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Abstract 

Intrusion Detection Systems (IDSs) are integral to safeguarding networks by detecting and responding to 

threats from malicious traffic or compromised devices. However, standalone IDS deployments often fall short 

when addressing the increasing complexity and scale of modern cyberattacks. This paper proposes a 

Collaborative Intrusion Detection System (CIDS) that leverages Snort, an open-source network intrusion 

detection system, to enhance detection accuracy and reduce false positives. The proposed architecture connects 

multiple Snort IDS nodes to a centralised node and integrates with a Security Information and Event 

Management (SIEM) platform to facilitate real-time data sharing, correlation, and analysis. The CIDS design 

includes a scalable configuration of Snort sensors, a centralised database for log storage, and LogScale SIEM 

for advanced analytics and visualisation. By aggregating and analysing intrusion data from multiple nodes, the 

system enables improved detection of distributed and sophisticated attack patterns that standalone IDSs may 

miss. Performance evaluation against simulated attacks, including Nmap port scans and ICMP flood attacks, 

demonstrates our CIDS’s ability to efficiently process large-scale network traffic, detect threats with higher 

accuracy, and reduce alert fatigue. This paper highlights the potential of CIDS in modern network environments 

and explores future enhancements, such as integrating machine learning for advanced threat detection and 

creating public datasets to support collaborative research. The proposed CIDS framework provides a promising 

foundation for building more resilient and adaptive network security systems. 
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1. INTRODUCTION 

As the landscape of cybersecurity continues to change, security teams are facing an increasing number of 

challenges when it comes to identifying sophisticated cyber threats and malicious activities on computer 

systems. To monitor the network for any malicious activity, Intrusion Detection Systems (IDSs) are used. There 

are different types of IDSs which are used for different reasons depending on the type of the network [1]. When 

looking at basic IDSs, there are two main types characterised by their deployment and location: Host-based IDS 

(HIDS) and Network-based IDS (NIDS). HIDS monitors activities on a single host by analysing local system 

events/logs for any malicious behaviour (i.e., relies on anomaly detection). HIDS will determine if a system has 

been compromised and will alert administrators so they can act accordingly depending on rules that have been 

set up by the administrator of the IDS. Examples of HIDS are OSSEC [2] and Tripwire [3]. On the other hand, 

NIDS monitor network traffic and activities across multiple nodes (i.e., to investigate network traffic [4]). 

Typical examples of NIDS include Snort [5], Zeek [6], and Suricata [7]. Both types of IDS suffer from false 

positives and issues related to false alarm rate due to being overwhelmed by network traffic. When looking at 

the differences between HIDS and NIDS, generally speaking, HIDS rely on anomaly detection approaches to 

identify potentially malicious behaviour, while NIDS use signature detection [8]. Table 1 presents a breakdown 

of the key differences between HIDS and NIDS and provides examples of software that fall into these 

categories. 



 

Table 1. HIDS vs. NIDS 

Feature Host-based IDS (HIDS) Network-based IDS (NIDS) 

Focus Monitors activity on a single host 

Monitors network traffic on 

multiple hosts  

Detection 

Scope Protects individual hosts 

Protects the entire network 

infrastructure 

Visibility 

Has visibility on host-based 

activity Visibility into network activity. 

Examples OSSEC, Tripwire Snort, Zeek, Suricata 

As cyber-attacks have become more advanced with respect to the tools and techniques used by adversaries, 

standalone IDS solutions face limitations preventing them from effectively detecting and responding to 

advanced cyber-attacks (e.g., DDoS attacks and Botnets). To alleviate these issues and improve the efficiency 

and availability of IDS, Collaborative Intrusion Detection Systems (CIDSs) are proposed. Note that CIDSs are 

also referred to as Collaborative Intrusion Detection Networks (CIDNs). In this paper, we use the term CIDS 

throughout for consistency except for some related works in the literature that specifically refer to CIDS as 

CIDN. CIDS is composed of cooperating IDSs that share knowledge to achieve better intrusion detection 

accuracy and reduce the number of missed/false alarms. This way, CIDSs have the potential to provide a more 

comprehensive defence against sophisticated cyber-attacks. However, research on CIDSs is still in progress to 

address issues such as the integrity of generated alerts in terms of correctness and completeness, and alerts’ 

trustworthiness in relation to possible false alerts generated by compromised IDS nodes. Moreover, to the best 

of the authors’ knowledge, there is no work that addresses these issues nor work that demonstrates a practical 

implementation to prove CIDS efficiency and accuracy against attacks. 

In this paper, we are proposing a CIDS solution using Snort IDS nodes that demonstrates a lower malicious 

activities false positive rate and a higher detection rate in comparison to a single IDS node on a network. The 

proposed solution operates by sending the information generated from the Snort IDS at each individual node, to 

a central node, then on to a SIEM which will allow for correlation of data from several nodes to obtain a better 

understanding of the attacks faced by the network. This should allow for appropriate response from a security 

team. This should also allow for potential attacks to be identified more quickly compared to a single IDS, 

allowing for a faster incident response by a security team. The contributions of this paper are listed below.  

• Conduct a thorough assessment of the CIDS setup using Snort IDS nodes to measure the effectiveness and 

accuracy of its intrusion detection capabilities. This contribution involves generating various simulated 

attacks and analysing the detection rates, false positive rates, and false negative rates of the system. 

• Configuration and optimisation of Snort IDS nodes. This point focuses on the configuration and 

fine-tuning of Snort IDS to effectively detect and respond to cyber intrusions within the CIDS. It involves 

selecting appropriate detection rules, optimising performance, and minimising false positives/negatives to 

enhance the overall efficacy of the intrusion detection process. 

• Analyse the collaborative decision-making within the CIDS by focusing on how Snort IDS instances 

communicate and share information. Evaluate the efficiency of information sharing, collaboration 

protocols, and the impact on overall detection accuracy. Assess the benefits and challenges associated with 

collaborative intrusion detection in a network environment. 

• Finally, assess the security posture and response capabilities of the proposed CIDS to detect intrusions 

effectively. Examine the incident response mechanisms, logging and reporting capabilities, and integration 

with incident management systems. Measure the CIDS’s ability to mitigate and respond to various types of 

attacks, including real-world scenarios, and assess the overall security posture achieved. 

The rest of this paper is organised as follows. Section 2 describes the types of IDS and provides a background 

and domain analysis of CIDS including the state of the art. Section 3 describes the functional requirements of 

the proposed CIDS in detail. The design of the proposed CIDS (including the communication protocols, and 

Snort and SIEM configurations) is described in Section 4, where we also introduce different attack types to be 

used in the evaluation of the proposed CIDS. Section 5 outlines the technical details of developing and 



deploying the proposed CIDS in our testing environment. Testing and evaluation of the proposed CIDS are in 

Section 6. Finally, Section 7 presents our conclusions and sets out our future work. 

2. STATE OF THE ART 
As we mentioned above, an IDS is a device or software application that monitors a network and/or information 

system for malicious activities or policy violations. They respond to suspicious activities by warning the system 

administrator, displaying an alert, and logging the event. An IDS can be described as a function that classifies 

input data as either a normal event or an attack. It does so by indicating the absence (0) or presence (1) of an 

alert, represented mathematically as: IDS: X → {0, 1}. An IDS may use signatures, anomaly-based techniques, 

or both. A signature-based IDS references a database of previous attack profiles and known system 

vulnerabilities to identify active intrusion attempts. Whereas a behaviour-based (or anomaly-based) IDS 

references a baseline or learned pattern of normal system activity to identify active intrusion attempts. A CIDS 

or CIDN is a system/network that connects IDSs to exchange information among them. Cooperation in IDSs 

enables the system to use collective information from other IDSs to provide more accurate intrusion detection 

locally or system wide. 

The first paper that proposed combining multiple IDSs dates back to 2003 [9], where the authors examined the 

use of three elementary detectors placed at various system layers including Snort for network level, Libsafe for 

application level, and Sysmon for the kernel level. This approach provided a more detailed insight into of 

potential attacks on the network from varying viewpoints. The paper used various attack types, including Buffer 

overflow, Flooding attacks and Script-based attacks. By varying the attack types, authors could evaluate the 

CIDS against each attack type and its variants. These different attacks evaluated each detector and provided an 

improved overview of how successful these attacks have been and if they were detected or not. 

In [10], the authors proposed a Snort based CIDS using blockchain and a Software Defined Network (SDN). 

The authors stated that their goal is to launch seven common attacks against the network and then look at the 

detection results. This paper proposed using an IDS built on a blockchain network to find the overall 

performance benefit against several attacks. The authors explained the design of their implementation - a Snort 

based IDS on a host-based and network-based design. They also described how using blockchain is of benefit 

against insider attacks. To evaluate their work, they carried out two different experiments in a modest testing 

environment that utilised three virtual machines, ultimately concluding that Snort IDS on a blockchain has a 

lower number of false positives. This conclusion is in agreement with other related works in the literature, 

suggesting that the future of networks using blockchain IDS is a very feasible way to solve current problems 

with IDS systems. 

In [11], Fung focused on the threat of insider attacks against CIDNs. This research analysed the robustness of 

CIDNs against insider attacks which is a growing concern for organisations. The IDS considered in their work 

is a signature-based IDS where it explains how it will compare signatures with a trusted database in order to 

identify if an intrusion has taken place or not. This is an issue when looking at attackers targeting nodes on a 

network and providing them with signatures that can bypass the alarms of IDSs. Fung stated that many attacks 

against CIDN are able to bypass the system such as betrayal attacks and collusion attacks; this is what results in 

the false information being sent out to the nodes and is what compromises honest nodes. A robust design is 

needed to counter insider attacks to the CIDN.  This shows that working towards a more secure and signature 

trust-based network using blockchain could benefit CIDNs and this can counter some of the issues relating to 

insider threats. 

2.1. Collaborative Intrusion Detection System (CIDS)  
The current strategy of CIDSs is split into several areas of research since, as mentioned before, traditional IDSs 

are falling behind more complex threats such as DDoS and Botnets. This situation makes a single IDS unable to 

analyse the vast amount of modern network data needing to be analysed, emphasising the need for a 

collaborative intrusion detection method. Wenjuan et al. discussed different ways to enhance the security of 

CIDNs against issues such as insider threats [12]. The main method is using challenge based CIDNs. A 

challenge based CIDN works as follows. Each network node chooses which other nodes it will associate with 

and therefore collaborate with. This allows for each node to understand the status of the other nodes and if they 

can be trusted. If a new node wishes to join the CIDN, it needs to verify its identity by getting a public-key pair 

from a reputable authority. However, such a system only becomes viable when there is a guarantee of trust 



 

between nodes, otherwise the system becomes vulnerable to insider threats which would render a CIDN 

ineffective.  

When deploying a CIDS, there are three main architectures that can be used: centralised, decentralised, and 

distributed CIDS. A centralised CIDS consists of a single centralised analysis unit responsible for the collection 

of data, with several monitoring units to monitor the behaviour of their host or network [13]. The authors in [13] 

introduced the centralised CIDS approach to collaborative intrusion and discussed the issues arising from the 

centralised approach having a single point of failure. This is a common theme as single points of failure can be 

a target for a threat actor, and by targeting the central point of failure this would result in a loss of detection data. 

Nonetheless, the main benefit of a centralised CIDS architecture is that there is one central node that will do all 

the analysis from the other monitoring nodes, and this can lead to higher detection rates meaning lower false 

positives overall. The main disadvantage, however, is the issue of the logs going to one central analysis node 

which means this can be a target for an attacker. If this central node is disrupted, this can result in a loss of 

detections from the IDS. Figure 1 shows the three different types of CIDN architecture where M stands for 

Monitor node and A for Analysis node [13].  

 
Figure 1. Overview of centralised, decentralised, and distributed CIDS architectures [13]. 

To summarise the advantages and disadvantages of each CIDS architecture including the hybridised centralised 

and distributed ones, we provide Table 2 below.  

Table 2. Advantages and disadvantages of each CIDN architecture 

Feature Centralised CIDS Distributed CIDS Hybrid CIDS 

Deployment 

Model 

Multiple IDS agents share 

information centrally 

IDS agents distributed at 

network points 

Combines centralised and 

distributed elements 

Advantages Improved detection accuracy 

through information sharing, 

better visibility across network 

Scalability, improved 

performance, fault tolerance 

Flexible deployment, 

leverages benefits of both 

Disadvantages Central point of failure, single 

point of attack, potential 

performance bottleneck 

Complex configuration, 

management overhead, 

potential data security 

concerns 

Increased complexity, requires 

careful design and integration 

Suitability Large, complex networks, 

require high detection accuracy 

Decentralised networks, 

require high performance 

and scalability 

Networks with diverse needs 

and security requirements 

Scalability Limited by central node 

capacity 

Highly scalable Depends on design and chosen 

components 



Performance Potential performance 

bottleneck at central node 

Can offer high performance Depends on design and chosen 

components 

Cost Higher cost due to central node 

and communication 

infrastructure 

Lower cost for individual 

IDS agents 

May vary depending on design 

complexity 

Security Single point of vulnerability, 

requires strong security 

measures 

Potential data security risks 

in distributed environment 

Needs rigorous security 

considerations for both 

centralized and distributed 

components 

Management Centralised management Requires distributed 

management or central 

management tools 

More complex management 

due to hybrid nature 

2.1.1 Trust Issues in CIDS  

One of the main issues raised in the CIDS literature is the issue of trust between the nodes, especially when 

considering the potential for insider threats on a network and ensuring the nodes have not become compromised. 

Therefore, establishing and maintaining trust amongst the participating nodes in the CIDS environment is the 

first challenge. Several solutions have been proposed to fix this problem, and these include the use of 

blockchain technology to ensure a secure and trusted decentralised environment can be created for the nodes to 

ensure that peer nodes have not been compromised [13]. Similar work in [14] considered the use of the 

blockchain to enhance the robustness of and effectiveness of signature based IDSs under adversarial scenarios 

(e.g., flooding and worm attacks) by sharing the signatures in a verifiable way.  

In [15], Dawit et al. examined the suitability of using blockchain with CIDSs. They mentioned that using a 

blockchain network can stop attempted attacks due to the fact that if one block is altered on a node the other 

nodes will compare and therefore identify that the certain node has been tampered with. The authors discussed 

the actual application of blockchain can be used to overcome lots of the common problems single IDSs face 

such as Immutable logging, which can prevent IDS logs from being tampered. Blockchain technology can also 

be incorporated into the node itself to ensure no untrustworthy nodes join the CIDS. The paper explained about 

how the features of blockchain (e.g., transparency, integrity, immutability) mean that blockchain is perfect for 

CIDS since this can help trace back any active flow attacks. They also mentioned how the information is 

distributed along the nodes which is more secure than using cryptography alone. The paper presented a table 

demonstrating some of the key vulnerabilities of blockchain with examples of attacks that can be used to 

exploit these, this is very important for this paper, because it is one of the first papers to acknowledge that even 

though using blockchain in CIDS is good in theory, there are issues that need addressing if blockchain was to 

start being used on networks more widely.  

3. REQUIREMENT ANALYSIS OF THE PROPOSED CIDS 

For our proposed CIDS to function properly and solve the problem of single IDS failing against more complex 

attacks that a CIDS should be able to solve, the following components are needed: 

• Snort IDS Sensors: These will be deployed across our testbed network, which is composed of 9 different 

network nodes. These sensors will be responsible for monitoring the traffic that is coming into the network 

and detect potential intrusions. There can be any number of Snort IDS sensors on the network. A total of 9 

nodes have been used to provide a reasonable sample size that will allow for the comparison of a single 

IDS responding to attacks in comparison to several IDS nodes sharing information to have a better 

understanding of the attack scenarios. 

• Central Node: This will be responsible for receiving the logs from the Snort sensors that will then be stored 

in a database, and this will then allow for the facilitation of communication between the logs from the 

sensors to the SIEM system. 

• Database: This will be used to store the collected intrusion logs for historical analysis and reference in case 



 

the SIEM has any issues. This way, a security analyst can still refer to the logs in the original format. 

• SIEM system: This will be used to perform the advanced analysis and correlation of the intrusion data that 

has been collected from the snort sensors. 

The proposed CIDS will require the following software and hardware to complete its implementation and 

evaluation later in this paper. These specifications will also allow researchers to duplicate our CIDS 

implementation and get similar results. 

1. A server or PC capable of running several VMs at the same time including a VM running a SIEM log 

collector that requires many cores to run efficiently. 

2. A virtualisation software that can handle different VLANs and allow for many snapshots to be captured for 

the development process. 

3. Virtual machine ISOs for creating virtual machines, these include the following: 

a. Ubuntu 22.04 Desktop, for the hosts running snort IDS and for the central node. 

b. PFsense Firewall, used to deploy a software-based firewall for the network to facilitate correct VLANs 

for the LAN and WAN connections, this also ensures that only allowed traffic can go to the SIEM. 

c. Kali Linux, used for the attacking machine which will be preconfigured with all the necessary tools to 

perform testing against the proposed CIDS in the network. 

4. Snort IDS version 3: This will be the IDS used to build the CIDS. 

5. MySQL: This is the DB that will be used to store the data. 

6. LogScale SIEM: This is the SIEM that will be used to correlate the data from the snort sensors. 

Now that we have the proposed CIDS components, in the following we explain the functional requirements of 

each to ensure the CIDS can achieve its goals. 

Snort Sensors 

• Traffic Monitoring: Real-time network traffic monitoring is needed for Snort sensors.  

• Intrusion Detection: Detect and classify potential intrusions based on predefined rules and signatures. 

• Logging: Create thorough intrusion logs that include timestamps, source and destination IP addresses, and 

information about threats that have been discovered. 

• Log Transmission: Send secure intrusion logs to the central node so they can be processed further. 

Central Node 

• Log Reception: Instantaneously obtain intrusion logs from Snort sensors. 

• Authentication and Authorisation: Make sure that only approved sensors can submit logs by putting safe 

authentication procedures in place. 

• Data Parsing: Extract pertinent information from incoming logs by parsing them. 

• Database Insertion: Add parsed logs to the database so they may be retrieved later. 

• Error Handling: Put in place procedures to deal with mistakes, like recording unsuccessful transmission 

attempts and alerting administrators. 

• Communication with SIEM: Enable access to the stored intrusion data by facilitating integration with the 

SIEM system. 

Database 

• Schema Design: Create a database that will be able to effectively store Snort intrusion logs. 

• Data Storage: Keep the logs secure by only having access to what is needed in the DB. 

• Queries: Ensure the DB can be queried to obtain past intrusion data for historical investigations. 

• Backup and Recovery: To avoid losing data in the event of system failure, the DB will be regularly backed 

up. 

SIEM System 

• Integration: The SIEM system must integrate with the central node to retrieve and analyse intrusion data. 

• Correlation: The system must be able to correlate the intrusion events from the multiple nodes and be able 

to alert on patterns and potential security incidents. 

• Alerting: Generate alerts for detected security threats these will relate to snort rules. 

• Visualisation: Provide visual representation of intrusion data for easier analysis. 



4. THE CIDS DESIGN 

The design for our CIDS features a scalable architecture that can facilitate the collaborative effort from the 

Snort IDS nodes. The architecture is based on nine Ubuntu OS VMs all with Snort IDS deployed on them, 

which will then send the generated logs to a central node which has a MySQL DB installed. Then, the logs will 

be sent to LogScale, which will then be able to contextualise the data that the Snort nodes have generated. The 

reason for including LogScale in our design is because of the number of logs generated by Snort and the need 

for a quick understanding of the detections coming from Snort. If the logs are simply sent to the database, then 

this would become challenging for a security team to practically manage, preventing them from quickly and 

efficiently identifying the true nature of generated alerts. 

Figure 2 illustrates a detailed network architecture diagram showing the nine network nodes that will send logs 

generated by Snort to the central node, which will then be inserted into the MySQL DB and then onto LogScale 

for data correlation for the security team to act on during incident response. The firewall provides a defence in 

depth approach to the network and will represent a more typical network with has multiple defensive 

technologies. In the following subsection, we discuss each component in Figure 2.  

4.1. Snort IDS Nodes  

These nodes are deployed across the network. Snort IDS nodes will monitor and analyse the network traffic for 

potential intrusions based on the ruleset provided to the IDS. This will generate logs containing the necessary 

information about detected events. The reason Snort was selected for this task as an open source and therefore 

low cost, yet industry standard IDS system. Snorts usefulness is also enhanced by community rules which can 

be used to help detect attacks against IDS and this also allows for a threat intelligence aspect to be built into 

Snort because as community rules are developed this will allow for new attacks to be identified by the IDS 

when they are discovered by the community.  

In addition, Snort also uses signature-based detection to identify known attack patterns by matching network 

traffic against a set of predefined rules, which helps detect against known threats.  Snort was selected as our 

IDS primarily due to its signature-based detection system. The enables known attack patterns to be matched 

against a set of well understood pre-defined rules, making the detection of known threats straightforward. It 

also allows us to identify attacks efficiently and intuitively in a collaborative way. The system is also known to 

be highly scalable, is open source, and comes equipped with a variety of community rules which help expand 

the IDS functionality. 



 

 
Figure 2. CIDS Design. 

4.1.1 Snort Design Considerations 
This section will detail the Snort design we intend to use for our CIDS and the reasons behind choosing the 

configuration, along with how this benefits the design. The Snort nodes will all be running with identical 

configuration as there will be one virtual machine set up originally and then this will be used as the master VM 

image for all nodes, this will ensure that testing can be done for each of the tools used to set up the network 

successfully. 

The first consideration is that we have opted to use Snort3. Snort3 supports hyper threading and allows shared 

memory, allowing for Snort to be more efficient at runtime [5]. These benefits mean that Snort3 will be able to 

scale much better than previous versions, this is important for two reasons, firstly the design of the CIDS needs 

to be scalable as this network design should allow for nodes to be added as the network grows without having 

any serious network performance issues. The second reason is that this version of Snort can process memory 

much more efficiently and therefore this will ensure that performance on each of the network nodes is not 

affecting the overall machine it is running on. The other reasons we have opted for Snort3 rather than Snort2 

relates to the number of plugins that can be added to Snort, which allows for Snort to more modular IDS. It can 

also allow for future changes to be made to the IDS if a plugin was created in order to help benefit the CIDS. 

The last benefit of Snort3 is that this version has improvements such as supporting RegEx and sticky buffers, 

which also help with more flexible rule generation and futureproofing. 

The second consideration for Snort will be the way it is running on the nodes. Snort has three modes of running, 

packet logging, sniffer, and IDS mode. We will be running Snort in IDS mode, but we will also have it running 

in promiscuous mode, this means that Snort will be capturing all the network traffic it sees unlike other network 

cards that will filter on the MAC address. This should allow for Snort to not miss packets that are travelling 

through the local area network which the nodes are on.  

The third consideration is the how Snort will run on the nodes. We will run Snort as a system service so it will 

run automatically on startup. This is important because if a node was to go offline and restart without Snort 

running automatically then this IDS sensor will go down and we will not get the traffic from this. This also 

makes deployment easier as we will not need to spend time ensuring Snort runs correctly. The startup will call 

the /usr/local/etc/snort/snort.lua file which is Snort configuration. This configuration file will 



specify which interface snort will listen on, the interface will be configured by the firewall when creating the 

LAN and WAN. 

4.2. Central Node  

This will act as a collection hub to receive the logs from the nine network nodes. The central node will have a 

MySQL DB on it which will have a DB that will be where the logs are forwarded to from each node. The 

MySQL DB has two purposes in the CIDS design. Firstly, it is a central place for the logs to be stored and this 

will allow for logs to be checked if logs need referring to. Secondly, the purpose for having the logs sent to the 

DB is that the LogScale can then be used to collect the logs from the central node via a log collector that is 

deployed on the node. 

4.3. SIEM System  

Our CIDS uses the LogScale SIEM produced by CrowdStrike, formerly known as Humio [16]. The choice to 

integrate LogScale into our design is based on its ability to efficiently and effectively correlate data from 

diverse sources. SIEMs such as LogScale excel in data aggregation and analysis, enabling the identification of 

patterns and anomalies that are critical for intrusion detection. Additionally, the use of LogScale allows data 

from the network nodes to be visualised through customisable dashboards. These dashboards provide an 

intuitive and centralised view of network activity, simplifying the process of monitoring and understanding 

events within the network. Logs will be transmitted to the LogScale SIEM through a central log collector 

located on the Central Node. This configuration ensures that log data is sourced directly from the MySQL 

database, offering built-in data redundancy, and enhancing the reliability of the logging system. The other 

benefit of using LogScale SIEM compared to just using the MySQL DB for storing the logs, is that the SIEM 

allows for event correlation from up to 7 days from when the logs have been ingested, this will allow for a 

security team to look at the IDS logs from a longer period of time, this can help in the long term with the 

investigation of the alerts generated via the Snort IDS logs. The potential drawbacks to selecting LogScale are 

that with the community edition we are using for building our CIDS there is only 16GB ingestion a day, 

however this should not be an issue for our design as we only have 9 nodes and the logs generated by Snort are 

not that large. This issue of ingestion can also be fixed by the using the MySQL DB as a backup solution which 

will offload the issue of relying on the SIEM for keeping data for long periods which would incur costs.   

The other SIEMs we have considered for our CIDS are Nagios [17] and Splunk [18]. Nagios does not provide 

some core features such as advanced querying, and the custom dashboards are not as detailed as those 

achievable with LogScale. The benefit of Nagios would have been that this SIEM also has a network analyser 

which could have worked in partnership with the IDS however this is only for the paid version and the free 

version of the SIEM is very limited. The other SIEM that we considered was Splunk [18]. Splunk is an industry 

leading SIEM and has a lot of features that would make the correlation of data much better and easier for an 

analyst to see the logs coming in from the central node. Yet there are no community editions of this SIEM, and 

you have to pay after a certain period of time, which would not work for the implementation phase in this paper. 

Table 3 provides a comparison between the three SIEMs we have considered in this paper.  

Table 3. Comparison of SIEMs 

Feature Logscale SIEM Nagios Splunk 

Log 

Collection 

Centralised log collection 

and aggregation 

Centralised log 

collection 

Centralised log collection 

and aggregation 

Security 

Analysis 

Advanced security 

analysis and correlation 

Basic security 

analysis 

Advanced security analysis 

and correlation 

Real-Time 

Alerts 

Real-time alerting for 

suspicious activities 

Real-time alerts 

for system 

events 

Real-time alerting for 

security incidents 



 

Scalability Scalable architecture for 

growing environments 

Limited 

scalability 

options 

Scalable architecture for 

large-scale deployments 

Integration Integrates with various 

security tools and 

systems 

Limited 

integration 

capabilities 

Extensive integration 

capabilities with third-party 

tools 

User Interface User-friendly interface 

for monitoring and 

analysis 

Basic interface 

with text-based 

reporting 

Intuitive interface with 

customisable dashboards 

Customisation Highly customisable for 

tailored security needs 

Limited 

customisation 

options 

Extensive customisation 

options for data analysis 

4.3.1 SIEM Configuration Design  

To send logs to the SIEM, the flow of data moves from the nodes to the central node for the data to be stored 

within the MySQL DB, and LogScale will then collect the data from the MySQL DB. The reason for this 

configuration decision relates to the data retention needed for the logs, LogScale Community Edition only has a 

7-day retention period used, therefore there needs to be data redundancy and backup with the DB. One benefit 

of having the logs stored in the DB is that even when the logs are shipped to the SIEM via the log collector, the 

logs can also be referred to in the DB, this would allow for a security team to use both the DB data and 

LogScale for investigating historic alerts. For the CIDS, LogScale is configured to accept syslog files, since the 

data generated via Snort will be outputted as syslog. LogScale will then be used to correlate the data using 

different queries within the platform. These queries can then be put within a dashboard that will automatically 

run and update as data is ingested from the central node, this will be able to give a real time understanding of 

the types of attacks that the Snort nodes are seeing and should allow for a security team to be able to respond to 

potential attacks more efficiently. 

4.4. PFsense Firewall & Attacker Machine 

Our CIDS design features a PFsense firewall to maintains overall control over the traffic traversing the network. 

The configuration used is to block all inbound and outbound WAN traffic except from the Central Node to 

LogScale. The attacker machine will be used to simulate attacks against the Snort nodes and will be on the 

same LAN. It is assumed an attacker has obtained physical access to the network, thus enabling them to launch 

attacks against the nodes in the network. This work will focus on simulating a small selection of network-based 

attacks, specifically DoS and port scanning. The reason for selecting these two, is that they are both attacks that 

can be directed at any host without requiring any initial exploitation and can easily demonstrate the benefits of 

a CIDS approach. Focusing on a small attack subset, enables evaluation of the implemented CIDS against 

real-world attack, whilst providing scope for further expansion in later works. This will test the collaborative 

approach to IDS due to if only some of the IDS nodes can identify this attack this can show the benefits of the 

IDS being collaborative compared to single ids nodes being deployed. Finally, we will launch an attack related 

to network recon such as DNS enumeration and reverse DNS lookups. This is important as the network design 

shows the attacker is already inside the network and therefore will want more details of the network 

environment to move across the network potentially laterally. This should allow us to detect, at the network 



level, a spike in non-existent domain responses due to the DNS enumeration. 

4.5. Logging Protocols  

The logging (i.e., communication) protocols that will be used to send the logs to the central node will be using 

TCP and the logs will be sent by configuring rsyslog to send the logs from the nodes to the central node. The 

reason for using rsyslog is due to the benefits this has in comparison to standard syslog. These benefits include 

the ability to call different modules relating to what you want rsyslog to do with the logs. The modules we will 

be calling for our network are ommysql module, this will be used to send the logs that are received from the 

nodes and this module allows for rsyslog to insert data into the MySQL DB. Table 4 provides breakdown of the 

main benefits of rsyslog in comparison to syslog.    

Table 4. Syslog vs rsyslog 

Feature Syslog rsyslog 

Logging 

Protocol 

Standard logging protocol Enhanced logging protocol 

Reliability Basic reliability Improved reliability and 

robustness 

Performance Limited performance 

optimisation 

Enhanced performance 

optimisation 

Configuration Limited configuration options Extensive configuration options 

Filtering Basic filtering capabilities Advanced filtering capabilities 

Forwarding Basic log forwarding 

capabilities 

Enhanced log forwarding 

capabilities 

Compatibility Widely compatible with 

various systems and devices 

Compatible with a wide range of 

systems and devices 

Logging 

Format 

Fixed logging format Flexible logging format 

Centralized 

Logging 

Supports centralised logging 

with limitations 

Better support for centralised 

logging 

5. DEVELOPMENT AND DEPLOYMENT OF THE PROPOSED CIDS 

5.1. Snort IDS Configuration and Setup  

To run Snort IDS on each VM, the following configuration needs to be done: Snort Config File / logging and 

output, Networking interfaces, and Rule management. First, we start with Snort3 configuration file called 

snort.lua, which contains information such as specifying what logging snort will do. The first change in the 

configuration file is the output that Snort will output to, the chosen output will be syslog as this will then be 

shipped to the central node via rsyslog. In order to specify the syslog output, the configuration will be as 

follows in Figure 3.  



 

 

Figure 3. Syslog configuration in snort.lua 

It calls the Snort configuration file which will specify that Snort will output and alert in a syslog format and the 

logs will be stored in /var/log/snort, this will allow for rsyslog to ship the logs generated from the log file. 

Snort will run in promiscuous mode, which will allow for it to look at all traffic on the interface and better 

make decisions when it relates to looking at the rules and then alerting accordingly.   

5.1.1 Snort Rules  

The rules in Snort are responsible for generating the alerts when traffic is detected that matches a signature or 

attack pattern. The rules in Snort3 are different from previous versions due to the fact that they are more 

standardised and allow for more flexibility when it comes to writing the rules. Snort3 also allows for the rules 

to be tuned to be more specific, which means that the detection accuracy should be increased. There are many 

community rules that could be used for this Snort deployment; however, we have opted for using just local 

rules that we wrote relating to the specific attack scenarios, which we will outline in the testing phase of this 

paper. 

 
Figure 4. Example of Snort rules in Snort3 

This shows that there are multiple additions to a basic rule you can add, the rules in Figure 4 will not be the 

final rules that will be used but these have been used to validate that Snort is running correctly and logging to 

the correct area. The rules also allow for the rule to trigger against policies if the user wants. This means that 

Snort can be expanded to provide a much more efficient and tailored alerting mechanism against attacks. The 

logs that are generate by these rules are then shipped using rsyslog, which will be covered in sub-section 5.3.  

5.2. Firewall Configuration and Setup  

The network design has a firewall, the reason for this is to provide a defence in depth approach. The firewall 

will allow for the network to be segmented into a LAN which all the machines are on, the LAN will then have 

firewall rules which will mean that only traffic is allowed to go to the SIEM repository which is 

“cloud.community.humio.com” while any other traffic will be dropped. This ensures the only external 

connection coming from the LAN will be to LogScale. To set up the firewall, first the VM needs to run through 

the setup process, this will allow for the interfaces to be specified, these interfaces are as follows: LAN (lan) 

--> em1   --> v4: 192.168.1.1/24. These interfaces are used to have a WAN and LAN in order for 

firewall rules to be applied to block all incoming traffic to the LAN and to the WAN. The IP range is 

192.168.1.x for the LAN, the VMs will then join this LAN via the LAN segment which will then allow them to 

have a static IP on the LAN network. This will have the nine nodes and the central node on this network. 

Using PFsense also allows for logging to ensure that if any malicious traffic attempted to probe the network 

externally it would block and flag it. The firewall logs also allow us to monitor the traffic and ensure that the 

data is going to LogScale as it is meant to. Finally, the firewall rules for the setup will have two rules, one to 

block all the traffic exiting the LAN and then another one which only allows traffic to LogScale, this is based 

on the URL and IP range for the SIEM repository as shown in Figure 5 below.  



 
Figure 5. Firewall Rules 

5.3. SIEM Configuration and Setup  

As mentioned before, the SIEM will be responsible for aggregating and querying the data received from the 

nine nodes with the logs generated via the IDS nodes. First, we need to deploy the log collector onto the central 

node where all the logs will be shipped to from the IDS nodes. Once installed from LogScale, there are a few 

options in relation to how the SIEM log collector can be configured to run. The options are automatically or 

manually start/run/stop the log collector. The benefits and drawbacks to these two approaches are that if the log 

collector is running constantly this creates a higher performance overhead because of the log ingestion from the 

Central Node to the SIEM. However, because of the nature of the CIDS and the constant running of the IDS 

nodes shipping logs to the central node, we need the Log collector to be constantly running.  

5.3.1 Enrolment of A Node  

To ensure the logs can be sent to the SIEM, in the SIEM repository setup, the collector instances need to be set 

up and have a config specified. The config will be used to specify what logs the log collector should collect, in 

this case it will be syslog as this is the log type that is coming from the IDS nodes. Once a configuration is 

specified, we then enrol the host by using enrol and then specifying the specific enrolment token that has been 

generated as shown in Figure 6 below. Once the enrolment is successful, the node will then show in fleet 

overview along with some statistics such as ingestion and CPU usage. This is useful, because this will allow for 

the node to be monitored, and this should help point out any issues during the log ingestion into the SIEM. 

 
Figure 6. Enrolment page which generates the enrolment token 

5.3.2 Configuration for Syslog collection 

Once the node is enrolled, the focus for finishing the SIEM configuration relates to the configuration for the 

logs that the log collector will pull. The nodes then ship the logs using rsyslog to the central node on port 514 

therefore the SIEM needs to collect logs as the Central node receives them as well as inputting into the DB for 

backup purposes. 

 
Figure 7. Configuration for SIEM to collect syslog on Central node (token is redacted for privacy) 



 

The configuration, in Figure 7, uses the rsyslog module omelasticsearch which is used as the parser for 

sending logs to the SIEM. This rsyslog configuration is created in the rsyslog.d folder and the configuration file 

for LogScale is created called 33-logscale.conf. The module is then loaded by rsyslog and the data is set 

into a template so that LogScale can accept it into the SIEM. The uid and pwd field refer to the ingestion 

credentials generated within LogScale to allow data to be sent to the CIDS repository. The next step is to check 

that the data is being sent to the SIEM, this is done by checking the SIEM in the repository and doing the 

following query Count(syslogtag) that checks that the data with the tag syslog is being sent to the SIEM. 

5.4. Rsyslog Configuration and Setup  

5.4.1 IDS Node Rsyslog Configuration 

The communication protocol that will be used to ship the logs from IDS nodes to the Central node will be 

Rsyslog which is a more advanced version of syslog. The first stage is to ensure that rsyslog is running on each 

node. The configuration of rsyslog needs to be that it ships the logs generated by Snort to the central node 

which is on the same LAN. The configuration for rsyslog is broken down into two configuration files, one is 

rsyslog.conf and the other is rsyslog.d which is where you can have multiple configuration files. The first 

configuration file relates to different modules that rsyslog can use in order to log data, the two modules we will 

load for the configuration on the IDS nodes are as follows. 

# provides UDP syslog reception 

module(load="imudp") 

input(type="imudp" port="514") 

# provides TCP syslog reception 

module(load="imtcp") 

input(type="imtcp" port="514") 

The modules for rsyslog will be responsible for taking any data that has been specified and then send it via tcp 

and udp on port 514. The final section of the configuration file specifies where rsyslog should go in order to 

collect the logs from. 

# Include all config files in /etc/rsyslog.d/ 

# 

$IncludeConfig /etc/rsyslog.d/*.conf 

 

#template to store syslog messages 

$template RemInputLogs, "/var/log/snort/snort.pid/" 

*.* ?RemInputLogs 

The rsyslog configuration will specify the log sources, this is in Snort logs folder which is where the Snort logs 

that are generated will be stored in. The logs will be collected and forwarded to the central node by specifying 

the forwarding IP which is found in rsyslog.d config file. In rsyslog.d config file, this relates to any rules 

that rsyslog must follow, this statement tells rsyslog to send the logs it received to send it to the following IP 

which is the central node: *.* @192.168.1.13. The configuration is now working for nodes 1-9. The next 

step is to set up rsyslog on the receiving server (central node) in order to receive the logs successfully. 

5.4.2 Central Node Rsyslog Configuration 

The central node will have more rsyslog modules loaded due to it needing to input the received logs into the 

Database for the data retention for the CIDS. The first configuration needed will be the same as the nodes as the 

TCP and UDP syslog needs to be enabled for rsyslog to open port 514 to accept data. 

# provides UDP syslog reception 

module(load="imudp") 

input(type="imudp" port="514") 

# provides TCP syslog reception 

module(load="imtcp") 

input(type="imtcp" port="514") 

For rsyslog to be able to put the logs into the database, it needs to call a MySQL module which will be used to 

insert data sent from syslog into the specified Database. The configuration for the database will be discussed in 

subsection 5.5, the rsyslog configuration is as follows. 



module (load="ommysql") 

*.* action(type="ommysql" server="localhost" db="snort" uid="snort" pwd="test") 

Once the configuration has been done, we can verify that the configuration is not failing by checking the status 

of rsyslog, this is showing as running on both the nodes and the central node therefore there is no issues relating 

to logs being sent or received or inputted into the database. 

5.5. Database Configuration and Setup  

The DB will be used to store the logs from the IDS nodes. This will act as a backup solution for the logs but 

also as a reference point in the event the SIEM is unavailable due to any issues. The DB will not have the same 

aggregating and querying capabilities as the SIEM, but the DB will be able to show an investigator what traffic 

is coming from the IDS nodes and any alerts that are generated. The choice of DB will be MySQL, which is 

installed when on the Central node. The DB has a root user however we will create a user for rsyslog to be able 

to access the DB, this will ensure that rsyslog can input data however it cannot do anything apart from insert 

data. This is best practice when creating an automated system for inputting data. We will be using DBBeaver 

[19] to visualise the data and see the logs in a more effective way instead of the terminal. 

The first step to configure the DB is to create the DB itself which is called snort, this is done by the using the 

command CREATE DATABASE snort; Then, we create a table called SystemEvents which will be the table 

that will have the log data sent from the nodes in the DB. The system events table will have the following fields 

as shown in the Entity Relationship Diagram (ERD) in Figure 8 below. Note that the message column has a 

long text datatype because it will be able to account for the different outputs from the different Snort rules that 

will be used as this is what will be in the message section. 

 
Figure 8. ERD diagram showing fields in SystemEvents table 

Figure 9 shows an example of how rsyslog is successfully able to input different Snort logs from different 

nodes, this also shows that the DB has the ability to handle different alerts that snort could generate because of 

the long text field in the DB. 

 
Figure 9. DB example of data inserted from Snort logs 

6. TESTING AND EVALUATION OF THE DEVELOPED CIDS 

The testing scenarios that will be used to test the detection capabilities of the proposed CIDS will relate to the 

attack types that were mentioned in Section 4.4. These attacks will come from the attacker machine and will 

first attack a single IDS node and using the SIEM, the data will then be analysed to see how many alerts are 

generated in comparison to the attack and if any of the attacks have been missed due to the IDS missing the 

attack type. The second testing phase will relate to attacking several of the IDS nodes with the same attack type. 

This will then allow for the SIEM to correlate the data from multiple IDS nodes and to be able to determine 

whether the increase in IDS nodes on the network sending data to a centralised point will allow for a better 

understanding of the attack that is going on in the network. This will be able to see if there is a pattern of attack, 

for example is a certain node being targeted more than others. This will also be able to test how well the CIDS 

scales in relation to the data ingestion into the SIEM and the data that is also going into the DB. The tests will 



 

allow for a better understanding of any drawbacks to the implementation of the CIDS that has been created. 

The tools that will be used to perform these attacks will be tools that can be found in the default build of Kali 

Linux, the port scans will be done by Nmap and the Ping flood attacks will be done using a tool called hping3, 

this tool is able to flood a victim with either SYN or ICMP requests which means that the host will be 

overwhelmed with network requests. This means that the attacker can perform other attacks against the host 

which the IDS may miss because it will be monitoring a network that is being flooded with ping attacks by the 

attacker. These test cases will relate to network attacks an attacker can do when they are inside the network to 

either gather more information on the network or to disrupt the network with a DoS type attack. There will be 

four test cases for this test. The first case will test a single node and then the second case will test a variety of 

nodes on the network to see how the IDS react and then by using the SIEM the results will be able to be 

aggregated together to determine if a single IDS has a higher or lower False Positive (FP) rate. Also, when 

testing multiple nodes, it will also be able to test how the network handles a lot of traffic going to a centralised 

location. This will be able to test whether the CIDS can scale and any issues that are found during testing can 

be evaluated. A summary of test cases and their objectives is given in Table 5 below.  

Table 5. Testing table breaking down attack types and which nodes will be attacked 

Test case ID Attack Type 

being tested 

Nodes being 

attacked 

Snort rule being 

tested 

Objective testing 

relates to 

TC-1 Nmap TCP 

port Scan 

Node1 Nmap Port scan rule Testing FP and TP rate 

TC-2 Nmap TCP 

port Scan 

Node2, Node4, 

Node6 

Nmap Port scan rule Testing FP and TP rate 

and Scalability of 

CIDN 

TC -3 Ping Flood 

Attack 

Node1 Ping Flood attack 

rule 

Testing FP and TP rate 

TC -4 Ping Flood 

Attack 

Node3, Node5, 

Node7, Node9 

Ping flood attack Testing FP and TP rate 

and Scalability of 

CIDN 

6.1. Snort Rules for Detecting Attacks  

This is a breakdown of the Snort rules that will be used to detect the different attacks performed against the IDS 

nodes. The reason for creating the custom Snort rules instead of using Snort community rules is because of the 

specifics of the types of attacks that have been decided for this particular testing case. However, any of Snort 

rules will work with being shipped from the nodes to the central node and to the DB and SIEM. This is because 

the logs are parsed so that the SIEM can accept any logs generated by Snort as they are created in the format 

specified in the .lua file. 

Detection of potential flood attack 

alert icmp any any -> any any (msg:"ICMP Flood Detected"; detection_filter: track by_dst, 

count 150, seconds 3; classtype:bad-unknown; sid:100001; rev;1;) 

This rule monitors the rate of ICMP packets directed at the destination IP. If the number of packets is exceeded 

by the threshold (this has been set to 150 packets within 3 seconds) this rule will trigger and alert against a 

potential ICMP flood attack. 

Detection for potential Nmap Scan 

alert tcp any any ->any any (msg: "NMAP TCP Scan";sid:10000005; rev:2; ) 

This rule monitors for any TCP traffic that could potentially be nmap scanning the network, this can be made 

more specific to monitor traffic on specific ports, but this rule is keeping it general currently. 

6.1. Port Scan Testing  

The first test TC1 is for testing how the IDS deals with port scanning against a single IDS.  The rule in Snort 

should detect the attempted scan and alert that this node is being scanned and should display the attackers 

machine IP. When scanning one IDS node, the Snort rule alerts and generates a lot of alerts because of how 



broad the rule is in relation to the IP. This results in a lot of messages coming into the SIEM when node1 is 

being scanned. When changing the rule to just look at traffic coming into the host being tested the following 

results are shown. 

 
Figure 10. Event stream showing that an NMAP scan is happening against the node 

When using count() in the SIEM, the result shows that the rule is working against the nmap scan and due to 

the amount of traffic that is generated by an nmap scan, the rule generates a separate message for every port 

that is scanned therefore giving the total count as 656 in this example.  

This gives a baseline for how a single IDS responds to an nmap scan. The next test case will be scanning 

multiple nodes to test how the CIDS design handles more data being ingested and to see if the CIDS can give 

more accurate results in which shows that the SIEM has correctly ingested the data from the nodes in relation to 

nmap scan. This also shows that the nmap rule may need to be tuned so it does not generate an alert for every 

port but one single alert since it is only a single nmap scan being performed and the number of events ingested 

can show that there are multiple nmap scans happening when in fact it is only one. This would generate a lot of 

false positives due to the number of events for a single nmap scan when it should just generate one single 

detection so that there is not alert fatigue. This can be fixed with changing the rule threshold for detecting nmap 

scans. 

When testing multiple nodes with the same nmap scan rule (i.e., TC2), the first analysis that will be done in the 

SIEM is to see the number of messages coming into the SIEM during the same period of the attack in each test 

case. When querying the SIEM using count(syslogtag) this will show the number of messages that come 

into the SIEM during a time interval, which is 2837 in this case. This shows that there are more than the three 

times of expected events as there was for the single IDS node when tested during the same time frame and 

under the same attack. This can give a security team a better understanding that a wider attack is going on 

within the network and will allow for further investigation. This also looks to have the similar issue to the 

number of events relating to the nmap scan, this is due to the rule generating an alert against each port scanned 

and not an individual alert relating to one overall nmap scan being ran against the node. Figure 11 below shows 

the increase in traffic from snort during testing the nmap rule on multiple nodes. This test case has shown that 

when there are multiple nodes being scanned and sending data to the SIEM, the SIEM is able to count the 

number of messages coming into the SIEM for comparison with single IDS node traffic. There are also no 

issues relating to the data being ingested into the SIEM which means that a security team can then further 

analyse and query the data within the SIEM to understand what is happening on the network and which nodes 

are being attacked. 



 

 
Figure 11. Time frame showing the sudden increase in Snort logs during the testing 

6.2. Ping Flood Testing  

The next test case will check how the CIDS responds under a significant amount of traffic from an ICMP flood 

attack, which is TC3. The tool that will be used to perform the ping flood attack will be hping3. The syntax of 

the command is hping3 -1 which specifies that we will use the icmp traffic and the --flood command is 

used to flood the target with ICMP packets. The -V flag is used to verify that the flood attack has started 

successfully. Looking at the SIEM events and aggregating how many messages with the syslog tag are sent 

during the time frame, we can see there is over 56,000 events. We can use the filter in the SIEM to see the 

traffic coming from the host that is being attacked. This event stream in Figure 12 shows that there is a 

significant amount of data coming from the node during this attack. The results in this event stream are all TP 

because of how the rule has been configured that there must be a significant rate of ICMP packets for the rule to 

trigger. The issue with the rule is that it will constantly generate until the ping attack stops. However, the events 

can be filtered down so the security team can identify when the attack started, the message also is able to 

identify that the attack is coming from inside the network therefore meaning that this could be blocked 

potentially when it alerts the SIEM. 

 
Figure 12. Event stream showing the ICMP flood in event stream for node 



This test case shows that the current configuration for this rule generates a lot of alerts when the ping attack is 

ongoing, this could cause an issue for the security teams dealing with the detection due to the number of alerts 

being generated. The alerts generated by a single IDS would need tuning so that the security team looking at the 

data in the SIEM does not have alert fatigue due to the huge number of alerts. The number of alerts being over 

56,000 events are a lot for the single IDS node however this is due to the amount of ICMP traffic the node is 

experiencing. The TP of this attack type will be high due to the amount of traffic but normal ping requests 

during this time frame will also be shown in the event stream in the SIEM due to once the threshold has been 

met for the rule it will detect. This can be fixed with a higher threshold for detecting ICMP attacks for the 

individual nodes. 

The next test case TC4 will test the issues that a DoS attack can have on the CIDS and does it affect the 

response capability of the IDS. The single IDS generated a lot of events during a one-minute time frame of a 

ICMP DoS however with multiple nodes being attacked at the same time the network may not be able to send 

all messages to the SIEM. The same attack is done against the IDS nodes 3,5,7,9. The results are as follows. 

The number of alters was over 103,000 alerts which is expected since four IDS nodes are under attack. The FP 

of the data in this time frame looks to be lower than a single IDS because with the amount of data coming from 

each node there would be the expectation that there would be 4 times the amount of data being ingested into the 

SIEM based on the results from the single IDS node being attacked. The data ingested can show that multiple 

nodes are being attacked at the same time with the same ping attack, filtering in the SIEM will allow for the 

security team to see that this is coming from the same IP therefore allowing for remediation action to take 

place. 

There also looks to be a network issue for how fast rsyslog can process the number of logs, this could be fixed 

by adding rate limiting to the configuration of rsyslog. Even with the rate limiting from rsyslog it looks that the 

IDS can handle the extreme number of packets it has to process and check against the rules. There seems to be 

logs from every node that has been attacked which means that there is no issue relating to any of the IDS failing 

during this DoS attack however a more sustained attack may be able to stop the nodes from sending data to the 

SIEM. This test also shows that the network can respond to an extreme amount of data passing through it to the 

centralised node which is successfully sending data to the SIEM and DB. This shows that when multiple nodes 

have a lot of data being sent from each node to the centralised node, the node can handle the data coming into 

the node and is able to process it effectively and send the data to a DB and onto the SIEM without a significant 

slowdown in relation to the time from attack to the alerts in the SIEM. 

6.3. Overall Evaluation of the Results  

The developed CIDS has been built and proved to be able to successfully collect data from the several nodes on 

the network under different network attacks. It demonstrated that by using the SIEM, we are able to better 

understand what is happening in the network and then by drilling down into the data sent from Snort, a security 

team should be able to respond effectively to attacks on the network. The IDS configuration showed that it can 

effectively still detect even during an increase in network traffic from a DOS attack. This is due to the 

configuration of the Snort IDS on the nodes which means that it is very efficient and would take a lot of traffic 

to make the IDS stop working effectively. When testing the scalability, the events sent to the SIEM appear to be 

ingesting correctly however when testing the nodes with the ICMP attack it was found that some of the rsyslog 

configuration means that the number of events arriving in the SIEM are not as many as would be expected 

compared to a single IDS. However, this can be fixed by implementing the rate limiting within the rsyslog 

configuration design however this could be fixed with time for tuning and retesting the CIDN against the same 

attacks. 

The developed CIDS has several improvements that can be made to make it more efficient. In relation to the 

number of events that are sent to the SIEM, this can be done by smarter rules and better configuration relating 

to how rsyslog ships the data to the SIEM. In terms of testing, the tests that have been done in this paper are 

only network-based attacks however the CIDS design means it would be capable of alerting against malware 

using Snort’s community rules which would be interesting to test to see how the events are shipped due to the 

way some community rules work in relation to the fields it would generate. Other test cases that could have 

been tested relate to malware and testing to see how the CIDS reacts to prebuilt community rules relating to 

malware signatures, this would move away from network attacks and more targeted host-based attacks in which 

the IDS can try to detect against malware on the compromised hosts. 



 

Overall, the developed CIDS demonstrates the principles of how collaborative IDS is able to better help 

security teams identify attacks on the network compared to a single IDS on a network. The artifact with more 

tuning would be able to handle a variety of DoS attacks without a drop in events going to the SIEM. As stated, 

there are many more test cases that can be tested to show more of the benefits of IDS being in a CIDS 

compared to a single IDS, there is a lot more work that can be done using this developed CIDS that will be 

discussed in Section 7 about future work.  

7. FUTURE WORK AND RESEARCH DIRECTIONS 

There are many areas for future work and research directions that can be built on this paper. In the following, 

we focus mainly on the integration of Artificial Intelligence (AI) and Machine Learning (ML) into the 

developed CIDS.  

7.1 Revised AI-Assisted Architecture 

Our immediate future work will focus on developing a decoupled hybrid approach for CIDS, which leverages 

the combined strengths of HIDS and NIDS. The idea being that these components operate independently and 

are tailored to individual nodes. Event feeds from these nodes are supplied to the central node and in return 

bespoke threat intelligence feeds are received. The central node will utilise AI to standardise and aggregate the 

events, prior to holistically analysing the data to identify threats and generating the bespoke threat intelligence 

feeds. The major benefit here is that by utilising this combined data, deeper patterns and temporal relationships 

can be identified between network and host behavioural characteristics surrounding triggered events. 

7.2. Enhanced Threat Intelligence with ML  

The classification of network activity as normal or malicious is a fundamental challenge in designing a CIDS. 

ML can identify patterns and behaviours indicative of security threats with high precision, given the availability 

of sufficiently large and detailed datasets that correctly encode characteristics of interest. In principle this is a 

typical classification problem, where the goal is to accurately assign labels (e.g. normal vs malicious) to 

relevant data. A great deal of work has already been undertaken in this area [20, 21, 22]. However, this 

seemingly straightforward classification task is complicated by the practical realities of dynamic network 

environments, human behaviour, and various interrelated factors at both the network and host levels, creating 

several challenges that impede ML which have not been fully accounted for. These include, for example, 

• Nonstationarity: Evolving network activity, user behaviour, and the emergence of new threats result in 

concept drift [23, 24], where the data distributions describing threat and non-threat behaviours used to train 

ML algorithms shift over time. This undermines the assumptions of most static ML models, which 

typically rely on stationary data, necessitating adaptive approaches to maintain accuracy in changing 

environments. 

• Class imbalance: This issue arises when one class is significantly rarer than another, either due to genuine 

scarcity or systematic biases in data collection [25, 26]. Many ML algorithms tend to favour the dominant, 

majority class, leading to poor performance on highly imbalanced datasets. In the context of CIDS, 

malicious activity often represents only a small fraction of observed traffic, making it challenging for ML 

models to effectively detect rare but critical events. Class imbalance also leads to increased false positive 

rates in practice, which can overwhelm analysts and reduce trust in the system. 

• Temporal dependencies: Attack patterns often develop over time, making sequential relationships between 

events critical for accurate detection. Failure to account for these temporal dependencies can limit an ML 

model's ability to capture the context necessary for identifying evolving threats. Indeed, numerous 

approaches have been proposed to deal with such issues arising in general time-series data sets [27, 28]. 

• Novelty Emergence: Emerging threats, such as zero-day attacks, introduce patterns that are entirely absent 

from training data. This presents a unique challenge, as models must generalise beyond known behaviours 



and identify anomalies indicative of previously unseen attacks. A variety of approaches have been applied 

to this problem – one class learning [29], outlier detection [30], anomaly detection [31], and novel class 

detection [32]. 

The implementation of ML-based CIDS faces additional practical challenges, particularly in the context of a 

hybrid approach that combines HIDS and NIDS. High-dimensional, heterogeneous data from network and host 

sources must be standardised and aggregated for meaningful analysis. This process is computationally 

demanding, especially given the need for real-time processing to generate timely threat intelligence. Scalability 

is also essential in hybrid architectures, as event feeds from distributed nodes must be efficiently processed on a 

central server node. Lastly, interpretability remains critical, ensuring that the ML-supported threat intelligence 

feeds provide actionable and interpretable insights. Effectively addressing these challenges demands a holistic 

approach that combines multiple ML techniques to balance predictive power with operational constraints. 

7.3. Public Dataset Creation 

Existing datasets for IDS research often provide a narrow perspective, focusing on single systems or central 

observation points. This limitation is particularly evident in CIDS research, which aims to tackle complex 

modern networks. To address this, we aim to create a new public dataset that captures the nuances of modern 

network dynamics and architecture. The intention is that this holistic dataset will incorporate a diverse range of 

viewpoints within a network, facilitating more in-depth studies into how differing relationships, dynamics, and 

structures of modern networks impact on security collaboration and detection of cyber threats. 

7.4. Conclusion 

In this paper, we presented a CIDS leveraging Snort IDS nodes and centralised data analysis via the LogScale 

SIEM platform. The proposed system addresses the limitations of standalone IDS deployments by facilitating 

real-time data sharing, aggregation, and advanced threat analysis. By implementing Snort sensors across a 

simulated network, the study demonstrated that collaborative detection significantly enhances the ability to 

identify complex and distributed attacks, such as port scans and ICMP flood attacks, while reducing false 

positives through centralised correlation. The system evaluation highlighted its scalability, accuracy, and 

effectiveness in detecting and responding to threats. During testing, the CIDS efficiently processed logs from 

multiple nodes without significant delays. However, challenges such as alert fatigue caused by bottlenecks in 

rsyslog indicate areas for further refinement. Addressing these issues through optimised configurations and rule 

tuning could further improve performance and usability. This research underscores the potential of collaborative 

approaches to intrusion detection in modern network environments. It also opens avenues for integrating 

machine learning and artificial intelligence into the CIDS framework, enabling adaptive threat intelligence and 

improved anomaly detection against a broader range of attack scenarios. In conclusion, the proposed CIDS 

provides a robust foundation for improving intrusion detection through collaboration, paving the way for more 

adaptive and resilient intrusion detection solutions.  
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