for this study. To
ensure that the selected datasets provide generalizable in-
sights, the following criteria were considered in the selection
process:

Dataset Size. We included datasets of varying sizes to
evaluate model performance under different dimensions. The
collection ranges from small datasets with a few hundred
thousand passwords, such as Libero [17], to large-scale
datasets with tens of millions of passwords, such as Rock-
You [51], LinkedIn [2] and 000webhost [11].

Geographic Diversity. The selected datasets vary in their
geographical provenance. Previous studies have shown that
users from different countries exhibit distinct password
creation behaviors, leading to diverse password distribu-
tions [58], [36], [18], [23], [59].

TABLE 2: Distribution of password lengths.

Dataset 1-5 6 7 8 9 10 11 12 13+

rockyou 4.33 26.06 19.30 19.99 12.12 9.06 3.56 2.10 3.49
linkedin 0.00 8.95 11.01 24.60 14.47 12.54 6.56 4.19 17.68
mailru 1.78 22.90 14.68 23.92 11.64 8.81 5.22 4.31 6.74
000webh 0.06 5.71 7.94 21.88 15.41 14.50 10.48 7.66 16.36
taobao 0.48 12.93 13.14 16.90 16.51 16.10 10.77 6.80 6.39
gmail 4.13 18.73 13.49 28.92 13.85 13.85 3.10 1.89 2.05
ashleym 9.97 19.57 18.15 24.87 13.21 9.66 2.19 1.26 1.12
libero 0.09 15.49 11.34 31.30 16.34 11.32 5.54 3.83 4.76

Average 2.60 16.29 13.63 24.05 14.19 11.98 5.93 4.01 7.32
CDF 2.60 18.90 32.53 56.58 70.77 82.75 88.68 92.68 100.00

Language and Cultural Background. We selected datasets
representing diverse languages and cultural contexts, as users
from different backgrounds exhibit variations in password
choices [58], [5], [36], [59].

Temporal Span. We consider the dataset leak date as an im-
portant factor, as password policies and user awareness have
evolved over time, with stronger requirements introduced
in recent years [39], [33], [16]. Consequently, we expect
older leaks to contain weaker passwords, while more recent
datasets are expected to contain more secure passwords. Our
dataset collection spans from 2009 to 2016.

Service Types and Community Background. We selected
datasets from a wide range of services and communities, such
as social networks, forums, e-commerce sites, dating sites,
email services, and gaming platforms. The type of service and
the nature of the user community can significantly influence
password selection strategies, with more sensitive service
and close-knit communities often prompting users to adopt
different password behaviors [54], [3], [30].

4.2. Dataset Analysis

This section presents the main insights obtained from
our statistical analysis of the selected datasets.

4.2.1. Password Length Analysis. Table 2 shows that the
most common password lengths are between 6 and 10 char-
acters. Taobao, 000webhost, LinkedIn, and Libero enforce a
stricter policy (len >= 6), with very few passwords shorter
than 6 characters. The Cumulative Distribution Function
(CDF) reveals that over 50% of passwords are at most 8
characters long, with 8 being, on average, the most frequently
chosen length. Notably, the CDF rapidly increases up to
12 characters, suggesting that passwords longer than 12
characters are rare. Based on these observations, we selected
passwords with maximum lengths of 8, 10, and 12 in our
experiments.

4.2.2. Password Patterns Analysis. Based on common
password rules and user behaviors, we defined 19 patterns,
listed in Table 3, to characterize password patterns across
the datasets. For a detailed distribution analysis, see Table 10
in the Appendix. In most datasets, letter-only passwords are
highly prevalent and are almost always exclusively lowercase,
whereas uppercase-only or mixed-case passwords appear

TABLE 3: Selected patterns and their description.

ID Description ID Description

r1 Letters only. r10 Starts letter ends digit.
r2 Lowercase letters only. r11 Starts letter ends special.
r3 Uppercase letters only. r12 Starts digit then only letters.
r4 Digits only. r13 Starts digit ends special.
r5 Special only. r14 Starts and ends with digit.
r6 Letters and digits. r15 Starts special, then only letters.
r7 Letters and special. r16 Starts and ends with special.
r8 Digits and special. r17 Starts special, ends digit.
r9 Letters, digits, and special. r18 Ends with ’!’.

r19 Ends with ’1’.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Fraction of passwords

101

102

103

104

105

Fr
eq

ue
nc

ie
s

(a) RockYou

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Fraction of passwords

101

102

103

104

Fr
eq

ue
nc

ie
s

(b) 000webhost

Figure 1: Password frequency distribution. The x-axis value
is computed over the total number of passwords without
duplicates.

infrequently, apart from 000webhost, likely influenced by
a stricter password policy enforced prior to the breach. In
European and American datasets, digit-only passwords are
less frequent than letter-only ones, whereas Taobao (from
China) shows a higher prevalence of digit-only passwords,
consistent with prior studies [58], [5], [36]. This is likely due
to users being less familiar with the Latin alphabet. Passwords
comprised entirely of special characters are rarely used, as
they are hard to remember, and users prioritize usability
over security. A common pattern across all datasets is the
combination of letters and digits. In 000webhost ≈ 93% of
passwords follow this pattern, suggesting a policy requiring
at least two character classes. Users often find password
policies frustrating [53], [52], [32] and tend to fall into
predictable patterns to comply with these requirements, such
as appending a trailing digit [58], [59]. Our analysis supports
this observation, as passwords ending with a digit are highly
prevalent, with nearly half of all passwords following this
pattern and ‘1’ being widely used as a final character.

4.2.3. Top-10 Passwords Analysis. We analyzed the top
10 passwords in each dataset, finding that common choices
like ‘123456’ appear across almost all datasets. Notably,
password preferences vary by region: European users favor
lowercase-only passwords, Chinese users often choose digit-
based passwords resembling words phonetically, and Russian
users prefer keyboard patterns. Table 11 in the Appendix
presents the top 10 most common passwords.

4.2.4. Frequency Distribution. Figure 1 illustrates the fre-
quency distribution of passwords for RockYou and 000web-
host. To enhance readability and reduce the long-tail effect
caused by less frequent passwords, we focus on passwords

10^6 10^7 10^8 5*10^8
generated passwords

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plr-gan
vgpt2

(a) Max. Password Length 8

10^6 10^7 10^8 5*10^8
generated passwords

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plr-gan
vgpt2

(b) Max. Password Length 10

10^6 10^7 10^8 5*10^8
generated passwords

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plr-gan
vgpt2

(c) Max. Password Length 12

Figure 2: Impact of maximum password length on guessing performance over varying generation quantities.

appearing at least three times in the dataset. A clear trend
clearly emerges: a small subset of passwords are highly
common, while the majority are rare. This behavior is
characteristic of a Zipf-like distribution, where the frequency
of a sample is inversely proportional to its rank. This
observation aligns with the findings of Wang et al. [58],
who first demonstrated that Zipf’s law accurately models the
distribution of human-chosen passwords.

5. Experiments

We provide a thorough characterization of each selected
model (Sections 5.1–5.7), addressing the research questions
from Section 3.3, and laying the groundwork for the bench-
mark in Section 5.8.

5.1. RQ1 - How Do Different Settings Influence
Models Performance?

We examine the impact of two key parameters—
maximum password length and the number of generated
passwords—on model performance. Specifically, we compute
the weighted average percentage of guessed passwords across
all datasets, considering maximum lengths of 8, 10, and
12 characters. For each length, we evaluate 11 generation
quantities, ranging from 106 to 5×108 passwords. Results are
shown in Figure 2. As expected, performance declines with
increasing password length. However, this decline exhibits
diminishing returns: while the drop from 8 to 10 characters
is substantial, averaging 10.46%, the decrease from 10 to 12
characters is markedly smaller, at just 2.15%, indicating
a plateau as length increases. Among all models, FLA
consistently outperforms the others, successfully guessing a
substantial portion of passwords with relatively few guesses.
Notably, FLA requires fewer than 107 generated passwords to
outperform all other models except PassGPT. PassGPT, while
initially comparable to PLR-GAN, PassFlow, and PassGAN,
exhibits a much steeper growth curve, ultimately closing the
gap with FLA after 5× 107 guesses. When considering few
guesses, PLR-GAN, PassFlow, and PassGAN exhibit nearly
identical performance, while VGPT2 initially underperforms.
As the number of guesses increases, differences between
the models become more pronounced: PLR-GAN begins
to outperform PassFlow, and VGPT2, despite a slow start,

improves faster than both. In contrast, PassGAN gains
the least from additional guesses, with a relatively slow
improvement rate.

While it is evident that generating more passwords
leads to an increased number of matches, we delve deeper
into this trend by analyzing the marginal gain—defined as
the percentage increase in guessed passwords between two
generation intervals. We analyze both total gains (relative
to the overall number of correct matches) and relative gains
(relative to the previous number of matches). Due to space
constraints, detailed results are reported in Table 12 in the
Appendix. Overall, all models exhibit clear diminishing
returns, with sub-linear growth in successful guesses. Match
rates grow rapidly in the early stages, then taper off as the
space of common passwords is exhausted. Since this pattern
is consistent across all maximum lengths, and considering
that over 92% of passwords are 12 characters or fewer (see
Table 2), we limit our subsequent analysis to this length.

5.2. RQ2 - Are Generative Models Truly Better
Than Traditional Tools?

We compare generative models against two categories
of traditional password-guessing techniques: (1) rule-based
attacks, namely, Hashcat and John the Ripper, both operating
in wordlist mode, using ’Unicorn Rules’ and ’Wordlist’
rulesets, respectively; and (2) machine learning approaches,
specifically a PCFG model and OMEN, a Markov-based
attack. Additional details on these tools are provided in
Appendix A.

As shown in Figure 3, rule-based tools demonstrate strong
performance on smaller datasets, such as Ashley Madison and
Libero. In these cases, Hashcat outperforms all models except
FLA. Both OMEN and PCFG achieve results comparable to
PassGPT, successfully guessing a significant portion of the
test passwords, while JtR follows closely behind.

However, as dataset size increases, the advantage shifts
toward generative and machine-learning-based models, with
the performance gap over rule-based tools widening consid-
erably. On average, Hashcat underperforms compared to the
top four learning-based approaches, while JtR consistently
ranks as the least effective. We further investigated the
rationale behind this declining performance, hypothesizing
it stems from their underlying generation strategies. Unicorn
Rules are ordered by efficacy, and we selected the first

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(a) Rockyou

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(b) Linkedin

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(c) 000webhost

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(d) Ashley Madison

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(e) Gmail

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60
%

 o
f g

ue
ss

ed
 p

as
sw

or
ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(f) Mailru

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(g) Taobao

10^6 10^7 10^8 5*10^8
generated passwords

0

10

20

30

40

50

60

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plrgan
vgpt2
hashcat
jtr
omen
pcfg

(h) Libero

Figure 3: Comparison between traditional methods and generative models across 8 datasets.

TABLE 4: Impact of training dataset size on performance. Values expressed as percentage of guessed test set passwords.

Train Size Mailru Taobao RockYou LinkedIn

PGAN PLR PFLW PGPT VGPT FLA PGAN PLR PFLW PGPT VGPT FLA PGAN PLR PFLW PGPT VGPT FLA PGAN PLR PFLW PGPT VGPT FLA

1e6 12.73 21.26 23.27 32.93 6.25 53.14 13.15 16.45 17.58 27.51 4.24 42.94 9.60 19.29 18.21 30.98 5.97 56.13 4.42 7.83 7.06 12.49 1.48 18.48
2e6 16.16 21.30 23.24 40.35 16.90 54.95 10.16 16.29 18.65 29.11 11.28 44.12 11.31 19.21 18.35 41.72 13.75 57.36 4.38 8.08 7.12 17.97 4.44 24.61
3e6 – – – – – – 10.80 16.05 17.21 29.81 11.37 44.79 12.78 17.69 19.32 44.01 15.25 60.45 3.79 7.92 6.88 19.75 4.55 29.30
5e6 – – – – – – 12.11 16.82 18.49 30.80 12.56 45.53 12.22 18.06 19.35 46.40 16.49 60.08 2.52 8.38 6.84 22.00 5.38 37.89
1e7 – – – – – – – – – – – – 12.36 19.65 18.46 48.85 17.90 60.47 3.33 6.53 7.00 25.27 5.97 41.05
2e7 – – – – – – – – – – – – – – – – – – 4.87 7.12 7.13 26.91 6.33 35.10
4e7 – – – – – – – – – – – – – – – – – – 3.99 8.44 7.10 28.58 6.56 36.37

n passwords generated by Hashcat accordingly. However,
Hashcat applies a rule-first strategy: it processes all rules
for the current password before moving to the next. As
the dataset size increases, a smaller portion of the test set
passwords are transformed, concentrating Hashcat’s guesses
in a small subset of the overall password space. JtR follows
a password-first strategy, but WordList’s rules are unsorted,
so we randomly sampled n passwords from the generated
set. In larger datasets, the number of generated candidates
increases substantially, diluting the proportion of successful
guesses and making it less likely to sample correct guesses.

On the two most challenging datasets, LinkedIn and
000webhost, where all models exhibit the lowest guess
rates, PCFG closely matches FLA’s performance, trailing
by only a few percentage points. PassGPT is the only other
approach nearing their effectiveness, while Hashcat and
OMEN show comparable but noticeably lower performance.
Notably, except for these two datasets, PCFG successfully
guesses a large number of passwords in the early stages,
nearly matching FLA, but its guessing curve increases more
slowly over time, likely due to early saturation.

Overall, learning-based approaches outperform traditional
tools, especially as scale and complexity grow. Among
them, on average, FLA and PassGPT lead, while older ML
techniques like PCFG still show strong performance.

To streamline subsequent analyses, we fix the number of
generated passwords at 5× 108, as it yields the best results.

5.3. RQ3 - How Sensitive are Models to Training
Dataset Size?

We assess the ability of generative models to capture
the full password distribution when trained on different data
subset sizes. Models were trained on up to seven different
subset sizes across four datasets, with a minimum initial size
of 1M passwords. Results in Table 4 illustrate the models’
varying performance. Transformer-based models (PassGPT
and VGPT2) consistently improve as the training dataset
size increases, with VGPT2, in particular, struggling on
smaller subsets. FLA also generally benefits from larger
training subsets, although the rate of improvement tapers
off between 3e6 and 1e7 passwords. We also observe an
anomalous behavior on LinkedIn, where performance drops
significantly after 1e7—or 25% of the dataset size. PLR-
GAN excels on small training subsets, but its performance
declines around 30% of the dataset size before improving
again, ultimately achieving its best performance on the
full dataset. PassFlow remains the most consistent model
across subset sizes, with minimal performance variation. In
contrast, PassGAN exhibits highly variable results, with
performance peaks at different dataset sizes, making its
behavior less predictable. Overall, transformer models show
the most significant improvement with increasing training
data, whereas other architectures tend to exhibit flat or
minimal gains, challenging the conventional assumption that

TABLE 5: Cross-community generalization ability. Values expressed as percentage of guessed test set passwords.

Train / Test PassGAN PLR-GAN PassFlow PassGPT VGPT2 FLA

Link Rock 000W Link Rock 000W Link Rock 000W Link Rock 000W Link Rock 000W Link Rock 000W

Linkedin 3.99 6.51 1.80 8.44 12.65 3.65 7.10 6.61 1.93 28.58 36.21 16.90 6.56 11.48 2.95 36.37 45.09 19.01
RockYou 4.72 12.36 1.59 8.77 19.65 4.65 8.16 18.46 3.55 22.08 48.85 13.15 6.93 17.90 2.84 31.53 60.47 17.31
000Webhost 2.27 4.10 2.63 3.70 5.56 5.22 6.58 11.44 2.69 10.41 13.77 20.24 1.87 3.15 2.59 22.81 26.72 32.28

TABLE 6: Cross-culture generalization ability. Values expressed as percentage of guessed test set passwords.

Train / Test PassGAN PLR-GAN PassFlow PassGPT VGPT2 FLA

Rock. Mail. Taob. Rock. Mail. Taob. Rock. Mail. Taob. Rock. Mail. Taob. Rock. Mail. Taob. Rock. Mail. Taob.

RockYou 12.36 8.43 5.57 19.65 13.22 9.10 18.46 14.86 9.83 48.85 22.30 13.65 17.90 11.40 6.52 60.47 30.10 18.71
Mailru 7.39 16.16 4.72 10.78 21.30 7.11 16.35 23.24 13.25 15.82 40.35 10.74 6.89 16.90 4.11 26.98 54.95 16.36
Taobao 6.41 7.39 12.11 9.37 10.11 16.82 19.55 20.20 18.49 13.26 13.61 30.80 7.74 8.16 12.56 23.77 20.94 45.53

more training data universally leads to better performance.

5.4. RQ4 - Can Models Generalize To Different
Communities and/or Cultures?

We investigate the generalization capabilities of gen-
erative models by evaluating them in two cross-dataset
scenarios: (1) cross-community and (2) cross-culture. In the
cross-community setting, we use three datasets—RockYou,
000webhost, and LinkedIn—that share the same language but
represent distinct user communities. For the cross-cultural
setting, we used RockYou, Mailru, and Taobao, which differ
in language, cultural background, and community.

5.4.1. Cross-community. As shown in Table 5, Cross-
community generalization is strongly model- and dataset-
dependent. PassGAN, PLR-GAN, PassFlow, and VGPT2
achieve their highest performance on LinkedIn when trained
on RockYou, suggesting that the distribution learned from
RockYou generalizes well despite community differences.
However, stronger models such as PassGPT and FLA ex-
perience notable performance drops in the same scenario.
This contrast leads us to hypothesize that the apparent
generalization success of weaker models stems from their
limited capacity to capture fine-grained details of the training
distribution—resulting in broader, but less accurate, gen-
eralization. We also note how all approaches struggle to
generalize when training on 000webhost, highlighting that
performance significantly degrades when the source and
target distributions diverge too strongly (see Table 10).

5.4.2. Cross-culture. In the cross-culture scenario, model
performance follows a more expected pattern, as illustrated
in Table 6: models trained on one cultural or linguistic
context tend to perform significantly worse when evaluated
on datasets from a different one. This highlights the chal-
lenges of generalizing across culturally distinct password
distributions and underscores the importance of training data
alignment with the target population. However, some inter-
esting behaviors still emerge. Despite the challenging setting,
generative models still manage to guess a non-negligible
portion of the target passwords. Notably, models that typically

underperform in other settings—such as PassFlow—can
surpass stronger models like PassGPT when there is a signif-
icant mismatch between source and target distributions. This
suggests that certain models may possess greater flexibility
or robustness in the face of distributional shifts, even if they
are less effective under ideal, in-distribution conditions.

5.5. RQ5 - Are Models Limited to Guessing Only
Simple and Common Passwords?

We evaluate the models’ ability to guess both com-
mon/rare and simple/complex passwords through three com-
plementary analyses.

5.5.1. Analysis by Password Frequency. From each test
dataset, we created three subsets based on password fre-
quency: top 5%, top 10%, and bottom 90%. Since nearly
90% of test passwords across all datasets are unique (see
Figure 1), these subsets allow us to evaluate models under
three scenarios: (1) very common, (2) common, and (3) rare
passwords. We excluded LinkedIn and Ashley Madison, as
they consist entirely of unique passwords. Results, shown in
Figure 4, are reported as weighted averages. As expected,
all models perform better on common passwords. While the
drop from the top 5% to the top 10% is small, performance
declines sharply when focusing on the bottom 90%. Still,
models are surprisingly capable of guessing rare passwords,
with PassGPT and FLA guessing close to 40% and 50%,
respectively. In Figure 5, we leverage PassFlow’s encoder to
visualize password embeddings and observe that the bottom
90% of passwords tend to form clusters around the top 10%.
Since PassFlow’s latent space is smooth [42], this behavior
suggests that many rare passwords are slight variations of
frequently used ones, which may explain why models are
still able to guess a non-negligible portion of them despite
their low frequency.

5.5.2. Analysis by Password Length. We analyzed matches
by password length, ranging from 4 to 12 characters. Results,
computed using a weighted average across all datasets, are
shown in Figure 6. Notably, all models perform well on
short passwords, with FLA nearly achieving a 100% match

TABLE 7: Guessing performance by password pattern. Values expressed as percentage of guessed passwords for each pattern.

Model r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19

PassGAN 6.94 7.65 0.16 28.31 0.30 3.55 0.10 0.23 0.08 4.12 0.10 0.53 0.12 24.17 0.10 0.01 0.07 0.06 7.53
PLR-GAN 12.60 13.74 1.35 39.95 0.67 7.31 0.77 0.74 0.27 8.39 0.64 2.14 0.47 34.17 0.35 0.03 0.15 1.02 12.49
PassFlow 10.38 11.35 1.41 27.92 5.34 4.82 0.70 0.30 0.05 5.01 0.41 2.29 0.21 24.02 1.79 0.45 0.16 0.39 9.54
PassGPT 38.47 39.66 33.74 46.55 25.82 29.81 20.04 19.90 11.19 33.43 17.88 29.62 10.39 41.68 18.19 12.72 5.04 21.63 36.16
VGPT2 12.09 13.11 2.38 29.39 2.59 5.37 1.22 0.90 0.33 6.10 0.95 2.15 0.53 25.19 0.61 0.04 0.09 1.07 9.74
FLA 46.51 48.14 38.49 67.56 17.51 39.38 21.02 26.28 14.20 44.63 21.32 26.39 11.88 59.87 13.92 8.50 4.58 24.57 48.09

top 5% top 10% bottom 90%
test-set password frequency (%)

0

20

40

60

80

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plr-gan
vgpt2

Figure 4: Guessing performance by password frequency
group.

(a) RockYou (b) Gmail

Figure 5: t-SNE plot showing the projection of Top 10%
and Bottom 90% passwords in PassFlow’s latent space.
Embedding computed using PassFlow’s encoder.

rate. However, performance declines as length increases.
Only FLA and PassGPT maintain a substantial guessing
rate beyond 8 characters. Notably, consistent with findings
from RQ1, PassGPT surpasses FLA from length 11 onward.
PassFlow initially performs on par with PassGPT for shorter
lengths but undergoes a sharp decline, becoming the weakest
performer from length 8 onward.

5.5.3. Analysis by Password Patterns. We evaluated the
models’ ability to guess passwords based on the structural
patterns defined in Table 3. The results, presented in Table 7
as a weighted average across all datasets, show that PassGPT
and FLA consistently achieve the strongest performance,
standing out as the only models capable of successfully
guessing passwords across all defined patterns. In contrast,
the remaining models show limited pattern coverage, par-
ticularly struggling with complex password structures that
include special characters (r5, r7, r8) or uncommon charac-
ter combinations (r11, r12, r13). GAN-based models fare

4 5 6 7 8 9 10 11 12
test-set password length

0

20

40

60

80

100

%
 o

f g
ue

ss
ed

 p
as

sw
or

ds

fla
passflow
passgan
passgpt
plr_gan
vgpt2

Figure 6: Guessing performance by password length. Dots
represent the percentage of generated passwords for each
length.

especially poorly on passwords composed entirely of special
characters (r5), significantly underperforming PassFlow and
VGPT2. This suggests a clear limitation in capturing rare or
unconventional character sets. In contrast, all models exhibit
strong performance on digit-only passwords (r4), indicating
that simple patterns are consistently learned regardless of
the architecture.

5.6. RQ6 - To What Extent Do the Distributions
Learned by Different Models Align? Can We Com-
bine Models to Maximize Effectiveness?

We assess the extent to which generative models’ learned
distributions overlap and investigate the effectiveness of
combining multiple models to enhance guessing performance.

5.6.1. RQ6.1 - To What Extent Do the Distributions
Learned by Different Models Align?. We investigate the
first aspect of this RQ utilizing two primary metrics: the
Jaccard Index and the Mergeability Index. Their mathematical
definitions are provided in Appendix B, in Equations 1
and 2, respectively. The Jaccard Index provides a quantitative
measure of the overlap between two sets of generated
passwords, with a value closer to 1 indicating that the two
models produce similar distributions, and a value closer to
0 indicating that they generate distinct sets of passwords.
As illustrated in Figure 7a, the FLA-PassGPT pair is the
only combination with a Jaccard Index greater than 0.1,
suggesting that these two models share some similarities in
their password generation patterns. All other pairs exhibit
much lower Jaccard values. Interestingly, despite PassGAN
and PLR-GAN both being based on GANs, their Jaccard

FLA PassFlow PassGAN PassGPT PLR-GAN VGPT2

FL
A

Pa
ss

Fl
ow

Pa
ss

GA
N

Pa
ss

GP
T

PL
R-

GA
N

VG
PT

2

1.0000 0.0341 0.0289 0.1003 0.0385 0.0205

0.0341 1.0000 0.0119 0.0147 0.0135 0.0123

0.0289 0.0119 1.0000 0.0158 0.0135 0.0070

0.1003 0.0147 0.0158 1.0000 0.0198 0.0095

0.0385 0.0135 0.0135 0.0198 1.0000 0.0091

0.0205 0.0123 0.0070 0.0095 0.0091 1.0000

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

In
de

x

(a) Jaccard Index

FLA PassFlow PassGAN PassGPT PLR-GAN VGPT2

FL
A

Pa
ss

Fl
ow

Pa
ss

GA
N

Pa
ss

GP
T

PL
R-

GA
N

VG
PT

2

0.0000 0.0076 0.0060 0.0382 0.0085 0.0053

0.0076 0.0000 0.3004 0.0465 0.1916 0.2166

0.0060 0.3004 0.0000 0.0348 0.1957 0.2853

0.0382 0.0465 0.0348 0.0000 0.0519 0.0330

0.0085 0.1916 0.1957 0.0519 0.0000 0.1832

0.0053 0.2166 0.2853 0.0330 0.1832 0.0000

0.0

0.2

0.4

0.6

0.8

1.0

M
er

ge
ab

ilit
y

In
de

x

(b) Mergeability Index

Figure 7: Heatmaps of the Jaccard Index (a) and Mergeability
index (b).

Index is quite low. Similarly, VGPT2-PassGPT also shows a
low Jaccard Index. These results highlight that, even within
the same architectural family, models may produce highly
distinct password distributions, suggesting that combining
multiple models could be beneficial for maximizing coverage
of the password space.

While the Jaccard Index provides insights into the
overlap of generated passwords, it does not account for
their effectiveness in terms of actual matches with real-
world data. To address this, we introduce the Mergeability
Index, a complementary metric that measures the benefits of
combining the output of two models based on their successful
guesses. It captures the performance improvement achieved
by merging the guesses relative to the best-performing model.
A Mergeability Index close to 0 indicates that the models
guess mostly the same set of passwords, while a value close
to 1 indicates largely distinct matching password sets. The
results are shown in Figure 7b. Interestingly, FLA exhibits
the lowest Mergeability across all models, indicating that
its guessed passwords are generally a superset of those
generated by the other models. This suggests that FLA has
already captured a significant portion of the password space,
and merging it with other models provides only limited
additional benefit. In contrast, PassFlow, PassGAN, PLR-
GAN, and VGPT2 show high Mergeability, with their varying
combinations improving successful guesses by 18% to 30%.
This suggests that these models guess highly distinct sets of
passwords, meaning they are each capturing different aspects
of the password space.

5.6.2. RQ6.2 - Can We Combine Models to Maximize
Effectiveness?. We assess the potential of a multi-model
attack by evaluating the performance gain achieved through
the combination of the generated password sets from n
models. Our results, presented in Figure 8, show the relative
gain with respect to the best-performing single model,
computed as percentage points on the test set. We identify the
following optimal model combinations for different values of
n: n1 = {FLA}, n2 = n1 + PassGPT , n3 = n2 + PLR-
GAN , n4 = n3 + PassF low, n5 = n4 + PassGAN , and
n6 = n5+V GPT2. In datasets like LinkedIn and RockYou,
combining models yields significant gains over FLA alone—
especially PassGPT. Remarkably, combining PassGPT and
FLA provides a larger average improvement than adding the

n1 : FLA n2 : PassGPT n3 : PLR n4 : PassFlow n5 : PassGAN n6 : VGPT2
combinations of models

0

1

2

3

4

5

6

ga
in

 (p
er

ce
nt

ag
e

po
in

ts
)

RockYou
000webhost
AshleyMad
Gmail
Libero
LinkedIn
Mailru
Taobao
Average

Figure 8: Multi-model guessing performance. Expressed as
percentage points increase of guessed passwords relative to
FLA baseline.

remaining four models combined. These results mirror those
presented in Figure 7b, indicating that FLA and PassGPT
capture somewhat complementary parts of the password
space. However, in datasets such as 000webhost and Mailru,
FLA alone performs nearly as well as the combination of
all models, with only a 1 percentage point improvement in
the multi-model attack.

5.7. RQ7 - Do Models Truly Capture the Charac-
teristics of Human-Like Passwords?

We assess the similarity between the generated password
distribution and that of human-created passwords using
multiple metrics and an analysis of their length distributions.

5.7.1. Metrics-Based Evaluation. We identified four metrics
to evaluate the human-likeness of the generated passwords,
each capturing different aspects and characteristics:

CNN Divergence [21]. CNN Divergence utilizes a critic
network trained to differentiate between real and synthetic
data, with the loss serving as an estimator of their divergence.
However, its reliability is influenced by the dataset size, and
it may show biases when used to evaluate models trained
with similar objectives, like GANs.

IMD [57]. IMD is an intrinsic, multi-scale metric that
compares the data manifolds of real and generated samples
and is applicable across diverse domains. However, its
effectiveness is highly sensitive to the choice of feature
representation, which can introduce bias into the distance
estimation.

α-Precision β-Recall Authenticity [4]. This metric char-
acterizes distributions along three key dimensions: fidelity
(precision) and diversity (recall) of the generated data, and
the generalization (authentication) capabilities of the models.
It is effective in identifying different types of mode failures,
making it a versatile tool applicable across various domains.
However, as it relies on a neural network to embed data into
a hypersphere, it may introduce bias through the learned
latent representation, potentially affecting the estimation of
the radius used to distinguish inliers from outliers.

TABLE 8: Distance between human- and generative model-
created passwords.

Models CNN Div α−Precision β−Recall Auth IMD MTopDiv

PassGAN 16% 19% 4% 14% 65% 1%
PLR-GAN 6% -4% 3% 11% 3% 0%
PassFlow 56% 61% 52% 16% 200% 36%
PassGPT 2% 3% 1% 6% 0% 0%
VGPT2 29% 53% 34% 4% 135% 12%

FLA 12% -15% -1% 31% 172% 0%

1-5 6 7 8 9 10 11 12
Password Lengths

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

ie
s (

%
)

fla
passflow
passgan
passgpt
plr-gan
vgpt2
REAL_AVG

Figure 9: Password length distributions.

MTopDiv [6]. MTopDiv measures topological discrepancies
between real and synthetic distributions at multiple scales,
effectively detecting mode failures, without relying on
pre-trained networks.

To contextualize the metric values, we define two base-
lines: (1) a soft lower bound (optimal case), defined as the
metric value between test and training passwords; (2) a soft
upper bound (worst case), defined as the metric value between
randomly generated and test passwords. For each model, we
normalize the metric value between lower (0%) and upper
(100%) bounds, as displayed in Table 8. Values close to
zero indicate closer alignment between the generated and
human-created password distributions. GAN-based models
demonstrate generally good performance across all metrics,
with PLR consistently achieving lower values than PassGAN.
PassGPT generates passwords that closely resemble human-
created ones, likely due to its underlying GPT2 architecture,
which is well-suited for modeling textual distributions. In
contrast, PassFlow demonstrates the weakest performance,
particularly in the IMD metric, where its score exceeds
the soft upper bound by a factor of two. We attribute this
behavior to PassFlow’s Gaussian Smoothing (GS) strategy,
which introduces random perturbations in the generation
process. While GS enhances uniqueness [42], it artificially
distorts the distribution of generated passwords, ultimately
reducing their quality. VGPT2 and FLA exhibit similar trends,
performing strongly across most metrics except for IMD,
where elevated values across most models suggest that they
all struggle to fully capture certain characteristics of human
passwords. Conversely, MTopDiv consistently yields low
values, indicating that the models effectively avoid common
mode failures, such as dropping, collapse, and invention.

5.7.2. Length Distribution in Generated Passwords. Fig-
ure 9 compares the length distribution of generated passwords

TABLE 9: Comparison summary of the selected approaches.
Metric PassGAN PLR-GAN PassFlow PassGPT VGPT2 FLA

Overall Performance
Scenario: In-Distribution ↑ 8.85 14.88 12.76 37.21 11.79 49.21
Scenario: Cross-Community ↑ 3.62 6.16 7.13 17.72 4.76 27.72
Scenario: Cross-Culture ↑ 6.52 9.70 16.17 14.24 7.01 23.27

Performance by Frequency
Frequency: Common (Top 5%) ↑ 27.87 36.86 31.20 68.20 32.83 83.37
Frequency: Common (Top 10%) ↑ 22.73 30.63 25.73 63.45 27.23 76.60
Frequency: Rare (Bottom 90%) ↑ 8.75 13.61 12.28 34.51 10.83 47.03

Performance by Length
Length: Short (4-7 Chars) ↑ 19.91 32.96 28.16 55.62 29.65 72.97
Length: Medium (8-10 Chars) ↑ 2.48 4.47 1.33 26.93 2.16 36.38
Length: Long (11-12 Chars) ↑ 0.07 0.24 0.00 12.58 0.05 11.6

Performance by Pattern
Pattern: Simple (1 Char Class) ↑ 14.06 21.71 16.22 41.16 17.85 53.52
Pattern: Moderate (2 Char Classes) ↑ 3.46 7.15 4.71 29.56 5.26 38.94
Pattern: Complex (3 Char Classes) ↑ 0.08 0.27 0.05 11.19 0.33 14.20

Generalizability
Train Set Size Sensitivity (%) ↓ 12.56 3.54 1.90 13.16 35.49 7.58
Cross-Community Loss (%) ↓ 24.16 32.42 6.84 42.15 32.49 30.13
Cross-Culture Loss (%) ↓ 48.67 49.27 14.58 66.15 57.11 58.53

Generated Password Quality
Uniqueness (%) ↑ 54.59 71.13 90.10 73.22 91.41 100.00
Humanness Distance (%) ↓ 19.83 4.80 70.16 2.40 44.00 38.50

with that of real passwords. Among the models, PassFlow,
FLA, and VGPT2 show the largest divergence from the real
distribution: PassFlow tends to generate shorter passwords,
FLA overestimates the probability of 8-character passwords,
and VGPT2 of longer ones. In contrast, PassGAN, PLR-
GAN, and PassGPT produce distributions that more closely
align with real data, reinforcing previous observations.

5.7.3. Why Does IMD Yield High Values?. Figure 9 reveals
a clear correlation between length distribution and IMD
values. PassFlow, which exhibits the largest deviation from
the real distribution, also records the highest IMD score. A
similar trend is observed for FLA and VGPT2. Conversely,
models such as PassGAN, PLR-GAN, and PassGPT, which
more closely replicate the real-world length distribution,
achieve lower IMD scores. Interestingly, Table 8 shows
that models such as PassFlow and FLA yield higher IMD
scores than those associated with the random-password soft
upper bound. We posit that this counterintuitive result stems
from the uniform length distribution of random passwords.
Although this distribution diverges significantly from that of
real passwords, it nonetheless includes longer passwords that
PassFlow and FLA struggle to generate. These observations
suggest that IMD is highly sensitive to length distribution,
favoring models that replicate it more accurately. For an
extended analysis of IMD, we refer to Appendix B.

5.8. General Benchmarking

This section presents a comprehensive benchmark of the
selected generative models, leveraging prior evaluations to
facilitate direct comparisons across key metrics: performance,
generalizability, and generated password quality. Table 9
summarizes all aggregated results, reflecting the trends
observed in the preceding sections. Regarding performance
metrics, computed as the weighted average percentage of
guessed passwords, FLA consistently achieves the best results
across all tasks, with PassGPT being its sole direct competitor.
The remaining models exhibit greater task dependency: for
instance, PLR-GAN leads in in-distribution scenarios, while
PassFlow excels in cross-community and cross-culture set-

tings. However, when evaluating generalizability, the overall
ranking shifts. We consider three metrics: sensitivity to
training set size, measured using the coefficient of variation,
and performance loss in cross-community and cross-culture
scenarios, quantified as weighted average loss relative to the
in-distribution setting. PassFlow consistently emerges as the
most robust model across generalization tasks. Surprisingly,
FLA and PassGPT exhibit the highest loss in the cross-
cultural setting, with PassGPT additionally demonstrating the
lowest robustness in the cross-community scenario, whereas
FLA maintains an average value. Finally, concerning the
quality metrics, we analyzed both uniqueness and humanness
of generated passwords. While not previously emphasized
in our analysis, uniqueness is a commonly adopted metric
for evaluating the diversity of generated passwords. While
FLA’s generation approach guarantees 100% uniqueness
by design, PassFlow, leveraging the GS technique, and
VGPT2 produce around 90% unique passwords. PLR-GAN
and PassGPT achieve slightly above 70% uniqueness, and
PassGAN demonstrates the lowest uniqueness at 54.59%.
Regarding humanness distance, measured as the average
percentage distance between generated and real passwords,
results align with our previous observations: models such
as PassGPT and PLR-GAN generate passwords closely
resembling human-created ones, making them highly suitable
for applications like honeywords, where it is important
to deceive adversaries using realistic passwords, and as
potential sources of synthetic data for future research, thereby
addressing challenges with real-world password datasets (e.g.,
difficult to obtain, outdated, ethical concerns).

6. Insights and Lessons Learned

This section outlines key insights obtained in our study.

Sequential Architectures Perform Best. FLA and PassGPT,
based on LSTM and GPT2, consistently outperform other
architectures, underscoring the advantages of sequential
models in capturing dependencies and generating more
accurate, complex guesses.

Generative Models Surpass Traditional Tools. Early
generative approaches—such as PassGAN, PassFlow, and
PLR-GAN—struggles to match the performance of traditional
tools. However, the emergence of transformer-based architec-
tures has shifted the research landscape toward models capa-
ble of consistently outperforming them. PassGPT, the most
recent approach evaluated in our study, generally surpasses
JtR, Hashcat, PCFG, and OMEN. As research progresses,
more advanced LLMs are likely to further improve password-
guessing effectiveness, whereas traditional tools have likely
reached their performance ceiling.

Stricter Policies Mean Safer Passwords. Our analysis
reveals that each dataset exhibits a distinct distribution, with
some being significantly easier to guess than others. Notably,
000webhost and LinkedIn—both of which follow stricter
password policies regarding length and complexity—emerge

as the most challenging datasets. These findings reinforce
the conventional understanding that even modestly strict
password policies enhance security—an effect that holds
true even in the context of generative models.

Guessing Complex/Long Passwords Remains Challenging.
Four out of six models struggle to guess complex passwords—
those containing special characters or multiple character
classes—and longer passwords exceeding eight characters.
Only FLA and PassGPT achieve a non-negligible success rate
in these cases, highlighting the persistent challenge posed by
long and complex passwords and revealing model limitations.

Rare Does Not Mean Hard to Guess. Rare passwords,
such as those appearing only once in the dataset, are not
necessarily hard to guess, especially if they are semantically
similar to common passwords.

Models Go Beyond Memorization. While performance
generally declines relative to in-distribution settings, models
still generalize well to unseen distributions, indicating they
go beyond simple memorization. Additionally, some models
exhibited greater robustness to distribution shifts, even if
they performed worse under ideal, in-distribution settings.

Models Generate and Match Distinct Passwords. Even
when trained on the same dataset, models generate and match
distinct sets of passwords. This diversity enables multi-model
attacks that outperform the best individual model.

Models Generate Human-Like Passwords. Generative
models effectively learn to generate passwords that closely
resemble human-created ones, making them valuable for a
variety of tasks beyond just password-guessing.

Beyond Guessing Rate. Prior research primarily assesses
password-guessing tools by focusing on guessing rate, thus
providing a narrow view of their capabilities. We argue that
the emergence of generative password-guessing requires a
broader scope, including additional key metrics to assess
the quality of the generated data (e.g., humanness, unique-
ness) and the generalizability of the models (e.g., train set
size sensitivity, cross-dataset loss). Together with guessing
performance, these metrics provide a more comprehensive
evaluation and characterization of generative models.

7. Conclusion

This work presented MAYA, a framework designed to
comprehensively evaluate password-guessing approaches.
It includes standardized guidelines and advanced testing
scenarios to ensure fair, in-depth comparisons and reveal the
strengths and limitations of different models. By analyzing
eight real-world password leaks and thoroughly evaluating
various password-guessing approaches, we addressed seven
key research questions, offering insights into the factors
influencing user password choices and the current state of
generative password-guessing research. We believe future

research could greatly benefit from MAYA, as it can accel-
erate the development of new approaches beyond password-
guessing, such as enhancing password security mechanisms
like honeywords and password strength meters. MAYA
is intended to foster academic advancements in password
security, not to facilitate or promote malicious activity.

References

[1] “Mail.ru,” CyberInsurance, 2014, accessed: Apr. 14, 2025. [Online].
Available: https://www.cyberinsurance.com/breaches/mailru/

[2] “2012 linkedin breach had 117 million emails
and passwords stolen, not 6.5m,” Trend Micro,
2016, accessed: Apr. 14, 2025. [Online]. Available:
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/
2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m

[3] Y. Abdrabou, J. Schütte, A. Shams, K. Pfeuffer, D. Buschek,
M. Khamis, and F. Alt, “” your eyes tell you have used this
password before”: Identifying password reuse from gaze and keystroke
dynamics,” in Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, 2022, pp. 1–16.

[4] A. Alaa, B. Van Breugel, E. S. Saveliev, and M. Van Der Schaar, “How
faithful is your synthetic data? sample-level metrics for evaluating and
auditing generative models,” in International Conference on Machine
Learning. PMLR, 2022, pp. 290–306.

[5] M. AlSabah, G. Oligeri, and R. Riley, “Your culture is in your
password: An analysis of a demographically-diverse password dataset,”
Computers & security, vol. 77, pp. 427–441, 2018.

[6] S. Barannikov, I. Trofimov, G. Sotnikov, E. Trimbach, A. Korotin,
A. Filippov, and E. Burnaev, “Manifold topology divergence: a frame-
work for comparing data manifolds.” Advances in neural information
processing systems, vol. 34, pp. 7294–7305, 2021.

[7] D. Biesner, K. Cvejoski, and R. Sifa, “Combining variational au-
toencoders and transformer language models for improved password
generation,” in Proceedings of the 17th International Conference on
Availability, Reliability and Security, 2022, pp. 1–6.

[8] J. Bonneau, “The science of guessing: Analyzing an anonymized
corpus of 70 million passwords,” in 2012 IEEE Symposium on Security
and Privacy, 2012, pp. 538–552.

[9] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in 2012 IEEE symposium on security and
privacy. IEEE, 2012, pp. 553–567.

[10] A. Borji, “Pros and cons of gan evaluation measures: New devel-
opments,” Computer Vision and Image Understanding, vol. 215, p.
103329, 2022.

[11] T. Brewster, “13 million passwords appear to have leaked from this
free web host - updated,” Forbes, 2015, accessed: Apr. 14, 2025.
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/
2015/10/28/000webhost-database-leak/

[12] H. Cheng, W. Li, P. Wang, and K. Liang, “Improved probabilistic
context-free grammars for passwords using word extraction,” in
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 2690–2694.

[13] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The
tangled web of password reuse.” in NDSS, vol. 14, no. 2014, 2014,
pp. 23–26.

[14] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength:
An empirical analysis,” in Proceedings of the 2010 IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[15] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaa-
bane, “Omen: Faster password guessing using an ordered markov
enumerator,” in Engineering Secure Software and Systems: 7th In-
ternational Symposium, ESSoS 2015, Milan, Italy, March 4-6, 2015.
Proceedings 7. Springer, 2015, pp. 119–132.

[16] S. Furnell, “Assessing password guidance and enforcement on leading
websites,” Computer Fraud & Security, vol. 2011, no. 12, pp. 10–18,
2011.

[17] R. Gagliardi, “Libero.it password leak - an analysis in-depth,”
Scip AG, 2016, accessed: Apr. 14, 2025. [Online]. Available:
https://www.scip.ch/en/?labs.20180913

[18] X. Gan, D. Li, and H. Chen, “Analysis of words in passwords from
three different countries,” in 2022 IEEE 10th Joint International
Information Technology and Artificial Intelligence Conference (ITAIC),
vol. 10, 2022, pp. 1775–1781.

[19] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth, E. Redmiles,
and B. Ur, “" what was that site doing with my facebook password?"
designing password-reuse notifications,” in Proceedings of the 2018
acm sigsac conference on computer and communications security,
2018, pp. 1549–1566.

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” Advances in neural
information processing systems, vol. 30, 2017.

[21] I. Gulrajani, C. Raffel, and L. Metz, “Towards gan benchmarks
which require generalization,” 2020. [Online]. Available: https:
//arxiv.org/abs/2001.03653

[22] X. Guo, Y. Liu, K. Tan, W. Mao, M. Jin, and H. Lu, “Dynamic markov
model: Password guessing using probability adjustment method,”
Applied Sciences, vol. 11, no. 10, p. 4607, 2021.

[23] W. Han, Z. Li, L. Yuan, and W. Xu, “Regional patterns and vulner-
ability analysis of chinese web passwords,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 2, pp. 258–272, 2016.

[24] W. Han, M. Xu, J. Zhang, C. Wang, K. Zhang, and X. S. Wang,
“Transpcfg: transferring the grammars from short passwords to guess
long passwords effectively,” IEEE Transactions on Information Foren-
sics and Security, vol. 16, pp. 451–465, 2020.

[25] hashcat. [Online]. Available: https://hashcat.net/hashcat/

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016.

[27] X. He, H. Cheng, J. Xie, P. Wang, and K. Liang, “Passtrans: An
improved password reuse model based on transformer,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 3044–3048.

[28] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.

[29] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep
learning approach for password guessing,” in Applied Cryptography
and Network Security: 17th International Conference, ACNS 2019,
Bogota, Colombia, June 5–7, 2019, Proceedings 17. Springer, 2019,
pp. 217–237.

[30] S. Jin and M. Dupuis, “Password usage behavior of online users,” in
2024 Cyber Awareness and Research Symposium (CARS). IEEE,
2024, pp. 1–6.

[31] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 523–537.

[32] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Proceedings
of the sigchi conference on human factors in computing systems, 2011,
pp. 2595–2604.

[33] B. T. Kuhn and C. Garrison, “A survey of passwords from 2007
to 2009,” in 2009 Information Security Curriculum Development
Conference, ser. InfoSecCD ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 91–94. [Online]. Available:
https://doi.org/10.1145/1940976.1940994

https://www.cyberinsurance.com/breaches/mailru/
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
https://www.scip.ch/en/?labs.20180913
https://arxiv.org/abs/2001.03653
https://arxiv.org/abs/2001.03653
https://hashcat.net/hashcat/
https://doi.org/10.1145/1940976.1940994

[34] lakiw, “pcfg-cracker,” accessed: Apr. 11, 2025. [Online]. Available:
https://github.com/lakiw/pcfg_cracker

[35] Y. Li, H. Wang, and K. Sun, “A study of personal information in human-
chosen passwords and its security implications,” in IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[36] Z. Li, W. Han, and W. Xu, “A {Large-Scale} empirical analysis
of chinese web passwords,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 559–574.

[37] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel,
“Is fido2 the kingslayer of user authentication? a comparative usability
study of fido2 passwordless authentication,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 268–285.

[38] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 689–704.

[39] P. Mayer, J. Kirchner, and M. Volkamer, “A second look at password
composition policies in the wild: Comparing samples from 2010 and
2016,” in Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). Santa Clara, CA: USENIX Association, Jul. 2017,
pp. 13–28. [Online]. Available: https://www.usenix.org/conference/
soups2017/technical-sessions/presentation/mayer

[40] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, lean, and accurate: Modeling password guess-
ability using neural networks,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 175–191.

[41] J. Pagliery, “5 million gmail passwords leaked,” CNN, 2014, accessed:
Apr. 14, 2025. [Online]. Available: https://money.cnn.com/2014/09/
10/technology/security/gmail-hack/index.html

[42] G. Pagnotta, D. Hitaj, F. De Gaspari, and L. V. Mancini, “Passflow:
guessing passwords with generative flows,” in 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2022, pp. 251–262.

[43] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp.
417–434.

[44] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference,” Journal of Machine Learning Research, vol. 22, no. 57,
pp. 1–64, 2021.

[45] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
1382–1399.

[46] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:
Observing passwords in their natural habitat,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 295–310.

[47] A. Radford, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[48] J. Rando, F. Perez-Cruz, and B. Hitaj, “Passgpt: Password modeling
and (guided) generation with large language models,” in European
Symposium on Research in Computer Security. Springer, 2023, pp.
164–183.

[49] J. T. Ripper. [Online]. Available: https://www.openwall.com/john/

[50] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, 2016.

[51] J. Schofield, “32.6m passwords may have been compromised in
rockyou hack,” The Guardian, 2009, accessed: Apr. 14, 2025.
[Online]. Available: https://www.theguardian.com/technology/blog/
2009/dec/15/rockyou-hacked-passwords

[52] R. Shay, S. Komanduri, A. L. Durity, P. Huh, M. L. Mazurek, S. M.
Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Designing
password policies for strength and usability,” ACM Transactions on
Information and System Security (TISSEC), vol. 18, no. 4, pp. 1–34,
2016.

[53] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger
password requirements: user attitudes and behaviors,” in Proceedings
of the sixth symposium on usable privacy and security, 2010, pp.
1–20.

[54] E. Stobert and R. Biddle, “The password life cycle,” ACM Transactions
on Privacy and Security (TOPS), vol. 21, no. 3, pp. 1–32, 2018.

[55] X. Su, X. Zhu, Y. Li, Y. Li, C. Chen, and P. Esteves-Veríssimo,
“Pagpassgpt: Pattern guided password guessing via generative pre-
trained transformer,” in 2024 54th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE,
2024, pp. 429–442.

[56] T. Team, “What happened in the taobao data breach?” Twingate,
2024, accessed: Apr. 14, 2025. [Online]. Available: https:
//www.twingate.com/blog/tips/taobao-data-breach

[57] A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras, A. Bronstein,
I. Oseledets, and E. Müller, “The shape of data: Intrinsic
distance for data distributions,” 2020. [Online]. Available: https:
//arxiv.org/abs/1905.11141

[58] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2776–2791, 2017.

[59] D. Wang and P. Wang, “On the implications of zipf’s law in passwords,”
in European Symposium on Research in Computer Security. Springer,
2016, pp. 111–131.

[60] D. Wang, Y. Zou, Y.-A. Xiao, S. Ma, and X. Chen, “{Pass2Edit}:
A {Multi-Step} generative model for guessing edited passwords,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
983–1000.

[61] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing using
random forest,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 965–982.

[62] J. Xie, H. Cheng, R. Zhu, P. Wang, and K. Liang, “Wordmarkov:
A new password probability model of semantics,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 3034–3038.

[63] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level
password guessing: Towards modeling refined password composition
representations,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 5–20.

[64] M. Xu, J. Yu, X. Zhang, C. Wang, S. Zhang, H. Wu, and W. Han,
“Improving real-world password guessing attacks via bi-directional
transformers,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 1001–1018.

[65] K. Yang, X. Hu, Q. Zhang, J. Wei, and W. Liu, “Vaepass: A
lightweight passwords guessing model based on variational auto-
encoder,” Computers & Security, vol. 114, p. 102587, 03 2022.

[66] K. Zetter, “Hackers finally post stolen ashley madison data,” Wired,
2015, accessed: Apr. 14, 2025. [Online]. Available: https://www.wired.
com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/

Ethical Considerations

In line with prior research [40], [45], [48], [64], we con-
sider the use of leaked datasets to be ethical, as: (1) they are
publicly available, (2) their usage does not cause additional
harm, (3) we do not use any additional sensitive information,
such as email addresses, phone numbers, or usernames, that

https://github.com/lakiw/pcfg_cracker
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/mayer
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/mayer
https://money.cnn.com/2014/09/10/technology/security/gmail-hack/index.html
https://money.cnn.com/2014/09/10/technology/security/gmail-hack/index.html
https://www.openwall.com/john/
https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords
https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords
https://www.twingate.com/blog/tips/taobao-data-breach
https://www.twingate.com/blog/tips/taobao-data-breach
https://arxiv.org/abs/1905.11141
https://arxiv.org/abs/1905.11141
https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/

could link specific passwords to individual users, and (4)
such data are essential for advancing research. We discourage
any usage of MAYA for illegal or unethical purposes. The
framework is developed exclusively for academic research
to drive advancements in password security.

Appendix A.
Models and Tools Implementation

This appendix provides additional implementation details
on all models. Each generative model was ported to PyTorch
2.6.0, standardizing dependencies and ensuring reproducibil-
ity. All training parameters used were as specified by the
original papers/implementation, unless otherwise stated.

FLA. We implemented FLA following the description of the
large model mentioned in [40]. Specifically, the architecture
consists of three LSTM layers with 1000 cells each, followed
by two FC layers. Each checkpoint was trained for 20
epochs, processing input backwards. Unlike other generative
approaches, FLA requires a probability threshold as input,
filtering out passwords whose overall probability falls below
it. We set this threshold to 10−8 for up to 106 generated
passwords, 10−9 for 107, and 10−10 for 5 × 108. After
generation, we sort guesses by probability in descending
order and select the first n ones, equivalent to finding the
optimal threshold to generate exactly n passwords.

PassGAN. We implemented PassGAN as described in the
original work [29]: using an IWGAN [20] with both the gen-
erator and discriminator composed of 5 residual blocks [26].
Following the original setup, we trained PassGAN’s models
for 200, 000 iterations, evaluating checkpoints every 10, 000
steps.

PLR-GAN. PLR-GAN [45] is an enhanced version of Pass-
GAN aimed at improving training instability. PLR injects low-
magnitude noise into the one-hot character encodings during
training, enabling the integration of deeper architectures and
longer training. While the original work states that PLR can
be trained up to 4 million iterations, we capped our training
at 400, 000 iterations due to computational constraints and
the diminishing returns observed beyond this point. All our
experiments utilize the Dynamic Password Guessing strategy
proposed by the authors.

PassFlow. We optimized the original PassFlow implemen-
tation [42] to improve efficiency. We introduced an early-
stopping mechanism that halts the training if the model
fails to improve its performance by at least 5% over the
current best result for 10 consecutive epochs, starting from
epoch 100. Otherwise, training continues for 200 epochs. All
our experiments were conducted using PassFlow’s Gaussian
Smoothing technique. The original GS implementation adds
noise to the generated passwords until a unique one is
generated. However, this approach is highly inefficient on
certain datasets, significantly slowing down generation (up
to weeks of time for a single run). We modified the GS

algorithm, introducing an early stopping mechanism if no
unique password is generated after 100 iterations.

VGPT2. We implemented VGPT2 [7] without introducing
any architectural or training modifications.

PassGPT. We used the original PassGPT implementation,
applying minimal changes to ensure compatibility with our
framework. Following the authors’ recommendations [48],
we trained PassGPT on a deduplicated dataset.

OMEN. We used the publicly available implementation of
OMEN [15] from [34]. We configured it as a 4-gram Markov
model with a coverage set to 0, thereby relying exclusively
on guesses from the Markov attack.

PCFG. We used the publicly available implementation of
PCFG from [34]. We set the coverage parameter to 1,
effectively relying solely on guesses produced by the PCFG
model.

Appendix B.
Additional Details On RQs

B.1. Additional Details On RQ6

To address RQ6, we employed two metrics: the Jaccard
Index and the Mergeability Index. We now present their
mathematical definitions:

Jaccard Index:. Given two models m1 and m2 and a set of
datasets D = {D1, D2, ..., Dz}, let f(mi, D

train
j , s) = Pi,j

denote the set of passwords generated by model mi after
being trained on dataset Dtrain

j , using settings s. We define
the Jaccard Index between m1 and m2 as:

J(m1,m2, D) =
1

|D|

|D|∑
j=1

|(P1,j ∩ P2,j)|
|(P1,j ∪ P2,j)|

(1)

where: Pi,j = f(mi, D
train
j , s)

Mergeability Index:. Let Gi,j = Pi,j ∩ Dtest
j denote the

set of passwords generated by model mi, after being trained
on Dtrain

j , that match those in the corresponding testing set
Dtest

j . The Mergeability Index is defined as follows:

MI(m1,m2, D) =
1

|D|

|D|∑
j=1

(
|(G1,j ∪G2,j)| −GMAX

GMAX

)
(2)

where: GMAX = max(|G1,j |, |G2,j |).

TABLE 10: Distribution of password patterns from r1 to r19.

Dataset r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19

rockyou 44.28 41.89 1.51 15.93 0.02 36.26 1.64 0.15 1.67 31.64 1.11 0.67 0.10 16.54 0.04 0.17 0.07 0.47 9.38
linkedin 20.38 18.02 0.78 19.59 0.01 53.22 1.28 0.16 5.36 43.10 1.97 0.66 0.25 21.23 0.07 0.35 0.31 0.82 10.02
mailru 27.19 24.37 0.27 18.54 0.00 52.19 0.62 0.35 1.12 27.00 0.14 0.37 0.16 21.23 0.03 0.04 0.06 0.03 5.75
000web 0.42 0.18 0.01 0.04 0.02 92.89 1.20 0.40 4.97 69.11 1.77 0.66 0.50 3.31 0.00 0.02 0.02 0.43 13.10
taobao 15.70 15.42 0.13 27.90 0.01 55.89 0.09 0.10 0.31 50.18 0.06 0.04 0.08 28.46 0.00 0.01 0.01 0.01 9.92
gmail 39.78 39.78 0.00 15.70 0.02 42.38 0.86 0.14 1.13 33.36 0.53 0.58 0.09 16.93 0.12 0.07 0.17 0.00 9.05
ashleym 35.04 33.18 0.98 12.32 0.00 52.24 0.12 0.02 0.27 41.79 0.11 1.05 0.01 13.43 0.00 0.01 0.01 0.05 10.11
libero 42.04 39.01 1.86 13.10 0.00 42.41 0.63 0.08 1.69 34.06 0.75 0.24 0.09 15.94 0.02 0.09 0.05 0.24 6.95

TABLE 11: Top 10 passwords for each dataset. The password at the 8th position in 000webhost (indicated as “*”) is
“YfDbUfNjH10305070”: the letter portion of the password can be mapped to a Russian word meaning “Navigator”. The
reasons for its unexpected popularity remain unclear [59].

Dataset 1 2 3 4 5 6 7 8 9 10

Rockyou 123456 12345 123456789 password iloveyou princess rockyou 1234567 12345678 abc123
Linkedin linkedin 123456 123456789 abc123 idontknow ilovelinkedin Godisgood jaimatadi linkedin1 iloveindia
Mailru qwerty qwertyuiop 123456 qwe123 qweqwe klaster 1qaz2wsx 1q2w3e4r qazwsx 1q2w3e
000webhost abc123 123456a 12qw23we 123abc a123456 123qwe secret666 * asd123 qwerty123
Taobao 123456 111111 123456789 123123 000000 5201314 wangyut2 123 123321 12345678
Gmail 123456 password 123456789 12345 qwerty 12345678 111111 abc123 123123 1234567
Ashley M. eatpussy opensaysme christina longing nastygirl steve 11inches 2ofus 69sex 99wmp
Libero 123456 popopo90 francesco 123456789 12345678 napoli alessandro amoremio andrea francesca

TABLE 12: Marginal gain in successful matches as the number of generated passwords increases, with each column
representing generation intervals (e.g., 1M-2.5M indicates the marginal gain when expanding from 1M to 2.5M guesses).
For a given interval X-Y, Total indicates the marginal gain achieved when increasing the number of guesses from X to Y,
expressed as a percentage of the total number of test passwords. Relative indicates the marginal gain relative to the number
of matches obtained at X. Results are averaged across all password lengths.

.
Model 1M-2.5M 2.5M-5M 5M-7.5M 7.5M-10M 10M-25M 25M-50M 50M-75M 75M-100M 100M-250M 250M-500M

Total Relative Total Relative Total Relative Total Relative Total Relative Total Relative Total Relative Total Relative Total Relative Total Relative

PassGAN +0.49 +83.75 +0.55 +50.94 +0.40 +24.84 +0.32 +15.95 +1.23 +53.74 +1.14 +32.85 +0.75 +16.47 +0.56 +10.69 +1.96 +34.15 +1.63 +21.38
PLR-GAN +0.62 +97.50 +0.74 +59.45 +0.57 +28.94 +0.48 +18.91 +1.94 +65.41 +1.96 +40.34 +1.34 +19.54 +1.03 +12.55 +3.67 +40.28 +3.21 +25.59
PassFlow +0.62 +69.67 +0.73 +48.88 +0.56 +25.15 +0.44 +15.72 +1.72 +52.72 +1.58 +31.53 +1.05 +15.85 +0.80 +10.38 +2.84 +33.66 +2.48 +21.97
PassGPT +1.20 +114.72 +1.60 +71.91 +1.34 +35.32 +1.18 +22.97 +5.21 +83.58 +5.45 +48.49 +3.66 +22.15 +2.73 +13.56 +8.89 +39.13 +6.53 +20.63
VGPT2 +0.18 +137.88 +0.28 +90.08 +0.25 +43.08 +0.24 +28.34 +1.18 +110.51 +1.45 +65.38 +1.11 +30.52 +0.92 +19.44 +3.65 +65.02 +3.43 +37.03
FLA +4.33 +58.54 +4.17 +35.55 +2.66 +16.71 +1.93 +10.40 +6.57 +32.14 +5.55 +20.62 +3.33 +10.28 +2.34 +6.56 +7.44 +19.62 +5.84 +13.00

B.2. Additional Details On RQ7

Let Dtrain =
⋃|D|

j=1 D
train
j and Dtest =

⋃|D|
j=1 D

test
j de-

note the union of all training and testing datasets, respectively.
Let R be the set of randomly generated passwords, each
between 6 and 12 characters in length. The lower-bound
baseline L and upper-bound baseline U for a given metric
dist are computed as follows:

L = dist(Dtest, Dtrain), U = dist(Dtest, R) (3)

Next, for each model mi, let Pi be the set of passwords
generated by model mi across all datasets. The value di for
a model mi on a given metric dist is then computed using
the following equation:

di =
dist(Dtest, Pi)− L

U − L
∗ 100 (4)

We now provide further details regarding the four selected
metrics, followed by an additional analysis on IMD.

CNN Divergence [21]. Neural networks can be used to
estimate the divergence between two distributions, making
them useful for evaluating generative models. The idea is to
employ an independent critic network trained to distinguish
between real and generated samples. After sufficient training,
the critic’s loss, based on WGAN-GP [20], reflects the
distance between the two distributions. Our convolutional
neural network (CNN) follows the architecture and settings
described in [21], based on the DCGAN discriminator [47].

IMD [57]. IMD, which stands for Intrinsic Multi-scale
Distance, is a metric designed to compare the data manifolds
of two distributions. IMD provides an intrinsic method
to lower-bound the spectral Gromov-Wasserstein distance
between two manifolds. Unlike other approaches that focus
on extrinsic properties and are uni-scale, IMD is intrinsic,
meaning it is not dependent on the transformation of the
manifold and multi-scale, capturing both local and global
properties.

α-Precision β-Recall Authenticity [4]. The α-Precision
β-Recall Authenticity is a three-dimensional metric, with
each dimension corresponding to a distinct property:

TABLE 13: IMD outputs as the distributions P and Q vary.

IMD(P,Q) Output

P = 000webhost - Q = Random 7.9919
P = 000webhost - Q = PassFlow 000webhost 47.0466

P = PassFlow 000webhost - Q = Random 49.0287
P = PassFlow 000w. - Q = Rand with PassFlow 000w. Length 30.9260

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10r11r12r13r14r15r16r17r18r19
Patterns

0

20

40

60

80

100

Fr
eq

ue
nc

ie
s (

%
)

FLA
PassGPT
PassFlow
000webhost
Fully-Random-Psw

Figure 10: Distribution of 19 patterns in the 000webhost test
dataset and in passwords generated by FLA, PassGPT, and
PassFlow, all trained on 000webhost.

• Fidelity (α-Precision): Measures how closely the gen-
erated samples resemble the most typical fraction (α-
support) of real data.

• Diversity (β-Recall): Represents the fraction of real
samples that lie within the β-support of the generated
data distribution.

• Generalization (Authenticity): Reflects the model’s
ability to generalize, ensuring that the output is not
limited to mere copies of the training data.

Each dimension is computed after mapping generated and
real data into a hypersphere using a feature embedding,
where most of the data is concentrated near the center, while
outliers are positioned closer to the boundaries.

MTopDiv [6]. MTopDiv introduced a method that tracks
multiscale topology discrepancies between two distributions,
P and Q, in a high-dimensional space. Unlike IMD, MTop-
Div also considers extrinsic properties, using position and
translation to capture structural differences between the two
distributions.

IMD Analysis. To better understand the rationale behind the
high values obtained with IMD across several models, we
repeat the metric analysis using 107 generated passwords.
The results, shown in Table 14, differ significantly from
those obtained with 5× 108 generated passwords (Table 8),
particularly for PassFlow, PLR-GAN, and FLA, which exhibit
notably higher IMD scores in the smaller sample. To investi-
gate this discrepancy, we compare the length distributions of
the 107 and 5×108 generated samples. We observe that, in the
smaller set, models such as PassFlow and PLR-GAN—based
on GS and DPG techniques, respectively—exhibit a strong

bias toward shorter passwords. This behavior stems from the
TABLE 14: Distance between human- and generative model-
created passwords when generating 107 passwords.

Models CNN Div α−Precision β−Recall Auth IMD MTopDiv
PassGAN 16% 38% 7% 13% 62% 1%
PLR-GAN 9% -13% 5% 9% 18% 0%
PassFlow 69% 31% 59% 35% 500% 52%
PassGPT 6% -9% 4% 4% 0% 0%
VGPT2 33% 26% 36% 6% 120% 15%

FLA 24% 39% 3% 48% 347% 2%

tendency of such models to initially saturate the space of
simpler (i.e., shorter) passwords before extending to more
complex ones. A similar pattern is observed with FLA, which
outputs the most probable passwords. Consequently, when
fewer samples are generated, the length distribution exhibits
a strong bias toward shorter lengths, as shorter passwords are
more probable. These findings confirm our hypothesis that
IMD is highly sensitive to length distribution differences: the
greater the deviation of the generated passwords’ length
distribution from the real one, the higher the distance
measured by IMD.

We now focus on the 000webhost dataset, which yields
a particularly high IMD score for PassFlow when evaluating
107 generated passwords. Although this score exceeds that
obtained from random passwords, it does not necessarily
indicate that PassFlow’s outputs are random or even close to
random. To demonstrate this, we compute the IMD metric
between PassFlow’s generated passwords and random pass-
words. The results, shown in Table 13, are compared against
the two baselines and reveal that PassFlow’s passwords are
farther from random passwords than from real ones. We
further examined the effect of aligning the length distribution
of the random passwords with that of PassFlow’s 000webhost-
generated passwords. As reported in Table 13, this adjustment
results in a higher IMD score, thereby confirming that IMD
is sensitive to differences in length distribution.

Lastly, we investigate the impact of various degrees of
mode failure, such as mode dropping and mode invention,
on the IMD metric. For this analysis, we used the 19
patterns listed in Table 3. As shown in Figure 10, the pattern
distribution of random passwords deviates substantially from
the others. Mode invention is observed in patterns r7, r9, r11,
r13, r16, and r17, while mode dropping occurs in commonly
observed patterns such as r6, r10, and r19. These findings
suggest that the IMD metric does not adequately capture
the varying degrees of mode failure and further support the
hypothesis that IMD primarily outputs high values due to
a model’s inability to replicate the real password length
distribution. Interestingly, PassGPT performs particularly
well in approximating the pattern distribution of 000webhost,
with its pattern distribution closely aligning with that of the
real passwords. Additionally, FLA outperforms PassFlow
in capturing this distribution, with the latter struggling to
replicate patterns r10, r14, and r19. These observations are
consistent with the results obtained using the MTopDiv metric
in Table 8, which explicitly accounts for such mode-related
discrepancies.

	Introduction
	Motivation
	Lack of Consistency
	Lack of Rigorousness
	Lack of Characterization
	Why Trawling Attacks

	MAYA
	Methodology
	Standardized Data Preprocessing and Settings
	Advanced Evaluation Scenarios

	Models
	Research Questions

	Datasets
	Datasets Selection
	Dataset Analysis
	Password Length Analysis
	Password Patterns Analysis
	Top-10 Passwords Analysis
	Frequency Distribution

	Experiments
	RQ1 - How Do Different Settings Influence Models Performance?
	RQ2 - Are Generative Models Truly Better Than Traditional Tools?
	RQ3 - How Sensitive are Models to Training Dataset Size?
	RQ4 - Can Models Generalize To Different Communities and/or Cultures?
	Cross-community
	Cross-culture

	RQ5 - Are Models Limited to Guessing Only Simple and Common Passwords?
	Analysis by Password Frequency
	Analysis by Password Length
	Analysis by Password Patterns

	RQ6 - To What Extent Do the Distributions Learned by Different Models Align? Can We Combine Models to Maximize Effectiveness?
	RQ6.1 - To What Extent Do the Distributions Learned by Different Models Align?
	RQ6.2 - Can We Combine Models to Maximize Effectiveness?

	RQ7 - Do Models Truly Capture the Characteristics of Human-Like Passwords?
	Metrics-Based Evaluation
	Length Distribution in Generated Passwords
	Why Does IMD Yield High Values?

	General Benchmarking

	Insights and Lessons Learned
	Conclusion
	References
	Appendix A: Models and Tools Implementation
	Appendix B: Additional Details On RQs
	Additional Details On RQ6
	Additional Details On RQ7

