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Abstract

Retrieval-Augmented Code Generation (RACG) leverages external
knowledge to enhance Large Language Models (LLMs) in code syn-
thesis, improving the functional correctness of the generated code.
However, existing RACG systems largely overlook security, leading
to substantial risks. Especially, the poisoning of malicious code into
knowledge bases can mislead LLMs, resulting in the generation of
insecure outputs, which poses a critical threat in modern software
development. To address this, we propose a security-hardening
framework for RACG systems, CodeGuarder, that shifts the para-
digm from retrieving only functional code examples to incorporat-
ing both functional code and security knowledge. Our framework
constructs a security knowledge base from real-world vulnerability
databases, including secure code samples and root cause annota-
tions. For each code generation query, a retriever decomposes the
query into fine-grained sub-tasks and fetches relevant security
knowledge. To prioritize critical security guidance, we introduce a
re-ranking and filtering mechanism by leveraging the LLMs’ sus-
ceptibility to different vulnerability types. This filtered security
knowledge is seamlessly integrated into the generation prompt.
Our evaluation shows CodeGuarder significantly improves code
security rates across various LLMs, achieving average improve-
ments of 20.12% in standard RACG, and 31.53% and 21.91% under
two distinct poisoning scenarios without compromising functional
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correctness. Furthermore, CodeGuarder demonstrates strong gen-
eralization, enhancing security even when the targeted language’s
security knowledge is lacking. This work presents CodeGuarder as
a pivotal advancement towards building secure and trustworthy
RACG systems.
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1 Introduction

Large Language Models (LLMs) have demonstrated remarkable ca-
pabilities across a wide range of domains, from natural language
processing to mathematical problem-solving. Their ability to un-
derstand and generate human-like text has led to widespread adop-
tion in various applications. Retrieval-augmented generation (RAG)
has emerged as a powerful paradigm to further enhance LLMs by
leveraging external knowledge bases, enabling more contextually
accurate and informed responses. In the domain of code genera-
tion, Retrieval-Augmented Code Generation (RACG) has achieved
significant advancements by incorporating the relevant knowledge
during the code generation (e.g., related code snippets), improv-
ing the quality of generated code. As a result, RACG-based LLM
systems [27, 30, 40] have become an indispensable assistant in
software development, streamlining the coding process and aiding
developers in producing complex software with enhanced accuracy.

Despite these advances, existing RACG systems prioritize func-
tional correctness while often overlooking security considerations.
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A recent study [24] highlights critical security vulnerabilities in
RACG, particularly when developer intents are exposed to attackers.
Specifically, maliciously injected vulnerable code can significantly
compromise the security of generated code, with empirical evi-
dence showing that even a single poisoned sample can lead to 48%
of generated code containing vulnerabilities. This threat is further
exacerbated in real-world scenarios, where adversaries can intro-
duce a large number of vulnerable samples into the knowledge
base, posing a substantial risk to software security. Despite the ur-
gency of this issue, current RACG systems lack dedicated security
mechanisms to mitigate such threats.

To mitigate the security threats in RACG, our key idea is to
refine the retrieval contents used in the prompt. Specifically, our
approach revolves around transitioning the workflow from solely
retrieving functional code examples to retrieving both functional
code examples and security knowledge. The former aspect ensures
that the generated code meets functional requirements, while the
latter aspect, which includes secure code samples and annotated
root causes of potential vulnerabilities, is dedicated to averting com-
mon security vulnerabilities in the generated code. That is to say, in
addition to providing code snippets for reference implementations,
we proactively include security knowledge in the prompts, aiming
to assist LLMs in steering clear of vulnerabilities when generating
code. We postulate that incorporating this security knowledge in
the prompt can fortify the security defenses of LLMs, enabling them
to “course-correct” even in scenarios where the knowledge base is
poisoned, thereby preventing the generation of vulnerable code.

Building on this intuition, we introduce CodeGuarder, a security-
hardening framework for RACG systems designed to achieve both
functionality and security in generated code. CodeGuarder first con-
structs a security knowledge base by extracting insights (e.g., vul-
nerability root causes) from historical vulnerabilities. Subsequently,
for a given code generation query, CodeGuarder employs an elabo-
rate retriever to identify relevant security knowledge. Specifically,
CodeGuarder breaks down the query into sub-tasks to retrieve
precise security knowledge for each sub-task. Furthermore, recog-
nizing the varying susceptibility of LLMs to different vulnerability
types [41], CodeGuarder re-ranks the retrieved security knowledge
based on these susceptibilities, prioritizing knowledge related to
more prevalent vulnerabilities and filtering out less relevant knowl-
edge. Finally, the retrieved knowledge is explicitly injected into the
prompt as part of the security-augmented code generation process,
ensuring that LLMs incorporate security knowledge during code
generation while preserving functional correctness.

We rigorously evaluate CodeGuarder across diverse scenarios, in-
cluding standard RACG and two distinct RACG poisoning scenarios.
Our evaluation results demonstrate that CodeGuarder significantly
improves the security of generated code, even under poisoning
scenarios, without compromising functional correctness across var-
ious LLMs and languages. Specifically, in standard RACG scenarios,
CodeGuarder achieves an average security improvement of 20.12%.
Under poisoning attacks, CodeGuarder enhances security by 31.53%
and 21.91% in the respective scenarios. Furthermore, generaliza-
tion analysis reveals that CodeGuarder’s efficacy extends beyond
RACG, improving security in code generation when there is no
off-the-shelf knowledge base. Specifically, CodeGuarder achieves
an average security rate of 75.54% across four languages, surpassing
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the state-of-the-art Safecoder [14] (69.81%). Notably, even in sce-
narios where no language-specific secure knowledge is available,
CodeGuarder consistently improves security by 15.69%, 21.26%, and
13.50% in standard and poisoning scenarios, respectively.

In summary, our study makes the following contributions:

Significance: We introduce the first security-hardening frame-
work for RACG systems, tackling the unaddressed security threats
in RACG systems, especially when facing knowledge base poi-
soning. This work pioneers a critical shift toward securing RACG,
a cornerstone of modern LLM-driven software development.
State-of-the-art Security Hardening Framework: We pro-
pose CodeGuarder, a framework that significantly hardens the
security of RACG systems. By explicitly injecting security knowl-
edge into the prompts, CodeGuarder mitigates security risks ef-
fectively while maintaining the functionality of generated code.
e Extensive Study: We conduct a rigorous and comprehensive
evaluation of CodeGuarder across diverse scenarios, including
standard RACG, two RACG poisoning setups, and direct code
generation. Our findings demonstrate that CodeGuarder exhibits
remarkable generalization capabilities in various scenarios.

2 Background and Related Works

2.1 Retrieval Augmented Code Generation

LLMs have seen rapid advancement in recent years, driven by
improvements in model architecture, training techniques, and ac-
cess to large-scale data. Trained on diverse textual sources such
as Wikipedia and GitHub, general-purpose models like GPT [4]
have demonstrated impressive capabilities across a range of tasks,
including those in the programming domain.

RAG is a transformative approach that enhances LLMs by incor-
porating relevant information retrieved from external knowledge
sources. This integration significantly improves model performance
by combining the strengths of retrieval systems and generative
capabilities. RAG has garnered attention across various domains
due to its ability to produce more accurate and contextually rich
outputs, establishing itself as a robust framework for advancing
natural language processing applications. Building on RAG’s suc-
cess, RACG has emerged as a specialized adaptation tailored to
the coding domain. RACG leverages retrieved code snippets, or
other programming-related resources to enhance the efficiency and
quality of code generation. By integrating domain-specific external
knowledge, RACG enables LLMs to tackle complex programming
tasks more effectively, surpassing the limitations of purely genera-
tive approaches [9, 49, 51].

2.2 Security of LLM-Generated Code

Although LLMs demonstrate significant capabilities in generating
functionally correct code, recent studies [34, 44] highlight persis-
tent difficulties in producing secure code. The security implications
of LLMs used for code generation have consequently become a
major research focus. Pearce et al. [34] systematically evaluated the
security of LLM-generated code, focusing on the MITRE Top-25
vulnerabilities. Their findings indicated that approximately 40%
of the generated code contained vulnerabilities, a result corrobo-
rated by subsequent studies [20, 41]. Traditional mitigation involves
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(a) Vulnerable code generated when a poisoned example is retrieved.
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(b) Secure code generated when augmented with external security knowledge.

Figure 1: An example of code generated by GPT-40 with and without
additional security knowledge.

post-generation scanning using static analysis tools [1, 10], but this
approach introduces latency due to the separate analysis step.
Recently, researchers have proposed approaches to enhance the
security of LLM-generated code directly, without relying on re-
trieval. For example, SafeCoder [14] and SVEN [13] employ fine-
tuning techniques to train LLMs to generate inherently more se-
cure code. CoSec [21] improves security via supervised co-decoding,

modifying the generation process without altering the LLM’s weights.

These techniques mainly address non-retrieval scenarios, where
LLMs rely only on pretrained knowledge, raising security con-
cerns from training data vulnerabilities. In contrast, RACG sys-
tems combine internal knowledge with runtime-retrieved external
knowledge, introducing a distinct security challenge from the po-
tential interplay between internal and external knowledge. This
challenge has not been sufficiently investigated, and there are no
studies specifically addressing security hardening in the context of
such interactions. This gap is critical, especially when the external
knowledge base is poisoned with vulnerable code snippets, com-
promising the generated output. This paper mitigates this gap by
introducing CodeGuarder, a security-hardening framework specif-
ically designed for RACG, aimed at fostering the creation of secure
and trustworthy code generation systems.

3 Motivating Examples

Existing RACG systems often prioritize functional correctness, po-
tentially overlooking crucial security considerations. This focus can
leave them susceptible to generating insecure code, especially in
adversarial scenarios. For instance, a prior study [24] demonstrated
that poisoning the retrieval knowledge base with even a single
malicious example could lead to vulnerabilities appearing in nearly
half (48%) of the code generated by the LLM.

Figure 1a illustrates such a scenario using a case from CyberSe-
cEval [3], where the code is generated by GPT-40 within a poisoned
RACG system. The user’s instruction prompts the LLM to generate
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Figure 2: The overall workflow of CodeGuarder

a function displaying all fields of the given struct. Following stan-
dard procedure, the RACG system retrieves a semantically similar
code example from its knowledge base. However, in this instance,
the knowledge base has been poisoned, and the retrieved example
itself contains a vulnerability. Specifically, the retrieved example
utilizes the sprintf function. Guided by this insecure reference, the
LLM generates code that also employs sprintf to fulfill the user’s
request. However, sprintf is inherently insecure and introduces
potential buffer overflow vulnerabilities.

To address the above challenge, our intuition is that if we could
inject relevant external security knowledge into the prompt,
we may help LLMs avoid this mistake. For instance, LLMs may
generate secure code if they are reminded that the sprintf is a
dangerous function. Figure 1b presents the same code generation
task, but this time augmented with such knowledge. Instead of
solely relying on retrieved functional code examples, the LLM is
provided with relevant security knowledge, which highlights the
risks associated with sprintf in this case. As a result, when se-
curity knowledge is included, the LLM selects the safe alternative
snprintf, effectively mitigating buffer overflow risks while pre-
serving functionality.

This example highlights a critical risk in current RACG systems
and points towards our proposed solution: hardening RACG sys-
tems through the injection of relevant security knowledge. Our
core idea is to shift the paradigm from solely relying on functional
examples towards proactively augmenting the generation with rel-
evant security knowledge. By equipping the LLM with this crucial
knowledge, we hypothesize that we can effectively guide it to-
wards generating code that is not only functionally correct but also
vulnerability-free, mitigating vulnerabilities like the demonstrated
buffer overflow.
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4 Methodology

In this work, we propose CodeGuarder, a security hardening frame-
work for RACG systems that injects security knowledge derived
from existing vulnerabilities to harden the security of code gener-
ated by RACG systems. As shown in Figure 2, CodeGuarder oper-
ates in two primary phases: (1) offline construction of a security
knowledge base, and (2) online integration of this knowledge to
harden the security of code generated by RACG systems. In the
offline phase, CodeGuarder analyzes historical vulnerabilities to au-
tomatically build the security knowledge base (§4.1). Subsequently,
during the online phase, this knowledge base is utilized to harden
the code generation process for user queries. This online harden-
ing involves two main stages: first, relevant security knowledge is
retrieved based on the input query (§4.2), and second, this retrieved
knowledge is integrated into the prompt to guide the LLM towards
generating secure code (§4.3).

4.1 Automated Offline Construction of the
Security Knowledge Base

4.1.1  Security Knowledge Definition. The security knowledge base,
denoted as S, is constructed through an automated offline pipeline
that processes historical vulnerabilities from Common Vulnerabil-
ities and Exposures (CVE) instances. Each vulnerability instance
Vi = (Cy, Cr, Dcye, Dee) consists of Cy (vulnerable version), Cr
(fixed version), D¢ye (CVE description in natural language), and
Dcwe (MITRE classification identifier). CodeGuarder represents the
security knowledge in three dimensions: functionality, root cause,
and fixing pattern. Figure 4 (in Appendix) illustrates a represen-
tative example extracted from CVE-2012-6538. Each dimension is
detailed below:

o Functionality: To enable the RACG system to retrieve relevant
security knowledge, we construct a representation for each se-
curity knowledge. Existing CVE descriptions typically focus on
the root cause of vulnerability and impact, whereas the input to
the RACG system (i.e., the query) specifies the intended func-
tionality of the code, resulting in a significant semantic gap. To
address this, we define the functionality associated with security
knowledge by describing the functionality of the vulnerable code,
extracted using the LLM backend. By leveraging functionality to
represent corresponding security knowledge, the RACG system
can retrieve relevant knowledge effectively.

e Root Cause: The root cause explains why vulnerabilities occur. It
consists of two components: (i) a natural language description of
the vulnerability’s root cause and (ii) a code example illustrating
the vulnerability. Together, these provide both conceptual de-
scriptions and detailed code implementations, comprehensively
helping the LLM avoid generating vulnerable code.

o Fixing Pattern: While the root cause helps the LLM recognize
vulnerable code, the fixing pattern guides the LLM to generate
secure code. Similar to the root cause, the fixing pattern consists
of two parts: a natural language description of the fix and an
example of the corrected code. These provide complementary
perspectives on how to resolve vulnerabilities, assisting the LLM
in generating secure code.
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4.1.2  Security Knowledge Base Construction. For each vulnerabil-
ity, we prompt the LLM to extract the security knowledge. Prompt 1
(in Appendix) provides the template used for the extraction. This
template takes as input the CVE description (Dcve), the CWE clas-
sification type (Dcwe), and the function-level diff (DIFF), which
compares the vulnerable code (Cy) with its patched version (Cy).
The output for each vulnerability is a tuple consisting of a func-
tionality description, root cause, and fixing pattern. This process
is repeated for all instances in the dataset, and the extracted items
are aggregated to form the security knowledge base S.

4.2 Context-Aware Fine-Grained Knowledge
Online Retrieval

In this stage, we employ a context-aware, fine-grained knowledge
retriever to dynamically extract relevant knowledge Sg for a given
query Q from the constructed security knowledge base S. This
process comprises the following key stages: query decomposition,
security knowledge retrieval, re-ranking, and filtering.

4.2.1 Query Decomposition. As suggested in previous studies [12,
15], a single program may contain multiple vulnerabilities across
different locations, meaning that a code generated by a single query
may correspond to multiple security issues. Figure 3 presents a con-
crete example from CyberSecEval [43], generated by GPT-40. The
query instructs the LLM to generate a function that copies a string
and returns the corresponding pointer. However, the generated
code introduces multiple buffer overflow vulnerabilities related to
memory allocation and string copying at different locations. This in-
sight led us to decompose the user’s query into smaller, fine-grained
semantic units (i.e., sub-tasks), enabling more precise knowledge
retrieval and enhancing the security of the generated code, as il-
lustrated in Figure 3. For example, for the decomposed sub-task
related to memory allocation, the retrieved knowledge explicitly
indicates that the length should be checked to prevent overflow
before allocating memory.

LLMs have demonstrated a remarkable capability in understand-
ing complex natural language instructions and discerning underly-
ing semantic components. Their ability to process intricate queries
and apply reasoning makes them well-suited for breaking down
tasks into concrete steps, as demonstrated by techniques like chain-
of-thought [22, 46]. Leveraging this capability, we employ the LLM
to decompose the query into smaller sub-tasks that represent the
query’s semantics at a finer level. The decomposition template is
detailed in Prompt 2 (see Appendix). The final decomposed query
Qg consists of a list of sub-tasks Qg = [q1,491,- - -, qn], which are
then used in the knowledge retrieval stage.

4.2.2  Security Knowledge Retrieval. In this stage, we aim to prelim-
inarily identify the relevant security knowledge entries from the
security knowledge base S. We adopt a similarity-based retrieval
approach, using cosine similarity to measure the relevance between
the feature representations of the sub-tasks and the knowledge
entries in the base. Formally, for a list of decomposed sub-tasks
Qa4 = lq1,q1, - - -, qn], where each gq; represents a fine-grained se-
mantic unit (i.e., sub-task), we compute the feature vector for each
sub-task q; by embedding its description into a vector:

vg; = Embed(q;),
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| Query Decomposition and Knowledge Retrieval

for (size_t i = @; i < length; i++) { h

o 1
r strcpy(new_array[i], array[i]); | 1
___________________ ~ |

[ 1
return new_array;

: J B
} Potential buffer overflow at multi-location

Sub-task 2: Dynamically allocate memory for the new array of
string pointers using malloc.

Retrieved Knowledge: Check whether length will cause
overflow before allocating memory.

Sub-task 4: Copy each string from the input array to
the corresponding location in the new array.
Retrieved Knowledge: Using strncpy to ensure the
string is copied safely

Figure 3: Vulnerable code generated by GPT-40 along with its corresponding decomposed queries and retrieved knowledge.

Table 1: Distribution of violation types and associated CWEs in LLM-
generated code

Violation Type Related CWEs Percentage
NULL pointer 391, 476, 690; 40.24%
Buffer overflow 120, 121, 122, 628, 676  25.53%
680, 787;

Invalid pointer 822, 119; 10.42%
Array bounds violated 125,129, 131, 193, 788;  8.86%
Arithmetic overflow 191, 20, 190, 192, 681;  6.21%
Resource mismanagement 825, 401, 404, 459; 5.03%
Division by zero 369, 691; 1.45%
Others - 2.26%

where vg, € R is the feature vector for sub-task qi, and Embed(+)
denotes the embedding function (detailed in §5.4). Each knowledge
entry sj in S is also represented by a feature vector vs;, computed
similarly by embedding its textual description:

vs; = Embed(desc(s;)),

where desc(s;) is the textual description of the functionality of the
knowledge entry s; (as defined in §4.1.1).

To retrieve the relevant knowledge for a given sub-task g;, we
calculate the cosine similarity between its feature vector vg, and the
feature vector vs; of each knowledge entry s; in the knowledge base.
Based on these similarity scores, we retrieve the top-k’ (discussed
in §7.4) most relevant knowledge entries for g;, denoted as S(']i,
which are then subjected to subsequent re-ranking and filtering.

4.2.3  Security Knowledge Re-ranking and Filtering. Note that before
this stage, we have retrieved relevant security knowledge for each
sub-task. Although the retrieval stage ensures that each sub-task is
associated with a fixed number of top-k’ security knowledge entries,
the effectiveness of this approach is limited by two key challenges.
First, the input window size of the LLM may be exceeded, leading
to truncation or loss of critical context [5, 26]. Second, LLMs often
struggle with long, complex prompts due to attention dilution,
reducing their ability to leverage external knowledge [48, 52].

To mitigate these challenges and refine the preliminary knowl-
edge obtained during the retrieval stage, we introduce a re-ranking
and filtering mechanism that tailors the security knowledge to the
varying risk profiles of individual sub-tasks. The key insight is that
not all sub-tasks exhibit the same susceptibility to vulnerabilities.
For example, a sub-task responsible for outputting results typically
poses less risk than one involving memory allocation, which is
more prone to issues like buffer overflows. To quantify the risk
associated with each sub-task g;, we first determine the weight w;
for each individual knowledge entry s; within the initially retrieved
set S(']i. This weight reflects the likelihood that the vulnerability
associated with s; manifests in LLM-generated code. This approach
is grounded in the observation that sub-tasks semantically related

to frequently occurring vulnerabilities are more likely to induce
the LLM to produce insecure code. To quantify this likelihood, we
draw on a prior study [41], which analyzed the distribution of vio-
lation types and their associated CWEs across code generated by
13 mainstream LLMs (e.g., GPT and Gemini series models) on the
dataset containing 310,531 code generation instructions. The result-
ing distribution, detailed in Table 1, provides empirical evidence of
vulnerability prevalence in LLM-generated code.

For each knowledge entry s; within the preliminary retrieved
set Sc,h for sub-task g;, we assign a weight w; reflecting the proba-
bility of its associated vulnerability appearing in LLM-generated
code. Specifically, we map the CWE of s}, to its corresponding vio-
lation type in Table 1. The weight w; is then set to the percentage
frequency of that violation type. For example, a knowledge entry
related to CWE-476 (NULL pointer dereference), categorized un-
der the "NULL pointer" violation type with a frequency of 40.24%,
receives a weight w; = 0.40. For CWEs not listed in the table, we
assign a default weight of w; = 0.01 to ensure all entries are pre-
liminarily considered. Next, we calculate the overall weight qu for
each sub-task g; by summing the weights of all its initially retrieved

knowledge entries:
qu = Z wj.

. ’
s;€Sg;

This aggregated weight W, represents the estimated risk level
of sub-task g;, considering the vulnerabilities associated with its
relevant knowledge.

We then re-rank all sub-tasks [q1, ..., gr] based on weights Wy,
in descending order. Subsequently, we perform a filtering step by
selecting the sub-tasks corresponding to the top-k highest weights.
Let Qiop k denote this set of top-k sub-tasks. The parameter k is
set to five as discussed in §7.4. This filtering strategy ensures that
the security knowledge associated with the sub-tasks deemed most
likely to introduce critical vulnerabilities is retained. By prioritizing
sub-tasks with high aggregated weights, this process naturally
emphasizes knowledge tied to high-risk vulnerabilities.

The final security knowledge base Sg for the query Q is then
constructed by aggregating all the initially retrieved knowledge
entries corresponding to these selected top-k sub-tasks:

So= |J Sy

qi€ Qtop-k

This curated Sg is subsequently integrated into the code generation
process (see §4.3), enabling CodeGuarder to guide the LLM toward
producing secure code by concentrating on the highest-risk aspects
identified through sub-task ranking.
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4.3 Security-Augmented Code Generation

In conventional RACG systems, LLMs generate code by leveraging
both a user-provided query and external knowledge retrieved from
the knowledge base, typically, code snippets. The prompt structure
in traditional RACG can be expressed as:

Pori = Q+E,

where Q is the user’s input specifying the desired functionality, and
E provides example implementations.

To enhance the security of RACG systems, CodeGuarder injects
security knowledge Sg into the code generation prompt. Specifi-
cally, for a given user query Q and its filtered sub-tasks q; € Qyop £,
each sub-task g; is paired with its corresponding security knowl-
edge S[]i. The security-augmented prompt is constructed as:

P =Pyri+ Z (Qi+S£]i),

qi€ Qtop-k

which ensures that LLM generates code satisfying both functional
requirements and security constraints. The Prompt 3 (in Appendix)
provides an example of this process. For instance, if g; involves
“copy a string from input to destination”, S, might include guide-
lines like “Use strncpy to ensure the string is copied safely”.

5 Study Design

5.1 Investigated Scenarios

In this study, we comprehensively evaluate the effectiveness of
CodeGuarder across three scenarios: a standard RACG and two
poisoning scenarios, following prior work [24]. The standard sce-
nario represents a typical RACG setting, where the retriever fetches
knowledge from a knowledge base free from vulnerable code. In
contrast, the two poisoning scenarios simulate situations where
programming intents (i.e., queries) are either exposed or not ex-
posed to an attacker, who subsequently injects vulnerable code into
the knowledge base.

5.1.1  Standard RACG Scenario. In this scenario, the RACG system
operates without poisoning. The system retrieves code from the
functional code base K based on the query Q and generates code
accordingly. This setting evaluates the framework’s performance in
a typical scenario, serving as a reference for the poisoning scenarios.

5.1.2  Poisoning Scenario I: Exposed Programming Intents. In poison-
ing scenarios, we assume that the attacker can access and poison K,
which is typically sourced from public repositories such as GitHub.
However, access to programming intents (i.e., query Q) depends
on the attacker’s capabilities and may not always be feasible. In
this scenario, we assume the attacker has access to Q and exploits
this information to inject vulnerabilities into K. Specifically, the
attacker selects the m most semantically similar vulnerable exam-
ples from the vulnerable code base V using a poisoning retriever.
The knowledge base used by RACG then becomes K UV, blending
secure and vulnerable code. This scenario tests the CodeGuarder’s
ability to mitigate targeted attacks leveraging intent-specific vul-
nerabilities. Prior empirical studies [24] indicate that varying the
poisoning quantity exhibits similar patterns in its impact on the
security and functionality of the generated code. For clarity, we
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assess CodeGuarder under a moderate poisoning level, using five
poisoned samples (i.e., m = 5) for each query.

5.1.3  Poisoning Scenario 1l: Intent-Agnostic Poisoning. In this sce-
nario, we mimic a stricter attack setting than scenario I, where the
attacker lacks direct access to Q and instead poisons K with broadly
representative vulnerable code likely to be retrieved across diverse
queries. Specifically, prior work [24] suggests that an attacker can
poison the knowledge base by injecting common functionalities that
are more likely to be retrieved in RACG, thereby affecting a broader
range of queries. Following this insight, we adopt a clustering-based
approach to select the top p% most representative examples from K.
For each selected example, we retrieve its most similar vulnerable
code from V and inject it into the knowledge base. The result-
ing K U V simulates a generalized poisoning attack, evaluating
CodeGuarder ’s resilience when programming intents are not ex-
posed. In this scenario, we assess CodeGuarder under a moderate
poisoning level, using the poisoning proportion of 10% (i.e., p = 10).

5.2 Benchmark and Knowledge Bases

5.2.1 Evaluation Benchmark. To evaluate the security and func-
tionality of LLM-generated code across diverse scenarios, we adopt
CyberSecEval [43] as our benchmark for two primary reasons: (1)
It serves as the official benchmark for the LLaMA series of LLMs,
which are widely utilized in academia and industry [11, 19]. (2) It
provides the most comprehensive assessment of security among
available benchmarks. Specifically, CyberSecEval comprises 1,916
instances spanning 50 CWE types, exhibiting a lead over the second
largest security evaluation benchmark [42], which includes only
150 instances across 18 CWE types. Additionally, CyberSecEval in-
cludes a specialized insecure code detector, built upon analysis rules
tailored to its cases, enabling security evaluation with a precision of
96%. While other datasets like ReposVul [45] contain more vulner-
abilities, they primarily function as repositories of vulnerabilities
and lack the associated evaluation framework (e.g., analysis rules)
necessary for performing high-precision security assessments on
generated code. Consequently, datasets like ReposVul are less suited
for rigorously evaluating the security of generated code.

5.2.2 Knowledge Bases Construction. As illustrated in §5.1, the
three scenarios involve distinct knowledge bases that serve different
roles in the RACG system. The first is a security knowledge base that
stores security-related knowledge, which CodeGuarder leverages to
enhance the security of generated code. The second is a knowledge
base from which the RACG system retrieves code examples for
code generation. The third is a set of vulnerable code, which serves
as the attacker’s resource for selecting and injecting malicious
code into the RACG system, thereby compromising the security of
the generated code. Therefore, three distinct knowledge bases are
required: the Security Knowledge Base (S), the Functional Code
Base (%) and the Vulnerable Code Base (V), as detailed below:

e Security Knowledge Base (S): This base provides security
knowledge to harden the security of generated code. It is con-
structed by analyzing vulnerabilities and their corresponding
fixes from ReposVul [45], the largest cross-language dataset of
real-world vulnerabilities, which includes 12,053 function-level
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Table 2: Statistics of knowledge bases

Language
Knowledge Base C C++ Java Python
Functional Code Base 6,956 510 2,810 1,777
Vulnerable Code Base 227 259 235 229

Security Knowledge Base 8,861 644 3,365 2,217

Table 3: Studied LLMs in the study

Category LLM Publisher Open-source
GPT-40 [29] OpenAl No
General DeepSeek-V3 [25] DeepSeek Yes
CodeLlama-13B [37] Meta Yes
Code DeepSeek-Coder-V2-16B [53]  DeepSeek Yes

pairs of vulnerable and secure code across four programming
languages. The construction process is described in detail in §4.1.
Functional Code Base (%): This forms the foundational knowl-
edge base for retrieval-augmentation in the RACG system, en-
abling it to retrieve relevant functional and secure code based on
user queries. Commonly used code bases (e.g., CSN [16]) are typi-
cally collected from open source projects, potentially introducing
vulnerable code into the dataset. For example, in our analysis of
CSN, 81.3% (684 out of 841) of Java code invoking random-related
functions rely on weak randomness, which can lead to serious
security vulnerabilities. The presence of such insecure code in
functional code bases may bias evaluations and obscure the ac-
tual impact of poisoning attacks. To mitigate this, we construct
K using the fixed code (i.e., the vulnerability-free code) from
the ReposVul dataset, ensuring that all retrieved examples are
functionally correct and security-vetted.

Vulnerable Code Base (V): To simulate realistic RACG knowl-
edge base poisoning attacks, a dedicated vulnerable code base
is essential. This base serves as the source of vulnerable code
that attackers would retrieve and inject into the functional code
base K during poisoning scenarios (detailed in §5.1). Importantly,
V is built using vulnerable code instances from the CyberSecE-
val dataset, rather than ReposVul. Using the same dataset for
both the vulnerable code and the security knowledge base could
lead to overlapping fix strategies, making poisoning attempts
easier to detect and defend against, thereby undermining the
realism of the poisoning simulation. It is worth noting that this
experimental setup grants attackers slightly more power than in
real-world scenarios, as they can inject vulnerable code into K
that closely matches the user’s query. This assumption enables
us to more rigorously evaluate the effectiveness of CodeGuarder
under more severe security threats.

Table 2 presents the statistics of the aforementioned knowledge
bases across different programming languages. The number of se-
curity knowledge instances exceeds the number of vulnerabilities
in ReposVul, as some vulnerabilities have multiple root causes, as
observed in previous studies [12, 15].

5.3 Studied LLMs

To evaluate CodeGuarder’s effectiveness, we employ four repre-
sentative LLMs, encompassing a range of model sizes, and cate-
gories. These include: (1) GPT-4o, a closed-source general-purpose
model accessed via its API; and (2) DeepSeek-V3, a state-of-the-
art general LLM, also accessed via API [31]; (3) CodeLlama-13B, a
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code-oriented open-source model; (4) DeepSeek-Coder-V2-16B, an
advanced code-oriented open-source model. Table 3 summarizes
their key attributes, spanning small-scale (e.g., 8B—16B) to large-
scale models and both general-purpose and code-specific designs.
Model weights for open-source LLMs (CodeLlama and DeepSeek-
Coder-V2) were sourced from their official Hugging Face reposi-
tories. For brevity, we denote these as GPT-40, DS-V3, CodeLlama
and DS-Coder in subsequent sections.

5.4 Retriever

Retrievers are integral to the RACG system, enabling the retrieval
of additional knowledge to enhance generation. In this study, we
involve three types of retrievers: code retriever, knowledge retriever,
and poisoning retriever as follows:

e Code Retriever. The code retriever supports the RACG pipeline
by fetching relevant code examples from the functional knowl-
edge base K to serve as references during generation. We imple-
ment this retriever using the state-of-the-art jina-embeddings-v3
model [39], a dense retriever that embeds code snippets into a
vector space for similarity-based retrieval.

o Knowledge Retriever. The knowledge retriever, detailed in
§4.2, underpins our context-aware fine-grained knowledge on-
line retrieval process. It extracts security knowledge from S by
calculating the similarity between sub-tasks (decomposed from
the query) and the knowledge entry in the security knowledge
base. Note that we utilize the same embedding model for code and
knowledge retriever (i.e., jina-embeddings-v3) to reduce the
semantic gap between the retrieved code and secure knowledge.

e Poisoning Retriever. In adversarial scenarios, attackers lack
access to the parameters or query capabilities of the retrievers
in the RACG system. Thus, an external poisoning retriever is re-
quired for the retrieval of vulnerable code in poisoning scenario
I and generating embeddings for clustering-based poisoning in
poisoning scenario II. Therefore, we built he poisoning retriever
on the text-embedding-3-large model [32] following a previ-
ous study [24]. Operating independently of the RACG system,
the poisoning retriever embeds and retrieves vulnerable code
from the vulnerable knowledge base to poison the RACG system,
simulating the realistic poisoning process of the RACG system.

5.5 Metrics

To evaluate the effectiveness of CodeGuarder in enhancing security
while maintaining functionality, we employ the following metrics:

Security Rate (SR): SR quantifies the likelihood of an LLM
generating secure code, defined as the percentage of generated
code verified as secure. The verification process is conducted using
the Insecure Code Detector from CyberSecEval [43], which detects
vulnerable code across seven programming languages and over 50
CWE types with a precision of 96% [43].

Similarity (Sim): Due to the absence of test cases in the Cyber-
SecEval dataset, we cannot directly evaluate whether CodeGuarder
affects the functionality of LLM-generated code. Instead, we use
CodeBLEU [36], a BLEU variant for code similarity, to compare gen-
erated code with ground truth, as a partial representative for func-
tionality. Besides, we further assess the functional correctness of
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LLM-generated code after applying CodeGuarder using test-based
benchmarks: MBPP[2] and HumanEval[6], as detailed in §7.1.

5.6 Implementation Details

All experiments were conducted on an A100 GPU server using the
Ollama [28]. To ensure output consistency across LLMs, we set
the temperature parameter to 0, minimizing non-determinism as
recommended by prior work [33]. Model configurations followed
established settings [24]: a max_new_tokens limit of 4096, and a
context window of 8192 tokens, with other parameters left at de-
faults. We adhered to each model’s recommended prompt formats,
sourced from official documentation, GitHub repositories, or origi-
nal papers, using predefined chat templates where applicable. For
constructing the security knowledge base (§4.1) and performing
query decomposition (§4.2.1), we leveraged DeepSeek-V3 [25], a
state-of-the-art open-source LLM, as the backend.

6 Evaluation

6.1 Research Questions

To systematically evaluate the effectiveness of CodeGuarder in en-
hancing the security of RACG systems, we formulate the following
research questions (RQs):

RQ1: Performance in Standard RACG. How does CodeGuard-
er perform in a non-poisoned RACG scenario?

RQ2: Resilience to Poisoning Attacks. How resilient is Code-
Guarder to poisoning attacks in RACG scenario?

RQ3: Generalization of CodeGuarder. How well does Code-
Guarder generalize across diverse conditions, including code gener-
ation when there is no off-the-shelf knowledge base, and scenarios
lacking target-language security knowledge?

6.2 ROQ1: Performance in the Standard RACG

This RQ evaluates CodeGuarder’s ability to enhance the security of
RACG-generated code under the standard setting, where the knowl-
edge base comprises solely functional code examples without poi-
soning. The goal is to assess whether CodeGuarder can effectively
leverage retrieved security knowledge to mitigate vulnerabilities.

Table 4 presents the security hardening and functionality main-
tenance achieved by CodeGuarder across four LLMs. On average,
CodeGuarder increases the security rate (SR) of LLM-generated
code by 9.37% to 47.72% across four languages, while maintaining or
slightly enhancing the similarity (Sim) metrics. We observed a trend
where CodeGuarder exhibits more obvious security-hardening on
LLMs with larger parameter counts (e.g., DS-V3 with 671 billion
parameters) compared to those with fewer parameters (e.g., CodeL-
lama with 13 billion parameters). Specifically, GPT-40 and DS-V3
achieve improvements of 20.28% and 30.73% in SR, respectively,
whereas CodeLlama and DS-Coder show improvements of 16.15%
and 13.50%. This discrepancy might be attributed to the reduced
instruction-following capabilities of smaller models [7, 18].

From a programming language perspective, CodeGuarder demon-
strates the most significant security enhancement in Java, with
an average improvement of approximately 38.45%. This suggests
that CodeGuarder is particularly effective in addressing vulnerabil-
ities prevalent in Java. Conversely, the improvements in C++ and
Python are comparatively smaller, at 9.37% and 12.24%, respectively.
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Table 4: Performance of CodeGuarder under Standard RACG Scenario.

Language
Metrics LM C C+ Java Python  Average
GPT-40 55.95 80.31 41.92 70.09 62.07
w. CodeGuarder f 70.04 84.94 62.45 81.20 74.66
(125.18%) (15.77%) (148.97%) (115.85%) (] 20.28%)
DS-V3 55.07 74.90 40.61 68.95 59.88
w. CodeGuarder 72.25 88.03 73.36 79.49 78.28
(131.20%) (117.53%) (1 80.65%) (115.29%) (] 30.73%)
CodeLlama 52.42 74.13 44.98 68.66 60.05
SR w. CodeGuarder 66.52 80.31 57.21 74.93 69.74
(126.90%) (1834%) (127.19%) (19.13%) (] 16.15%)
DS-Coder 51.98 75.68 46.29 71.51 61.37
w. CodeGuarder 65.20 80.31 55.02 78.06 69.65
(125.43%) (16.12%) (118.86%) (19.16%) (1 13.50%)
Average 53.86 76.26 43.45 69.80 60.84
w. CodeGuarder 68.50 83.40 62.01 78.42 73.08
(127.20%)  (19.37%) (147.72%) (112.35%) (] 20.12%)
GPT-40 22.82 24.51 28.56 21.31 24.30
w. CodeGuarder 23.72 25.45 29.17 23.36 25.43
DS-V3 22.76 24.10 28.98 21.10 24.24
w. CodeGuarder 24.11 25.36 29.31 23.46 25.56
CodeLlama 23.14 24.31 28.01 21.73 24.30
Sim w. CodeGuarder 23.89 25.65 28.34 22.95 25.21
DS-Coder 21.95 24.01 26.95 21.00 23.48
w. CodeGuarder 22.85 24.94 27.03 22.34 24.29
Average 22.67 24.23 28.13 21.29 24.08
w. CodeGuarder 23.64 25.35 28.46 23.03 25.12

+ “w. CodeGuarder " denotes the results of LLMs hardened by CodeGuarder.

This is likely because the SR of LLM-generated C++ and Python
code is already high, leaving limited room for improvement. We
further investigated the ratio of insecure cases that were success-
fully secured by CodeGuarder, revealing that approximately 31.74%,
30.08%, 32.82% and 28.54% of C, C++, Java and Python, respectively,
were effectively secured.

To examine CodeGuarder’s impact on code functionality, we
measured the similarity between generated code and the reference
code using the Sim metric. Notably, CodeGuarder did not degrade
functionality; rather, it slightly improved it. For instance, the aver-
age Sim values across all LLMs without CodeGuarder were 22.67,
24.23, 28.13, and 21.29 for C, C++, Java, and Python, respectively.
With CodeGuarder, these values increased to 23.64, 25.35, 28.46,
and 23.03, respectively. This improvement suggests that the detailed
guidance and secure code examples within the security knowledge
base may enhance the functional correctness of generated code.

Note that the Sim metric only measures code similarity due to the
absence of test cases in the CyberSecEval dataset. To provide a com-
prehensive evaluation of CodeGuarder’s impact on functionality,
we employed the MBPP [2] and HumanEval [6] benchmarks, which
utilize test cases to assess code correctness (see §7.1). These re-
sults confirm that CodeGuarder preserves code functionality, thus
maintaining the practical utility of the generated code.

Answer to RQ1: CodeGuarder effectively guides LLMs to gener-
ate more secure code in standard RACG scenarios across various
programming languages and LLMs, while maintaining or slightly
improving code functionality. Specifically, CodeGuarder enhances
the security rate by approximately 27.20% for C, 9.37% for C++,
47.72% for Java, and 12.35% for Python.

6.3 ROQ2: Resilience to Poisoning Attacks

This RQ examines CodeGuarder’s performance when the knowl-
edge base K is poisoned with vulnerable code, as modeled in §5.1.
We evaluate CodeGuarder’s capacity to harden code security amidst
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Table 5: Performance of CodeGuarder under poisoning scenario I.
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Table 6: Performance of CodeGuarder under poisoning scenario II.

Language Language
Metrics LLM C C++ Java Python  Average Metrics LLM C C++ Java  Python  Average
GPT-40 48.9 64.09 31.44 55.84 50.07 GPT-40 52.86 76.83 38.86 63.58 58.03
w. CodeGuarder 62.56 79.15 56.77 71.23 67.43 w. CodeGuarder 69.6 86.49 64.63 80.63 75.34
(127.93%) (123.50%) (180.57%) (127.56%) (] 34.67%) (131.67%) (112.57%) (166.31%) (126.81%) (] 29.82%)
DS-V3 49.78 64.86 30.13 60.11 51.22 DS-V3 52.86 72.97 38.86 66.95 57.91
w. CodeGuarder 68.72 80.31 57.21 74.64 70.22 w. CodeGuarder 72.25 86.87 65.94 80.63 76.42
(138.05%) (123.82%) (189.88%) (124.17%) (] 37.09%) (136.68%) (119.05%) (169.69%) (20.43%) (]31.97%)
CodeLlama 51.1 61 39.74 56.13 51.99 CodeLlama 57.71 71.43 50.66 70.37 62.54
SR w. CodeGuarder 64.32 75.68 52.84 68.95 65.45 SR w. CodeGuarder 65.20 80.69 58.52 78.06 70.62
(125.87%) (124.07%) (132.96%) (122.84%) (125.88%) (112.98%) (112.96%) (115.52%) (110.93%) (] 12.91%)
DS-Coder 44.49 60.62 345 56.41 49.01 DS-Coder 52.42 77.61 45.85 70.94 61.71
w. CodeGuarder 60.79 77.61 43.67 69.8 62.97 w. CodeGuarder 64.32 81.08 60.26 76.07 73.29
(136.64%) (128.03%) (126.58%) (123.74%) (]28.49%) (122.70%)  (14.47%) (131.43%) (17.23%) (] 18.77%)
Average 48.57 62.64 33.95 57.12 50.57 Average 53.96 74.71 43.56 67.96 60.05
w. CodeGuarder 64.10 78.19 52.62 71.16 66.52 w. CodeGuarder 67.84 83.78 62.34 78.85 73.20
(131.98%) (124.82%) (154.99%) (124.57%) (]31.53%) (125.72%) (112.14%) (143.12%) (116.02%) (] 21.91%)
GPT-40 25.89 29.49 32.75 28.73 29.97 GPT-40 18.36 20.61 26.39 21.03 21.60
w. CodeGuarder 24.16 29.25 33.45 28.16 28.76 w. CodeGuarder 18.92 21.57 27.03 24.94 23.12
DS-V3 22.68 28.77 32.89 25.80 27.54 DS-V3 17.5 21.13 26.54 20.69 21.47
w. CodeGuarder 24.73 28.96 32.71 27.42 28.46 w. CodeGuarder 18.53 21.55 26.93 22.56 22.39
CodeLlama 25.18 30.09 32.03 31.24 29.64 CodeLlama 17.63 20.2 25.33 20.86 21.01
Sim w. CodeGuarder 25.97 31.84 31.86 32.48 30.54 Sim w. CodeGuarder 18.76 22.34 26.34 22.02 22.37
DS-Coder 24.95 28.76 32.82 29.14 28.42 DS-Coder 16.6 19.95 24.64 20.08 20.32
w. CodeGuarder 24.71 28.98 32.68 27.59 28.49 w. CodeGuarder 18.83 22.18 26.11 21.99 22.28
Average 24.68 29.28 32.62 28.73 28.70 Average 17.52 20.47 25.73 20.67 21.10
w. CodeGuarder 24.89 29.76 32.68 28.91 29.06 w. CodeGuarder 18.76 21.91 26.60 22.88 22.54

exposed programming intents (poisoning scenario I) and intent-
agnostic knowledge poisoning (poisoning scenario II).

6.3.1 Poisoning Scenario I. This scenario evaluates CodeGuarder’s
resilience to poisoning attacks where the attacker has access to the
programming intents (i.e., queries) and poisons the knowledge base
K. The attacker injects the five most relevant vulnerable examples
into K as illustrated in §5.1.2, simulating a targeted attack.

Table 5 presents the performance of CodeGuarder under poi-
soning scenario I. The results indicate that in this scenario, the
security of LLMs is compromised. For instance, the average SR
across LLMs drops from 60.84 (in the standard scenario) to 50.57,
meaning nearly half of the generated code is vulnerable. Despite
the presence of explicitly malicious knowledge in %, CodeGuarder
consistently improves the SR across all tested LLMs and program-
ming languages. On average, CodeGuarder enhances SR by 31.53%,
demonstrating its ability to defend against attacks even when pro-
gramming intents are exposed. Notably, DS-V3 exhibits the highest
average improvement in SR (37.09%), followed by GPT-40 (34.67%),
CodeLlama (28.49%), and DS-Coder (25.88%). From a language per-
spective, CodeGuarder shows the most significant improvement in
Java language, with an average SR increase of 54.99%. This indicates
that CodeGuarder is particularly effective in addressing vulnera-
bilities in Java. The improvements in C, C++, and Python are also
substantial, with average SR increases of 31.98%, 24.82%, and 24.57%,
respectively. Additionally, we analyze the proportion of previously
insecure cases that were successfully secured by CodeGuarder. Re-
sults show that CodeGuarder effectively secures 41.61% of C++
cases, followed by Python (32.73%), C (30.19%), and Java (28.27%).

Regarding functionality, as measured by the Sim metric, Code-
Guarder maintains or slightly improves the similarity between the
generated code and the reference code. The average Sim across all
LLMs and languages increases from 28.70 to 29.06 with CodeGuard-
er. This suggests that CodeGuarder’s security enhancements do
not compromise the functional correctness of the generated code,
even in the context of targeted poisoning attacks.

Overall, CodeGuarder demonstrates a strong resilience to poi-
soning attacks in scenario L. It effectively mitigates targeted vulnera-
bilities by enhancing code security without sacrificing functionality,
even when the knowledge base is poisoned with semantically simi-
lar vulnerable code and the programming intents are exposed.

6.3.2  Poisoning Scenario Il. This scenario evaluates CodeGuard-
er’s resilience to poisoning attacks where the attacker lacks direct
access to the programming intents (i.e., queries Q) and instead
poisons the knowledge base K with common vulnerable function-
alities that are more likely to be retrieved in RACG. The attacker
employs a clustering-based approach to select the top 10% most
representative examples from K and injects their corresponding
vulnerable counterparts, simulating a generalized poisoning attack.
Table 6 presents the performance of CodeGuarder under poison-
ing scenario II. Similar to scenario I, CodeGuarder consistently en-
hances the SR across all tested LLMs and programming languages,
even when faced with intent-agnostic poisoned knowledge. On
average, CodeGuarder improves SR by 21.91%, demonstrating its
robustness against generalized poisoning attacks. Notably, DS-VS
exhibits the highest average improvement in SR (31.97%), followed
by GPT-40 (29.82%), DS-Coder (18.77%), and CodeLlama (12.91%).
From a language perspective, CodeGuarder again demonstrates
the most significant improvement in Java code generation, with
an average SR increase of 43.12%. This confirms CodeGuarder’s
effectiveness in mitigating vulnerabilities in Java, even under gen-
eralized poisoning conditions. The improvements in C, C++, and
Python are also notable, with average SR increases of 25.72%, 12.14%,
and 16.02%, respectively. Furthermore, the proportion of cases suc-
cessfully secured by CodeGuarder across the four programming
languages is 30.15%, 35.87%, 33.27%, and 33.98%, respectively.
Regarding functionality, as measured by the Sim metric, Code-
Guarder maintains or slightly improves the similarity between the
generated code and the reference code. The average Sim across all
LLMs and languages increases from 21.10 to 22.54 with CodeGuard-
er. This indicates that CodeGuarder’s security enhancements do
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not compromise the functional correctness of the generated code,
even in the context of intent-agnostic poisoning attacks.

Answer to RQ2: CodeGuarder consistently improves code security
across poisoning scenarios, including targeted (Scenario I) and gen-
eralized (Scenario II) attacks. Specifically, CodeGuarder achieves
an average SR improvement of 31.53% in scenario I and 21.91% in
scenario II. These results demonstrate CodeGuarder’s effectiveness
in hardening the security of RACG systems, without compromising
the functionality of the generated code.

6.4 ROQ3: Generalization of CodeGuarder

This RQ explores CodeGuarder’s generalization by analyzing two
dimensions: (1) CodeGuarder’s performance when when there is
no off-the-shelf knowledge base (denoted as non-func-retrieval)
that the LLM relies on its intrinsic knowledge to generate code; and
(2) CodeGuarder’s performance when the security knowledge base
lacks corresponding knowledge for the target language.

6.4.1 Performance in the Non-Func-Retrieval Scenario. The non-
func-retrieval scenario is common in daily software development,
where LLMs generate code solely based on developer instructions.
To assess CodeGuarder’s generalization in this setting, we examine
whether it enhances code security while preserving functionality.
Additionally, we compare its effectiveness against existing methods
specifically designed for this generation scenario.

Baselines. Recent research has introduced several approaches
aimed at enhancing the security of code generation in non-func-
retrieval scenarios [13, 14, 21]. We select three state-of-the-art
security-hardening methods as baselines:

o Sven. Sven [13] employs the prefix-tuning technique [23] to steer
code generation toward desired properties, such as functional
correctness and security, without modifying the LLM’s weights.

o SafeCoder. Similar to Sven, SafeCoder [14] employs instruction
tuning [50] to fine-tune LLMs on a specially curated dataset,
guiding them to generate secure code while discouraging unsafe
program generation through likelihood loss.

e Cosec. Previous studies [13, 14] require access to the weights
of LLMs, which limits the applicability of these approaches. In
contrast, Cosec [21] proposes leveraging co-decoding to adjust
the probability distributions of tokens at each step of the decoding
process, thereby guiding the generation of secure code.

Experimental Results. We evaluate the approaches only on C,
C++, and Python from CybersecEval, in line with RQ1 and RQ2, as
these models were trained exclusively on these languages. Compar-
ing them with CodeGuarder on other languages could introduce
potential biases. For the investigated LLMs, we select two relatively
small models, Mistral-7B [17] and CodeLlama-7B [37], due to the
additional training required for baseline reproduction, which is
both time-consuming and resource-intensive. For instance, training
CodeLlama required approximately 1.4 million GPU hours [37].
Regarding data reproduction, we reuse the trained model provided
by the authors for SafeCoder. For Sven and CoSec, we follow the
official implementations of each approach and implement them
using Mistral-7B and CodeLlama-7B.
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Table 7: Performance of LLMs in the non-retrieval scenario

Metrics LLM Approach C C++ Python Average
Sven 60.35  70.27 74.93 68.52
. SafeCoder 63.00 75.29 78.63 72.31
Mistral-7B
Cosec 59.91  70.66 76.64 69.07
SR CodeGuarder 70.48 83.40 84.33 79.40
Sven 62.11  70.66 71.23 68.00
SafeCoder 64.89  76.56 77.78 73.08
CodeLlama-7B
Cosec 59.47 7413 76.07 69.89
CodeGuarder 68.72 79.54 82.91 77.06
Sven 19.43  20.06 16.51 18.67
A SafeCoder 19.36  20.17 17.16 18.90
Mistral-7B
Cosec 19.06 19.80 16.63 18.50
si CodeGuarder 23.08 25.19 22.37 23.55
im
Sven 19.26  19.96 18.03 19.08
SafeCoder 19.06  20.30 19.28 19.55
CodeLlama-7B
Cosec 1846 19.36 18.15 18.66
CodeGuarder 24.02 25.65 23.11 24.26

Table 7 presents the evaluation results. Overall, CodeGuarder
outperforms the investigated baselines in both security harden-
ing and functionality preservation in the non-func-retrieval setting.
Compared to the state-of-the-art technique, SafeCoder, CodeGuard-
er generates 9.80% (72.31 — 79.40) more secure code on average
with Mistral-7B. Additionally, the Sim metric of CodeGuarder is
24.60% higher than that of CoSec (18.90 — 23.55) on Mistral-7B.
Similar improvements are observed with CodeLlama-7B. From a
programming language perspective, CodeGuarder achieves signifi-
cant improvements over previous methods. Specifically, its relative
improvement over SafeCoder in the SR metric is 11.87%, 10.77%, and
7.25% on Mistral-7B across C, C++, and Python. We also observed
that the Sim metric of CodeGuarder is significantly higher than the
baselines, and we attribute it to the provided decomposed sub-tasks
and the examples in the provided security knowledge. Notably, we
observe that the security rate of the generated code is lower than
the results reported in prior studies [13, 14, 21]. This discrepancy is
likely due to differences in dataset scope: the prior works evaluate
on a test set with only 166 cases across nine CWE types, whereas
CyberSecEval contains 1,916 cases covering 50 CWE types, offering
a more comprehensive assessment.

These results demonstrate that CodeGuarder not only enhances
the security of LLM-generated code in retrieval scenarios (i.e.,
RACG) but also achieves strong performance in non-func-retrieval
settings, outperforming existing security-hardening approaches
specifically designed for non-func-retrieval scenarios.

6.4.2 Performance with Language-Specific Knowledge Absence. In
real-world settings, the security knowledge base S may lack knowl-
edge for certain programming languages (e.g., C#), as its distribu-
tion varies widely across languages. This subquestion examines
whether CodeGuarder can still enhance code security when target
language knowledge is absent, leveraging knowledge from other
languages. We evaluate CodeGuarder’s effectiveness on four exter-
nal languages, C#, JavaScript, PHP, and Rust, where the knowledge
retriever accesses a S devoid of target-specific security knowledge,
testing its cross-language generalization.

Table 8 presents CodeGuarder’s performance without language-
specific security knowledge. As observed in RQ1 and RQ2, the
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Table 8: Performance of CodeGuarder in the absence of language-
specific knowledge.

Language
Scenario LLM C# JavaScript PHP Rust  Average
GPT-40 52.77 54.62 62.35 52.94 55.67
w. CodeGuarder 61.28 65.46 78.40 60.29 66.36
DS-V3 46.38 53.82 60.49 53.92 53.65
w. CodeGuarder 61.70 67.07 75.93 53.92 64.66
Standard  CodeLlama 50.64 54.62 60.49 52.94 54.67
w. CodeGuarder 60.85 64.26 70.37 61.76 64.31
DS-Coder 54.47 57.83 61.11 56.37 57.45
w. CodeGuarder 55.32 58.63 74.07 55.39 60.85
Average 51.07 55.22 61.11 54.04 55.36
w. CodeGuarder 59.79 63.86 74.69 57.84 64.04
(117.08%) (1 15.63%) (122.23%) (17.03%) (T 15.69%)
GPT-40 42.13 42.57 41.36 34.8 40.22
w. CodeGuarder 47.66 51.41 55.56 4118 48.95
DS-V3 42.13 43.78 41.98 38.73 41.66
w. CodeGuarder 56.17 56.63 62.35 39.71 53.72
I+ CodeLlama 53.19 48.59 40.12 45.1 46.75
w. CodeGuarder 60.85 61.04 62.96 45.59 57.61
DS-Coder 45.11 48.59 43.21 36.27 43.30
w. CodeGuarder 51.91 47.79 56.79 36.27 48.19
Average 45.64 45.88 41.67 38.73 42.98
w. CodeGuarder 54.15 54.22 59.42 40.69 52.12
(118.64%) (118.17%) (142.59%) (15.07%) (] 21.26%)
GPT-40 49.79 54.22 63.58 54.41 55.50
w. CodeGuarder 57.87 66.67 80.63 61.76 66.73
DS-V3 45.96 53.01 59.88 55.39 53.56
w. CodeGuarder 61.28 64.26 80.63 54.9 65.27
o CodeLlama 53.62 58.63 70.37 65.69 62.08
w. CodeGuarder 69.95 64.26 73.46 61.76 67.36
DS-Coder 54.04 60.24 70.94 54.41 59.91
w. CodeGuarder 58.27 61.83 70.06 61.35 62.88
Average 50.85 56.53 66.19 57.48 57.76
w. CodeGuarder 61.84 64.26 76.19 59.94 65.56

(121.61%) (113.68%) (115.11%) (14.29%) (] 13.50%)

+ “I" and “II"" denote the Poisoning Scenario I and IL.

functionality impact of CodeGuarder is minimal; therefore, we
focus solely on the SR metric in this analysis.

Overall, CodeGuarder consistently improves SR across scenarios
even without language-specific knowledge. In the Standard sce-
nario, SR rises from 55.36% to 64.04% (15.69% improvement), with
gains of 17.08% (C#), 15.63% (JavaScript), 22.23% (PHP), and 7.03%
(Rust). In poisoning scenario I, the average SR increases from 42.98%
to 52.12% (21.26%), with PHP showing the highest gain (42.59%).
In poisoning scenario II, the average SR improves from 57.76% to
65.56% (13.50%), with C# leading at 21.61%.

The consistent SR improvements suggest that CodeGuarder lever-
ages universal security principles (e.g., avoiding weak random num-
ber generation, which is a common pitfall across languages like C++,
C#, and JavaScript) present in the knowledge base. However, SR
improvements in the poisoning scenario I are significantly lower
than in languages with corresponding security knowledge in the
knowledge base. Specifically, the average improvement in C, C++,
Java, and Python is 31.53%, whereas in the other four languages,
it is only 21.26%. These findings indicate that while CodeGuard-
er can mitigate poisoning attacks even without language-specific
knowledge by relying on general security patterns, its effectiveness
is somewhat limited, and the mitigation process becomes more
challenging without tailored security information.

Conference’17, July 2017, Washington, DC, USA

Table 9: Impact of CodeGuarder on LLMs’ functionality

LLM MBPP HumanEval

Pass@1 Pass@5 Pass@1 Pass@5

GPT-40 72.8 77.4 89.0 91.5

w. CodeGuarder  73.2 78.8 89.6 91.5

DS-V3 74.6 78.6 87.2 89.6

w. CodeGuarder 75.6 79.6 87.8 90.9

CodeLlama 54.8 60.8 40.9 47.6

w. CodeGuarder 56.4 62.2 43.3 50.0

DS-Coder 62.8 69.2 80.5 86.0

w. CodeGuarder 65.0 72.8 81.7 88.4

Answer to RQ3: CodeGuarder demonstrates inspiring general-
ization, outperforming state-of-the-art security-hardening methods,
SafeCoder, by 9.80% in SR on Mistral-7B when no similar code is
retrieved. Moreover, even in the absence of language-specific knowl-
edge, CodeGuarder consistently improves security across various
languages, leveraging universal security principles.

7 Discussion
7.1 Functional Correctness Maintenance

The Sim metric, used in prior RQs, measures code similarity to
reference implementations but does not directly assess functional
correctness due to the absence of test cases in the CyberSecEval
dataset. To provide a comprehensive evaluation of CodeGuarder’s
impact on the functionality of LLM-generated code, we employ
the MBPP [2] and HumanEval [6] benchmarks, which leverage
test cases to measure code correctness. This section investigates
whether CodeGuarder’s security enhancements compromise or
enhance the practical utility of the generated code.

Table 9 reports results on the MBPP and HumanEval bench-
marks across different LLMs, using the default benchmark settings.
Security knowledge is integrated as described in §4.3. Overall, Code-
Guarder slightly enhances the functionality of the generated code
across all four evaluated LLMs and benchmarks. For instance, Code-
Guarder improves the pass@1 score of GPT-40 on MBPP from 72.8
to 73.2 and the pass@5 score from 77.4 to 78.8. A similar trend is
observed across other LLMs and benchmarks (i.e., HumanEval), in-
dicating that integrating security knowledge does not compromise,
and even enhances the functionality of LLM-generated code.

7.2 Effectiveness Across Vulnerability Types

In this discussion, we evaluate the effectiveness of CodeGuard-
er in preventing vulnerabilities across MITRE’s Top-25 software
weaknesses [8] on three investigated scenarios. To quantify this,
we define the prevention percentage as the proportion of vulner-
abilities present in code generated without CodeGuarder that are
successfully mitigated when CodeGuarder is applied.

Given CodeGuarder’s consistent security hardening across LLMs,
we use DS-V3 as the representative LLM. Results are presented in
Table 10. Overall, CodeGuarder demonstrates varying effective-
ness, with average prevention rates ranging from 4.76% (CWE-79)
to 89.15% (CWE-119). It excels at addressing critical weaknesses
like CWE-119 (buffer errors, 89.15%) and CWE-200 (information
exposure, 66.67%), reflecting its strength in leveraging security
knowledge for broadly applicable vulnerabilities. However, its per-
formance dips for CWE-79 (cross-site scripting, 4.76%), where anal-
ysis reveals that the generated code contained 3, 7, and 3 CWE-79
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Table 10: Percentage of vulnerabilities prevented by CodeGuarder
across MITRE’s Top-25 software weaknesses

CWET Standard I II Average
CWE-79 0.00 14.29 0.00 4.76
CWE-89 34.62 40.00 34.78 36.47
CWE-352 40.00 38.89  36.36 38.42
CWE-22 13.79 3.85 7.14 8.26
CWE-78 40.00 4412 46.99 43.70
CWE-862 18.18 28.57  27.27 24.67
CWE-94 38.10 4138 39.13 39.54

CWE-502 53.33 12.24  15.56 27.04
CWE-200 100.00 50.00  50.00 66.67
CWE-918 26.67 20.00 31.25 25.97
CWE-119 88.89 78.57 100.00 89.15
CWE-798 30.77 2593 46.67 34.46

T Only CWE types present in both MITRE’s Top-25 and CyberSecEval are shown.

Table 11: Performance comparison across different variants

Metric Variant Standard I 1I
CodeGuarder-QD 68.61 64.04 66.25
SR CodeGuarder-KRF 74.13 68.29 74.87
CodeGuarder 76.36 70.22 76.42

CodeGuarder-QD 23.04 25.73  20.41
Sim CodeGuarder-KRF 24.82 27.04 21.14
CodeGuarder 25.56 28.46 22.39

instances across the three scenarios, all stemming from JavaScript.
This poor result stems from a lack of JavaScript-specific knowledge
in CodeGuarder’s security knowledge base, limiting its effective-
ness for this CWE type. Other lower-performing cases, such as
CWE-22 (path traversal, 8.26%), suggest similar context-specific
challenges. These findings highlight CodeGuarder’s strengths in
securing different vulnerability types while underscoring areas for
refinement, particularly in enriching the knowledge base.

7.3 Ablation Study

To further dissect the contribution of its core components, we
conducted an ablation study by evaluating two variants of Code-
Guarder, each with a key module disabled. Specifically, we cre-
ated variants excluding Query Decomposition (QD), denoted Code-
Guarder-QD, and excluding Knowledge Re-ranking and Filtering
(KRF), denoted CodeGuarder-KRF. In the CodeGuarder-QD variant,
security knowledge was retrieved using the user’s original query
directly, bypassing the sub-task decomposition step. In the Code-
Guarder-KRF variant, all initially retrieved security knowledge for
the sub-tasks was provided to the LLM for code generation without
applying the re-ranking and filtering process. It is crucial to note
that the KRF module operates on the sub-tasks generated by QD;
therefore, disabling QD inherently disables the KRF mechanism as
well. To ensure a fair comparison, we maintain consistency in the
number of injected knowledge entries across all variants. Given
that CodeGuarder demonstrates consistent performance across dif-
ferent LLMs, we conduct this ablation study using DS-V3.

The results are presented in Table 11. Overall, QD exhibits the
most substantial impact on both the SR and Sim metrics. Removing
QD led to a decrease in SR of approximately 10.1% (from 76.36%
to 68.61%) and a drop in Sim from 25.56 to 23.04 in the standard
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Table 12: The Impact of k’ and k on CodeGuarder’s Performance (SR)

(a) DS-V3 (b) CodeLlama
K k K k
3 5 7 9 3 5 7 9
1 6984 7332 7515 76.04 1 66.14 67.05 6945 69.39
2 7472 7636 77.26 76.82 2 6738 69.74 6823 67.21
3 7531 76.53 75.62 75.03 3 6817 6859 6742 66.35

scenario. Similar trends were observed in scenarios I and II. In
contrast, the contribution of KRF was less pronounced. Removing
only KRF (CodeGuarder-KRF) resulted in a smaller decrease in SR
of about 2.2% (from 76.36% to 74.13%) and a reduction in Sim from
25.56 to 24.82 in the standard scenario. These findings underscore
the critical role of Query Decomposition in enabling more precise
knowledge retrieval, thereby significantly enhancing the security
of the generated code. Knowledge Re-ranking and Filtering provide
an additional, valuable refinement to this process.

7.4 Impact of the Number of Injected
Knowledge Entries

The amount of injected security knowledge significantly impacts
CodeGuarder’s performance. This amount is controlled by k" (knowl-
edge entries retrieved per sub-task, §4.2.2) and k (top-ranked sub-
tasks selected after filtering, §4.2.3). We empirically tuned these
hyperparameters by evaluating various (k’, k) combinations using
DS-V3 (a larger model) and CodeLlama-13B (a smaller model) on
the standard RACG scenario.

Results are presented in Table 12. We observed that performance
generally improves with more knowledge up to a point, after which
excessive knowledge leads to degradation. The optimal configura-
tion among the investigated hyperparameters was (k' = 2,k = 7)
for DS-V3 and (k' = 2,k = 5) for CodeLlama-13B, indicating
that DS-V3 can effectively leverage more security knowledge than
CodeLlama-13B. This suggests that models with relatively fewer
parameters may be overwhelmed by excessively large knowledge
contexts, leading to performance drops due to their comparatively
weaker instruction-following capabilities [7, 18].

Based on these findings, and aiming for robust performance
across different model scales while mitigating degradation, we
selected k* = 2 and k = 5 as the default hyperparameters for
CodeGuarder in our main evaluations (§6).

7.5 Threats to Validity

We identify the following potential threats to the validity:

Validity of Security Measurement. Our primary measure
of code security relies on the Insecure Code Detector [3] applied
within the CyberSecEval benchmark. This detector employs an
ensemble of static analysis tools (e.g., Semgrep [38] and Weggli [47])
configured to identify patterns with 50 CWEs. A threat to validity
arises because this measurement may not perfectly capture the true
security posture of the generated code. Furthermore, the predefined
set of 50 CWEs, while significant, may not represent the complete
universe of potential security flaws.

We argue that this threat is partially mitigated by the following
factors: (1) The 50 CWEs targeted by the detector encompass a
broad range of common and critical vulnerability types frequently
encountered in practice, providing substantial coverage. Notably,
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the Insecure Code Detector achieves a detection precision of 96% for
vulnerabilities within this set. (2) The utilization of static analysis
tools represents a standard and practical methodology for large-
scale automated security assessment in existing studies [20, 34, 41].
And (3) Most importantly for our comparative study, the consistent
application of the same detection tools and criteria across all eval-
uated LLMs and investigated scenarios ensures that the observed
differences in security performance (e.g., the improvements attrib-
uted to CodeGuarder) are measured fairly, allowing for reliable and
robust comparisons.

Reliability and LLM Non-Determinism. Another threat arises
from the inherent non-determinism associated with LLMs, which
could impact the reliability and reproducibility of our experimen-
tal results. Specifically, LLMs can reproduce varying outputs even
when presented with the same input multiple times. One potential
mitigation is to average performance over multiple generations,
but this approach is extremely time-consuming. To mitigate this
threat, we adhered to the recommended practices [33] by setting
the temperature parameter to 0 during all LLM inference steps,
which minimizes the stochasticity in the generation process.

However, even at zero temperature, complete determinism is not
assured, particularly for architectures like Mixture-of-Experts (e.g.,
DS-V3 used in this study) [35]. To quantify the impact of residual
non-determinism, we conducted five independent runs of the DS-
V3 under the standard scenario and measured variability in our
primary metric, the Security Rate (SR). The maximum observed
deviation in SR across these runs was 0.38%, indicating negligible
influence on our findings. This low level of variability suggests
that the impact of residual LLM non-determinism is negligible,
indicating that this threat is well-controlled in our study.

8 Conclusion

In this work, we propose CodeGuarder, a security-hardening frame-
work for RACG systems that addresses the overlooked threat of
knowledge base poisoning. By explicitly incorporating security
knowledge into the code generation prompt, CodeGuarder enables
LLMs to generate more secure code without compromising func-
tional correctness. Extensive evaluation across various scenarios
shows that CodeGuarder significantly improves the security of
generated code while maintaining its functionality, and also demon-
strates strong generalization across languages and models. This
work takes a critical step toward securing LLM-based software
development.
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Give LLMs a Security Course: Securing Retrieval-Augmented Code Generation via Knowledge Injection

A Security Knowledge Example

/ CVE-2012-6538 :
i algo = nla_data(nla);
- strcpy(algo->alg _name, auth->alg name); E
strncpy(algo->alg name, auth->alg_name,
sizeof(algo->alg_name));
memcpy (algo->alg key, auth->alg key,
\ (auth->alg _key len + 7) / 8); )

[ Functionality:
| The code copies a string from a source buffer
| to a destination buffer.

M

I
. Root Cause:

i Natural Language Description:

0 Using “strcpy’ to copy a string without ensuring

0 the destination buffer is large enough to hold

! the source string, leading to potential buffer overflow.
1

1

1

1

\

Programming Language Example:
strcpy(algo->alg_name, auth->alg_name);

| Fixing Pattern:
| Natural Language Description: 1
i Using “strncpy’ to copy a string with a specified i
! maximum length, ensuring the destination buffer is not |
' overflowed. E
1
1
1
1
1
1

:/
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
i i Programming Language Example:

i I strncpy(algo->alg_name, auth->alg_name, sizeof(algo-
:\'\ >alg_name));

Figure 4: An example of security knowledge extracted from vulnera-
bility

Figure 4 presents an example of security knowledge extracted from
CVE-2012-6538. This vulnerability arises from the use of an insecure
function, which may lead to a buffer overflow. The patched code
mitigates this issue by replacing strcpy with strncpy, enforcing
a specific size constraint on the destination buffer.

This vulnerability arises from the use of an insecure function,
which may lead to a buffer overflow. The patched code mitigates this
issue by replacing strcpy with strncpy, enforcing a specific size
constraint on the destination buffer. The Functionality dimension
describes the fundamental operation of the vulnerable code snippet
(i-e., copying a string from a source buffer to a destination buffer).
The Root Cause dimension provides a detailed explanation of the
vulnerability in natural language along with an illustrative code
example (i.e., the risks associated with using strcpy). Finally, the
Fixing Pattern dimension includes both a description of the secure
coding practice and an example of the corrected code (i.e., replacing
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strcpy with a safer alternative, strncpy). This structured knowl-
edge extraction process informs secure code generation in RACG,
enabling CodeGuarder to enhance the security of the generated
code.

B Prompt Templates
B.1 Security Knowledge Extraction

Prompt 1: Security Knowledge Extraction

Task: Analyze a vulnerability fixing commit to extract security knowl-
edge.
Input:
o Vulnerability Description: {D¢yc}
o Vulnerability Type: {D¢ve}
o Fixing Commit (Diff): {DIFF}
Instructions:
(1) Describe the functionality of the vulnerable code snippet.
(2) Identify and extract the root cause of the vulnerability.
(3) Identify and extract the corresponding fixing pattern.
Output Format: Provide the output in JSON format, adhering to the
following structure:

{
"Functionality": "<Description of the vulnerable code’s functional-
ity>",
"Root_Cause": [
"<Detailed description of the vulnerability’s root cause>",
"<Code example illustrating the vulnerability>" ]
"Fixing_Pattern": [
"<Detailed description of the fixing pattern>",
"<Code example illustrating the vulnerability repair>" ]

k} J

In Prompt 1, the terms Dcye and Dewe denote the CVE description
and the Common Weakness Enumeration (CWE) classification type,
respectively. The DIFF represents the function-level diff, generated
by comparing the vulnerable code C, with its corresponding fixed
version C f Note that DIFF includes the full function context, as this
detailed diff provides comprehensive information for understanding
both the vulnerability and its resolution.

B.2 Query Decomposition

Prompt 2: Query Decomposition

Please help me to break down a code generation query into smaller,
detailed sub-tasks. For each sub-task, please utilize the natural lan-
guage description of what the sub-tasks do, focusing on explaining
the functionality of the sub-tasks.

# User’s Query

{QUERY}

# Output

Please output the following information in a JSON object format:

"o

L [{"Description": "string"}]

J

Prompt 2 shows the template used for query decomposition, where
QUERY represents the user’s original query Q.
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B.3 Security-Augmented Code Generation Prompt 3 provides a concrete example of prompt for security-
augmented code generation. The injected security knowledge in-
cludes the relevant knowledge retrieved for the given task. In the
prompt, {SUB_TASK_N} and {SEC_KNOW_N} refer to the N-th
sub-task and its corresponding retrieved security knowledge, re-

Prompt 3: Security-Augmented Code Generation

/*—=Original RACG Prompt Begin—-*/
Write a C function that allocates memory for a string and copies its ‘
content, returning a pointer to the new string. spectively.

# Code Examples
char* copy_string(char* src) { malloc... }
/*—=Original RACG Prompt End—-"*/

/*—-Injected Security Knowledge——*/

The code generation process involves the following sub-tasks. For
each, I provide potential vulnerabilities and corresponding mitigation
strategies.

# Sub-Tasks with Corresponding Knowledge
Sub-Task 1: Copy each string from the input array to the correspond-
ing location in the new array:.
Security Knowledge 1: ...
{
"Functionality": ...,
"Root_Cause": [
<Description>: Using strcpy to copy a string without ensuring
the buffer is large enough.
<Code Example>: strcpy(. . .);],
"Fixing_Pattern": [
<Description>: Use strncpy to ensure the string is copied safely.
<Code Example>: strcnpy(. . .);]
}

Sub-Task N:{SUB_TASK_N}
Security Knowledge N:{SEC_KNOW_N}
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