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Abstract—The transfer-based black-box adversarial attack
setting poses the challenge of crafting an adversarial example
(AE) on known surrogate models that remain effective against
unseen target models. Due to the practical importance of this task,
numerous methods have been proposed to address this challenge.
However, most previous methods are heuristically designed and
intuitively justified, lacking a theoretical foundation. To bridge
this gap, we derive a novel transferability bound that offers
provable guarantees for adversarial transferability. Our theoretical
analysis has the advantages of (i) deepening our understanding
of previous methods by building a general attack framework and
(ii) providing guidance for designing an effective attack algorithm.
Our theoretical results demonstrate that optimizing AEs toward
flat minima over the surrogate model set, while controlling
the surrogate-target model shift measured by the adversarial
model discrepancy, yields a comprehensive guarantee for AE
transferability. The results further lead to a general transfer-based
attack framework, within which we observe that previous methods
consider only partial factors contributing to the transferability.
Algorithmically, inspired by our theoretical results, we first
elaborately construct the surrogate model set in which models
exhibit diverse adversarial vulnerabilities with respect to AEs to
narrow an instantiated adversarial model discrepancy. Then,
a model-Diversity-compatible Reverse Adversarial Perturbation
(DRAP) is generated to effectively promote the flatness of AEs over
diverse surrogate models to improve transferability. Extensive
experiments on NIPS2017 and CIFAR-10 datasets against various
target models demonstrate the effectiveness of our proposed attack.

Index Terms—Black-box adversarial attack, adversarial trans-
ferability, flatness, model discrepancy.

I. INTRODUCTION

DEEP neural networks (DNNs) are vulnerable to adversar-
ial examples (AEs), where attackers add imperceptible

perturbations to benign examples but make a model produce
erroneous predictions [1]–[4]. Under the black-box setting,
attackers have no information regarding possible future target
models, and the adversarial transferability matters since it
allows the attackers to attack target models by alternatively
generating AEs from the surrogate models. However, as the
attacker can not access the information of the target model,
a potentially unmatched surrogate model may lead to rather
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limited attack capability of the transferred AE against the target
model.

Previous works [5] attributed the unsatisfactory transferability
to the overfitting of AEs to the surrogate models. In turn, it
is essential that such AEs be optimized using methods that
ensure that crafted perturbations do in fact transfer beyond
the surrogate models. A plethora of transfer-based black-box
adversarial attack methods have been proposed [5]–[9]. There
are rich advances in improving AEs’ transferability from opti-
mization, feature, input-transformation, and model perspectives.
Despite the progress made, the adversarial transferability suffers
from a lack of a general theoretical understanding. As a result,
the literature relies heavily on empirical heuristics, without
theoretical guarantees. Can we build the theoretical foundation
to deepen our understanding of transfer-based attacks?

To tackle this problem, in this paper we present a novel
theoretical analysis of transfer-based attacks towards generaliz-
ing previous works and explicitly guiding algorithm design by
deriving a transferability bound. We start by formalizing the
task of interest as crafting an AE that attacks successfully on
the target model distribution. This idea consists of minimizing a
target adversarial risk, which corresponds to the expected error
of an AE over the target model distribution. We then decompose
it into a surrogate adversarial risk and a transferability gap.
The surrogate adversarial risk measures the expected error
over the surrogate model distribution and could be upper
bound estimated by its empirical version and the loss landscape
sharpness at the AE (cf. Theorem 3). The transferability gap
accounts for the discrepancy between surrogate and target
model distributions and could be upper bounded in terms of a
novel discrepancy, the adversarial model discrepancy, which
is based on a variational representation that lower bounds
ϕ-divergences [10] and is tailored to capture “adversarially
significant” distribution differences (cf. Theorem 2). Combining
the two bounds, we derive a transferability bound on target
adversarial risk which provides a theoretical guarantee on the
adversarial transferability (cf. Theorem 4). This bound further
implies that the adversarial transferability of AEs has a positive
correlation with three key factors simultaneously: (1) the white-
box attack performance of the AE, (2) the regularization for sur-
rogate models, and (3) the ϕ-divergences between the surrogate
and target model distributions, resulting in an attack framework
generalizing previously popular attacks as special cases (cf.
Equation 26). By comparing our bound with these methods
through the lens of this framework, we find they typically
control only one or two key factors of this framework, neither
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of which is desirable nor sufficient to achieve satisfactory
transferability. However, our bound considers the surrogate
adversarial risk and transferability gap jointly and properly,
providing a tighter and more comprehensive guarantee on the
transferability of AEs.

From an algorithmic perspective, by instantiating the derived
bound using the total variation distance and constructing
the surrogate model distribution with multiple distributional
components, we further demonstrate that transferability can
be expected if one seeks a flat minimum of empirical sur-
rogate adversarial risk, where the surrogate components are
designed to have similar model behaviors regarding adversarial
vulnerability to AEs, on average, to the future target model
distribution. Inspired by our theoretical result, we design a
novel transfer-based adversarial attack. In particular, we first
diversify the adversarial vulnerabilities in surrogate models
by accounting for both between-distribution diversity and
within-distribution diversity to approximate those of future
target models, thus controlling the surrogate-target shift. We
then propose to inject a model-Diversity-compatible Reverse
Adversarial Perturbation (DRAP) into the attack procedure
to effectively optimize the loss landscape flatness at the AE
over a set of diverse surrogate models. We conduct extensive
experiments to evaluate DRAP on NIPS2017 and CIFAR-
10 datasets, covering untargeted and targeted attacks against
both standard and adversarially trained models and show
that (1) compared with 14 state-of-the-art baseline attacks,
DRAP achieves significant improvements in attack success
rates; (2) DRAP is scalable to be combined with previous
methods to further boost transferability; (3) Both optimization
signals, seeking flat minima and improving diversity, in DRAP
contribute to the transferability, corroborating our theoretical
findings.

Contributions This work is an extension of our previous
conference paper [11], compared to which the most significant
updates and contributions are three-fold:

• Theoretically, we prove that the difference between target
adversarial risk and empirical surrogate adversarial risk
is upper bounded by a sharpness penalty and a model
discrepancy penalty. This result provides a theoretical
foundation for the assumed relationship between flatness
and transferability in RAP and further points out that
considering loss landscape flatness and model diversity in
adversarial vulnerability simultaneously is exactly when
this paper will bring the original RAP from the lab to the
real world.

• Algorithmically, we propose a theory-guided attack strat-
egy DRAP as a correction of RAP. It generates reverse
adversarial perturbations tailored to each of the diverse
surrogate models, which are selected based on two
dimensions of diversity, to effectively find a flat local
minimum among them. The code is publicly available1.

• Empirically, we demonstrate the soundness of our attack
by conducting comprehensive experiments on NIPS2017
and CIFAR-10 datasets against various target models. We
also perform ablative studies to further understand the

1https://github.com/SCLBD/blackboxbench

contribution of the two optimization signals and to verify
the relevance of our theoretical findings.

II. RELATED WORK

Transfer-based attacks are motivated by the observation
that AEs generated to deceive the surrogate model can also
deceive the target model, even when their architectures differ
significantly, as long as both models are solving the same
task [12]. One of the seminal work, Iterative Fast Gradient
Sign Method (I-FGSM) [13], generates adversarial examples
by iteratively performing the fast gradient step, establishing
a solid foundation for this area of research. However, it has
been shown that I-FGSM often converges to poor local minima,
resulting in low transferability [6].

Optimization-based attacks To improve transferability,
better optimization algorithms are proposed to escape from
poor local minima and yield AEs with better transferability,
such as MI-FGSM [7], NI-FGSM [5] and PI-FGSM [14].
Recently, the connection between the loss landscape flatness
and transferability has been extensively studied empirically [9],
[11], [15]. Unfortunately, few works build a clear theoretical
relationship between them. Our previous work, RAP [11] is the
seminal work pursuing flatness of loss landscape for AEs. This
idea is further formulated as a min-max bi-level optimization
problem. PGN [15] also intuitively assumes that AEs at flat
local regions tend to have better transferability and penalizes
the gradient norm. CWA [9] derives an optimization objective
involving the minimization of Hessian matrix’s F-norm, thus
pursues the flatness to boost transferability through a SAM-like
strategy [16].

Feature-based attacks Methods from this perspective distort
intermediate layer features by designing a new loss function.
ILA [17] aims to use the suboptimal perturbation found by
a basic attack as a proxy, deviating from it to increase the
perturbation norm. Since increasing the norm in the image
space is perceptible, ILA opts to increase the norm in the
feature space instead. FIA [18] generates AEs by distorting
object-related features, where the feature importance is defined
by gradient. Beyond FIA, NAA [19] provides more accurate
measures of neuron importance.

Input-transformation-based attacks Relatedly, a wide
range of methods aim to simulate diverse models by applying
input transformations on benign images, thus mitigating over-
fitting to surrogate models. For instance, DI-FGSM [6] applies
random resizing and padding with a certain probability. SI-
FGSM [5] enhances transferability by scaling. Admix [20]
incorporates information from images in other classes by
combining two images in a master-slave manner. TI-FGSM
[21] utilizes translational shifts on the input image. SSA [22]
generates diverse spectrum saliency maps to augment models,
while SIA [23] applies local transformations across different
regions of input to generate more diverse transformed images.

Model-based attacks Meanwhile, several methods have
been proposed to enhance transferability from the model-
centric perspective. One primary category focuses on model
tuning. For instance, DRA [24] trains a score network to
estimate ground-truth data score and use the estimated score

https://github.com/SCLBD/blackboxbench
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to update AE through Langevin dynamics. GhostNet [25]
dynamically generates a vast number of ghost networks by
applying erosion to specific intermediate structures of the base
network. Bayesian attack [26] models the Bayesian posterior of
the surrogate model, enabling an ensemble of infinitely many
models. Another category emphasizes fusion strategies, which
aim to reconcile gradients from multiple surrogate models to
better capture intrinsic transfer information. Notable methods
include Logit-ensemble [7], which attacks multiple models
simultaneously by fusing their logit outputs and SVRE [27],
which reduces gradient variance within ensemble.

III. PRELIMINARIES

A. Transfer-Based Adversarial Attack
We first introduce the preliminaries about adversarial exam-

ples and specify a threat model under the naive transfer-based
black-box setting. Let X ⊆ Rd and Y ⊆ Rk be the original
feature space and the label space. Let F : X → Y be the
set of possible image classifiers for a given task, where each
f(x,w) ∈ F is a classifier mapping X to Y , parameterized
by w ∈ W .

Consider the general setting in a black-box adversarial attack
against the target model MT ∈ F . For a benign image x ∈ X
and its ground truth label y ∈ Y , the objective of the adversary
is to find a perturbation ξ ∈ Rd, leading to an adversarial
example, i.e., x̂ = x+ ξ, such that MT (x̂) ̸= y (untargeted
attacks) or MT (x̂) = yt (targeted attacks) with yt ∈ Y\{y}.
Besides, due to the imperceptible requirement, x̂ should be
constructed within the neighborhood of an input image x,
i.e., X̂x,γ = {x̂ : ∥x̂− x∥∞ ≤ γ}, dubbed γ-norm ball. For
clarity, hereafter we denote it as X̂ . γ ≥ 0 is a pre-defined
perturbation magnitude, and ∥ · ∥∞ denotes the L∞-norm.
Among all adversarial attack strategies, transfer-based attacks
stem from the observation that adversarial samples crafted to
deceive a white-box surrogate model set MS ⊂ F have the
capability to deceive a black-box target model MT , provided
that they are engaged in solving identical tasks. Generally,
naive transfer-based attacks choose a single or a subset of
arbitrary DNNs as surrogate models. Let ℓ be the adversarial
loss function, one can seek the AE by solving the constrained
optimization problem on MS :

argmin
x̂

1

|MS |
∑

fi(·,wi)∈MS

ℓ (fi(x̂,wi), y) , s.t. ∥x̂− x∥∞ ≤ γ.

(1)
The above ℓ(·, ·) is often instantiated as the negative cross-
entropy function for untargeted attacks, while the cross-entropy
function w.r.t. the target label yt for targeted attacks.

B. PAC-Bayes Bound
We then introduce the PAC model. We assume a distribution

D from which the training instances x1,x2, . . . ,xn are
independently sampled to form a set M, a prior distribution
P on an arbitrary concept c ∈ C which is independent of
the training set M, and a posterior distribution Q on c which
depends on M. Given any instance x and concept c, the loss
function of x on c is given by ℓ(x, c) ∈ [0, 1]. We define risk
ℓ(c) to be the expectation over sampling x of ℓ(x, c), i.e.,
Ex∼D[ℓ(x, c)], and empirical risk ℓ̂(c) to be 1

n

∑n
i=1 ℓ(xi, c).

Theorem 1. (PAC-Bayes [28], [29]) For any prior distribution
P on the concept c, 0 < δ < 1, with probability 1− δ over the
draw of training set M with size n ∈ N, for any distributions
Q on c, the following bound holds:

EQ[ℓ(c)] ≤ EQ[ℓ̂(c)] +

√
KL(Q||P) + log n

δ

2(n− 1)
. (2)

The PAC-Bayes theorem could bound the generalization error
between test loss ℓ(c) and training loss ℓ̂(c) of distribution Q
on the concept c that depends on the training set, in terms of
the Kullback-Leibler (KL) divergence between P and Q. In
transfer-based adversarial attacks, it may be tempting to directly
use the PAC-Bayes theorem to derive the transferability bound.
However, one of the cornerstone assumptions underlying the
PAC’s success is that “test” samples should share the same
distribution as “training” samples. However, the independent
and identically distributed (i.i.d.) assumption does not generally
hold in the black-box setting. For instance, consider using
ResNet-50 as a surrogate model and ViT as a target model:
although both are trained on the same dataset, they differ
substantially in architecture and training strategies. These
differences induce a surrogate–target distribution shift at the
model level, violating the i.i.d. assumption required by standard
PAC-Bayes analysis. This model-level non-i.i.d. discrepancy
contributes directly to the transferability gap and complicates
the theoretical analysis. Consequently, naïvely applying PAC-
Bayes under the i.i.d. assumption risks producing bounds that
are misleading in the black-box setting.

C. ϕ-divergence

In light of unseen target models, we reformulate another in-
ducement of AEs’ unsatisfactory transferability as the surrogate-
target model shift. A successful AE should hopefully behave
robustly under the shift. A key component in tackling the
shift is to study the difference between surrogate and target
models. In our work, we define a new discrepancy between
surrogate and target model distributions based on the variational
representation of ϕ-divergences. Here we review with the
definition of ϕ-divergence and its variational representation.

Definition 1. (ϕ-divergence [30]) Consider two probability
distributions µ and ν with µ absolutely continuous w.r.t. ν.
Assume both distributions are absolutely continuous w.r.t. mea-
sure dw, with densities pµ and pν , respectively, on domain
W ⊂ R|w|. Let ϕ : R+ → R be a convex, lower semi-
continuous function satisfying ϕ(1) = 0. The ϕ-divergence
Dϕ is defined as:

Dϕ(µ∥ν) =
∫

pν(w)ϕ

(
pµ(w)

pν(w)

)
dw. (3)

ϕ-divergence measures the difference between two given
probability distributions. A large class of popular statistical
divergences could be recovered from ϕ-divergences as special
cases of Equation (3). For example, ϕ(x) = 1

2 |x − 1|
recovers the total variation (TV) distance, i.e., TV(µ∥ν) =
1
2

∫
|pµ(w)− pν(w)|dw. ϕ(x) = (x− 1)

2 recovers the Pear-
son χ2 divergence, i.e., χ2(µ∥ν) =

∫ (pµ(w)−pν(w))2

pν(w) dw [31].
Note that ϕ-divergence also has a variational representation
formula which converts its calculation into an optimization
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problem over a function space, offering a valuable mathematical
view for the similarity between probability distributions [10],
[32].

Lemma 1. (Variational formula of ϕ-divergences, Theorem
1 [10]) Let ϕ∗ be the Fenchel conjugate function of ϕ, i.e.,
ϕ∗(t) = supx∈ dom ϕ {xt− ϕ(x)}). With G encompassing all
bounded measurable functions, let G be the family of functions
with

G ⊂ G ⊂ L1(µ). (4)
For any family of transformations

T ⊂
{
T = T (g), such that T : G 7→ L1(µ)

}
. (5)

Then any ϕ-divergence can be written as:
Dϕ(µ∥ν) = sup

g∈G
{ sup
T∈T
{Ew∼µ[T (g(w))]

− Ew∼ν [ϕ
∗ (T (g(w)))]}}.

(6)

Taking the affine transformation as an example, Tα,t = tg+α
with α, t ∈ R, leads to the variational formula:

Dϕ(µ∥ν) = sup
g∈G,t∈R

Ew∼µ[tg(w)]

− inf
α∈R
{Ew∼ν [ϕ

∗(tg(w) + α)]− α} .
(7)

The variational representation in Lemma 1 yields a lower bound
of ϕ-divergence when G and T contain only a subset of all
possible functions.

IV. A THEORETICAL GUARANTEE ON ADVERSARIAL
TRANSFERABILITY

In this section, we warm up by formalizing the transfer-based
attack as a target adversarial risk minimization problem (Section
IV-A). Through decomposing the target risk into the surrogate
adversarial risk and the transferability gap, and deriving the
bounds for each part (Section IV-B and IV-C), we derive a
transferability bound that provides a theoretical guarantee on the
adversarial transferability (Section IV-D). Finally, we establish
an attack framework from our bound that generalizes previous
works as special cases (Section IV-E). In the following, we
mainly focus on discussing the interpretations and implications
of the theorems, and we refer readers to Appendix A for proof
details.

A. Formalizing Transfer-Based Attacks
We start by defining the model distributions and the notion

of risks we are concerned with.

Definition 2. (Model distribution) Let F be the set of possible
model architectures for a given task, each function f̂ ∈ F
is a parametric family of models, where f̂(·, ŵ) : X → Y
is an example with parameter ŵ ∈ R|ŵ|. The parameter
space induced by f̂ is Ŵ = {ŵ : ŵ ∈ R|ŵ|}. We define a
model distribution by a distribution over function P (f̂(·, ŵ)),
induced by a generic distribution P (ŵ) over parameters
ŵ combined with a model architecture f̂(·, ŵ). Typically,
different model distributions may have different architectures.
We assume that there exists a function f with parameter
space W ⊆ R|w| so that arbitrary P (f̂(·, ŵ)) can fit into
its architecture with a converted parameter distribution P (w),
i.e., P (f(·,w)) = P (f̂(·, ŵ)). By doing so, we remark that
P (f(·,w)) is sufficiently general so as to define any model

distribution on a common space W , such that any model
distribution is absolutely continuous w.r.t. measure dw, with
density function p(w). For the sake of clarity, we hereinafter
omit the function form f from P (f(·,w)) and instead use
the distribution on the underlying parametrization P (w) to
describe a model distribution.

In the context of transfer-based attacks, once the attacker
builds the surrogate model set, the surrogate model distribution
PS is observed, with density pS . Since attackers could
customize surrogate models, PS could be defined as a set of
distributional components, i.e., PS = {PSi

}Ii=1, I is the total
number of surrogate components owned by the attacker. In the
next section, we will show that more surrogate components help
to produce better attack performance. For clarity, and without
loss of generality, in this section we consider PS integrally. At
test time, the attacker is facing any possible target models from
the unobserved target model distribution PT , with density pT .

Definition 3. (Adversarial risk and empirical adversarial
risk) Consider a loss ℓ : Y × Y → R+

0 . Let PD be a model
distribution. Assuming the AE x̂ as defined in Section III-A,
we can define its adversarial risk on PD by:

RD(x̂) = Ew∼PD [ℓ(f(x̂,w), y))]. (8)
RD(x̂) characterizes the attack failure of an AE on PD. We
sample K i.i.d. models {wi}Ki=1 ∼ PD, forming a set MD of
size K. Given MD, we can define an empirical adversarial
risk for x̂ by:

RD̂(x̂) =
1

K

∑
wi∈MD

ℓ (f (x̂,wi) , y) . (9)

The adversarial risk measures the expected attack error
that an AE made according to the model distribution. For
both adversarial risk and empirical adversarial risk, higher
values indicate worse attack performance. We consider the
0-1 loss, i.e., ℓ : Y × Y → {0, 1}. In untargeted attacks,
ℓ(f(x̂,w), y) = I(f(x̂,w) ̸= y), and in targeted attacks,
ℓ(f(x̂,w), y) = I(f(x̂,w) = yt), where I(event) = 1 if the
event happens, and 0 otherwise.

The task of transfer-based attacks is to find an AE x̂ that
successfully attacks target models drawn from PT , i.e., to
minimize its attack failures. We formalize untargeted transfer-
based attacks as a risk minimization problem under PT , i.e.,
seeking a x̂ ∈ X̂ that minimizes the target adversarial risk
defined as follows:

min
x̂∈X̂

RT (x̂), (10)

where RT (x̂) = Ew∼PT [ℓ(f(x̂,w), y)]. (11)
The risk definition for targeted attacks is analogously obtained
by substituting y with the target label yt. By unifying targeted
and untargeted attacks within a single risk minimization
framework, we restrict our following analysis to the untargeted
case without loss of generality, and the analysis for targeted
attacks can be trivially recovered by adopting the targeted risk.

Under the black-box setting, no information about PT is
available during the attack, making it impossible to optimize
RT (x̂). In practice, attackers commonly resort to an alternative
risk minimization, i.e., minimizing the surrogate adversarial
risk RS(x̂), which is measured over the self-chosen surrogate
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distribution PS , with the expectation of achieving good
transferability. RS(x̂) is defined as follows:

RS(x̂) = Ew∼PS [ℓ(f(x̂,w), y))]. (12)
However, the surrogate model distribution and the inaccessible
target model distribution may differ significantly. As a result,
the transfer gap between the target adversarial risk and the
empirical surrogate adversarial risk becomes even worse due
to this distribution shift, making the attack performance
unsatisfactory.

Risk Decomposition To derive a bound on the transferability
to the target model distribution of an AE optimized under the
surrogate model distribution, we first decompose the target
adversarial risk as follows:

RT (x̂) = RT (x̂)−RS(x̂)︸ ︷︷ ︸
Etrans(x̂)

+RS(x̂). (13)

According to the above decomposition, it is clear that solely
minimizing the surrogate adversarial risk using some attack
strategies cannot guarantee the decreasing of the target ad-
versarial risk. The transferability gap Etrans, which captures
the dissimilarity between the surrogate and target model
distributions relevant to the context of adversarial transferability,
should also be taken into account. Thus, in the following, we
will derive an upper bound of the target adversarial risk through
deriving the upper bounds of the transferability gap and the
surrogate adversarial risk separately.

B. Model-Discrepancy-Based Bound on Transferability Gap
Equation (13) tells that the transferability gap Etrans depends

on the discrepancy between PS and PT . Thus, we first define
a model discrepancy tailored to comparing model distributions
in the context of transfer-based adversarial attacks, which is
crucial for deriving the subsequent bound on the transferability
gap and consequently designing our attack strategy. Specifically,
according to the variational formula of the ϕ-divergences (cf.
Lemma 1), we introduce the adversarial model discrepancy
DX̂r

ϕ , as follows.

Definition 4. (Adversarial model discrepancy) For any surro-
gate model distribution PS and target model distribution PT ,
any γ-norm ball X̂ and any r ≥ 0, the localized adversarial
space X̂r is defined as:

X̂r =
{
x̂ ∈ X̂ | RS (x̂) ≤ r

}
. (14)

Based on X̂r, let Ĝr be a set of measurable functions, i.e.,
Ĝr = {ℓ (f (x̂′,w) , y) : x̂′ ∈ X̂r}. We define the adversarial
model discrepancy DX̂r

ϕ between PS and PT as:

DX̂r

ϕ (PT ∥PS) = sup
x̂′∈X̂r,t∈R

Ew∼PT [tℓ(f(x̂
′,w), y)]− (15)

inf
α∈R
{Ew∼PS [ϕ

∗(tℓ(f(x̂′,w), y) + α)]− α}.

Restricting G to the subset Ĝr, DX̂r

ϕ (PT ∥PS) discrepancy
can be interpreted as a lower bound of a general class of ϕ-
divergences Dϕ(PT ∥PS), this property is crucial for deriving
a general attack framework in Section IV-E. It’s also easy to
see that DX̂r

ϕ (PT ∥PS) is a monotonically increasing function

w.r.t. 0 ≤ r ≤ 1. Furthermore, DX̂r

ϕ (PT ∥PS) has some
properties. (1) Taking the supremum over x̂′ ∈ X̂r, this

discrepancy restricts its attention to a localized adversarial
space, within which the examples may commit low attack
errors—an aspect of interest in the context of adversarial attacks.
(2) DX̂r

ϕ (PT ∥PS) ≥ 0, the equality holds when PS = PT .
To explicitly see this, we first consider t = 0. By Lemma
2, inf ϕ∗(α) − α = 0, leads to Ew∼PT [tℓ(f(x̂

′,w), y)] −
infα∈R{Ew∼PS [ϕ

∗(tℓ(f(x̂′,w), y) + α)] − α} = 0 when
t = 0, then we prove the non-negativity of DX̂r

ϕ (PT ∥PS).
Moreover, when PS = PT = P , Ew∼P [tℓ(f(x̂

′,w), y)+α]−
Ew∼P [ϕ

∗(tℓ(f(x̂′,w), y) + α)] ≤ 0 by ϕ∗(x) ≥ x, leads to
DX̂r

ϕ (P∥P ) = 0.
We are now ready to provide a bound on the transferability

gap Etrans (x̂) in terms of the proposed DX̂r

ϕ discrepancy.

Theorem 2. (Transferability gap bound) Define
Kx̂

S (t) = infα {Ew∼PS [ϕ∗ (tℓ (f (x̂,w) , y) + α)]− α} −
Ew∼PS [tℓ (f (x̂,w) , y)]. Given the surrogate model
distribution PS and target model distribution PT , for any
x̂ ∈ X̂r and constant c1, c2 ∈ [0,+∞) subjected to the
constraint Kx̂

S (c1) ≤ c1c2Ew∼PS [ℓ (f(x̂,w), y)], we have

Etrans (x̂) ≤
1

c1
DX̂r

ϕ (PT ∥PS) + c2r. (16)

Furthermore, if PS is a mixture distribution of I distributions,
i.e., PS = 1

I

∑
i∈[I] PSi , then

Etrans (x̂) ≤
1

c1I

∑
i∈[I]

DX̂r

ϕ (PT ∥PSi) + c2r. (17)

Theorem 2 bounds the transferability gap in terms of the
adversarial model discrepancy between the surrogate and target
model distributions, as well as a constant term related to
localized adversarial space parameter r. To minimize Etrans,
one can use a small r, which aligns with the surrogate risk
minimization that an attack strategy might aim to achieve in
practice, thereby reducing both terms.

As an instantiation of Theorem 2, we consider the case of
TV, namely DX̂r

TV (PT ∥PS). We have the following result:

Corollary 1. Suppose ℓ : Y ×Y → [0, 1]. Given the surrogate
model distribution PS and target model distribution PT , for
any x̂ ∈ X̂r and constant c1 satisfying 0 ≤ c1 ≤ 1, we have

Etrans (x̂) ≤
1

c1
DX̂r

TV (PT ∥PS), (18)

where DX̂r
TV (PT ∥PS) = sup

x̂′∈X̂r

|Ew∼PT [ℓ(f(x̂
′,w), y)]−

Ew∼PS [ℓ(f(x̂
′,w), y)]|. (19)

According to risk decomposition, we have RT (x̂) = Etrans +
RS(x̂), we need to minimize Etrans and RS(x̂) simultaneously
to assure the target attack performance. Combining RS(x̂)
with the bound for Etrans, we have the following bound on the
target adversarial risk:

RT (x̂) ≤ RS(x̂) +
1

c1
DX̂r

ϕ (PT ∥PS) + c2r. (20)

The above bound yields the following result: Let x̂ ∈ X̂r be an
AE optimized by minimizing risk on the surrogate mixture PS .
If x̂ can successfully attack over PS seen during optimization,
then x̂ has bounded risk over future target model distribution
PT , if PT has low adversarial model discrepancy with PS .
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C. PAC-Bayesian Bound on Surrogate Adversarial Risk
Taking advantage of the above result, we are now able to

conduct a transferability-guaranteed attack. In practice, the
attacker typically only owns a finite surrogate set MS of
size K, i.e., {wk}Kk=1 ∼ PS , and the bound in Equation 20
needs to be estimated empirically. Hence, the next step in this
section involves obtaining an empirical version of the bound in
Theorem 20. Note that we present a concentration result solely
for RS(x̂), as the target models are unavailable and the Etrans-
related terms are thus intractable. Introducing its computation
offers no clear benefit. Nevertheless, these terms will serve
to offer intuition for efficiently choosing surrogate models to
control the transferability gap.

With the surrogate set MS , minimizing empirical surrogate
adversarial risk RŜ(x̂),

RŜ(x̂) =
1

K

∑
wk∈MS

ℓ (f (x̂,wk) , y) , (21)

can have multiple local minima that provide similar white-
box attack loss but significantly different generalization on
RS(x̂), and consequently black-box performance RT (x̂).
Unfortunately, the typical optimization methods, such as PGD
[33] and I-FGSM [13], often lead to sub-optimal transferability
[11].

To bound RS(x̂), our goal suggests that PAC-Bayes theorem
in Theorem 1 may be fruitful. In our task, we have the concept
is the adversarial example. The instance refers to the model.
The risk refers to the adversarial risk. The generalization
error measures how well the generated AE transfers from
the employed samples to the surrogate model distribution (see
these in Lemma 3). Under the PAC-Bayesian framework, we
derive a bound for surrogate adversarial risk such that it could
be estimated from finite models sampled from PS :

Theorem 3. (Surrogate risk bound) For any ρ > 0, 0 < δ < 1,
model distribution PS , and x̂ ∈ X̂r, with probability 1 − δ
over the choice of surrogate model set MS ∼ PS with size
K ∈ N, we have

RS(x̂) ≤ max
∥ϵ∥2≤ρ

RŜ(x̂+ ϵ)+√√√√ d
2 log(1 +

γ2

ρ2 (1 +
√

logK
d )2) + log K

δ + Õ(1)
2(K − 1)

.

(22)

where Õ(1) term equals to ε = 1
2 + 2 log(2 + 3d + 6r2K +

4d log(
√
d+
√
logK)).

As we can see, this PAC-Bayes bound depends on two
terms. The first one is the supremum of empirical surrogate
risk over perturbed AE x̂+ ϵ, which denotes the worst-case
attack error of neighborhood regions round x̂. The second one
is the confidence bound which tells the effect of the number of
surrogate samples K on transferability bound. If x̂ is optimized
over enough samples, this term could be reduced, and one can
use the first term as an upper bound estimator of surrogate
risk.

D. Transferability Guarantees for Transfer-Based Attacks
Plugging the bounds in Theorem 2 and Theorem 3 into

Equation 13 yields our final transferability PAC bound on
target adversarial risk:

Theorem 4. (Transferability PAC bound) Given the surrogate
model distribution PS and target model distribution PT . For
any x̂ ∈ X̂r and constant c1, c2 ∈ [0,+∞) subjected to
the constraint Kx̂

S (c1) ≤ c1c2Ew∼PS [ℓ (f(x̂,w), y)], with
probability 1 − δ over surrogate model set MS = {wj}Kj=1
generated from distribution PS , we have

RT (x̂) ≤ max
∥ϵ∥2≤ρ

RŜ(x̂+ ϵ) +
1

c1
DX̂r

ϕ (PT ∥PS) + c2r + εPAC,

(23)

where εPAC =

√
d
2 log(1+ γ2

ρ2
(1+
√

log K
d )2)+log K

δ +Õ(1)

2(K−1) .

Rewriting the above bound, we have:
RT (x̂) ≤ RŜ(x̂) + max

∥ϵ∥2≤ρ
RŜ(x̂+ ϵ)−RŜ(x̂)︸ ︷︷ ︸

sharpness

+
1

c1
DX̂r

ϕ (PT ∥PS) + c2r + εPAC,

(24)

where the terms in the curly bracket depict the sharpness of
RŜ at x̂ as it measures the difference of risk between x̂ and
the worst-case point in the neighborhood of x̂ [34]. A low
value of the sharpness term indicates that x̂ locates at the flat
region of the loss landscape. As a result, the target adversarial
risk of an AE x̂ can be bounded in terms of (1) the white-box
attack performance of x̂ against MS , (2) the sharpness of
RŜ at x̂, (3) the adversarial model discrepancy, (4) a constant
term related to localized adversarial space parameter r and
(5) a confidence bound. Finally, we provide a guarantee that
x̂ will “transfer well” on target model distribution PT , even
when solely minimizing the empirical risk over the surrogate
model set MS . This bound inspires our basic plan of attack:
controlling the adversarial model discrepancy, the attacker can
conjure that finding a flat minimum on empirical surrogate
adversarial risk will lead to better AE transferability.

One can also substitute Corollary 1 and Theorem 3 into
Equation 13 to obtain the following concrete example of
Theorem 4, specialized for DX̂r

TV (PT ∥PS).

Corollary 2. Given the surrogate model distribution PS and
target model distribution PT . For any x̂ ∈ X̂r and constant
c1 satisfying 0 ≤ c1 ≤ 1, with high probability over surrogate
model setMS = {wj}Kj=1 generated from distribution PS , we
have

RT (x̂) ≤ max
∥ϵ∥2≤ρ

RŜ(x̂+ ϵ) +
1

c1
DX̂r

TV (PT ∥PS) + εPAC.

(25)

E. A General Transfer-Based Attack Framework
In this section, we present an attack framework which

generalizes previous transfer-based attacks. Through the lens
of our framework, we revisit these attacks, especially RAP, and
compare them with our transferability bound in Table I. The
analysis shows that, while these attacks improve transferability
through either finding better local minima in the surrogate loss
landscape or tackling model shift, they do not consider both
optimization signals simultaneously to achieve comprehensive
transferability. Moreover, their principles of controlling the
transferability gap are less tight than our DX̂r

ϕ discrepancy and
may result in unnecessary overestimation of the target risk
bound. Experimental results confirm that considering surrogate
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TABLE I
COMPARISON OF BOUNDS FOR TARGET ADVERSARIAL RISK RT (x̂). THE “BOUND” MEANS THE RESPECTIVE ATTACK TRIES TO FIND AN AE x̂ WHICH

MINIMIZES RT (x̂) BY ALTERNATIVELY MINIMIZING THIS OBJECTIVE.

Target risk RT (x̂) ≤ RŜ(x̂) + r(S)︸ ︷︷ ︸
for bounding RS(x̂)

+ ηDϕ (PT ∥PS)︸ ︷︷ ︸
for bounding Etrans(x̂)

+constant

Method
Empirical surrogate risk RŜ(x̂) Surrogate model regularization r(S) Transferability gap Dϕ (PT ∥PS)

MI [7],NI [5],PI [14],VT [8]
Design elaborate optimizers to minimize

ℓ (f (x̂,w) , y)
\ \

CWA [9],SVRE [27]
Design elaborate optimizers to minimize

1
|MS |

∑
wk∈MS

ℓ (f (x̂,wk) , y)
\ \

ILA [17] − (fl (x̂
′)− fl(x)) (fl (x̂)− fl(x)) \ \

FIA [18]
∑(

∆̄x
l ⊙ fl (x̂)

)
\ \

NAA [19]
∑

Alj
≥0

flj∈fl

fp
(
Alj

)
− γ ·

∑
Alj

<0

flj∈fl

fn
(
−Alj

)
\ \

PGN [15] ℓ (f (x̂,w) , y)
Sharpness

λ ·max∥ϵ∥p≤ρ ∥∇ϵℓ (f (x̂+ ϵ,w) , y)∥2
\

RAP [11] ℓ (f (x̂,w) , y)
Sharpness

max∥ϵ∥p≤ρ ℓ (f (x̂+ ϵ,w) , y)− ℓ (f (x̂,w) , y)
\

DI [6],TI [21],SI [5],Admix [20],SIA [23],SSA [22] ℓ (f (T (x̂),w) , y) \ Simulate different models with input transformations T

GhostNet [25],Bayesian [26],LGV [35] 1
|MS |

∑
wk∈MS

ℓ (f (x̂,wk) , y) \ Generating diverse variants from a base surrogate model

Our 1
|MS |

∑
wk∈MS

ℓ (f (x̂,wk) , y)

Sharpness
max∥ϵ∥p≤ρ

1
|MS |

∑
wk∈MS

ℓ (f (x̂+ ϵ,wk) , y)−
1

|MS |
∑

wk∈MS
ℓ (f (x̂,wk) , y)

DX̂r

ϕ (PT ∥PS)

adversarial risk and transferability gap simultaneously and
properly leads to significant gains (see Tables II, III).

Abstracted from our main result (cf. Equation 24), we give
a general framework for bounding the target adversarial risk:

RT (x̂) ≤ RŜ(x̂) + r(S)︸ ︷︷ ︸
for bounding RS(x̂)

+ ηDϕ (PT ∥PS)︸ ︷︷ ︸
for bounding Etrans(x̂)

+ constant.

(26)
where η is a weight that trades off transferability with attack
performance on surrogates. Within the first curly bracket,
r(S) represents some form of regularization for surrogate
models, e.g., sharpness, which interacts with the empirical
surrogate risk RŜ(x̂) to upper bound the surrogate risk RS(x̂).
Within the second curly bracket for bounding Etrans (x̂), we
replace DX̂r

ϕ (PT ∥PS) in Equation 24 by Dϕ (PT ∥PS) without

violating the bound, as the variational representation DX̂r

ϕ is a
lower bound of the ϕ-divergence Dϕ.

Taking a second look at previous attacks within the above
framework, some methods (such as MI, NI, PI, VT, CWA,
SVRE) bound RT (x̂) solely by RŜ(x̂) with one or several
arbitrarily selected neural networks. Their introduced various
gradient-based optimization algorithms to minimize RŜ(x̂)
could help escape poor minima, thus improving RS(x̂). Identi-
cally, methods from the feature perspective (such as ILA, FIA,
NAA) focus on optimizing RŜ(x̂) by designing different loss
functions to distort intermediate layer features rather than the
final outputs. Going beyond simply accounting for the empirical
risk, PGN and RAP bound RT (x̂) by RŜ(x̂) in conjunction
with specific surrogate model regularizations. However, the
above methods falsely rely on an invalid i.i.d. assumption and
overlook the transferability gap Etrans (x̂) in the target risk
bound, thus achieving suboptimal attack performance.

Rather than relying solely on a few surrogate models,
methods from input-transformation perspective (such as DI,
TI, SI, Admix, SIA, SSA) and model perspective (such as
GhostNet, Bayesian attack, LGV) augment a base surrogate
model into an infinitely large set of models, aiming to align
with those seen during inference. The common underlying

assumption of these attacks is that the transferability of
adversarial examples can be improved by attacking more
models simultaneously, so efforts focus on obtaining as many
different surrogate models as possible with a low computational
cost [5], [23], [26]. By trying to place point masses at locations
given by samples from the target model distribution, we can
view these methods as simulating PT with PS , which is in
line with minimizing Dϕ (PT ∥PS) in our framework, given
that ϕ-divergences measure the difference between two given
probability distributions. However, we demonstrate that Dϕ may
overestimate the transferability gap compared to our adversarial
model discrepancy DX̂r

ϕ , which only captures “practically sig-
nificant” distribution difference. Moreover, despite mitigating
the surrogate-target shift, these methods have not explored the
AE optimizer in depth and typically default to the empirical
risk minimization (ERM) approach I-FGSM.

In summary, existing attacks typically control only one of
two relevant terms in Equation 26, neither of which is desirable
nor sufficient to achieve satisfactory transferability. In contrast,
our proposed attack accounts for RS(x̂) and Etrans jointly and
properly, providing a more tight and comprehensive guarantee
on the transferability of AEs.

Detailed comparison with RAP [11] The relationship
between flatness and transferability is initially explored in our
prior work, RAP. However, this relationship is only intuitively
assumed through an illustration (see Figure 1(b) in the RAP
paper) and empirically validated without a rigorous theoretical
grounding. In this work, our newly derived bound in Equation
24 provides a theoretical interpretation of the relationship
between flat regions with low loss in loss landscape and the
transferability of the AE, offering a solid theoretical assurance
to the assumption of RAP. Moreover, inspired by this theoretical
insight, our proposed attack plan in this paper advances RAP
from two perspectives. First, we highlight the importance of
the marginalization of surrogate models and seek flat minima
over enough samples from the model distribution. Second, we
explicitly require that surrogate models be carefully selected
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to narrow the adversarial model discrepancy as small as
possible, as sharpness by itself is insufficient to guarantee
high transferability. From this point of view, RAP could be
considered as a degraded version of our new attack.

V. ATTACK ALGORITHM

A. From the Bound to an Attack

We now exploit the above theoretical results to derive a novel
practical attack algorithm. We will show how our theoretical
analyses help us to make algorithmic extensions to the original
RAP.

Inspired by Corollary 2, which instantiates Theorem 4
by a simple yet insightful TV distance, we first sample the
surrogate model set from PS , where PS is designed to minimize
the TV adversarial model discrepancy with PT such that
DX̂r

TV(PT ∥PS) is controlled. Then we propose to minimize the
target adversarial risk RT (x̂) by the following optimization
problem:

min
x̂∈X̂

max
∥ϵ∥p≤ρ

1

K

∑
wk∈MS

ℓ (f (x̂+ ϵ,wk) , y) , (27)

where ℓ is a surrogate loss to minimize the empirical surrogate
adversarial risk. We generalize from L2 norm to Lp norm to
make it adaptive to the popular constraints (i.e., L2, L∞) on
examples in adversarial attacks. As a result, Equation 27 results
in a strategy comprising two components: collecting surrogate
models guided by the adversarial model discrepancy term and
seeking a flat minimum x̂ according to a min-max term. We
will discuss them separately in the following sections.

B. Narrow the Surrogate-Target Discrepancy

To make the attack power of an AE invariant across models,
it is crucial that the surrogate model distribution PS narrows the
adversarial model discrepancy with PT . Specifically, the dis-
crepancy term DX̂r

TV(PT ∥PS) defined in Equation 19 quantifies
the model discrepancy by identifying an input x̂′, which, being
within X̂r, implies its role as an adversarial example. This x̂′

attempts to differentiate between the expected adversarial loss
Ew∼PT [ℓ (f (x̂′,w) , y)] and Ew∼PS [ℓ (f (x̂′,w) , y)], that is,
separating PS from PT by comparing their error rates in
robustness predictions. If no such x̂′ ∈ X̂r exists, then we
can consider PS it as a sufficiently good approximation of
PT . In this case, AEs generated by models from PS are
expected to exhibit strong transferability to models from
PT . Ultimately, to efficiently control the transferability gap,
the goal of PS is to mimic the adversarial vulnerability of
target models from PT , rather than faithfully approximate
PT . The latter would require minimizing the TV distance,
DTV(PT ∥PS) =

∫
|pS(w) − pT (w)|dw, which provides a

less tight bound to control the transferability gap as per in
Section IV-E.

Between-distribution diversity We must carefully represent
PS in regions that contribute the most to mimicking the
vulnerability of future target models in PT w.r.t. any x̂′ ∈ X̂r.
To achieve this, we define PS as a mixture of distributional
components. Denote it as PS = 1

I

∑
i∈[I] PSi , where I is

the total number of attacker-owned surrogate components.
By applying the average-case transferability gap bound (cf.

Equation 17 in Theorem 2) instantiated for DX̂r
TV and following

routine steps, we can easily yield an average-case transferability
PAC bound by replacing DX̂r

ϕ (PT ∥PS) in Theorem 4 with the
averaged TV adversarial model discrepancy over multiple sur-
rogate components, i.e., 1

I

∑
i∈[I] D

X̂r
TV (PT ∥PSi). This bound

implies that: a flat minimum optimized overMS has a bounded
risk w.r.t. PT that has similar model behaviors regarding
adversarial vulnerability to AEs, on average, as the surrogate
components PS1

, ..., PSI
. Naturally, this insight underscores

the importance of maximizing the diversity of the surrogate
components {PSi}

I
i=1 w.r.t. adversarial vulnerability, dubbed

between-distribution diversity, since if two components exhibit
similar vulnerability, one will be largely redundant in the
averaging and contribute minimally to approximating the target
vulnerability. Moreover, averaging over diverse components
helps to smooth the risk from potentially unmatched surrogate
choices.

Indeed, the adversarial vulnerability of DNNs is dominated
by multiple factors, including model architectures and objective
functions [36]. Attacks such as input-transformation-based ap-
proaches, which enhance the surrogate model space from a base
model by applying transformations to its input, may introduce
significant redundancy in model behaviors w.r.t. adversarial
vulnerability within surrogate models. In contrast, we prefer to
combine multiple posterior distributions over the model weights,
each independently trained on different architectures and with
different training strategies, as components composing our
surrogate model distribution. By doing so, we aim at enriching
model behaviors in PS w.r.t. adversarial vulnerability. In partic-
ular, we must carefully choose surrogate components {PSi

}Ii=1

so that their vulnerabilities could differ significantly and thus
contribute efficiently to the overall goal. Empirical analyses
have investigated the varying adversarial vulnerabilities across
different models. From the perspective of architecture, [36],
[37] indicates that the adversarial vulnerabilities of convo-
lutional neural networks (convnets) and metaformers2 differ
significantly. From the perspective of training strategies, [36]
observes that normally trained and adversarially trained models
exhibit distinct types of adversarial vulnerabilities. These
insights suggest that, from an adversarial standpoint, diversity
in PS can be efficiently obtained by simultaneously including
the distributions of models from four prototypical categories
(which we call prototypes): normal and adversarial versions
of both convnet and metaformer. Model distributions across
these prototypes exhibit significantly different vulnerabilities,
making them ideal surrogate components.

Within-distribution diversity In practice, attackers need to
sample surrogate models from each component to conduct
their attacks, forming a finite surrogate set MS of size
K = In, where n i.i.d surrogate models are sampled from
each component PSi

, i.e.,
{
wi

j

}n
j=1
∼ PSi

. Here, we further
pursue the diversity of model samples from each component,
dubbed within-distribution diversity. Despite operating within
a single surrogate component, achieving within-distribution
diversity remains critical. This ensures that each sampled points

2Metaformer [38] is a general architecture abstracted from Transformers
and their variants.
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contribute significantly to the approximation, maximizing the
utility of each surrogate component. As observed in [39], the
optima in the DNN loss surface are in fact connected, rather
than isolated, forming a valley of low loss. This valley contains
many high-performing and complementary models, which
produce meaningfully different predictions, leading to a diverse
variety of prediction behaviors. Therefore, samples from the
distribution centered at the loss valley are preferred surrogate
models. With constant learning rates, gathering the trajectory of
weights traversed by SGD is approximately sampling from the
distribution centered at the minimum of the loss [40]. Finally,
we propose to gather SGD proposals during training models
from each of the aforementioned four prototypes. By doing so,
we achieve diversity within each surrogate component, while
also maintaining diversity between components.

In a nutshell, considering within-distribution diversity and
between-distribution diversity simultaneously is valuable in
improving diversity in model behaviors w.r.t. adversarial
vulnerability to provide a better approximation to future target
models.

C. Find a Flat Optimum from a Diverse Set of Surrogates
Even with the elaborately designed surrogate model set,

simply crafting AEs with an ERM optimizer over these models
can not be strong enough. Based on the perspective of loss
landscape flatness in Theorem 4, we theoretically demonstrate
that optimizing AE’s flatness strengthens its transferability. An
intuitive interpretation is that when pursuing a flat minimum
among diverse models, it is more likely to remain in flat areas
when applied to unseen target models. As a result, a small shift
in the target model’s loss landscape would not significantly
increase the attack loss, making the AE less likely to fail. In this
section, an optimization strategy, an upgraded version of the
original RAP which is more compatible with a set of diverse
surrogate models, is proposed to optimize flatness effectively
and efficiently.

A general flatness-aware optimization Original RAP solves
the bi-level optimization problem as in Equation 27,

min
x̂∈X̂

max
∥ϵ∥∞≤ρ

1

K

∑
wk∈MS

ℓ (f (x̂+ ϵ,wk) , y) , (28)

by iteratively optimizing the inner maximization and the outer
minimization problem on the surrogate set MS . In particular,
at each iteration, fixing AE x̂, the inner maximization optimizes
reverse perturbation ϵ via a T -step I-FGSM. At each step, ϵ
is updated as follows:

ϵ← ϵ+βϵ·sign

(
∇ϵ

1

K

∑
wk∈MS

ℓ (f (x̂+ ϵ,wk) , y)

)
, (29)

where |MS | = K, βϵ is the inner step size and ϵ is initialized
by 0. Then, fixing reverse perturbation ϵ, the outer minimization
update AE x̂ with the gradient calculated by minimizing the
empirical surrogate adversarial risk w.r.t. x̂+ ϵ:

x̂← Πγ

[
x̂− βx̂ · sign

(
∇x̂

1

K

∑
wk∈MS

ℓ (f (x̂+ ϵ,wk) , y)

)]
,

(30)
where βx̂ is the outer step size, Πγ(·) restricts current AE to
be within a ℓ∞-norm γ-ball of x, and x̂ is initialized by the
benign image. Note that after optimizing the loss of reversely

perturbed AE x̂+ ϵ, we should come back to the center point
x̂ to conduct this update.

Model-specific reverse perturbations In Section V-B, we
enrich the surrogate model space to narrow the surrogate-target
discrepancy. When optimizing the flatness over these diverse
models, original RAP in practice computes a global reverse
perturbation, i.e., the ϵ is maximized on an average of per-
model losses and shared over the whole surrogate set MS .
However, with the diversity w.r.t. adversarial vulnerability
existed in MS , each surrogate has its own worst-case reverse
perturbation on AE and their optimization paths may conflict,
directly optimizing a common reverse perturbation updated by
fusing over a set of independent update directions will result
in a weaker reverse perturbation than model-specific reverse
perturbations. This motivates us to replace Equation 28 by
calculating reverse perturbations of different models separately
to improve the effectiveness of RAP:

min
x̂∈X̂

1

K

∑
wk∈MS

max
∥ϵk∥∞≤ρ

ℓ (f (x̂+ ϵk,wk) , y) , (31)

where ϵk is calculated on individual models:
ϵk ← ϵk + βϵ · sign (∇ϵℓ (f (x̂+ ϵk,wk) , y)) ,wk ∈MS .

(32)
We call ϵk a model-Diversity-compatible Reverse Adversarial
Perturbation (DRAP). Once DRAP is obtained, the outer
minimization w.r.t. x̂ in Equation 31 is performed. Given
that MS may contain a large number of surrogate models
(cf. Theorem 3), directly computing full gradients over the
entire surrogate set at each iteration can be computationally
inefficient. To address this, we adopt the longitudinal manner
update [25], where x̂ is updated iteratively across models in
MS , one at a time. This reduces memory and computation
overhead while maintaining the diversity-aware objective:

x̂← Πγ [x̂− βx̂ · sign (∇x̂ℓ (f (x̂+ ϵk,wk) , y))] , (33)
where each update step corresponds to a single surrogate model
wk ∈MS . We alternate between generating ϵk and updating
x̂ across the model set, which effectively integrates model-
specific reverse perturbations while ensuring scalability.

Improving optimizing stability In the first several iterations
of generating the AE, solving the min-max problem in Equation
31 may hinder the AE efficiently converging to the region of
high attack performance [11]. Evidence in Section VI-C1 shows
that this phenomenon in RAP also exists in DRAP. A late-start
strategy has been proposed by RAP that only solves outer
minimization w.r.t unperturbed x̂ at the early stage, and then
start RAP to seek flatness and further boost transferability. We
also utilize this strategy during our optimization.

In addition to the late-start strategy, considering the diversity
in models’ loss landscapes inherent in DRAP, a velocity vector
is accumulated in the gradient across iterations [41], with
each iteration observing distinct surrogates, to stabilize the
optimization path. Evidence soon presented in Section VI-C2
demonstrates that, although the idea of momentum is widely
employed in previous attacks [5], [9], [14], our method could
avoid the gradient overaccumulation which may hinder the
attack [27], [36], [42] effectiveness and best benefits from it.

The complete pseudo-code of DRAP is shown in Algorithm
1.
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Algorithm 1: Model-Diversity-Compatible Reverse
Adversarial Perturbation (DRAP) Algorithm

1: Require: benign data(x, y), perturbation budget γ,
surrogate model distributions {PSi

}Ii=1, number of
samples within one component n, late start iteration
number nLS , inner step size βϵ, inner iteration number T ,
outer step size βx̂, decay factor µ.

2: Initialize x̂← x,m← 0;
3: for j = 0, ..., n− 1 do
4: for i = 0, ..., I − 1 do
5: Sample a surrogate model wk from PSi

;
6: if j ≥ nLS then
7: # Inner maximization
8: Initialize ϵk ← 0;
9: for t = 0, ..., T − 1 do

10: Update ϵk using Equation 32;
11: end for
12: end if
13: # Outer minimization
14: Calculate g = ∇x̂ℓ (f (x̂+ ϵk,wk) , y) ;
15: Update momentum by m = µ ·m+ g

∥g∥1
;

16: Update x̂ = Πγ [x̂− βx̂ · sign (m)];
17: end for
18: end for
19: return x̂.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct comprehensive evaluations to
illustrate the soundness of DRAP. Specifically, our experiments
are designed to explore the answers to the following questions:

1) How does DRAP compare to previous ones when conduct-
ing untargeted and targeted attacks?

2) As a key property of transfer-based attacks, is DRAP
scalable to be combined with input-transformation-based
methods to further boost transferability?

3) Which aspect of DRAP’s optimization bound, the sharp-
ness penalty or model discrepancy penalty is the most
important?

We conduct the evaluations on ImageNet [43] and CIFAR-10
[44]. For ImageNet, we follow previous works [11], [15], [18],
[21], [22], [25] and use the ImageNet-compatible dataset 3 in
the NIPS 2017 adversarial competition, which contains 1,000
images with a resolution of 299 × 299 × 3. For CIFAR-10,
we conduct experiments on its test set with 10,000 images. In
the following, we only consider ImageNet experiments. We
put CIFAR-10 experiment results and its detailed experimental
protocol in Appendix B.

A. Main Results
Baselines To answer the question 1), we take seven popular

input-transformation-based attacks as our baselines, including
I-FGSM [13], DI2-FGSM [6], SI-FGSM [5], Admix [20], TI-
FGSM [21], SSA [22], SIA [23]. We also compare our attack
with seven state-of-the-art optimization-based methods, namely

3https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_
adversarial_competition/dataset

MI-FGSM [7], PI-FGSM [14], VT-FGSM [8], RAP [11], PGN
[15], CWA [9] and SVRE [27].

Models For surrogate models, we consider five architectures
(i.e., I = 5) from aforementioned four prototypical models:
ResNet-50 [68] and ConvNeXt-T [54] from normally trained
convnets, ViT [55] from normally trained metaformers, ResNet-
50(AT) [69] from adversarially trained convnets and XCiT-
S(AT) [67] from adversarially trained metaformers. ConvNeXt-
T is included alongside ResNet-50 because it’s a special convnet
which follows designs popularized by vision transformers.
For DRAP, model samples are gathered as proposals at each
epoch during the fine-tuning of the five pretrained models,
which are optimized using their respective training recipts over
n = 40 additional epochs. In order to get more diverse samples,
we fine-tune the five pretrained models with relatively larger
constant learning rates, specifically 0.05, 0.001, 0.05, 0.5, and
0.001, respectively, for ResNet-50, ConvNeXt-T, ViT, ResNet-
50(AT), and XCiT-S(AT), while without significantly degrading
their clean accuracy. For compared methods, AEs are crafted
on the five pretrained surrogate models by fusing the logits
following [7]. To evaluate the transferability of AEs, we collect
31 target models to ensure comprehensive coverage of diverse
model architectures from the four prototypical categories,
abbreviated as ConvNet Set, Metaformer Set, ConvNet(AT)
Set and Metaformer(AT) Set, as shown in Tab. II.

Implementation Details For the untargeted attack scenario,
the adversarial perturbation is bounded by γ = 4/255 with
step size βx̂ = 2/255 for all methods. For the targeted
attack scenario, the adversarial perturbation is bounded by
γ = 16/255 with step size βx̂ = 8/255 for all methods. We set
the iteration number of MI, PI and CWA as 10 when conducting
untargeted attacks, as suggested in their original papers, because
their performance deteriorates for additional rounds. For RAP,
the iteration number is 400. Otherwise, the iteration number
is set as 200. For the hyper-parameters of DRAP, we set the
number of samples within one model distribution n = 40, inner
iteration number T = 5, late start iteration number nLS = 5,
inner step size βϵ = 0.01/255, decay factor µ = 1. Note that
the number of iterations for updating AE in DRAP is the same
as others, as n× I = 200. For compared methods, we follow
the protocol in BlackboxBench benchmark.

Results of Untargeted Attacks We first summarize the
untargeted attack results on ImageNet dataset against convnet
set, metaformer set, adversarially trained convnet set and
adversarially trained metaformer set, as shown in Table II.
DRAP achieves a substantial improvement in the average
attack success rate across all target models compared to the
input-transformation-based methods and other optimization
based methods. Taking a closer look at the comparison
results, we found that, equipped with the same surrogate
models, the state-of-the-art attack SIA is competitive on the
relatively easier-to-attack normally trained target model sets.
However, its performance is unsatisfactory when attacking
the two adversarially trained target model sets than DRAP.
DRAP provides a larger performance gain on attacking models
with the defense mechanism while maintaining an acceptable
performance on normal models, striking the balance among
the whole target model sets. These results suggest that striving

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/SCLBD/blackboxbench
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TABLE II
UNTARGETED ATTACK SUCCESS RATES (%,↑) ON IMAGENET DATASET. THE AES ARE CRAFTED FROM FIVE SURROGATE MODELS (RESNET-50,

CONVNEXT-T, VIT, RESNET-50(AT)AND XCIT-S(AT)), AGAINST 31 TARGET MODELS FALLING INTO FOUR PROTOTYPES (NORMALLY AND
ADVERSARIALLY TRAINED CONVNETS AND METAFORMERS). BOLD DENOTES THE BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST RESULTS.

Target Model Set I-FGSM DI2-FGSM SI-FGSM Admix TI-FGSM SSA SIA MI-FGSM PI-FGSM VT-FGSM PGN CWA SVRE RAP DRAP

AlexNet [45] 44.7 47.6 46.7 49.6 45.7 53.1 55.5 49.2 49.7 44.9 49.2 57.2 46.6 46.6 68.5
VGG-16-BN [46] 52.7 66.4 66.3 81.1 57.4 75.5 95.6 68.1 71.8 58.3 81.7 66.7 57.9 54.4 84.1

DenseNet-201 [47] 40.3 56.6 57.9 71.9 46.5 61.0 90.8 59.5 62.2 47.1 74.4 59.7 51.0 44.5 81.5
GoogLeNet [48] 32.2 42.8 42.2 55.0 35.3 53.7 73.0 45.6 48.4 36.1 56.1 50.4 38.1 36.7 73.9

ShuffleNetV2 [49] 42.7 51.9 52.4 63.9 44.2 62.2 77.3 54.8 56.7 45.1 63.1 61.2 48.6 46.1 82.1
MobileNetV2 [50] 47.6 62.4 61.5 75.3 52.2 70.7 93.6 63.4 68.6 53.9 76.3 67.3 56.4 51.7 87.2

MobileNetV3-L [51] 33.5 49.5 45.5 60.5 37.4 65.1 83.1 48.5 52.8 38.0 64.8 59.6 41.4 39.2 85.5
MNASNet [52] 42.1 57.2 56.8 72.9 46.6 68.2 92.3 58.8 63.8 48.8 72.1 63.8 52.2 49.0 87.6

EfficientNet [53] 31.5 46.8 40.7 49.6 35.0 56.2 75.9 44.7 46.6 35.1 55.8 52.7 38.4 36.8 74.9
ConvNeXt-L [54] 36.3 50.2 45.7 66.5 36.8 68.3 91.4 58.0 59.1 42.7 67.8 57.6 50.9 46.7 77.4

ConvNet
Set

Average 40.4 53.1 51.6 64.6 43.7 63.4 82.9 51.7 54.5 45.0 66.1 59.6 48.2 45.2 80.3

ViT-S [55] 10.0 20.2 13.1 18.8 12.3 24.9 40.2 19.2 20.2 11.6 22.8 22.1 16.1 16.9 38.8
DeiT-S [56] 14.1 26.5 17.3 23.5 17.3 32.4 45.2 25.2 25.1 15.6 26.9 29.4 20.1 20.0 53.5

PoolFormer-S [38] 29.0 49.6 37.2 51.5 33.4 62.1 86.2 46.0 49.9 33.4 58.1 46.6 40.3 36.2 71.8
TNT-S [57] 13.3 26.8 17.6 25.5 16.2 36.1 57.3 25.5 26.2 16.5 29.3 27.8 21.5 22.2 52.5
Swin-S [58] 8.8 19.8 11.9 17.9 11.0 26.5 42.9 18.1 17.6 11.0 20.7 18.4 14.0 15.4 28.5
XCiT-S [59] 11.3 27.9 13.2 16.1 11.8 29.1 43.0 18.4 18.9 12.2 19.7 20.3 16.5 16.3 30.6
CaiT-S [60] 5.0 19.2 6.8 8.6 6.1 17.4 29.4 10.1 10.4 6.2 12.2 12.5 7.8 9.5 22.8

Metaformer
Set

Average 13.1 27.1 16.7 23.1 15.4 32.6 49.2 24.1 25.1 15.2 27.1 25.3 19.5 19.5 42.6

RaWideResNet-101-2 [61] 17.0 17.6 17.3 17.4 17.1 19.5 17.7 19.0 18.7 17.1 17.8 24.2 17.8 16.3 26.8
WideResNet-50-2 [62] 21.9 22.6 22.1 22.1 22.3 25.3 23.1 24.0 24.0 22.0 23.5 32.5 23.3 22.0 34.3

ResNet-50 [63] 39.7 40.2 39.9 40.4 40.6 43.4 41.9 41.7 41.8 39.6 41.3 47.6 41.1 39.7 51.4
ConvNeXt-L [64] 10.4 10.8 10.5 10.8 10.8 12.5 11.3 11.7 11.7 10.4 11.5 16.4 11.2 10.7 17.6
ConvNeXt-B [64] 10.6 10.9 10.4 11.0 11.1 13.3 11.2 12.3 12.4 10.7 12.0 17.8 11.3 11.1 18.8

ConvNeXt-L-ConvStem [65] 10.2 10.6 9.9 10.7 10.3 12.5 10.8 11.2 11.1 10.1 11.0 15.9 10.7 10.5 16.8
ConvNeXt-B-ConvStem [65] 11.7 11.8 11.7 12.0 12.2 14.4 12.8 12.9 12.8 11.4 12.4 18.7 12.2 11.2 19.8

Inc-v3ens3 [66] 9.7 13.7 10.3 10.9 9.8 19.1 17.8 12.7 13.8 10.1 13.0 17.1 11.6 11.6 24.2
Inc-v3ens4 [66] 11.4 15.7 12.8 14.0 11.6 21.5 20.0 14.8 14.9 11.0 14.9 19.0 12.0 13.3 26.4

IncRes-v2ens [66] 3.6 6.4 4.6 5.5 3.9 10.4 8.7 6.1 6.5 4.0 7.3 9.0 4.5 5.6 13.2

ConvNet(AT)
Set

Average 14.6 16.0 15.0 15.5 15.0 19.2 17.5 16.3 16.4 14.6 16.5 21.8 15.6 15.2 24.9

Swin-B [64] 11.5 12.3 11.9 11.7 12.0 13.8 12.1 12.8 12.8 11.7 12.4 17.3 12.5 11.9 18.6
Swin-L [64] 9.8 10.0 10.0 9.9 9.9 11.5 10.8 10.6 10.5 10.0 10.7 14.8 10.7 10.1 15.6
XCiT-L [67] 14.9 15.5 15.0 15.3 15.2 18.4 16.0 17.2 17.2 14.9 17.2 26.8 16.0 14.4 28.0

ViT-B-ConvStem [65] 11.2 11.6 11.5 11.6 11.3 12.9 12.1 12.4 12.2 11.4 12.4 17.8 11.8 11.7 18.6

Metaformer(AT)
Set

Average 11.9 12.4 12.1 12.1 12.1 14.2 12.8 13.3 13.2 12.0 13.2 19.2 12.8 12.0 20.2

Overall Average 22.2 30.0 26.8 32.6 24.0 35.8 45.1 30.5 31.7 24.2 34.5 34.5 26.6 25.4 46.2

for flatness among all surrogate models meanwhile considering
model diversity could provide a strong guarantee on the
transferability of AEs, regardless of the robustness of the target
model sets. CWA is also shown as a promising prior method
which could effectively utilize all diverse surrogate models
simultaneously by attacking their common weakness and
optimizing the flatness, leading to improved attack performance
on the challenging adversarially trained model sets. However,
it fails to explicitly address the surrogate-target model gap.
Furthermore, its use of a universal perturbation across the model
ensemble may hinder the optimization of flatness, resulting
in an overall lower attack success rate compared to DRAP.
In Section VI-C1, we further explore various solvers for
optimizing flatness among diverse models. To sum up, we
view the consistency with which DRAP outperforms the best
prior methods, which change across different model sets, as
a major advantage of the proposed method. Notably, in this
experiment, the unseen target models are drawn from the same
prototypical model sets as the surrogate models. In the ablative
study in Section VI-C1, we consider stricter attack scenarios
where the surrogate-target model shifts are more prominent to
further evaluate the effectiveness of DRAP.

Results of Targeted Attacks The targeted attack results
of baseline attacks and DRAP are shown in Table III. At
first glance, it is evident that targeted attacks pose a more
challenging scenario, particularly on the two model sets
equipped with defense mechanisms. Despite using a looser
perturbation constraint, most methods fail to induce even a

single misclassification as the target label on the defense models.
Among the prior methods, SIA demonstrates competitive
performance in the targeted setting; for instance, it achieves
relatively larger improvements on the two normal model sets,
with success rates of 62.0% and 41.5%, respectively. CWA is
the only prior method that reports success on the challenging
defense model sets, achieving success rates of 6.4% and 7.5%.
DRAP, however, achieves the best attack success rate by a
significant margin as it is more successful at attacking various
target models under the targeted scenario. This indicates that
DRAP is also more effective under the targeted attack scenario,
highlighting its ability to synergize well with different attack
targets.

B. Composition with Input-Transformation-Based Attacks
Instead of improving transferability from an optimization

perspective as considered in DRAP, another related panoply of
methods introduce randomness into input via various transfor-
mations. Prior research has demonstrated that combining these
two perspectives could achieve state-of-the-art transferability.
As the outer minimization with x̂ in DRAP, i.e., the Equation
33, could be solved by any off-the-shelf strategies, including
the input-transformation-based methods, our method could
also be seamlessly combined with them. To answer question
2), we explore the behavior of DRAP, as well as some well-
known optimization-based attacks such as MI-FGSM [7], PI-
FGSM [14], VT [8], our original RAP [11], PGN [15] and
CWA [9], when combined with input-transformation-based
attacks, namely, DI-FGSM [6], TI-FGSM [21], Admix [20]
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TABLE III
TARGETED ATTACK SUCCESS RATES (%,↑) ON IMAGENET DATASET. THE AES ARE CRAFTED FROM FIVE SURROGATE MODELS (RESNET-50, CONVNEXT-T,
VIT, RESNET-50(AT)AND XCIT-S(AT)), AGAINST 31 TARGET MODELS FALLING INTO FOUR PROTOTYPES (NORMALLY AND ADVERSARIALLY TRAINED
CONVNETS AND METAFORMERS). THE RESULTS ARE AVERAGED ON EACH MODEL SETS. FULL RESULTS BROKEN DOWN INTO EACH MODELS ARE SHOWN IN

Appendix E. BOLD DENOTES THE BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST RESULTS.

Target Model Set I-FGSM DI2-FGSM SI-FGSM Admix TI-FGSM SSA SIA MI-FGSM PI-FGSM VT-FGSM PGN CWA SVRE RAP DRAP

ConvNet Set 5.4 22.0 11.6 11.3 8.2 29.8 62.0 5.3 9.7 6.9 37.4 36.0 18.5 14.5 77.6
Metaformer Set 0.5 11.6 1.7 1.6 1.1 16.5 41.5 1.0 1.8 1.1 13.3 21.9 10.5 3.1 56.4

ConvNet(AT) Set 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.0 0.1 6.4 0.1 0.1 13.4
Metaformer(AT) Set 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 7.5 0.0 0.2 11.4

Overall Average 1.8 9.7 4.1 4.0 2.9 13.4 29.4 1.9 3.6 2.5 15.1 19.5 8.4 5.4 43.5

and SIA [23]. We omit the combination of PGN and SIA due to
the heavy computational demands. The experimental protocol
follows the untargeted setting in Section VI-A. The resultant
composite attack performance is shown in Table IV. As can
be observed, for both convnets and metaformers and for both
normally trained and adversarially trained models, combining
DRAP with existing input-transformation-based attacks can
significantly improve the base version, leading to a new state-
of-the-art attack performance. For example, SIA achieves a
competitive average attack success rate of 45.1% (cf. Table
II), while integrating with DRAP further improves it by a
clear margin of 6.0%. These remarkable improvements validate
the scalability of our method when combined with others to
further boost adversarial transferability. Additionally, we view
the consistency with which the extensions of DRAP outperform
those of prior optimization-based methods, confirming the
superiority of DRAP.

C. Ablative Study

From the results above, we conclude that DRAP inspired
from the theoretical bound could learn an AE with strong
transferability toward target models. To answer question
3), we need to gain a deeper insight into the rationale
behind its superior attack performance. In this subsection, we
disentangle the two distinct optimization signals within the
bound: a sharpness penalty for pursuing a flat local minimum
ℓsharp = max∥ϵ∥∞≤ρ RŜ(x̂ + ϵ) − RŜ(x̂) and a model
discrepancy penalty for narrowing the surrogate-target shift
ℓdis =

1
I

∑
i∈[I] D

X̂r
TV (PT ∥PSi

). We conduct ablative studies to
explore the impact of each aspect of DRAP: first to determine
the importance of the sharpness penalty term in our bound
and the effectiveness of proposed model-diversity-compatible
optimization algorithm (cf. Algorithm 1), second to determine
the importance of the model discrepancy penalty term in our
bound and the effectiveness of the strategy to choose surrogate
models. We evaluate these ablations on ImageNet, using the
same untargeted experimental protocol as in Section VI-A.

1) On the Sharpness Penalty
Is the flatness beneficial for boosting the transferability?

First we analyze the importance of optimizing flatness in
boosting transferability. We formalize this study as ablating
the sharpness penalty term ℓsharp from our optimization
objective and evaluating the ablated objective by reporting
the attack success rate of I-FGSM, DI-FGSM, TI-FGSM and
Admix combined with DRAP. We use the same experimental
protocol as in Section VI-A but with the ablated objective. The
results are presented in Table V. Within each combination, the

TABLE IV
ATTACK SUCCESS RATES (%, ↑) OF MI, PI, VT, RAP, PGN, CWA AND

DRAP, WHEN IT IS INTEGRATED WITH DI, TI, ADMIX AND SIA,
RESPECTIVELY. THE INDENTATION DENOTES COMBINATION. THE RESULTS

ARE AVERAGED ON EACH MODEL SETS.

Attack ConvNet
Set

MetaFormer
Set

ConvNet
(AT) Set

MetaFormer
(AT) Set

Overall
Average

DI-FGSM 53.1 27.1 16.0 12.4 30.0
+ MI 75.0 50.6 18.9 13.7 43.5
+ PI 67.1 40.0 18.5 13.7 38.4
+ VT 56.6 31.9 16.1 12.4 32.3
+ RAP 51.8 34.0 17.5 12.5 31.6
+ PGN 65.6 27.2 16.9 13.0 34.4
+ CWA 67.4 39.6 23.7 19.5 40.8
+ DRAP 83.2 56.6 27.7 20.6 51.2

TI-FGSM 43.7 15.4 15.0 12.1 24.0
+ MI 57.8 26.5 17.6 14.1 32.1
+ PI 60.2 27.4 17.6 13.9 33.1
+ VT 48.1 17.8 15.1 12.2 26.0
+ RAP 46.1 21.7 15.6 12.2 26.4
+ PGN 66.4 29.7 17.7 13.6 35.6
+ CWA 60.6 26.8 22.5 19.3 35.3
+ DRAP 79.2 44.4 25.6 20.2 46.5

Admix 64.6 23.1 15.5 12.1 32.6
+ MI 66.4 29.2 17.3 13.5 35.4
+ PI 64.0 27.1 17.2 13.4 34.0
+ VT 58.0 21.4 15.1 12.3 30.0
+ RAP 56.7 26.2 16.4 12.6 31.1
+ PGN 65.3 26.9 16.5 12.7 34.1
+ CWA 64.0 25.7 22.0 19.1 36.0
+ DRAP 82.4 43.2 24.5 19.7 46.8

SIA 82.9 49.2 17.5 12.8 45.1
+ MI 83.0 55.5 20.4 13.9 47.7
+ PI 82.8 52.0 20.1 13.8 46.7
+ VT 83.1 51.5 18.0 12.8 45.9
+ RAP 72.5 45.5 19.1 13.0 41.5
+ PGN - - - - -
+ CWA 83.4 52.0 23.8 17.9 48.7
+ DRAP 86.9 55.3 25.6 18.2 51.1

first row represents our combinational method with the full
optimization objective, applying the sharpness penalty starting
at iteration nLS . The second row represents the same objective
but applies the sharpness penalty from iteration 0, implying
an ablation on the late-start strategy. The third row represents
the combinational method without penalizing the sharpness of
AE. Across all combinations, DRAP with complete objective
consistently outperforms attacks that solely penalize model
discrepancy, regardless of whether the late-start strategy is used.
Furthermore, we see a stronger attack performance of DRAP
with late start strategy, which helps stabilize convergence. The
results validate our theoretical result from Theorem 4 that
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TABLE V
ABLATING THE SHARPNESS PENALTY TERM ( - ℓsharp) AND LATE START

STRATEGY ( - LATE START) FROM DRAP’S COMBINATIONS WITH I-FGSM,
TI-FGSM, DI-FGSM AND ADMIX. THE RESULTS ARE AVERAGED ON EACH

MODEL SETS. BOLD DENOTES THE BEST RESULTS AND UNDERLINED
DENOTES THE SECOND BEST RESULTS.

DRAP
ConvNet

Set
Metaformer

Set
ConvNet
(AT) Set

Metaformer
(AT) Set

Overall
Average

+ I-FGSM 80.2 42.6 24.9 20.2 46.1
- late start 78.8 42.2 24.9 20.3 45.6
- ℓsharp 77.7 36.3 24.1 20.0 43.6

+ TI-FGSM 79.2 44.4 25.6 20.2 46.5
- late start 78.1 43.2 25.8 20.2 45.9
- ℓsharp 77.8 38.5 24.8 20 44.3

+ DI-FGSM 83.2 56.6 27.7 20.6 51.2
- late start 81.3 55.0 28.0 20.7 50.3
- ℓsharp 82.7 53.2 27.1 20.5 50.1

+ Admix 82.4 43.2 24.5 19.7 46.8
- late start 81.4 40.5 24.5 19.6 45.8
- ℓsharp 81.7 40.1 24.0 19.7 45.7

controlling the surrogate-target shift, finding a flat minima of
surrogate adversarial risk lead to improved transferability. A
detailed parameter study on the impact of late start iteration
number nLS is provided in Appendix D-A.

How to effectively optimize flatness of AE across a
diverse set of surrogate models? Given a set of diverse
surrogate models obtained following Section V-B, aside from
our proposed algorithm (cf. Algorithm 1), there are other
possible solvers to optimize flatness across this set. Here, we
consider two implementations inspired by RAP and CWA, both
of which aim to generate adversarial examples within flat local
regions. We use Flat-RAP and Flat-CWA as the shorthands
for optimizing flatness across diverse surrogate models using
strategies of RAP and CWA, respectively.

To elaborate, our proposed algorithm boosts the flatness via
a min-max bi-level optimization framework. It finds the worst-
case reverse perturbation specific to each surrogate model at
the inner step (refer to Equation 32) and updates AE toward the
point where added with the model-specific perturbation could
minimize the attack loss on the one surrogate model at the
outer step (refer to Equation 33). This algorithm is expected to
seek out AEs whose entire neighborhoods have uniformly low
empirical surrogate adversarial risk value, i.e., AEs locating at
the flat regions of each of diverse models. However, from the
perspective of RAP, Flat-RAP applies the inner maximization
and outer minimization on the whole surrogate model set,
i.e., a global reverse perturbation (refer to Equation 29) and
global update direction (refer to Equation 30) are obtained.
Furthermore, though the lens of CWA, Flat-CWA substitutes the
outer step of Flat-RAP with successively performing updates
using each surrogate model to pursue a common weakness of
model ensemble:
x̂← Πγ [x̂− βx̂ · sign (∇x̂ℓ (f (x̂+ ϵ,wk) , y))] ,wk ∈MS ,

(34)
where ϵ is a global reverse perturbation same as in Flat-RAP.
We provide their pseudocodes and implementation details in
Appendix C. Note that though our derivation of Flat-RAP and
Flat-CWA define the objective over the entire model set, in

TABLE VI
ATTACK SUCCESS RATES (%, ↑) OF FLAT-RAP, FLAT-CWA AND DRAP.

THE RESULTS ARE AVERAGED ON EACH MODEL SETS. BOLD DENOTES THE
BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST RESULTS.

Attack ConvNet
Set

Metaformer
Set

ConvNet
(AT) Set

Metaformer
(AT) Set

Overall
Average

Flat-RAP 77.4 47.0 19.9 14.3 43.9
Flat-CWA 80.2 39.0 23.9 19.8 44.9

DRAP 80.3 42.6 24.9 20.2 46.2

practice, we compute the gradient per-batch.
As shown in Table VI, we find that our method achieves

higher transferability than Flat-RAP and Flat-CWA. It supports
our hypothesis that for a set of surrogate models with distinct
loss landscapes, a globally calculated ϵ could not help to find
a flat local minimum of surrogate adversarial risk, as it fails
to orient x̂ to the real worst-case local neighborhood of each
model. Consequently, the crafted x̂ will locate at sharp regions
of the target model’s landscape, slight changes in the loss
landscape will cause a significant increase in attack loss.

2) On the Model Discrepancy Penalty
Can within-distribution diversity boost transferability,

and if so, how efficiently? To evaluate the impact of
incorporating within-distribution diversity when optimizing
flatness on narrowing the surrogate-target model discrepancy
and controlling the transferability gap, we conduct an ablation
study. Specifically, we vary the parameter n, which directly
controls the number of diverse surrogate models sampled from
each surrogate model components during generating AEs, and
thus determines the level of within-distribution diversity in
the surrogate model set. We range n from 0 to 40 with a
granularity of 5, keeping all other hyper-parameters consistent
with Section VI-A. When n = 5, nLS is set to 0. Larger
values of n correspond to stronger within-distribution diversity,
whereas smaller values gradually diminish this influence. At
n = 0, within-distribution diversity vanishes entirely, and our
method reduces to locating an AE that resides in the flat
regions of the loss landscapes of the five pretrained surrogate
models. As shown in Figure 1, on the whole target model sets,
increasing within-distribution diversity consistently improves
attack performance over the baseline case (n = 0), with peak
performance observed at n = 40. This result convincingly
validates the idea that encouraging AEs to locate within flat
regions of the loss landscapes across diverse models increases
the likelihood of their generalization to flat regions in unseen
models. Consequently, slight changes in the loss landscape are
less likely to cause a significant increase in attack loss, thereby
improving the transferability of the attack.

However, to find a reverse perturbation, DRAP takes 1 + T
forward and backward calculations in each iteration. As a
higher within-distribution diversity requires more iterations,
one may wonder the computational efficiency of the proposed
method. The number of gradient calculations Ng as a function
of iteration numbers niter of different methods is summarized
in Table XI in Appendix. To conduct a fair comparison on
computational efficiency with other methods, we evaluate our
method as well as others under iterations from 25 to 200
and report the attack performance in Figure 1. We note that
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Fig. 1. The average attack success rate of different methods with respect to
different number of iterations. The two isolated points indicate our attack with
no within-distribution diversity, i.e., n = 0, with differnet iteration numbers.
The pink numbers represent the number of gradient calculation required for
each method under specific iteration numbers.

an iteration of 25 on DRAP is enough to provide significant
performance gain over others, while the computational cost is
slightly higher than MI-FGSM and PI-FGSM but much lower
than others. Meanwhile, with sufficient computational resources
to conduct more iterations, DRAP still outperforms compared
methods. The results indicate that the proposed DRAP enables
a practical trade-off between efficiency and attack performance.

One can observe from Figure 1 that the attack perfor-
mance of MI-FGSM, PI-FGSM and CWA—methods that
accumulate gradients at each iteration—will not benefit from
more iterations. Careful tuning of the iteration number is
crucial for them, as excessive iterations can lead to gradient
overaccumulation, which negatively impacts transferability [27],
[36], [42]. In contrast, momentum better synergizes with our
method, stabilizing the update directions that vary significantly
across diverse surrogate models. Therefore, more iterations
(i.e., more diverse surrogate models), better transferability.

Can between-distribution diversity boost transferability,
and if so, how efficiently? We have shown that the high within-
distribution diversity could effectively and efficiently improve
transferability. Here we further validate the necessity of another
dimension of model diversity, between-distribution diversity.
Specifically, we generate AEs by our method while excluding
each prototypical model sets and test the attack performance on
models belonging to the ablated prototype, thereby weakening
the between-distribution diversity. As shown in Table VII, the
average attack success rates on the unseen prototypical sets
are 47.8%, 35.2%, 23.7% and 16.6%. Compared to the results
before ablation (denoted “Oracle”), we can observe that when
the surrogate distributional components are diverse enough to
approximate the adversarial vulnerabilities of target models, the
attack success rates could be boosted by 32.5%, 7.4%, 1.2%
and 3.6%, supporting that the between-distribution diversity
plays an important role in generating more transferable AEs.
Moreover, we observe that the specific surrogate model architec-
ture chosen to represent each prototype is less significant in our
method. This suggests that the between-distribution diversity
among prototypes—a higher-level concept than architectural

TABLE VII
ATTACK SUCCESS RATES (%, ↑) ON VARIOUS SHIFTED TARGET MODEL

SETS. “SHIFTED” MEANS ON EACH RUN WITH A TARGET SET, ITS
BELONGING PROTOTYPE WILL BE REMOVED FROM SURROGATE MODELS TO
EVALUATE TRANSFERABILITY UNDER SURROGATE-TARGET SHIFT. OTHER
EXPERIMENTAL PROTOCOL IS THE SAME AS IN SECTION VI-A. “ORACLE”

DENOTES WITH FULL PROTOTYPES IN SURROGATE MODELS.

Attack Shifted target sets Avg shifts
ConvNet

Set
Metaformer

Set
ConvNet
(AT) Set

Metaformer
(AT) Set

MI 32.9 20.7 15.8 12.2 20.4
PI 33.4 21.3 15.8 12.3 20.7

RAP 28.3 16.6 14.7 11.7 17.8
CWA 37.1 23.5 20.5 14.6 23.9
PGN 32.1 23.5 15.9 12.1 20.9

DRAP 47.8 35.2 23.7 16.6 30.8

DRAP(Oracle) 80.2(+32.5) 42.6(+7.4) 24.9(+1.2) 20.2(+3.6) -

diversity—is more efficient in improving transferability (see
Appendix D-B for details).

However, given the endless evolution of model architectures,
achieving the ideal between-distribution diversity, as in Oracle,
remains challenging. This raises concerns about whether DRAP
could maintain its superiority when AEs are expected to transfer
to unseen prototypes with unexpected adversarial vulnerabilities
in practice. To this end, we build a more strict attack scenario
to test transferability under unknown surrogate-target shift
in their belonging prototypes, rather than focusing solely on
transferability within “training” prototypes explored in Section
VI-A. With four prototypes, we choose target models from
one prototype and craft AEs on surrogate models from the
remaining three prototypes. For instance, when the shifted
target models are normally trained convnets, we craft AEs
on ViT, XCiT-S(AT) and ResNet-50(AT). We compare the
transferability of AEs crafted by DRAP with other five baseline
attacks and summarize the results in Table VII. Our methods
consistently outperforms others across various surrogate-target
shifts, indicating that choosing diverse surrogate componential
distributions, albeit imperfect, is still efficiently enough to
simulate possible surrogate-target shift in loss landscape.
Consequently, seeking flat minima over these distributions
significantly narrows the transferability gap.

To analyze the effect of each dimension of model diversity
(i.e., within-distribution and between distribution), we ask the
above questions. From the results, we find that both dimensions
are useful for enhancing the transferability of AEs, as they both
narrow the surrogate-target model discrepancy term ℓdis from
different levels. Hence, by leveraging them simultaneously, our
method significantly decrease the transferability gap.

VII. CONCLUSION

In this paper, we first prove a bound that provides a guarantee
on transferability error. We show that our bound builds a
framework generalizing previous approaches and presenting a
fresh avenue for the principled analysis of transfer-based attacks.
Within our transferability bound, we justify the relationship
between flatness and AE transferability and point out the
adversarial model discrepancy as another key component to
bound transferability. We gain theoretical insights from the
derived bound and make algorithmic extensions to our prior
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work RAP. The proposed DRAP generates reverse adversarial
perturbations tailored to each of the diverse surrogate models,
which are selected based on two dimensions of diversity.
We conduct extensive experiments on two datasets, covering
untargeted and targeted attacks against standard and defense
models. We also conduct ablative studies to explore the effect
of different penalty terms to verify our theoretical findings.
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APPENDIX A
PROOFS

A. Technical Lemmas

Lemma 2. Let ϕ : R+ → R be a convex, lower semi-
continuous function satisfying ϕ(1) = 0, and ϕ∗ be the Fenchel
conjugate function of ϕ, then ϕ∗(x) ≥ x.

Proof. By definition, ϕ∗(x) = supt∈domϕ {tx− ϕ(t)} ≥ tx−
ϕ(t). When ϕ(1) = 0, we have ϕ∗(x) ≥ 1 ·x−ϕ(1) = x.

Introducing the PAC model into transfer-based adversarial
attacks to bound the surrogate risk, we have:

Lemma 3. (PAC-Bayes [28], [29] ) For any model distribution
PS , prior distribution P on X̂ , 0 < δ < 1, with probability
1− δ over the choice of surrogate model set MS ∼ PS with
size K ∈ N, for any distributions Q on X̂ , the following bound
holds:

Ex̂∼Q[RS(x̂)] ≤ Ex̂∼Q[RŜ(x̂)] +

√
KL(Q||P) + log K

δ

2(K − 1)
.

(A.1)

In this bound, the RS(x̂) is the surrogate risk and RŜ(x̂)
is the empirical surrogate risk. This PAC-Bayes bound implies:
Assuming adversary have enough surrogate model samples, the
expected risk of an AE chosen from a distribution Q can be
guaranteed by minimizing the measured loss of distribution Q
and KL(Q∥P)

n , naturally leading to the following optimization
method:

1. Fix a distribution P .
2. Collect enough surrogate model instances from PS .
3. Compute the optimal distribution Q that minimizes the

error bound, the right hand side of Equation A.1.
4. Return the crafted AE given by Q.

B. Proof of Theorem 2

In black-box adversarial attacks, it tempting to establish
the error bound for the target model including a discrepancy
measure (in Definition 4). Consider a loss function ℓ(y1, y2),
such that ℓ : Y×Y → R+

0 . Then we can define a population risk
by RP (x̂) := Ew∼P [ℓ(f(x̂,w), y)]. Given two distributions
PS and PT , the following lemmas shows that the difference
of risks over PS and PT can be bounded by the adversarial
model discrepancy between PS and PT . The proof technique
we used here is inspired from Wang et al. [70].
Theorem 2. (Transferability gap bound) Define
Kx̂

S (t) = infα {Ew∼PS [ϕ∗ (tℓ (f (x̂,w) , y) + α)]− α} −
Ew∼PS [tℓ (f (x̂,w) , y)]. Given the surrogate model
distribution PS and target model distribution PT , for any
x̂ ∈ X̂r and constant c1, c2 ∈ [0,+∞) subjected to the
constraint Kx̂

S (c1) ≤ c1c2Ew∼PS [ℓ (f(x̂,w), y)], we have

Etrans (x̂) ≤
1

c1
DX̂r

ϕ (PT ∥PS) + c2r. (A.2)

Furthermore, if PS is a mixture distribution of I distributions,
i.e., PS = 1

I

∑
i∈[I] PSi

, then

Etrans (x̂) ≤
1

c1I

∑
i∈[I]

DX̂r

ϕ (PT ∥PSi) + c2r. (A.3)

Proof. Firstly, Kx̂
S (t), which depends on both t ∈ R and

x̂ ∈ X̂r, is defined as follows:
Kx̂

S (t) = inf
α
{Ew∼PS [ϕ∗ (tℓ (f(x̂,w), y) + α)]− α}

− Ew∼PS [tℓ (f(x̂,w), y)] ,

and we define
Kr

S(t) = sup
x̂∈X̂r

Kx̂
S (t). (A.4)

We denote for clarity
I x̂S (t) = inf

α
{Ew∼PS [ϕ∗ (tℓ (f(x̂,w), y) + α)]− α} ,

which is also the second term of DX̂r

ϕ (PT ∥PS). Then Kx̂
S (t) =

I x̂S (t)− Ew∼PS [tℓ (f(x̂,w), y)]

Therefore, for any x̂ ∈ X̂r and t ∈ R, we have the following
inequality holds by Equation A.4:

I x̂S (t)− Ew∼PS [tℓ (f(x̂,w), y)] ≤ Kr
S(t). (A.5)

Plugging in ET [tℓ (f(x̂,w), y)] to the both sides of Equation
A.5 and rearranging terms leads to the following inequality:
t (Ew∼PT [ℓ (f(x̂,w), y)]− Ew∼PS [ℓ (f(x̂,w), y)])−Kr

S(t)

≤ tEw∼PT [ℓ (fx̂, fx̂)]− I x̂S (t)

Since this inequality holds for any x̂ ∈ X̂r and t ∈ R, we
have
sup
t∈R

t (Ew∼PT [ℓ (f(x̂,w), y)]− Ew∼PS [ℓ (f(x̂,w), y)])−Kr
S(t)

≤ sup
t∈R

tEw∼PT [ℓ (f(x̂,w), y)]− I x̂S (t)

≤ sup
t∈R,x̂∈X̂r

tEw∼PT [ℓ (f(x̂,w), y)]− I x̂S (t)

= DX̂r

ϕ (PT ∥PS) .

Notice that Etrans (x̂) = Ew∼PT [ℓ (f (x̂,w) , y)] −
Ew∼PS [ℓ (f (x̂,w) , y)]. Hence, we have

sup
t∈R

tEtrans (x̂)−Kr
S(t) ≤ DX̂r

ϕ (PT ∥PS)

tEtrans (x̂)−Kr
S(t) ≤ DX̂r

ϕ (PT ∥PS) ∀t ∈ R (A.6)

Etrans (x̂) ≤
DX̂r

ϕ (PT ∥PS) +Kr
S(t)

t
∀t ≥ 0 (A.7)

Etrans (x̂) ≤ inf
t≥0

DX̂r

ϕ (PT ∥PS) +Kr
S(t)

t
, (A.8)

the derivation from Equation A.6 to Equation A.7 restricts the
range of t to t ≥ 0.

Since we assume that there exists constant c1, c2 ∈ [0,+∞)
such that

Kx̂
S (c1) ≤ c1c2Ew∼PS [ℓ (f(x̂,w), y)] , (A.9)

we have
Kr

S(c1) = sup
x̂∈X̂r

Kx̂
S (c1)

≤ sup
x̂∈X̂r

c1c2Ew∼PS [ℓ (f(x̂,w), y)]

≤ c1c2r,

where the last inequality holds by the definition of X̂r.

Substituting the above inequality into Equation A.8 and
replacing t with c1, we have the following inequality holds for
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any c1, c2 subject to the constraint A.9:

Etrans (x̂) ≤
DX̂r

ϕ (PT ∥PS)

c1
+ c2r,

which completes the proof of Equation A.2.
Then we extend this inequality to the mixture distribution.

For this second part, we consider a surrogate mixture of
I surrogate distributions where the mixture weight is βi,
denoted as PS =

∑
i∈[I] βiPSi

. Then we can upper bound

DX̂r

ϕ (PT ∥PS) as follows:

DX̂r

ϕ (PT ∥PS) = sup
x̂′∈X̂r,t∈R

Ew∼PT [t · ℓ (f (x̂′,w) , y)]

− inf
α∈R
{Ew∼PS [ϕ∗ (t · ℓ (f (x̂′,w) , y) + α)]− α}

= sup
x̂′∈X̂r,t∈R

∑
i∈[I]

βiEw∼PT [t · ℓ (f (x̂′,w) , y)]

− inf
α∈R

∑
i∈[I]

βi

(
Ew∼PSi

[ϕ∗ (t · ℓ (f (x̂′,w) , y) + α)]− α
)

≤ sup
x̂′∈X̂r,t∈R

∑
i∈[I]

βiEw∼PT [t · ℓ (f (x̂′,w) , y)]

−
∑
i∈[I]

βi inf
α∈R
{Ew∼PSi

[ϕ∗ (t · ℓ (f (x̂′,w) , y) + α)]− α}

(A.10)

= sup
x̂′∈X̂r,t∈R

∑
i∈[I]

βi(Ew∼PT [t · ℓ (f (x̂′,w) , y)]

− inf
α∈R
{Ew∼PSi

[ϕ∗ (t · ℓ (f (x̂′,w) , y) + α)]− α})

≤
∑
i∈[I]

βi sup
x̂′∈X̂r,t∈R

Ew∼PT [t · ℓ (f (x̂′,w) , y)]

− inf
α∈R
{Ew∼PSi

[ϕ∗ (t · ℓ (f (x̂′,w) , y) + α)]− α} (A.11)

=
∑
i∈[I]

βiD
X̂r

ϕ (PT ∥PSi
),

where Equation A.10 is by the superadditivity of inf function
and Equation A.11 is by the subadditivity of sup function. Due
to the unavailability of target models, we simply assume the
surrogate distributions are equally contributed and set βi =

1
I .

By applying this upper bound of DX̂r

ϕ (PT ∥PS) to Equation
A.2, we complete the proof of Equation A.3.

C. Proof of Corollary 1

Corollary 1. Suppose ℓ : Y ×Y → [0, 1]. Given the surrogate
model distribution PS and target model distribution PT , for
any x̂ ∈ X̂r and constant c1 satisfying 0 ≤ c1 ≤ 1, we have

Etrans (x̂) ≤
1

c1
DX̂r

TV(PT ∥PS),

where DX̂r
TV(PT ∥PS) = supx̂∈X̂r

| Ew∼PT [ℓ (f (x̂,w) , y)] −
Ew∼PS [ℓ (f (x̂,w) , y)] |.

Proof. Here, we instantiate the bound in Theorem 2 with
TV distance. Specifically, let ϕTV(u) =| u − 1 |, its convex
conjugate function is ϕ∗

TV(v) = v, where v takes value in

[−1, 1].
DX̂r

TV(PT ∥PS)

= sup
x̂∈X̂r,−1≤t≤1

Ew∼PT [tℓ (f (x̂,w) , y)]−

inf
α∈R
{Ew∼PS [ϕ∗

TV (tℓ (f (x̂,w) , y) + α)]− α}

≥t (Ew∼PT [ℓ (f (x̂,w) , y)]− Ew∼PS [ℓ (f (x̂,w) , y)])
(A.12)

=tEtrans (x̂) . (A.13)

The above inequality A.12 holds for any x̂ ∈ X̂r,−1 ≤ t ≤ 1.
Since when t = 0, this holds by the non-negativity of DX̂r

ϕ

discrepancy, and when 0 < t ≤ 1, we have

Etrans (x̂) ≤ inf
0<t≤1

DX̂r
TV(PT ∥PS)

t
.

Overall, we have

Etrans (x̂) ≤ inf
0≤t≤1

DX̂r
TV(PT ∥PS)

t
.

Substituting t with c1 gives the desired results.

We further simplify DX̂r
TV(PT ∥PS) as follows

DX̂r
TV(PT ∥PS)

= sup
x̂∈X̂r,−1≤t≤1

Ew∼PT [tℓ (f (x̂,w) , y)]−

inf
α∈R
{Ew∼PS [ϕ∗

TV (tℓ (f (x̂,w) , y) + α)]− α}

= sup
x̂∈X̂r,−1≤t≤1

t(Ew∼PT [ℓ (f (x̂,w) , y)]

− Ew∼PS [ℓ (f (x̂,w) , y)]) (A.14)
= sup

x̂∈X̂r

| Ew∼PT [ℓ (f (x̂,w) , y)]− Ew∼PS [ℓ (f (x̂,w) , y)] | .

The Equation A.14 is by the fact that supt∈[−1,1] t · a = |a|.
The above derivation recovers the integral probability metric
form of TV distance defined by [71].

The above lemma instantiates the bound in Theorem 2 and
gives a clearer clue for the condition c1, c2 ∈ [0,+∞) subjected
to the constraint Kx̂

S (c1) ≤ c1c2Ew∼PS [ℓ (f(x̂,w), y)]. In the
case of TV, we explicitly show that the constraint simplifies to
0 ≤ c1 ≤ 1, c2 = 0. This bound shares a similar form as the
domain adaptation bounds in Theorem 2 in [72] when setting
c1 = 1, without violating this bound. While our task does not
require a separate ideal joint error term; instead, this term is
implicitly included within the discrepancy term. Since the DX̂r

TV-
based transferability gap bound is merely a special case of our
main result in Theorem 2, our result provides a more general
framework that encompasses the family of ϕ-divergences.

D. Proof of Theorem 3

Below, we show an empirical estimation of the surrogate
adversarial risk RS(x̂). The proof technique we used here
is inspired from Foret et al. [16] and Chatterji et al. [29].
Theorem 3. (Surrogate risk bound) For any ρ > 0, 0 < δ < 1,
model distribution PS , and x̂ ∈ X̂r, with probability 1 − δ
over the choice of surrogate model set MS ∼ PS with size
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K ∈ N, we have
RS(x̂) ≤ max

∥ϵ∥2≤ρ
RŜ(x̂+ ϵ)+√√√√ d

2 log(1 +
γ2

ρ2 (1 +
√

logK
d )2) + log K

δ + Õ(1)
2(K − 1)

.

(A.15)

where Õ(1) term equals to ε = 1
2 + 2 log(2 + 3d + 6r2K +

4d log(
√
d+
√
logK)).

Proof. For x̂ ∈ X̂r with X̂r =
{
x̂ ∈ X̂ | RS (x̂) ≤ r

}
, if

r is a relatively small value, then we assume without loss
of generality that adding a noise ϵ following the Gaussian
distribution, i.e., ϵi ∼ N (0, σ2), on x̂ will not further reduce
its surrogate adversarial risk. That is to say,

RS(x̂) ≤ Eϵi∼N (0,σ2)[RS(x̂+ ϵ)]. (A.16)
From Lemma 3, we have that for any model distribution

PS , n ∈ N, prior distribution P over AEs, 0 < δ < 1, with
probability 1− δ over the choice of set MS ∼ PS with size
K, for any posterior distributions Q over AEs, the following
bound holds:

Ex̂∼Q[RS(x̂)] ≤ Ex̂∼Q[RŜ(x̂)] +

√
KL(Q||P) + log K

δ

2(K − 1)
.

(A.17)
We first consider the KL divergence term in Equation A.17.

Let the prior P be a Gaussian distribution centered at the benign
image x with covariance matrix σ2

pI , i.e., P = N (x, σ2
pI). Let

posterior Q be a Gaussian distribution centered at x̂ which is
the benign image x with an additive adversarial perturbation ξ —
x+ξ, with covariance matrix σ2I , i.e., Q = N (x+ξ, σ2I), as
if we have added the noise ϵi ∼ N (0, σ2). Then KL divergence
term can be written as:

KL(Q∥P) = 1

2

[
dσ2 + ∥ξ∥22

σ2
p

− d+ d log

(
σ2
p

σ2

)]
. (A.18)

The variance of prior σp is selected to minimize the above KL
divergence. Given σ, we differentiate KL(Q∥P) with respect
to σp and set the derivative to zero, solving

σ∗2
p = σ2 + ∥ξ∥22/d.

However, the prior is selected in advance and independent of
the training data, which the posterior depends on. Hence, the
above solution is not allowed. However, one can optimize the
prior standard deviation σp over a pre-defined set and use a
union bound augment to get the bound for best σp in this set.
Let the pre-defined set be {c exp ((1− j)/d)|j ∈ N}. If for
each j one chooses σp to be

σp = c exp ((1− j)/d),

such that the above PAC-Bayes bound holds with probability
1 − δj where δj = 6δ

π2j2 , then all bound can be combined
according to union bound and hold with probability

1−
∞∑
j=1

δj = 1−
∞∑
j=1

6δ

π2j2
= 1− δ.

As the right hand side of Equation A.15 is lower bounded

by

√
d log

(
1+

∥ξ∥22
ρ2

)
4K since ξ is restricted in the γ-norm ball.

When

√
d log

(
1+

∥ξ∥22
ρ2

)
4K > r, this bound holds trivially. Thus

we only consider when

√
d log

(
1+

∥ξ∥22
ρ2

)
4K ≤ r, leading to

∥ξ∥22 ≤ ρ2
(
exp

(
4r2K

d

)
− 1

)
(A.19)

Therefore, by Equation A.19, we have

σ2 + ∥ξ∥22/d ≤ σ2 +
ρ2

d

(
exp

(
4r2K

d

)
− 1

)
≤ σ2 + ρ2 exp

(
4r2K

d

)
. (A.20)

As σp = c exp ((1− j)/d), we consider the case j = 1 −
d log(σ2

p/c) =
⌊
1− d log

((
σ2 + ∥ξ∥22/d

)
/c
)⌋

, where c can

be set as σ2 + ρ2 exp
(

4r2K
d

)
to make sure j ∈ N according

to Equation A.20. For this j, we have
1− d log(σ2

p/c) ≤ 1− d log
((
σ2 + ∥ξ∥22/d

)
/c
)

σ2
p ≥ σ2 + ∥ξ∥22/d.

Similarly, we can derive an upper bound for σ2
p,

1− d log(σ2
p/c) ≥ 1− d log

((
σ2 + ∥ξ∥22/d

)
/c
)
− 1

σ2
p ≤ exp(

1

d
)(σ2 + ∥ξ∥22/d).

With the above lower bound and upper bound, the KL term
in Equation A.18 can be written as:

KL(Q∥P) = 1

2

[
dσ2 + ∥ξ∥22

σ2
p

− d+ d log

(
σ2
p

σ2

)]

≤ 1

2

[
dσ2 + ∥ξ∥22
σ2 + ∥ξ∥22/d

− d+ d log

(
exp( 1d )(σ

2 + ∥ξ∥22/d)
σ2

)]

=
1

2

[
1 + d log

(
dσ2 + ∥ξ∥22

dσ2

)]
.

(A.21)

We then consider the log term in Equation A.17. Under the
case of above discussed j, the bound holds with probability
1 − δj where δj = 6δ

π2j2 . Therefore, the rest part could be
simplified as

log
K

δj
= log

K

δ
+ log

π2j2

6

≤ log
K

δ
+ log

π2
(
1 + d log

(
c/
(
σ2 + ∥ξ∥22/d

)))2
6

(A.22)

≤ log
K

δ
+ log

π2
(
1 + d log

(
c/σ2

))2
6

= log
K

δ
+ log

π2
(
1 + d log

(
1 + exp

(
log( ρ

2

σ2 ) +
4r2K

d

)))2
6

(A.23)

≤ log
K

δ
+ log

π2
(
1 + 2d+ 4r2K + d log( ρ

2

σ2 )
)2

6
(A.24)

≤ log
K

δ
+ 2 log(2 + 3d+ 6r2K + 2d log(

ρ2

σ2
)), (A.25)

where Equation A.22 is by the upper bound of j. Equation A.23
is by the value set for c. A.24 is by the fact that log (1 + ex) ≤
2 + x, for every x ≥ 0.

Substituting the upper bound for KL term in Equation A.21
and the upper bound for log term in Equation A.25, we have
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the following PAC-Bayes bound
Eϵi∼N (0,σ2)[RS(x̂+ ϵ)] ≤ Eϵi∼N (0,σ2)[RŜ(x̂+ ϵ)]+√√√√ d

2
log

(
dσ2+∥ξ∥22

dσ2

)
+ 2 log(2 + 3d+ 6r2K + 2d log( ρ2

σ2 )) + ε′

2(K − 1)
,

(A.26)
where ε′ = log K

δ + 1
2 .

As we set ϵi ∼ N (0, σ2), we have

∥ϵ∥22 =

d∑
i=1

ϵ2i = σ2χ2
d,

where χ2
d is a chi-square random variable with d degrees of

freedom (mean d, variance 2d ). By Lemma 1 in [73], we have

Pr
[
χ2
d − d ≥ 2

√
dt+ 2t

]
≤ e−t, t > 0.

Multiplying both sides by σ2 yields

Pr
[
∥ϵ∥22 − dσ2 ≥ 2σ2

√
dt+ 2σ2t

]
≤ e−t. (A.27)

Set e−t = 1/
√
K, then t = log

√
K. Substituting t into

Equation A.27, we have

Pr

[
∥ϵ∥22 ≤ σ2(d+ 2

√
d log

√
K + 2 log

√
K)

]
≥ 1− 1/

√
K.

(A.28)

As d + 2

√
d log

√
K + 2 log

√
K ≤ d

(
1 +

√
logK

d

)2

, we

have, with probability ≥ 1− 1/
√
K,

∥ϵ∥22 ≤ dσ2

(
1 +

√
logK

d

)2

. (A.29)

By defining ρ2 = dσ2

(
1 +

√
logK

d

)2

, Equation A.29 be-
comes

∥ϵ∥22 ≤ ρ2, with probability 1− 1/
√
K.

Combining Equation A.26 and A.16 and splitting the
expectation over the two events {∥ϵ∥2 ≤ ρ} with probability
1− 1/

√
K and {∥ϵ∥2 > ρ} with probability 1/

√
K,

RS(x̂) ≤ Eϵi∼N (0,σ2)[RŜ(x̂+ ϵ)]+√√√√ d
2
log

(
dσ2+∥ξ∥22

dσ2

)
+ 2 log(2 + 3d+ 6r2K + 2d log( ρ2

σ2 )) + ε′

2(K − 1)

≤ (1− 1/
√
K) max

∥ϵ∥2≤ρ
RŜ(x̂+ ϵ) + 1/

√
K+√√√√ d

2
log(1 +

∥ξ∥22
ρ2

(1 +
√

logK
d

)2) + ε′′ + ε′

2(K − 1)

≤ max
∥ϵ∥2≤ρ

RŜ(x̂+ ϵ)+√√√√ d
2
log(1 + γ2

ρ2
(1 +

√
logK

d
)2) + ε′′ + ε′

2(K − 1)
,

where ε′′ = 2 log(2 + 3d + 6r2K + 4d log(
√
d +
√
logK)).

This completes the proof.

APPENDIX B
EXPERIMENTS ON CIFAR-10

A. Main Results
Baselines For the experiments conducted on CIFAR-10, we

adopt the same set of baseline methods used in the ImageNet
experiments.

Models For surrogate models on CIFAR-10, we adopt three
architectures (I = 3) from three prototypical model categories:
ResNet-50 [68] from normally trained convnets, ViT [55] from
normally trained metaformers, and WideResNet-70-16 (AT)
[74] from adversarially trained convnets. Due to the limited
availability of adversarially trained metaformer models on
CIFAR-10, we exclude them from the surrogate models. For
DRAP, model samples are gathered as proposals at each epoch
during the fine-tuning of the three pretrained models, which
are optimized using their respective training strategies over
n = 40 additional epochs. In order to get more diverse samples,
we fine-tune the three pretrained models with larger constant
learning rates of 0.05, 0.03, and 0.02, respectively, for ResNet-
50, ViT, and WideResNet-70-16 (AT), without significantly
degrading their clean accuracy. All compared methods also
generate AEs using the logits of the three surrogate models,
leveraging the fusion strategy outlined in [7]. To assess the
transferability of these AEs, we evaluate them across a diverse
set of target models. These target models are grouped into three
categories: ConvNet Set, ConvNet(AT) Set, and Metaformer
Set, as shown in Tab. VIII.

Implementation Details For both untargeted and targeted
attack scenarios on CIFAR-10, the adversarial perturbation
magnitude is constrained to γ = 8/255, with a step size of
βx̂ = 8/255/10 for all methods. The RAP method retains its
iteration number of 400 to ensure comparable evaluation. For
all other methods, a standard iteration count of 120 is used
to maintain consistency across experiments. For DRAP, the
key hyper-parameters are configured as follows: the number of
samples per model distribution n = 40, the inner optimization
iteration count T = 5, the late start iteration number nLS = 5,
the inner step size βϵ = 0.1/255, and the decay factor µ =
1. The total number of iterations for generating adversarial
examples in DRAP is n× I = 120, aligning with the iteration
count of other methods to ensure fairness in comparison. For
all baseline methods, we adhere to the protocols established in
BlackboxBench to maintain consistency across experimental
setups.

Results of Untargeted Attacks Table VIII presents the
untargeted attack results on CIFAR-10 across normally trained
and adversarially trained target model sets. Overall, our
proposed method achieves the highest average attack success
rate, surpassing both input-transformation based and other
optimization-based methods. This outcome aligns with the
ImageNet findings, indicating that our strategy generalizes effec-
tively to a dataset with different characteristics. Taking a closer
look, we observe that SIA remains highly competitive against
normally trained target models but underperforms significantly
on adversarially trained models compared to DRAP. In contrast,
our approach maintains strong performance on adversarially
trained models without sacrificing success rates on normally
trained ones, striking a well-rounded balance across all target
sets. This reinforces the idea that simultaneously pursuing
flatness among diverse surrogate models can secure robust
adversarial transferability, regardless of the target’s defense
mechanisms. Similar to ImageNet results, CWA continues to
exhibit promising effectiveness against adversarially trained
targets. However, its overall success rate remains lower, likely
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TABLE VIII
UNTARGETED ATTACK SUCCESS RATES (%,↑) ON CIFAR-10 DATASET. THE AES ARE CRAFTED FROM THREE SURROGATE MODELS (RESNET-50, VIT, AND
WIDERESNET-70-16(AT)), AGAINST 20 TARGET MODELS FALLING INTO THREE PROTOTYPES (NORMALLY AND ADVERSARIALLY TRAINED CONVNETS AND

NORMALLY TRAINED METAFORMERS). BOLD DENOTES THE BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST RESULTS.

Target Model Set I-FGSM DI2-FGSM SI-FGSM Admix TI-FGSM SSA SIA MI-FGSM PI-FGSM VT-FGSM PGN CWA SVRE RAP DRAP

AlexNet [45] 28.4 31.0 29.0 29.5 28.6 33.4 32.5 29.4 30.2 30.3 34.0 35.2 28.2 30.9 41.5
DenseNet [47] 88.1 94.8 91.7 95.2 88.2 96.3 97.9 90.4 92.3 95.8 96.5 85.7 88.5 96.5 96.7
ResNeXt [75] 93.3 97.3 95.8 97.8 93.3 97.7 99.0 94.4 94.8 97.3 98.9 88.7 92.3 97.7 97.9

WRN-28-10-drop [76] 87.6 94.4 91.3 95.1 87.9 96.7 97.7 90.7 92.2 96.0 96.8 85.0 87.7 96.5 96.9
GoogleNet [48] 89.7 95.3 92.8 95.7 89.9 96.8 98.5 92.2 93.5 96.3 96.4 86.8 89.3 97.0 96.9

MobileNetv2 [50] 89.2 96.0 92.4 96.0 89.1 97.2 98.2 92.3 93.1 96.2 97.3 86.0 89.1 96.7 97.7
PreResNet [77] 96.7 98.7 98.0 99.0 96.5 99.0 99.1 97.4 96.8 98.3 99.5 91.8 95.8 98.5 99.2

ConvNet Set

Average 81.9 86.8 84.4 86.9 81.9 88.2 89.0 83.8 84.7 87.2 88.5 79.9 81.6 87.7 89.5

ViT-T [55] 73.1 87.6 77.6 85.8 72.9 84.0 93.9 76.3 79.9 88.1 88.7 75.9 72.4 84.8 80.4
Swin-S [58] 76.1 90.0 89.6 89.5 89.2 90.1 95.9 89.4 82.1 89.9 92.6 77.3 76.3 90.1 83.7
Swin-B [58] 71.4 89.9 89.6 89.4 88.9 87.0 93.4 88.9 78.9 89.6 90.3 74.9 73.2 89.9 79.7
DeiT-T [56] 74.9 88.8 79.6 87.9 75.2 87.5 95.0 78.6 80.9 89.4 90.5 77.5 74.2 85.8 81.0
DeiT-B [56] 72.0 87.7 76.5 85.1 72.1 83.1 92.8 74.1 79.2 88.5 88.4 74.0 72.7 83.9 78.0

MetaFormer Set

Average 73.5 88.8 82.6 87.5 79.7 86.3 94.2 81.4 80.2 89.1 90.1 75.9 73.8 86.9 80.6

PreActResNet-18 [78] 23.6 24.4 23.6 24.1 23.7 26.1 24.7 24.3 23.9 24.4 25.9 29.2 23.3 24.7 34.0
WideResNet-28-10 [79] 14.4 15.0 14.0 14.7 14.4 15.9 14.4 15.1 14.3 15.0 16.0 21.4 14.0 15.0 26.2
WideResNet-28-10 [80] 15.2 16.0 14.9 15.5 15.2 16.7 15.0 15.8 15.2 15.8 16.8 22.0 14.6 15.8 27.0
WideResNet-28-10 [81] 16.4 17.0 16.2 16.6 16.4 18.2 16.7 17.1 16.7 16.9 18.4 22.6 16.0 17.3 27.4
WideResNet-34-20 [82] 18.3 18.9 18.4 18.8 18.5 20.2 18.9 19.0 18.4 18.8 20.3 24.7 18.0 18.9 29.6
WideResNet-34-10 [83] 18.8 19.6 18.8 19.2 18.9 20.6 19.4 19.6 19.1 19.4 20.7 25.5 18.5 19.6 30.7

ResNet-50 [84] 16.9 17.7 16.6 17.4 17.0 18.7 17.3 17.6 17.2 17.5 18.8 23.7 16.7 17.8 29.1
WideResNet-34-10 [85] 19.9 20.6 19.8 20.3 20.1 21.2 20.1 20.5 20.0 20.4 21.3 26.1 19.6 20.4 30.8

ConvNet(AT) Set

Average 17.9 18.6 17.8 18.3 18.0 19.7 18.3 18.6 18.1 18.5 19.8 24.4 17.6 18.7 29.4

Overall Average 54.2 60.0 57.3 59.6 55.8 60.3 62.0 57.2 56.9 60.2 61.4 56.7 54.0 59.9 63.2

due to its finding a suboptimal universal perturbation.
Results of Targeted Attacks Table IX presents the targeted

attack results on CIFAR-10. As with ImageNet, targeted attacks
remain particularly challenging, especially on adversarially
trained models in the ConvNet(AT) Set. Among all evalu-
ated methods, DRAP demonstrates a clear advantage on the
ConvNet(AT) Set, achieving significantly higher success rates
compared to other methods, showcasing its effectiveness against
robust adversarially trained targets. Beyond the ConvNet(AT)
Set, DRAP also performs strongly on the ConvNet Set and
MetaFormer Set, achieving competitive success rates that
match or surpass other leading methods in many cases. This
highlights the adaptability of DRAP across diverse target model
categories, maintaining a strong balance between attacking
normally trained and adversarially trained models. Overall,
these results reinforce the robustness and competitiveness of
DRAP in targeted attack scenarios, particularly when faced
with highly defensive models.

B. Composition with Input-Transformation Based Attacks

Following the combination experiments on ImageNet, we
conduct similar tests on CIFAR-10 by integrating DRAP with
several well-known input-transformation based attacks and
optimization-based attacks. Due to computational constraints,
we omit the combination of PGN and SIA. The experimental
setup follows the untargeted protocol as described earlier.
Table X summarizes the results on CIFAR-10. Consistent
with the findings on ImageNet, integrating DRAP with input-
transformation based attacks significantly enhances their base
performance, leading to superior attack success rates across
both normal and adversarially trained models. Notably, our
combined method achieves the highest attack performance
in every combination. It also outperforms all other methods
on the most challenging ConvNet(AT) Set. Furthermore, it
demonstrates competitive performance on the ConvNet Set and
MetaFormer Set, maintaining a strong balance across different

target model categories. These results validate the scalability
and adaptability of DRAP on CIFAR-10. Not only does it excel
as a standalone approach, but it also amplifies the effective-
ness of input-transform methods, confirming its potential for
achieving state-of-the-art adversarial transferability.

APPENDIX C
FLATNESS OPTIMIZATION ALGORITHMS

The details of using strategies from RAP and CWA to
optimize the loss sharpness over diverse surrogate models
are shown in Algorithm 2 and Algorithm 3, respectively. We
stick to their original algorithms but substitute the surrogate
models seen at each iteration j with a batch of models from the
diverse model set. Specifically, we sample one model weight
from every model architecture to compose one batch. When
fusing the gradients of multiple models, we use the logits
ensemble strategy as suggested in RAP and CWA. For hyper-
parameters, we set perturbation budget γ = 4/255 with step
size α = 2/255, n = 40 and follow the optimal settings
reported in their papers to set their own hyper-parameters. In
Flat-RAP, we set step size β = α and nLS = 5, which is same
as in DRAP. In Flat-CWA, we set decay factor µ = 1, step
sizes β = 50, r = γ/15.

APPENDIX D
ADDITIONAL ABLATIVE STUDY

A. Parameter Study on nLS

As the late start iteration number nLS decides when the
sharpness penalty begins to take effect during the optimiza-
tion process, we range nLS from 0 to n with nLS =
{0, 5, 15, 25, 35, 40}. When nLS = 0, the sharpness penalty
is active throughout the entire optimization process. As nLS

increases, the influence of the sharpness penalty gradually
weakens, eventually vanishing at nLS = K, at which point
DRAP reduces to a standard model ensemble attack. As shown
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TABLE IX
TARGETED ATTACK SUCCESS RATES (%,↑) ON CIFAR-10 DATASET. THE AES ARE CRAFTED FROM THREE SURROGATE MODELS (RESNET-50, VIT, AND
WIDERESNET-70-16(AT)), AGAINST 20 TARGET MODELS FALLING INTO THREE PROTOTYPES (NORMALLY AND ADVERSARIALLY TRAINED CONVNETS AND

NORMALLY TRAINED METAFORMERS). BOLD DENOTES THE BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST RESULTS.

Target Model Set I-FGSM DI2-FGSM SI-FGSM Admix TI-FGSM SSA SIA MI-FGSM PI-FGSM VT-FGSM PGN CWA SVRE RAP DRAP

AlexNet [45] 3.4 4.3 3.5 3.8 3.3 5.1 4.9 3.8 4.0 3.8 5.4 6.2 3.2 4.2 8.6
DenseNet [47] 53.3 74.3 64.1 79.7 53.0 83.0 86.0 56.6 64.3 82.3 78.2 59.8 54.6 72.5 84.8
ResNeXt [75] 66.1 83.4 75.4 85.7 65.9 84.8 91.9 68.4 68.8 87.6 80.6 63.2 63.2 76.4 86.0

WRN-28-10-drop [76] 55.8 75.5 67.3 81.0 55.3 81.9 84.6 60.9 67.3 84.3 79.8 60.5 55.6 74.3 82.1
GoogleNet [48] 55.5 76.0 65.9 80.8 55.2 85.2 91.4 60.3 66.5 84.0 80.6 60.0 55.1 73.5 86.2

MobileNetv2 [50] 52.4 74.6 63.2 79.1 52.4 81.0 84.6 57.0 65.0 81.7 80.0 59.5 53.9 72.1 82.0
PreResNet [77] 73.2 87.3 83.1 92.5 73.0 89.9 92.6 74.1 73.6 92.1 85.4 68.0 72.3 79.4 90.6

ConvNet Set

Average 51.4 67.9 60.4 71.8 51.2 73.0 76.6 54.4 58.5 73.7 70.0 53.9 51.1 64.6 74.3

ViT-T [55] 33.3 57.1 40.3 56.1 33.1 47.6 58.2 36.7 44.9 56.4 42.1 44.4 33.1 51.9 52.9
Swin-S [58] 36.9 14.7 44.2 63.2 36.9 57.1 66.9 12.7 46.5 14.9 51.1 47.3 38.0 14.1 58.3
Swin-B [58] 33.0 14.3 39.3 58.2 33.0 54.3 59.6 12.2 45.1 14.2 46.7 45.7 35.6 13.8 54.8
DeiT-T [56] 34.6 59.5 41.0 54.5 34.7 51.7 61.3 38.7 44.5 59.7 47.1 45.4 33.6 53.2 53.1
DeiT-B [56] 33.8 62.2 40.7 59.2 34.5 48.6 60.8 36.1 45.4 58.9 42.1 43.9 34.4 53.0 52.2

MetaFormer Set

Average 34.3 41.6 41.1 58.2 34.4 51.9 61.4 27.3 45.3 40.8 45.8 45.3 34.9 37.2 54.3

PreActResNet-18 [78] 3.0 3.2 2.9 3.1 3.0 3.6 3.0 3.2 3.1 2.9 3.6 4.8 2.6 3.3 6.4
WideResNet-28-10 [79] 2.2 2.4 2.0 2.2 2.2 2.6 2.1 2.4 2.1 2.0 2.4 4.6 1.7 2.5 6.1
WideResNet-28-10 [80] 2.4 2.5 2.2 2.5 2.4 2.9 2.2 2.5 2.4 2.3 2.8 4.7 1.8 2.7 6.4
WideResNet-28-10 [81] 2.4 2.5 2.2 2.3 2.3 2.7 2.2 2.5 2.3 2.2 2.7 4.5 1.8 2.5 6.0
WideResNet-34-20 [82] 3.0 3.2 2.9 3.1 3.0 3.4 3.0 3.2 2.9 2.9 3.4 5.1 2.5 3.3 6.5
WideResNet-34-10 [83] 2.7 2.9 2.6 2.8 2.7 3.2 2.8 2.9 2.7 2.6 3.1 4.9 2.3 3.0 6.5

ResNet-50 [84] 2.4 2.6 2.2 2.5 2.4 2.9 2.4 2.7 2.4 2.3 2.9 4.9 2.0 2.7 7.0
WideResNet-34-10 [85] 2.7 3.0 2.6 2.8 2.8 3.1 2.7 3.0 2.7 2.7 3.1 4.8 2.4 3.0 6.3

ConvNet(AT) Set

Average 2.6 2.8 2.4 2.6 2.6 3.0 2.5 2.8 2.5 2.4 3.0 4.8 2.1 2.9 6.4

Overall Average 27.6 35.3 32.4 40.8 27.6 39.7 43.2 27.0 32.8 37.0 37.2 32.1 27.5 33.1 42.1

TABLE X
ATTACK SUCCESS RATES ON CIFAR-10 DATASET (%, ↑) OF MI, PI, VT,

RAP, PGN, CWA, AND DRAP WHEN INTEGRATED WITH DI, TI, ADMIX,
AND SIA, RESPECTIVELY. THE INDENTATION DENOTES COMBINATION. THE

RESULTS ARE AVERAGED ON EACH MODEL SET.

Attack ConvNet
Set

MetaFormer
Set

CNN (AT)
Set

Overall
Average

DI-FGSM 86.7 88.8 18.6 60.0
+ MI 88.7 91.7 19.8 61.9
+ PI 89.0 91.9 19.9 62.1
+ VT 89.2 94.3 19.6 62.6
+ RAP 86.3 82.0 19.3 58.4
+ PGN 89.8 92.3 20.1 62.6
+ CWA 88.0 86.1 26.8 63.0
+ DRAP 89.0 83.2 30.0 63.9

TI-FGSM 81.9 79.6 18.0 55.8
+ MI 83.7 81.7 18.7 57.2
+ PI 84.6 78.9 18.8 56.9
+ VT 87.1 89.2 18.6 60.2
+ RAP 85.7 74.6 18.5 56.1
+ PGN 89.9 93.0 20.1 62.7
+ CWA 82.7 70.2 24.8 56.4
+ DRAP 89.5 81.5 29.4 63.5

Admix 86.9 87.5 18.3 59.6
+ MI 87.8 88.8 19.0 60.5
+ PI 87.2 87.2 19.0 59.9
+ VT 88.9 93.2 18.9 62.0
+ RAP 89.3 81.7 18.7 59.1
+ PGN 89.8 92.3 20.0 62.5
+ CWA 87.6 81.9 25.9 61.5
+ DRAP 90.0 83.1 29.0 63.9

SIA 89.0 94.2 18.3 62.0
+ MI 90.5 96.5 19.5 63.6
+ PI 90.4 96.3 19.5 63.5
+ VT 89.9 95.2 19.3 63.0
+ RAP 87.7 88.4 19.0 60.4
+ CWA 89.6 88.7 26.2 64.0
+ DRAP 90.5 84.5 28.2 64.2

Algorithm 2: Flat-RAP algorithm
1: Require: benign data(x, y), perturbation budget γ,

surrogate model distributions {PSi
}Ii=1, number of

samples within one distribution n, late start iteration
number nLS , inner iteration number T , step size β, α,
decay factor µ.

2: Initialize x̂0 ← x,m← 0;
3: for j = 0, ...,K − 1 do
4: for i = 0, ..., I − 1 do
5: Sample a surrogate model wi from PSi

;
6: end for
7: if j ≥ nLS then
8: # Inner maximization
9: Initialize ϵ← 0;

10: for t = 0, ..., T − 1 do
11: Calculate g = ∇ϵℓ

(
1
I

∑I−1
i=0 f (x̂j + ϵ,wi) , y

)
;

12: Update ϵ = ϵ+ β · sign(g);
13: end for
14: end if
15: # Outer minimization
16: Calculate g = ∇x̂ℓ

(
1
I

∑I−1
i=0 f (x̂j + ϵ,wi) , y

)
;

17: Update momentum by m = µ ·m+ g
∥g∥1

;
18: Update x̂j+1 by x̂j+1 = Πγ (x̂j − α · sign (m));
19: end for
20: Return x̂K .

in Table XII, for a fixed number of iterations used to update
AE, attacks with more iterations penalizing sharpness can
effectively improve the attack performance over nLS = K.
The peak performance is observed at approximately nLS = 5,
underscoring the effectiveness of the late-start strategy.
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Algorithm 3: Flat-CWA algorithm
1: Require: benign data(x, y), perturbation budget γ,

surrogate model distributions {PSi}
I
i=1, number of

samples within one distribution n, inner iteration number
T , step size r, β, α, decay factor µ.

2: Initialize x̂0 ← x,m← 0;
3: for j = 0, ...,K − 1 do
4: for i = 0, ..., I − 1 do
5: Sample a surrogate model wi from PSi ;
6: end for
7: # Inner maximization
8: Calculate g = ∇xℓ

(
1
I

∑I−1
i=0 f (x̂j ,wi) , y

)
;

9: Update x̂j by x̂0
j = Πγ (x̂j + r · sign(g));

10: # Outer minimization
11: for i = 0, ..., I − 1 do
12: Calculate g = ∇xℓ

(
f
(
x̂i
j ,wi

)
, y
)
;

13: Update momentum by m = µ ·m+ g
∥g∥2

;
14: Update x̂i+1

j by x̂i+1
j = Πγ

(
x̂i
j − β ·m

)
;

15: end for
16: Calculate the update g = x̂I

j − x̂j ;
17: update x̂j+1 by x̂j+1 = Πγ (x̂j + α · sign(g));
18: end for
19: Return x̂K .

B. Choice of Architecture within Prototype

In DRAP, we improve between-distribution diversity by
choosing surrogate distributions on model weights of architec-
tures from diverse prototypes. Does the choice of architecture
within a prototype have as significant an impact on improving
transferability as the prototypes themselves, as shown in Section
VI-C2? For comparison, we substitute the surrogate model
ResNet-50 in default protocol in Section VI-A with VGG-19-
BN, Inception-V3 and DenseNet-121 and report the attack
success rated averaged on the whole target model sets in Table
XIII. We can observe that DRAP is less sensitive to different
convnets. Even with other convnets, the attack performance is
still quite decent. This is because even if they provide diversity
in model distribution, they give rise to similar loss landscape
from the adversarial perspective. The results demonstrate that
the between-distribution diversity among architectures, a lower-
level concept than diversity among prototypes, is less important
to transferability.

APPENDIX E
FULL IMAGENET TARGETED RESULTS

In Table XIV, we present targeted attack results on ImageNet
dataset broken down to each target models for the methods
evaluated in Table III.
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TABLE XI
THE NUMBER OF GRADIENT CALCULATIONS REQUIRED IN DIFFERENT METHODS. ASIDE FROM DRAP, ONE UPDATE DIRECTION CALCULATION OF OTHERS
REQUIRES I QUERIES OF MODEL IN SURROGATE ENSEMBLE. WE USE THE SAME UNTARGETED EXPERIMENTAL PROTOCOL AS IN SECTION VI-A (I = 5).

FOR RAP, THE LATE-START KLS IS REDUCED IN PROPORTION TO 50.

Attack # of gradient calculations (Ng) vs. niter Hyper-parameters Ng(niter = 25)

MI-FGSM niter × I \ 125

PI-FGSM niter × I \ 125

RAP
{

niter × I, niter < KLS

KLS × I + (niter −KLS)× (T + 1)× I, niter ≥ KLS
KLS =

{
0, niter/I < KLS

50, niter ≥ KLS
, T = 10 1375

CWA niter × 2I \ 250

PGN niter ×N × 2I N = 20 5000

DRAP
{

niter, niter < nLS × I
nLS × I + (niter − nLS × I)× (T + 1), niter ≥ nLS × I

nLS =

{
0, niter/I < nLS

5, niter/I ≥ nLS
, T = 5 150

TABLE XII
ATTACK SUCCESS RATES (%) OF DRAP WITH DIFFERENT LATE START

ITERATION NUMBER nLS .

nLS
CNN
Set

Metaformer
Set

CNN(AT)
Set

Metaformer(AT)
Set

Overall
Average

0 78.8 42.2 24.9 20.3 45.6
5 80.2 42.6 24.9 20.2 46.1

15 80.3 41.9 24.7 20.2 45.9
25 79.8 42.4 25.2 20.1 46.0
35 78.8 40.7 24.9 20.1 45.2
40 77.7 36.3 24.1 20.0 43.6

TABLE XIII
AVERAGE ATTACK SUCCESS RATES (%) OF DRAP WITH DIFFERENT

CONVENETS.

Attack Architecture for ConvNet

ResNet-50 VGG-19-BN Inception-V3 DenseNet-121

DRAP 46.2 44.7 44.5 46.1
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TABLE XIV
TARGETED ATTACK SUCCESS RATES (%,↑) ON IMAGENET DATASET. BOLD DENOTES THE BEST RESULTS AND UNDERLINED DENOTES THE SECOND BEST

RESULTS.
Target Model Set I-FGSM DI2-FGSM SI-FGSM Admix TI-FGSM SSA SIA MI-FGSM PI-FGSM VT-FGSM PGN CWA SVRE RAP DRAP

AlexNet [45] 0.0 0.1 0.0 0.1 0.1 2.1 1.7 0.0 0.2 0.0 3.2 12.9 0.6 0.3 30.4
VGG-16-BN [46] 9.0 38.1 13.7 20.1 13.2 32.9 93.3 7.0 13.4 10.9 50.7 21.9 16.3 29.0 80.0

DenseNet-201 [47] 10.4 48.6 34.1 24.0 18.4 50.5 94.7 13.6 24.8 14.8 62.7 53.4 26.4 28.4 90.7
GoogLeNet [48] 1.1 13.5 9.0 4.1 3.1 19.6 61.4 2.2 5.0 3.1 31.9 36.9 7.3 9.4 79.3

ShuffleNetV2 [49] 0.3 3.9 2.9 1.5 0.7 7.9 27.7 1.7 2.2 0.8 21.3 33.3 3.0 4.5 75.7
MobileNetV2 [50] 3.6 19.8 9.0 10.5 6.2 27.2 77.3 3.5 7.2 4.3 41.6 37.4 12.5 16.4 86.3

MobileNetV3-L [51] 0.9 8.0 4.6 3.6 2.2 36.3 47.2 2.1 3.8 2.3 29.7 40.1 19.7 6.4 81.7
MNASNet [52] 3.0 16.2 7.5 7.7 5.2 20.9 73.8 3.8 6.8 4.8 40.5 38.5 9.4 14.4 87.1

EfficientNet [53] 0.9 7.3 4.3 1.6 1.1 12.7 44.5 0.9 1.8 1.5 21.5 31.9 5.7 3.3 72.3
ConvNeXt-L [54] 24.6 64.6 31.3 39.4 31.8 87.9 98.7 17.9 32.1 26.7 70.7 53.2 84.4 33.1 92.0

ConvNet
Set

Average 5.4 22.0 11.6 11.3 8.2 29.8 62.0 5.3 9.7 6.9 37.4 36.0 18.5 14.5 77.6

ViT-S [55] 0.1 4.5 0.3 0.4 0.2 10.4 35.2 0.1 0.4 0.1 7.3 24.6 6.2 1.1 59.4
DeiT-S [56] 0.4 6.6 1.2 0.8 0.4 14.9 37.8 0.7 1.1 0.6 13.5 29.9 8.4 1.5 71.6

PoolFormer-S [38] 2.4 41.6 8.3 8.7 6.4 49.0 89.5 5.3 8.9 6.1 45.8 34.8 29.9 15.5 82.4
TNT-S [57] 0.2 8.4 1.2 0.5 0.3 16.3 47.1 0.2 1.1 0.5 14.9 27.5 11.8 2.3 72.0
Swin-S [58] 0.0 4.5 0.3 0.3 0.2 6.5 31.7 0.3 0.3 0.5 4.0 12.9 7.8 1.0 37.4
XCiT-S [59] 0.0 8.8 0.0 0.4 0.1 10.1 26.4 0.2 0.2 0.1 3.8 9.5 4.9 0.5 30.2
CaiT-S [60] 0.1 7.0 0.3 0.4 0.1 8.1 22.6 0.0 0.5 0.0 3.8 13.8 4.3 0.1 41.5

Metaformer
Set

Average 0.5 11.6 1.7 1.6 1.1 16.5 41.5 1.0 1.8 1.1 13.3 21.9 10.5 3.1 56.4

RaWideResNet-101-2 [61] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.1 7.5
WideResNet-50-2 [62] 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 5.9 0.2 0.2 12.3

ResNet-50 [63] 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 1.3 0.0 0.0 4.2
ConvNeXt-L [64] 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 4.3 0.1 0.2 8.2
ConvNeXt-B [64] 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 4.4 0.0 0.1 9.7

ConvNeXt-L-ConvStem [65] 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 3.7 0.1 0.2 8.0
ConvNeXt-B-ConvStem [65] 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.1 5.0 0.1 0.1 9.1

Inc-v3ens3 [66] 0.0 0.1 0.1 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.2 13.1 0.4 0.0 26.4
Inc-v3ens4 [66] 0.0 0.0 0.0 0.0 0.0 0.9 0.2 0.0 0.0 0.0 0.2 13.3 0.4 0.1 27.0

IncRes-v2ens [66] 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.3 9.2 0.1 0.0 21.6

ConvNet(AT)
Set

Average 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.0 0.1 6.4 0.1 0.1 13.4

Swin-B [64] 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 3.5 0.1 0.2 7.0
Swin-L [64] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.2 8.9
XCiT-L [67] 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.1 13.1 0.0 0.2 17.6

ViT-B-ConvStem [65] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 9.1 0.0 0.1 12.1

Metaformer(AT)
Set

Average 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 7.5 0.0 0.2 11.4

Overall Average 1.8 9.7 4.1 4.0 2.9 13.4 29.4 1.9 3.6 2.5 15.1 19.5 8.4 5.4 43.5
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