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Abstract

Digital signatures are fundamental cryptographic primitives that ensure the
authenticity and integrity of digital communication. However, in scenarios involv-
ing sensitive interactions—such as e-voting or e-cash—there is a growing need
for more controlled signing mechanisms. Strong-Designated Verifier Signature
(SDVS) offers such control by allowing the signer to specify and restrict the
verifier of a signature. The existing state-of-the-art SDVS are mostly based
on number-theoretic hardness assumptions. Thus, they are not secure against
quantum attacks. Moreover, Post-Quantum Cryptography (PQC)-based SDVS
are inefficient and have large key and signature sizes. In this work, we address
these challenges and propose an efficient post-quantum SDVS (namely, LaSDVS
) based on ideal lattices under the hardness assumptions of the Ring-SIS and
Ring-LWE problems. LaSDVS achieves advanced security properties including
strong unforgeability under chosen-message attacks, non-transferability, non-
delegatability, and signer anonymity. By employing the algebraic structure of
rings and the gadget trapdoor mechanism of Micciancio et al., we design LaSDVS
to minimize computational overhead and significantly reduce key and signa-
ture sizes. Notably, our scheme achieves a compact signature size of O(n log q),
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compared to O(n2) size, where n is the security parameter, in the existing state-
of-the-art PQC designs. To the best of our knowledge, LaSDVS offers the smallest
private key and signature size among the existing PQC-based SDVS schemes.

Keywords: Lattice-Based Cryptography, Post-Quantum Cryptography, Strong
Designated Verifier Signature, Ring-SIS, Ring-LWE

1 Introduction

Digital Signatures [14] are a crucial cryptographic primitive that provides security
properties such as authentication, integrity, and non-repudiation [7]. In particular, it
ensures that a message originates from a particular sender, has not been tampered
with in between, and prevents any denial caused by signers in digital communication.
A digital signature is publicly verifiable using the signer’s public key and cannot
prevent dishonest verifiers from transferring the validation of sensitive signed messages.
However, certain real-life applications exist where the sender of a digital message wants
to ensure that only the designated receivers can verify and be convinced whether the
signature is valid. As a solution to this problem, the notion of Designated Verifier
Signature (DVS) was introduced by Jakobsson et al. [6] in Eurocrypt’96. In a DVS
scheme, only the designated verifiers can verify the signature and obtain the conviction
of correctness of the proof. In this scheme, the signer and the designated verifier both
have the equivalent signing privileges, i.e., the designated verifier also has the right to
produce a valid signature over the same message. Any third party except the signer and
the designated verifier can not distinguish whether the signature was generated by the
actual signer or the designated verifier. This property is named as Non-Transferability
(NT ). Strong Designated Verifier Signature (SDVS), which is a stronger notion of the
DVS scheme (also proposed by Jakobsson et al [6] and further explained by Vergnaud
et al. [8]) provides some extra useful privacy properties. Specifically, in SDVS, the
private key of the designated verifier is also involved while verifying the signature.
This means that nobody else (including a third party) can check the validity of the
signature, even if they have the public key. SDVS further provides Non-Delegatability
(ND), which is a desired property in cases where the responsibility of the signer
becomes very important. For example, an e-voting protocol where it should not be
possible to delegate the signing rights to others. Thus, SDVS can be useful in many
applications, e.g., e-voting, digital subscription system, online contract agreements,
product licensing, etc.

Several SDVS exist in the literature, but the existing state-of-the-art SDVS pro-
tocols are based on the number-theoretic assumptions [8]. Quantum algorithms like
Shor’s algorithm [18] may be used for the cryptanalysis of the existing SDVS designs.
To withstand the quantum threats, there is an urgent need to design a quantum
secure SDVS protocol. A new direction of research called Post-Quantum Cryptog-
raphy (PQC) has been announced by the NIST in 2016 [13]. The goal of PQC is
to design and analyze protocols that can securely withstand quantum attacks. PQC
can be divided into several categories, such as Lattice-based [5], Multivariate-based
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[3], Hash-based [19], Code-based [16], and Isogeny-based [12]. Among these, Lattice-
based Cryptography is one of the most important research directions in PQC. In this
setting, the security of the proposed cryptographic protocols relies on the worst-case
hardness of lattice-based problems [17].

Related Works. A lot of fundamental work has been done in the domain lattice-
based cryptography over the last two decades. One of the most groundbreaking
works was GPV [4] - the first lattice-based provably secure signature scheme. In
[4], the authors introduced a new notion of trapdoor function called Pre-image
Samplable Function (PSF). Based on the idea of this trapdoor, several lattice-based
cryptographic protocols have been defined. The first lattice-based DVS scheme was
proposed by Wang et al. [20], which employed PSF and utilized Bonsai Trees for
the basis delegation process. Although the scheme was proven secure in the random
oracle model, it suffers from large key and signature sizes. In 2017, Noh et al. [15]
proposed an SDVS scheme that was proven secure in the standard model. They used
the technique of Learning with Errors (LWE)-based public key cryptosystem, and
lattice-based chameleon hash function. The SDVS design in [15] also suffered from
complex computations and large key and signature sizes. In 2019, Cai et al. [2] pro-
posed a comparatively efficient SDVS scheme based on the hardness of the Ring-SIS
problem. They used the idea of rejection sampling to generate a signature of efficient
size. ND was introduced for SDVS by Lipma et al. [10]. As discussed above, ND is a
crucial property in real-life applications of SDVS. Earlier constructions of SDVS with
ND security property were proposed only in the classical setting. In 2024, the first
lattice-based SDVS with ND property was proposed by Zhang et al. [21], which pro-
vides provable security based on the hardness of SIS and LWE problems. A summary
of the related works is provided in Table 1.

Our Contribution: The major contribution of this work is summarized below.

1. We propose an efficient post-quantum SDVS, namely LaSDVS based on ideal
lattice under the hardness assumptions of Ring-SIS and Ring-LWE

2. LaSDVS provides advanced security properties such as strong unforgeability under
the chosen-message attack, non-transferability, non-delegatability, and privacy of
signer’s identity.

3. We design LaSDVS using the algebraic structures of the ring. Thus, we are able
to minimize the computational costs, parameter sizes, and signature and keys
overhead by a significant margin. We exploited the idea of the trapdoor, called the
Gadget trapdoor, defined by Micciancio et al. in [11]. We emulated this trapdoor
definition in the ideal lattice computations that gave us more efficiency than the
standard lattices based SDVS designs.

4. LaSDVS is very efficient and compact when compared to the existing state-of-the-
art SDVS. In particular, LaSDVS provides the smallest private key size among
the existing PQC-based SDVS design.

5. Our scheme achieves a compact signature size of O(n log q), compared to the
O(n2) signature sizes in standard constructions. This corresponds to a reduction
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Table 1: Tecniques, advantages, and limitations of existing lattice-based SDVS
schemes

Scheme Cryptographic
Techniques

Advantages Limitations

Wang
et al.
[20]

• Pre-image
Sampling
Functions
• Bonsai
Trees

• First lattice-based SDVS
scheme
•Based on the hardness of LWE
and SIS problem
• Provides EU and NT security

• Does not provide
PSI and ND secu-
rity
• Complex compu-
tations
• Large key sizes

Noh et
al. [15]

• Used LWE-
based PKC
• Chameleon
Hash function

• First lattice-based SDVS
scheme in standard model
• Provides SU, NT, and PSI
security
• Based on the hardness of SIS
and LWE problems

• Does not provide
ND security
• Complex compu-
tations
• Very large key
sizes

Cai et
al. [2]

• Hard prob-
lems in ideal
lattice
• Filtering
techniques

•Not using PSF and Bonsai Trees
•Resisting side Channel attacks
• Provides EU, NT, and PSI
security
• Based on the hardness of
R−SIS problem

• Does not offer
ND security
• Large key sizes,
but small signature
size.

Zhang
et al.
[21]

• Rejection
sampling
• Pre-image
Samplable
Functions

• First lattice-based SDVS with
ND security
•Provable secure based on SIS
and LWE problem
•Provides EU, NT, and PSI secu-
rity

• Large key and
signature sizes
• Impractical for
real-world applica-
tions

EU : Existential Unforgeability, SU : Strong Unforgeability, NT : Non-Transferability, PSI :
Privacy for Signer’s Identity, ND : Non-Delegatability. SIS : Short Integer Solution,LWE :
Learning With Errors, PKC : Public Key Cryptosystems.

by a factor of n/ log q. In fact, the signature size in LaSDVS is smallest among all
PQC-based SDVS designs.

2 Preliminaries

2.1 Notations

The notations, which have been used in this paper, are described in Table 2.

2.2 Background of Lattice-Based Cryptography

In this section, we discuss the concepts of lattices, ideal lattices, and the important
results in the ideal lattices.
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Table 2: Notations for the symbols used in the paper

R Ring of polynomials of degree n− 1 Z[x]/ < xn + 1 > with integer coefficients
Rq Ring of polynomials of degree n− 1 Zq[x]/ < xn + 1 > with coefficients in Zq

$←− Sampling uniformly random elements
a Bold small-case letter denotes a vector
R Bold capital-case letter denotes a matrix
t Normal small-case letter denotes an element of the ring

(mod q) Elements from the set (−(q − 1)/2, . . . , 0, . . . , (q − 1)/2]
PPT Probabilistic Polynomial Time
|| Concatenation
|| · || Euclidean norm
a · b Inner product of two vectors in the ring
at Scalar product between a vector of the ring and a ring element
∅ Empty set

a|b Concatenation of elements of a followed by the elements of b

Definition 1 (Lattice [9]) Let v1, . . . ,vn ∈ Rm be a set of linearly independent vectors.
The lattice Λ generated by v1, . . . ,vn is the set of linear combinations of v1, . . . ,vn with
coefficients in integers Z i.e;

Λ = {a1v1 + . . .+ anvn : a1, a2, . . . , an ∈ Z}.

Three types of integer lattices are mainly considered in the literature. For a given integer
modulus q, a matrix A ∈ Zn×m

q , and u ∈ Zn
q , define:

Λq(A
T ) = {x ∈ Zm : ∃ s ∈ Zn

q s.t. AT · s = x (mod q)}

Λ⊥
q (A) = {x ∈ Zm : A · x ≡ 0 (mod q)}

Λu
q (A) = {x ∈ Zm : A · x = u (mod q)}

We now provide the definition of the discrete Gaussian distribution over a lattice,
which plays a central role in the design and analysis of lattice-based cryptographic
schemes.

Definition 2 (Discrete Gaussian [1]) Let Λ ⊂ Zm, c ∈ Rm, σ ∈ R+. Define:

ρσ,c(x) = exp(−π ||x− c||2

σ2
) and ρσ,c(Λ) =

∑
x∈Λ

ρσ,c(x).

The discrete gaussian distribution over Λ with center c and parameter σ is defined as

∀x ∈ Λ, DΛ,σ,c(x) =
ρσ,c(x)

ρσ,c(Λ)
.

We now define the notion of ideal lattices, which are structured lattices arising
from polynomial rings and are fundamental to the efficiency and algebraic properties
of lattice-based cryptographic constructions.
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Definition 3 (Ideal Lattice [9]) Consider the ring R = Z[x]/(xn + 1) and Rq =
Zq[x]/(x

n+1) for a variable x. Corresponding to the integer lattices defined above, we define

three types of lattices over the ring R. For a integral modulus q, a ∈ Rk
q , and u ∈ Rq, define:

Λq(a) = {x ∈ Rk : ∃s ∈ Rq s.t. a · s = x (mod q)}

Λ⊥
q (aT ) = {x ∈ Rk : aT · x = 0 (mod q)}

Λu
q (a

T ) = {x ∈ Rk : aT · x = u (mod q)}

Definition 4 (Short Integer Solution (SIS) Problem [17]) Given parameters
n,m, and q; where n is the security parameter, m = O(n log q) and q = poly(n) is a
prime modulus value. For a uniform random matrix A ∈ Zn×m

q , find a non-zero vector

e ∈ Λ⊥
q (A) ⊂ Zm with “small norm” s.t. Ae = 0 (mod q)

Definition 5 (Decisional Learning With Errors (LWE) Problem [17]) Given param-
eters n,m, and q: where n is the security parameter, m = O(n log q) and q = poly(n) is a

prime modulus value. For a given pair (A,b = AT s + e) ∈ Zn×m
q × Zm s.t. A

$←− Zn×m,

s
$←− Zn and e ∈ Zm is coming from a gaussian distribution defined over Zm; distinguish this

pair with a uniformly random pair (A,b) ∈ Zn×m × Zm.

Definition 6 (Ring-SIS Problem [1]) Given a ringRq = Zq[x]/ < xn+1 > and uniformly
random elements a1, . . . , al ∈ Rq, where n is the security parameter, q = poly(n) a prime

modulus, and l = O(log q). Find l “short elements” e = {e1, . . . , el} ∈ Λ⊥
q (aT) ⊂ Rl s.t.

a1e1 + . . .+ alel = 0 (mod q).

Definition 7 (Decisional Ring-LWE Problem[1]) Given a = (a1, . . . , al)
T ∈ Rl

q, a

vector of l uniformly random polynomials, and b = as + e (mod q), where s
$←− Rq and

e
$←− Rl

q from a gaussian distribution defined over Rq; distinguish (a,b = as+e) from (a,b)

drawn uniformly at random from Rl
q ×Rl

q.

We now introduce the concept of trapdoors for ideal lattices, which enable effi-
cient preimage sampling and form the foundation of many lattice-based cryptographic
constructions, including identification and signature schemes.

Definition 8 (g-Trapdoor for Ideal Lattice[1]) Let a ∈ Rl+k
q and g = (1, 2, . . . , 2k−1) ∈

Rk
q . A g−trapdoor for a is a collection of linearly independent vectors of ring elements

R = (r1, . . . , rk) ∈ Rl×k
q such that aT

[
R
Ik

]
= hgT for some non-zero ring element h ∈ Rq.

The value h is known as the tag of the trapdoor. The effectiveness of the trapdoor is evaluated
based on its largest singular value, s1(R), which is determined as the maximum singular
value of the matrix representation of R in Zln×ln

q .
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Lemma 1 ((a,R) ←ringGenTrapD(a0, h) [9]) Given as input a vector of ring elements
a0 = (a1, . . . , al)

T ∈ Rl
q, a non-zero invertible ring element h ∈ Rq, a distribution χl×k over

Rl×k. (If no particular a0, h are given as input, then the algorithm may choose them itself,
e.g., picking a0 ← Rl

q uniformly, and setting h = 1.), the algorithm outputs a vector of ring

elements a = (aT0 ,a
T
1 = hgT − aT0 R)T ∈ Rl+k

q , and a trapdoor R = (r1, . . . , rk) ∈ Rl×k

with tag h ∈ Rq. Moreover, the distribution of a is close to uniform (either statistically or
computationally) as long as the distribution of (aT0 ,−aT0 R) is.

Lemma 2 (Regularity Lemma [9]) Let ai
$←− Rq and ri

$←− χ for i = 1, . . . , l, where χ is a

distribution over Rq. Then we obtain that the statistical distance between b =
∑l

i=1 airi

and the uniform distribution over Rq is 2−Ω(n). We can further extend this lemma for a
vector of elements from Rq.

Lemma 3 (ringInvertO(R,a,b) [9]) Given as input an oracle O for inverting the function
αg(s

′, e′) = gs′+e′ (mod q) where e′ ∈ Rk is suitably small from a gaussian like distribution

and s′ ∈ Rq, a vector of ring elements a ∈ Rl+k
q , a g-trapdoor R ∈ Rl×k for a with tag h,

a vector b = as + e (mod q) for any random s ∈ Rq and suitably small e ∈ Rl+k coming

from a narrow distribution over Rl+k
q , the algorithm outputs s and e.

Given a trapdoor R for a ∈ Rl+k
q and u = aT · x (mod q), the sampling algorithm

in the following lemma finds the solution x from desired distribution.

Lemma 4 (ringSampleO(R,a0, h, u, σ) [9]) Given as input in offline mode (i) an oracle O(v)
for gaussian sampling over a desired coset Λv

q (g
T ) with parameter σ, where v ∈ Rq, (ii)

a vector of ring elements a0 ∈ Rl
q, (iii) a trapdoor R ∈ Rl×k, (iv) a gaussian parameter

σ. In addition, given as input in online phase, (i) a non-zero tag h ∈ Rq defining a =

(a0
T , hgT − aT0 R)T ∈ Rl+k

q , and (ii) a syndrome u ∈ Rq, the algorithm outputs a vector x
drawn from a distribution statistically close to DΛv

q (a0
T ),σ′ for some Gaussian parameter σ′.

2.3 Definition of Strong Designated Verifier Signature (SDVS)

A SDVS is a collection of the following algorithms. We follow the syntax and definition
of SDVS from [21]. Refer to Figure 1 for an illustrative summary.

Setup(1n): It is a probabilistic algorithm. On input a security parameter n, it outputs
the public parameters pp.

SigKeyGen(pp): It is a probabilistic (or deterministic) algorithm. On input pp, it
outputs the public key pkS and private key skS for a signer S.

VerKeyGen(pp): It is a probabilistic (or deterministic) algorithm. On input pp, it
outputs the public key pkV and private key skV for a designated verifier V .

Sign(pp, skS , pkS , pkV , µ): It is a probabilistic algorithm. On input pp, a private key
skS , the public keys pkS and pkV of the signer S and a designated verifier V and
a message µ ∈M, it outputs a real designated verifier signature sig ∈ S.

7



Fig. 1: High level overview of SDVS

Verify(pp, skV , pkS , pkV , sig, µ): It is a deterministic algorithm. On input pp, a private
key skV , the public keys pkS and pkV of the signer S and a designated verifier
V , a message µ ∈ M, and a signature sig ∈ S, it outputs a boolean decision b:
b = 1 denotes accepting or b = 0 denotes rejecting it.

Simul(pp, skV , pkS , pkV , µ): It is a probabilistic algorithm. On input pp, a private key
skV , the public keys pkS and pkV of the signer S and a designated verifier V , and
a message µ ∈M, it outputs a simulated designated verifier signature sig′ ∈ S.

2.4 Security Model

An SDVS scheme must satisfy unforgeability over chosen message attack, non-
transferability, privacy of the signer’s identity, and non-delegatability. The security
definitions are given below.

Strong Unforgeable Chosen Message Attack (SU-CMA) Security

For our SDVS scheme, we define strong unforgeability, which is a stronger notion
than existential unforgeability. It states that any PPT adversary, without the private
key of either the signer or the designated verifier, can not provide a valid designated
verifier signature for a message that has even been queried in either of the signing or
simulating queries. We define this unforgeable security, where the attacker can choose
the message in an adaptive manner, by the following game between a challenger C and
a PPT adversary A:

Setup: C runs Setup(1n) to get pp, SignKeyGen(pp), and VerKeyGen(pp) to get
(pkS , skS) and (pkV , skV ) for the signer S and the designated verifier V. C keeps
(skS , skV ) in secret and sends (pp, pkS , pkV ) to A.

8



Signing Queries: A chooses a message µi adaptively, C runs Sign(pp, skS , pkS , pkV , µi)
to obtain a signature sigi and sends it to A.

Simulating Queries: A chooses a message µi adaptively, C runs Simul(pp, skV , pkS
, pkV , µi) to obtain a signature sig′i and sends it to A. A is allowed to query the
signing and the simulating oracle at most qs = poly(n) times.

Verification Queries: A chooses a message-signature pair (µi, sigi) adaptively, C runs
Verify(pp, skV , pkS , pkV , sigi, µi) to obtain a decisional value 1 for valid and 0
otherwise, and sends it to A. A is allowed to query the verification oracle at most
qv = poly(n) times.

Output: A outputs a message-signature pair (µ∗, sig∗), and wins if the following
conditions hold-

• Verify(pp, skV , pkS , pkV , sig
∗, µ∗) = 1.

• (sig∗, µ∗) ̸= (sigi, µi), ∀i ∈ {1, 2, . . . , qs}.

The advantage of A in the above game, i.e., the probability of A wins, is denoted by
AdvSU−CMA

SDV S,A (n), and the probability is taken over the randomness ofA, the algorithms

Sign,Simul, and Verify. We say that the SDVS scheme is unforgeable if AdvSU−CMA
SDV S,A (n)

is negligible in the security parameter n.

Non-Transferability (NT) Security

In the context of the SDVS scheme, non-transferability means that the designated
verifier should not be able to transfer the conviction of the validity of a real desig-
nated verifier signature. This is accomplished by the Sign,Simul algorithm, using which
the designated verifier can generate signatures that are indistinguishable from those
generated by the actual signer. The NT security of our SDVS is defined as follows:

Setup: The challenger C runs Setup(1n) to get pp, then runs SignKeyGen(pp), and
VerKeyGen(pp) to get (pkS , skS) and (pkV , skV ) for the signer S and the
designated verifier V. C sends (pkS , pkV ) to A.

Challenge: A chooses a message µ∗ adaptively, C runs Sign(pp, skS , pkS , pkV , µ
∗)

to obtain a signature sig∗0, then runs Simul(pp, skV , pkS , pkV , µ
∗) to obtain a

signature sig∗1. C chooses a random bit b ∈ {0, 1} and sends sig∗b to A.
Output: A outputs a bit b∗, and wins the challenge if b∗ = b.

The advantage of A in the above game is defined by AdvNT
SDV S,A(n) = |Pr[b∗ =

b]− 1/2|, and the probability is taken over the randomness of A, the algorithms Sign
and Simul. We say that the SDVS scheme is non-transferable if AdvNT

SDV S,A(n) is
negligible in the security parameter n.

Privacy of Signer’s Identity (PSI ) Security

PSI security provides privacy to the identity of the signer. Given a designated verifier
signature and two valid signing public keys, any adversary/eavesdropper in between
the signer and the designated verifier can not determine which private key, correspond-
ing to the given public keys, has been used to create the signature with a non-negligible
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probability. This feature is, precisely, made possible by involving the private key of the
designated verifier in the verification process. The PSI security of the SDVS scheme
is defined by the following game between a PPT adversary A and a challenger C:

Setup: C runs Setup(1n) to get pp, runs SignKeyGen(pp) twice to get (pkS0 , skS0),
(pkS1 , skS1), and runs VerKeyGen(pp) to get (pkV , skV ) for the signers S0, S1

respectively and the designated verifier V. C keeps skV in secret and sends
(pp, pkS0 , skS0 , pkS1 , skS1 , pkV ) to A.

Simulating Queries: A chooses a message µi adaptively and a bit b ∈ {0, 1}, C runs
Simul(pp, skV , pkSb

, pkV , µi) to obtain a signature sig′i,b and sends it to A. A is
allowed to query the simulating oracle at most qs = poly(n) times.

Verification Queries: A chooses a message-signature pair (µi, sigi) and a bit b ∈ {0, 1}
adaptively, C runs Verify(pp, skV , pkSb

, pkV , sigi, µi) to obtain a decisional value 1
for valid and 0 otherwise, and sends it to A. A is allowed to query the verification
oracle at most qv = poly(n) times.

Challenge: A chooses a message µ∗, C runs Sign(pp, skS0 , pkS0 , pkV , µ
∗) to obtain a

signature sig∗0, then runs Sign(pp, skS1 , pkS1 , pkV , µ
∗) to obtain a signature sig∗1,

chooses a random bit b ∈ {0, 1}, and sends sig∗b to A.
Output: A outputs a bit b∗ ∈ {0, 1}, and wins if the following conditions hold-

• b∗ = b,.
• (sigb

∗, µ∗) was not queried in the verification queries for b∗ ∈ {0, 1}.

The advantage of A is defined as AdvPSI
SDV S,A(n) = |Pr[b∗ = b]− 1/2, and we say that

the SDVS scheme holds PSI security if AdvPSI
SDV S,A(n) is negligible in n.

Non-Delegatability (ND) Security

In SDVS scheme, ND security tells that without knowing the private key of either
the signer or the designated verifier, no one can generates a valid designated verifier
signature. In other words, a ND secure SDVS accomplish the proof of knowledge
of either signer’s private key or designated verifier’s private key in a non-interactive
manner. This security is defined in the form of a game between an extractor E and a
black-box A that produces a valid signature:

Setup: The extractor E runs Setup(1n) to get pp and sends it to A. A then sends
either pkS or pkV to E .

– If A sends pkS to E , then the game proceeds as follows-
VerKeyGen: E runs VerKeyGen(pp) to obtain (pkV , skV ), keeps skV in secret and sends

pkV to A.
Simulating Queries: A chooses a message µi adaptively , E runs Simul(pp, skV , pkS

, pkV , µi) to obtain a signature sigi and sends it to A. A is allowed to query the
simulating oracle at most qs = poly(n) times.

Verification Queries: A chooses a message-signature pair (µi, sigi) adaptively, E runs
Verify(pp, skV , pkS , pkV , sigi, µi) to obtain a decisional value, 1 for valid and 0
otherwise, and sends it to A. A is allowed to query the verification oracle at most
qv = poly(n) times.
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Challenge: E chooses a message µ∗ and A sends a corresponding designated verifier
signature sig∗ to E .

Output: E outputs the private key skS of the signer.
– If A sends pkV to E , then the game proceeds as follows-
SigKeyGen: E runs SigKeyGen(pp) to obtain (pkS , skS), keeps skS in secret and sends

pkS to A.
Signing Queries: A chooses a message µi adaptively, E runs Sign(pp, skS , pkS , pkV , µi)

to obtain a signature sigi and sends it to A. A is allowed to query the signing
oracle at most qs = poly(n) times.

Challenge: E chooses a message µ∗ and A sends a corresponding designated verifier
signature sig∗ to E .

Output: E outputs the private key skV of the designated verifier.

The advantage of E in the above game, in time t is denoted by AdvND
SDV S,E(n), and

the probability is taken over the randomness of A, the algorithms Sign,Simul, and
Verify. We say that the SDVS scheme is non-delegatable against A, if AdvND

SDV S,E(n) ≥
poly(ϵ′) and t < poly(t′) where A can produce a designated verifier signature in time
t′ with a probability ϵ′.

3 Proposed Ideal Lattice-based SDVS Scheme

High Level Overview. In this section, we describe the proposed construction (called
LaSDVS ) in detail. We first give a high-level overview of the design. LaSDVS is a
privacy-preserving digital signature protocol built upon the hardness of mathemati-
cal problems over ideal lattices. Unlike traditional signature schemes, LaSDVS ensures
that only a designated verifier can check the validity of a signature, while also allowing
the verifier to simulate signatures that are computationally indistinguishable from real
ones. LaSDVS consists of six algorithms: (Setup SigKeyGen, VerKeyGen, Sign, Verify,
Simul). In the Setup phase, public parameters are initialized based on underlying ring
structures and hash function instantiation. The algorithms SigKeyGen and VerKeyGen
generate key pairs for the signer and the verifier, respectively. The signing algorithm
Sign enables the signer to produce a short signature for a message, while the Verify
algorithm utilizes the trapdoor to validate the signature’s correctness. The Simul algo-
rithm allows the verifier to simulate signatures without interacting with the signer,
thus providing non-transferability. We provide a detailed description of the algorithms
below.

Setup: Let n be a security parameter, and let q = poly(n) be the underlying ring
modulus. Let k and κ denote the hash parameters such that k = ⌈log q⌉ and
2κ

(
k
κ

)
≥ 2100. Let d = q1/γ with γ > 1, σ = O(

√
log n), and χ = DR,σ. R =

Z[x]/ < xn+1 >. Rq = Zq[x]/ < xn+1 >. l is chosen suct that l+k = O(log q).
Let η be a constant positive real value. Then, the Setup phase is executed as
follows.

• Sample a
$←− Rl+k

q .
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• Select a collision resistant hash function H : {0, 1}∗ → {c, c ∈ Rq, 0 < ||c|| <√
κ}.

The public parameter pp is set to be {n, q, k, κ, d, σ, χ,R,Rq, l,a,H}
(pkS , skS)← SignKeyGen( pp): On input the public parameters pp, the following

steps are performed to generate the public key and secret key for the signer.

• Sample s
$←− {−d, . . . , 0, . . . , d}l+k

• Define t = a · s (mod q) ∈ Rq

• Output pkS = t and skS = s
(pkV , skV )← VerKeyGen( pp): Similar to the previous algorithm, on input the public

parameters pp, the following operations are executed to produce the public key
and secret key for the designated verifier.

• Sample b̃0, b̃1
$←− Rl

q

• Execute ringGenTrap with inputs b̃0 and h0 = 1 to output b0 ∈ Rl+k
q and a

trapdoor Rb0 ∈ Rl×k
q .

• Execute ringGenTrap with inputs b̃1 and h1 = 1 to output b1 ∈ Rl+k
q and a

trapdoor Rb1 ∈ Rl×k
q .

• Output pkV = (b0,b1) and skV = (Rb0 ,Rb1)
sig ← Sign(pp, skS , pkS , pkV , µ ∈M) : On input pp, skS , pkS , and pkV , the signer

employs the algorithm Sign to generate a signature on the message µ as follows.

• Samples s
$←− Rq, e,y

$←− DRl+k
q ,σ

• Computes c0 = b0 · s+ e ∈ Rl+k
q

• Computes c1 = H(a · y + b1 · e||t||s||µ) ∈ Rq

• z = s · c1 + y (mod q) ∈ Rl+k
q

• Output sig = (c0, c1, z)
1/0 ← Verify(pp, skV , pkV , pkS , sig, µ): On input pp, skV , pkS and pkV , the Verify

outputs 1 if sig is a valid signature on the message µ; otherwise outputs 0.
• Parse sig
• Check 0 < ||z|| < ησ

√
l + k

• Execute ringInvert with input Rb0 , c0,b0 to output s, e.
• Check whether c1 = H(a · z− tc1 + b1 · e||t||s||µ)
• Output 1 if all the above checks are satisfied, otherwise outputs 0.

sig’ ← Simul(pp, skV , pkV , pkS , µ) : On input pp, skV , pkS and pkV , a designated
verifier utilizes Simul to output a simulated signature sig’ on the message µ

• Sample s′, u′ $←− Rq, z
′ $←− DRl+k

q ,σ

• Let c′1 = H(u′||t||s′||µ) ∈ Rq

• Run RingSample(b1, h1,Rb1 , u
′−a · z+ t · c′1, σ) to get a short e′ ∈ DRl+k

q ,σ.

• Define c′0 = b0 · s′ + e′ mod q.
• Output sig′ = (c′0, c

′
1, z

′) using rejection sampling technique.

Correctness

In the verification phase, the verifier checks the validity of the given message-signature
pair (µ, sig) by taking (pp, skV , pkV , pkS) as input. The correctness analysis is given
below. If the signature is coming from the actual signer i.e., sig = (c0, c1, z), then the
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verifier first checks if 0 < ||z|| < ησ
√
l + k. Then using the subroutine ringInvert, it

obtains s, e← ringInvert(Rb0 ,b0, c0). Finally, the verifier computes

c∗1 = H(a · z− tc1 + b1 · e||t||s||µ)
= H(a · (sc1 + y)− a · sc1 + b1 · e||t||s||µ)
= H(a · sc1 + a · y − a · sc1 + b1 · e||t||s||µ)
= H(a · y + b1 · e||t||s||µ)
= c1

If the signature is generated from the Simul algorithm by the designated verifier i.e.,
sig′ = (c′0, c

′
1, z

′) then the verifier first checks whether 0 < ||z′|| < ησ
√
l + k and

then computes s′, e′ ← ringInvert(Rb0 ,b0, c
′
0). Now, from Lemma 4, we get that

b1 · e′ = u′ − a · z+ tc′1 mod q. In the end, the verifier computes,

c̃′1 = H(a · z′ − tc′1 + b1 · e′||t||s′||µ)
= H(a · z′ − tc′1 + u′ − a · z′ + tc′1||t||s′||µ)
= H(u′||t||s′||µ)
= c′1

4 Efficiency Analysis

In this section, we present a comprehensive comparative analysis of LaSDVS with the
existing state-of-the-art PQC-based SDVS. We first present the communication and
storage overhead of LaSDVS .

- The private key skS of the signer is of bit size (l + k) log(2d+ 1) = O(log q).
- The private key skV of the designated verifier is of bit size 2(l × k)(n log q) =

2n(log q)2 = O(n log q).
- The signature sig = (c0, c1, z) is of bit size (l + k)n log q + n log q + (l + k)n log q =

2(l + k)n log q + n log q = O(n log q).

We now compare LaSDVS with the existing lattice-based SDVS schemes proposed
in [20, 15, 2, 21]. The comparative analysis considers sizes of the secret key of the
signer and verifier, signature sizes. In addition, we also provided an assessment of secu-
rity properties such as SU-CMA, NT, PSI, and ND. The results of the comparison
is provided in Table 3. As we can see from the results mentioned in Table 3, LaS-
DVS outperforms existing schemes in the communication and storage overhead, while
attaining all the desired security properties. Notably, LaSDVS achieves SU-CMA, NT,
PSI and ND security properties, similar to [21], but with significantly lower keys and
signature sizes. Specifically, LaSDVS attains a key and signature size of O(log q) and
O(n log q), respectively, in contrast to earlier works whose sizes are polynomial in the
security parameter n. This efficiency is primarily due to two design choices; (i) the use
of a gadget-based trapdoor [11] in the ideal lattice setting, and (ii) the avoidance of
the traditional GPV trapdoor [4] used in standard lattice constructions.
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Wang et al. [20] incorporated the Bonsai Tree technique to support trapdoor dele-
gation and achieve NT and PSI, but their construction remains inefficient due to the
use of GPV trapdoors. It results in large O(n2)-sized keys and signatures. In Noh et
al. [15], although the authors utilized a different trapdoor mechanism (from [11]) along
with a lattice-based chameleon hash function, the use of high-dimensional matrices
resulted in a signature and key size of O(n2). Cai et al. [2] proposed an optimiza-
tion using a filtering technique to reduce the signature size, but the improvement was
marginal, and the scheme still results in a quadratic signature size. Similarly, Zhang et
al. [21] introduced the first lattice-based SDVS supporting ND, but their use of GPV
trapdoors in standard lattices again incurs O(n2) complexity in all parameters. Thus,
LaSDVS is the most efficient SDVS till date in the PQC. LaSDVS provides the small-
est private key size and signature size among the existing PQC-based SDVS design.
LaSDVS is compact and well suited for resource constrained devices.

Table 3: Comparison of lattice-based SDVS schemes

Schemes |skS| |skV| |sig| CMA NT PSI ND Model
Wang et al. [20] O(n2) O(n2) O(n2) EU Yes Yes No ROM
Noh et al. [15] O(n2) O(n2) O(n2) EU Yes Yes No SM
Cai et al. [2] O(n2) O(n2) O(n2) EU Yes Yes No ROM

Zhang et al. [21] O(n2) O(n2) O(n2) SU Yes Yes Yes ROM
LaSDVS O(log q) O(n log q) O(n log q) SU Yes Yes Yes ROM

5 Security Analysis of LaSDVS

Theorem 1 LaSDVS is strongly unforgeable under the adaptive chosen-message attack (SU-
CMA).

Proof We show that LaSDVS is SU-CMA secure. Refer to Section 2.4 for the detailed defini-
tion of SU-CMA game. We assume that there exists a PPT adversary A who makes queries
to the signer and the random oracle H and then performs an adaptive chosen-message attack
on our proposed SDVS scheme. The adversary, at last, is able to output a forged designated
verifiable signature sig∗ on a message µ∗ with a non-negligible probability ϵ, then we show
that there exists a simulator B that can exploit A′s success probability to solve an instance
of the ring-SIS problem (a|b) · v = 0 (mod q). We define a hybrid SDVS, to provide a valid
simulation of the random oracle to the adversary A in the proof, in which no private keys are
used and the output of which can not be distinguished from a real SDVS. In both, signing
and simulating algorithms, a hybrid SDVS is generated as follows

1. Sample s
$←− Rq and e

$←− DRl+k
q ,σ

.

2. Define c0 = bs+ e (mod q).

3. Sample c1
$←− Rq and z

$←− DRl+k
q ,ησ

.

4. Program the oracle H(a · z− tc1 + b1 · e||t||s||µ) = c1.
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5. Output sig = (c0, c1, z).

Throughout the proof, let DH = {c1 ∈ Rq : 0 < ||c1|| <
√
κ} denotes the range of the

random oracle H and w be bound on the number of times the oracle is called or programmed
during A′s attack i.e. the random oracle query can be made by the adversary A directly or
the random oracle can be programmed by the signing and simulating algorithms when A
asks for a signature on some adaptively chosen messages. The interaction between A and B
are as follows:

• Setup: Given a,b ∈ Rl+k
q , B computes the following steps

1. Sample s
$←− {−d, . . . , 0, . . . , d}l+k and define t = a · s (mod q).

2. Execute ringGenTrap with inputs b̃0 and h0 = 1 to output b0 ∈ Rl+k
q with a

trapdoor Rb0
∈ Rl×k

q .
3. Sample random coins ϕ for A and Φ for B.
4. Sample uniformly random r1, r2, . . . , rw

$←− DH, which will correspond to the
responses of the random oracle.

5. Define (pkS , skS) = (t, s) and (pkV , skV ) = (b0,b1 = b,Rb0
, ∅).

6. Keep (s,Rb0
, r1, r2, . . . , rw,Φ) in secret, and send the public parameters pp =

(a,b0,b1, t, ϕ) to A.
• Hash Queries: Given (a · y + b1 · e||t||s||µ), the simulator B executes the following steps-

1. Check whether a corresponding hash output c is stored in the hash list lH. If yes,
return it directly.

2. Else, sample a random ri
$←− {r1, r2, . . . , rw} that has not been used yet.

Store (a · y + b1 · e||t||s||µ||c = ri) in lH and return it to A.
• Signing Queries: Given a message µ, B executes the following steps

1. Run the signing algorithm in Hybrid SDVS using the random coins Φ to produce
a signature sig = (c0, c1, z).

2. Store the hash inputs (a · z− tc1 + b1 · e||t||s||µ) and output c1 into lH.
3. Return sig to B.

• Simulating Queries: Given a message µ, B does as in the Signing Queries and returns a
signature sig = (c0, c1, z) to B.

• Verification Queries: Given a signature sig = (c0, c1, z) and a message µ, B executes the
following steps-

1. Check whether 0 < ||z|| < ησ
√
l + k where 1 < η < 2 is a constant.

2. Run ringInvert with the inputs c0,b0, and Rb0
to output s, e.

3. Check whether (a · z− tc1 + b1 · e||t||s||µ||c1) is stored in the hash list lH.
4. Output 1 if all the above are satisfied, otherwise 0.

• Output: With a probability ϵ, A outputs a message-signature pair (µ∗, sig∗ =
(c0

∗, c∗1, z
∗)) which satisfies 0 < ||z∗|| < ησ

√
l + k and c∗1 = H(a · z∗ − tc∗1 +

b1 · e∗||t||s∗||µ∗) where e∗ ∈ Rl+k
q and s∗ ∈ Rq had been used in b0

∗.

With a probability 1 − 1/|DH|, c∗1 must be one of the ri ∈ {r1, r2, . . . , rw}. The success
probability of A in the forgery with the condition that c∗1 must be one of the r′is, is at least
ϵ− 1/|DH|. If c∗1 = ri ∈ {r1, r2, . . . , rw}, then there will be two cases:

Case I If c∗1 = ri was programmed during the Signing Queries or the Simulating Queries, then
we analyse this as follows. Assume that the simulator B programmed the random oracle
c∗1 = H(a · z− tc∗1 + b1 · e||t||s||µ) when signing a message µ. Since the adversary out-
puts a valid forgery (sig∗ = (c0

∗, c∗1, z
∗)) for µ∗, we have H(a · z− tc∗1+b1 · e||t||s||µ) =
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H(a · z∗ − tc∗1 + b1 · e∗||t||s∗||µ∗). Thus according to the collision-resistance prop-
erty of H, B computes e, e∗ from the values c0, c0

∗ using the subroutine ringInvert
respectively.So, B computes

a · z− tc∗1 + b1 · e = a · z− tc∗1 + b · e = a · z∗ − tc∗1 + b1 · e∗

=⇒ a(z− z∗ + b(e− e∗)) = 0 (mod q)

=⇒ (a|b)
[
z− z∗

e− e∗

]
= 0 (mod q)

Let v =

[
z− z∗

e− e∗

]
, it can be easily verified that v ̸= 0, because if it is 0 then the forged

signature sig∗ is exactly same as the old signature sig. Also, since 0 < ||z∗||, ||z|| <
ησ
√
l + k and 0 < ||e∗||, ||e|| < σ

√
l + k, we have that 0 < ||v|| < 2σ

√
(η2 + 1)l + k =

O(n).
Case II If c∗1 = ri was a response to the Hash Queries, then we analyse this as follows. The

simulator B records the forged signature sig∗ = (c0
∗, c∗1, z

∗) given by the adversary A on

the message µ∗ and generates new random values r′i, r
′
i+1, . . . , r

′
w

$←− DH. The simulator
B then runs again with inputs (a,b0,b1,Rb0

, t, r1, . . . , ri−1, r
′
i, r

′
i+1, . . . , r

′
w, ϕ,Φ). By

the General Forking Lemma, B observes the probability that r′i ̸= ri and A uses the
random oracle response in the forgery is at least ϵ∗ and hence with the probability
ϵ∗, A outputs a new signature sig = (b0, r

′
i, z) of the message µ∗ and (a · z∗ − tc∗1 +

b1 · e∗||t||s∗) = (a · z − tc1 + b1 · e||t||s) where c∗1 = ri, c1 = r′i and s = s∗. B also
computes e and e∗ from the values c0 and c∗0. Thus by putting the values t = a · s
(mod q), we have

(a · z− tc1 + b1 · e) = (a · z− tc1 + b · e) = (a · z∗ − tc∗1 + b · e∗)

=⇒ a · (z− z∗ + sc∗1 − sc1) + b · (e− e∗) = 0 (mod q)

=⇒ (a|b)
[
z− z∗ + s(c∗1 − c1)

e− e∗

]
= 0 (mod q)

Let v =

[
z− z∗ + s(c∗1 − c1)

e− e∗

]
, since ||e∗||, ||e|| ≤ σ

√
l + k; ||z∗||, ||z|| ≤ ησ

√
l + k; ||sc∗1||, ||sc1|| ≤ dκ

√
l + k, we have that ||v|| ≤ 2

√
l + k

√
(ησ + dκ)2 + σ2 =

O(n).
□

Theorem 2 LaSDVS is Non-Transferable

Proof According to the defined security model for non-transferability of the SDVS scheme,
a game between the PPT adversary A and the simulator B is defined as follows

• Setup: B computes the following steps.

1. Run Setup(1n) to output the public parameter pp.
2. Run SignKeyGen(pp) to output (pkS , skS) = (t, s) for the signer.
3. Run VerKeyGen(pp) to output (pkV , skV ) = (b0,b1,Rb0

,Rb1
).
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4. Send (pkS , pkV ) to A.
• Challenge: For a given message µ from the adversary A, B computes the following steps.

1. Run Sign(pp, skS , pkS , pkV , µ) to output a real designated verifiable signature

sig(0) = (c0
(0), c

(0)
1 , z(0)).

2. Run Simul(pp, pkS , skV , pkV , µ) to output a simulated designated verifiable signa-

ture sig(1) = (c0
(1), c

(1)
1 , z(1)).

3. Sample a random bit b
$←− {0, 1} and send the message-signature pair (µ, sig(b)) to

A.
• Output: A outputs a bit b∗ ∈ {0, 1}.

In the above processes, by the property of hash function H, we assure that c
(0)
1 and c

(1)
1

are random in Rq. As the output of the real designated verifiable signature is done using

the rejection sampling, the pairs (c
(0)
1 , z(0) = s·c(0)1 + y) and (c

(1)
1 , z(1)

$←− DRl+k
q ,σ

) are

within the statistical distance of 2−ω(log(l+k))/M . Furthermore, c
(0)
0 = b0·s(0) + e(0) and

c
(1)
0 = b0·s(1) + e(1) where s(0), s(1)

$←− Rq, e
(0) $←− DRl+k

q ,σ
, and e(1) ∈ DRl+k

q ,σ
is coming

as an output from the RingSample algorithm, hence c
(0)
0 and c

(1)
0 are statistically indistin-

guishable. The real (µ, sig(0)) and the simulated (µ, sig(1)) designated verifiable signatures are
statistically indistinguishable to A and hence A can not determine who is the actual producer
of the pair (µ, sig(b)) which implies that the advantage of the adversary A is negligible. □

Theorem 3 LaSDVS satisfies the PSI security if the Ring-LWE assumption holds.

Proof According to the defined security model for PSI of the SDVS scheme, a game between
the PPT adversary A and the simulator B is defined as follows

• Setup: B computes the following steps-

1. Run Setup(1n) to output the public parameter pp.
2. Run SignKeyGen(pp) twice to output (pkS(0) , skS(b)) = (t0, s0) for the signer S0 and

(pkS(1) , skS(1)) = (t1, s1) for the signer S1

3. Run VerKeyGen(pp) to output (pkV , skV ) = (b0,b1,Rb0
,Rb1

).
4. Send (pp, pkS(0) , skS(0) , pkS(1) , skS(1) , pkV ) to A.

• Simulating Queries: For a message µ and a bit b ∈ {0, 1} given by the adversary A, B runs
Simul(pp, skV , pkV , pkS(b) , µ) and returns a simulated designated verifiable signature

sig(b) = (c0
(b), c

(b)
1 , z(b)) to A.

• Verification Queries: Given a message-signature pair (µ, sig(b)) and a bit b ∈ {0, 1} from
the adversary, B runs the Verify(pp, skV , pkV , pkS(b),sig(b) , µ) and returns a decisional
value 1 for valid and 0 otherwise to A.

• Challenge: For a message µ, B sends the challenge as follows-

1. Run Sign(pp, pkS(0) , skS(0) , pkV , µ) to output sig(0) = (c0
(0), c

(0)
1 , z(0)).

2. Run Sign(pp, pkS(1) , skS(1) , pkV , µ) to output sig(1) = (c0
(1), c

(1)
1 , z(1)).

3. Sample a random bit b
$←− {0, 1} and send the pair (µ, sig(b)) to A.

• Output: A outputs a bit b∗ ∈ {0, 1}.
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Similar to the arguments in the proof of non-transferability, by the property of hash function

H, we assure that c
(0)
1 and c

(1)
1 are random in Rq. As the output of the real designated

verifiable signature is done using the rejection sampling, the pairs (c
(0)
1 , z(0) = s(0)·c(0)1 +

y(0) (mod q)) and (c
(1)
1 , z(1) = s(1)·c(1)1 + y(1)) (mod q)) are within the same distribution.

Furthermore, c
(0)
0 = b

(0)
0 ·s

(0)+e(0) (mod q) and c
(1)
0 = b

(1)
0 ·s

(1)+e(1) (mod q) are the LWE

instances where s(0), s(1)
$←− Rq, e(0), e(1)

$←− DRl+k
q ,σ

, hence c
(0)
0 and c

(1)
0 are statistically

close to uniform vectors in Rl+k
q . Now, given a real message-signature pair (µ, sig(b)), A

computes the following steps

1. Parse the signature (µ, sig(b)) = (µ, c0
(b), c

(b)
1 , z(b)).

2. Check if 0 < ||z(b)|| < ησ
√
l + k; where η is a constant.

According to the definition of the Ring-LWE problem, this is obvious that without the private
key skV = (Rb0

,Rb1
) of a designated verifier, the quantities s and e can not be obtained

and the verification can not be accomplished by the adversary A. Hence the PPT adversary
A can not verify the validity of a given message-signature pair µ, sig(b) and determine which
one is the real signer and thus the advantage of A is negligible. □

Theorem 4 LaSDVS satisfies Non-Delgatability.

Proof As per the security definition defined above, let us consider that there exists a black
box A producing a designated verifiable signature in time τ ′ with a non-negligible probability
ϵ′, a game between an extractor E and A is as follows:

-if A produces a public key pkS = t ∈ Rq as the target:

• Setup: E and A perform the following steps:

1. E runs ringGenTrap(ã0, ha = 1) to output a ∈ Rl+k
q and a trapdoor Ra ∈ Rl×k

q ,
and sends a to A.

2. A produces pkS = t and sends it to E .
3. E runs ringGenTrap(b̃0, hb0

= 1) to output b0 ∈ Rl+k
q and a trapdoorRb0

∈ Rl×k
q .

4. E runs ringGenTrap(b̃1, hb1
= 1) to output b1 ∈ Rl+k

q and a trapdoorRb1
∈ Rl×k

q .

5. E samples random coins Φ, and uniformly random r1, . . . , rw
$←− DH, which will

correspond to the responses of the random oracle.
6. E sends the pkV = (b0,b1) to A.

• Hash Queries: E performs this in the same way as the simulator B does in the SU-CMA
proof.

• Simulating Queries: Given a message µ, E specifies the following steps:

1. Sample s, u
$←− Rq, and z

$←− DRl+k
q ,ησ

.

2. Program the random oracle H(u||t||s||µ) = c1.
3. Run ringSample(b1, hb1

,Rb1
, u− a · z+ tc1, σ) to get a short e ∈ DRl+k

q ,σ
.

4. Define c0 = b0s+ e (mod q).
5. Output sig = (c0, c1, z) using rejection sampling technique.

• Verification Queries: Similar to the Hash Queries, extractor E performs this in the same
way as the simulator B does in the SU-CMA proof.

• Challenge: E selects µ∗ and A sends the SDVS sig∗ = (c∗0, c
∗
1, z

∗) for µ∗ to E .
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• Output: Given (µ∗, sig∗), E computes-

1. Check the validity of sig∗ on µ∗.
2. Run ringSample(a,Ra, t, d) to get a short s ∈ DRl+k

q ,d
.

Thus, the extractor E determines the private key skS = s of A which is the pre-image
of the public key pkS = t. The probability of success is the same as the probability of A
producing a valid signature in the challenge phase.

-if A produces the public key pkV = (b0,b1) as the target:

• Setup: E and A do the following steps:

1. E samples a
$←− Rl+k

q and sends it to A.
2. A sends pkV = (b0,b1) to E .
3. E samples a uniformly random s

$←− {−d, . . . , 0, . . . , d}l+k.

4. E samples random coin Φ, and uniformly random {r1, . . . , rw}
$←− DH, that will

correspond to the output of the random oracle.
5. E defines t = a · s (mod q), and sends pkS = t to A.

• Hash Queries: E performs this in the same way as the simulator B does in the SU-CMA
proof.

• Signing Queries: Given a message µ, E executes the following steps-

1. Run the signing algorithm in Hybrid SDVS, as defined in the proof of SU-CMA,
using the random coins Φ to produce a signature sig = (c0, c1, z).

2. Store the hash inputs (a · z− tc1 + b1 · e||t||s||µ) and output c1 into lH.
3. Return sig to A.

• Challenge: E selects µ∗, and A sends the corresponding SDVS sig∗ = (c∗0, c
∗
1, z

∗) to E .
• Output: The extractor E first checks the validity of sig∗ = (c∗0, c

∗
1, z

∗) on µ∗ and adopts
the same method as the simulator B does in the proof of SU-CMA by programming the
random oracle H while signing a message. So, we have, due to the collision-resistant
property of the hash function H,

(a · z∗ − tc∗1 + b1 · e∗||t||s∗||µ∗) = (a · z− tc1 + b1 · e||t||s||µ)
by holding the conditions c∗1 = c1, z

∗ = z, and s∗ = s. The extractor E , using the values
b0, s and b∗

0, s
∗ computes the values e and e∗ respectively. Hence, we have

a · z− tc1 + b1 · e = a · z∗ − tc∗1 + b1 · e∗

=⇒ b1 · (e∗ − e) = a · (z− z∗) + t(c∗1 − c1) (mod q)

=⇒ b1 · (e∗ − e) = 0 (mod q)

.

Now, let us assume that v = e∗ − e, then it can be easily checked that v ̸= 0, otherwise,
if it is not so, then the forged signature sig∗ is exactly as same as the programmed
signature sig provided by the challenger during the signing queries. Therefore, the term
v = (e∗ − e) ∈ Rl+k

q is a vector of polynomials of short norm. After replaying the above

process at least k times, the extractor can get a matrix V ∈ R(l+k)×k
q , columns of which

are of short norms.

Since, b1 = (bT
10 ,b

T
11 = hgT − bT

10Rb1
)T ∈ Rl+k

q , where bT
10 ∈ R

l
q and bT

11 ∈ R
k
q .

Therefore b1 ·V = (bT
10 ,b

T
11 = hgT − bT

10Rb1
)T ·V = 0 (mod q)
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Let V =

[
V(0)

V(1)

]
, where V(0) ∈ Rl×k

q and V(1) ∈ Rk×k
q .

So, solving the equation

b1 ·V = (bT
10 ,b

T
11 = hgT − bT

10Rb1
)T ·

[
V(0)

V(1)

]
= 0 (mod q)

=⇒ bT
10 ·V

(0) + (hgT − bT
10Rb1

)T ·V(1) = 0 (mod q)

the extractor E can retrieve the private key Rb1
of the adversary A.

□

6 Conclusion

In this work, we propose a post-quantum SDVS denoted as LaSDVS based on
ideal lattice assumptions, namely Ring-SIS and Ring-LWE. LaSDVS provides strong
security guarantees, including strong unforgeability under chosen-message attacks,
non-transferability, non-delegatability, and signer anonymity. The signature and key
sizes were minimized without compromising security. A signature size of O(n log q)
was achieved, which constituted a quadratic reduction compared to the conventional
O(n2) lattice-based SDVS schemes, resulting in a reduction by a factor of n/ log q.
It is demonstrated that LaSDVS outperforms existing post-quantum SDVS designs in
terms of efficiency and compactness.
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