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ABSTRACT

In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs)
into image steganography, which transform traditional steganography methods such as hand-crafted
features and prior knowledge design into steganography methods that neural networks autonomically
learn information embedding. However, due to the inherent complexity of digital images, issues of
invisibility and security persist when using CNN models for information embedding. In this paper, we
propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists
of multiple progressive multi-scale convolutional modules that integrate Inception structures and
dilated convolutions. The module contains multiple branching pathways, starting from a smaller
convolutional kernel and dilatation rate, extracting the basic, local feature information from the
feature map, and gradually expanding to the convolution with a larger convolutional kernel and
dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the
multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow
secret information features to be refined in different fusion stages. The experimental results show that
the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large
public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated
by CLPSTNet have low steganalysis scores.You can find our code at https://github.com/chaos-
boops/CLPSTNet.

1 Introduction

With the digital development of Internet technology and information, people’s lives can be convenient at the
same time, the leakage of personal privacy, confidential data subject to malicious attacks and tampering and other
problems are increasing, and the corresponding information security protection technology is developing rapidly.
Information security protection technology mainly includes two kinds of information encryption and information hiding.
Information encryption is a technology that utilizes a specific algorithm to transform the original plaintext information
into unrecognizable ciphertext information, and then restores the ciphertext to plaintext through a decryption algorithm.
Steganography is a technology that embeds secret information into a carrier in a covert way so as to protect the safe
transmission of secret information. Steganography mainly researches how to embed secret information into other
information carriers efficiently and securely, and conceal the existence of the information in the transmission process
so as to guarantee the security of secret information transmission. Steganography embeds the secret information into
the carrier through specific encoding algorithms, and then the receiver of the information realizes the extraction of the
secret information through specific decoding algorithms.

Image steganography is the use of specific algorithms to embed secret information into digital images, and then
use specific algorithms to extract the secret information from the digital images, generally used for the transmission of
secret information, digital copyright authentication and other scenarios. For image steganography, the performance
of an image steganography algorithm can be measured by embedding capacity, invisibility and security. With the
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introduction of deep learning into the field of steganography, image steganography models based on various types
of neural network models have emerged in large numbers, greatly expanding the steganographic capacity of image
steganography algorithms, but such deep learning image steganography algorithms perform poorly in terms of invisibility
and security.

As a result, researchers have focused on how to improve the invisibility and security of deep learning image
steganography, such as the use of adversarial training to improve security [1], improve the model structure to improve the
invisibility [2] and so on. Adversarial training in image steganography algorithms originates from generative adversarial
networks, where steganography and steganalysis networks are used as opposites, and the two are trained against each
other to improve the steganographic image’s resistance to steganalysis. The earliest SteGAN based on encoding-
decoding network was proposed by Hayes et al [3] for image steganography, which defines the tripartite adversarial of
Alice, Bob and Eve, representing the process of image steganography - information extraction - steganalysis respectively,
to improve the security of steganography algorithm.Zhang et al [4] proposed SteganoGAN which includes the three-
partite adversarial of encoding-decoding-evaluating parties, which has become the mainstream deep learning-based deep
learning adversarial training. and becomes the current mainstream deep learning-based adversarial image steganography
modeling framework. Firstly, the embedded information is transformed into binary data with tensor size of and spliced
with the image in depth, the encoding network encodes it into the natural image with size of, the information is
reconstructed from it by the decoding network, and the evaluation network is used to evaluate the performance of the
encoding network in order to generate a more realistic cryptographic image.

Research for image steganography model structure focuses on improving the network’s ability to capture multi-
scale features [5], mitigating the gradient vanishing problem [6], and new ways of embedding information [7]. For
example, SteganoGAN [4] and FC-DenseNet [6], which choose dense connectivity module to mitigate the gradient
vanishing problem; using fusion dilation convolution and dense connectivity module to extract multi-scale and multi-
expansion rate image features [8], adaptively embedding more information in the redundant image region with rich
texture; introducing Inception module [5] for fusing different sensory domain size feature maps to improve the network’s
ability to capture features at different scales. However, this type of model has the problems of color distortion and poor
security in the generated steganographic images when embedding large amount of information.

The earliest curriculum learning method that appeared was a data-level sampling strategy, and with the gradual
application of curriculum learning in various fields, the existing curriculum learning methods can be categorized into
data-based, task-based, and network model-based curriculum learning according to the application object. Model-based
curriculum learning algorithms make the network model obtain better performance by regularly transforming the
network model during the training process. For example, gradually increasing the number of network layers [9],
discarding neuron probabilities [10], etc. Inspired by curriculum learning algorithms, we propose an implicitly written
network structure CLPSTNet (Curriculum Learning Progressive Steganography Network) that incorporates the idea
of curriculum learning step-by-step, and design a progressive multi-scale convolution that incorporates the Inception
structure and the dilated convolutional module. The shallow network starts from a convolution with a smaller convolution
kernel and dilation rate, and gradually expands to a convolution with a larger convolution kernel and larger dilation rate,
realizing feature extraction from shallow to deep and from fine to coarse. In summary, the main contributions of this
paper include the following three parts:

1 A Progressive Multi-scale Convolution Block (PMCB), a multi-pathway convolution structure that incorporates
Inception structure and dilation convolution, is designed to enhance the ability of the network to capture
multi-scale features.

2 A progressive multi-scale image steganography framework containing densely connection module and PMCB
module is designed, which enables shallow information features to be refined at different fusion stages.

3 Experiments on three large public datasets, ALASKA2, VOC2012, and ImageNet, show that the proposed
steganography scheme has high steganographic quality metrics such as SSIM and PSNR, while the generated
steganographic images have low steganalysis scores.

2 Related Work

In this section, we first present work on deep learning image steganography related to the study of model structure.
In addition, we address curriculum learning algorithm concepts and related work.

2.1 Deep learning steganography

In 2014, GoodFellow et al [11] proposed Generative Adversarial Networks (GAN), in which the generative and
discriminative networks play with each other to produce a fairly good output. Since then, researchers have used

2



Generative Adversarial Networks in the field of image steganography, and a large number of steganographic models
based on various types of deep learning have emerged. The research on deep learning image steganography in terms of
model structure improvement is mainly based on the introduction of multi-scale feature processing, the introduction of
the attention mechanism, the introduction of the simulation of attack structure to improve the robustness and so on.

Research related to multi-scale feature processing mainly focuses on increasing the width of the network or
introducing novel convolutions.Li et al [8] proposed HCISNet, which fuses dilation convolution and dense connectivity
modules to achieve the fusion of multi-scale and multi-dilatancy image features for better access to structurally and
visually redundant regions of the image to enhance the steganographic capacity.Zhang et al [5] and Wang et al [8]
proposed to utilize the Inception module for fusing feature maps with different perceptual domain sizes to enhance the
network’s ability to capture features at different scales. Also by expanding the network width, the design of double
convolution, including 1×1 convolution and 3×3 convolution, is added to the U-Net model in the study of Zeng et al [12],
which are all designed to enhance the network’s adaptability to features of different scales by enhancing the network’s
width.Zhang et al [13] propose cross-process comparative refinement of the CFCR and cross-process multiscale CPMS
of the JAIS-Net for jointly adapting and refining images in the information hiding and recovery phases, where the
differences between the current pairs of steganographic images at different scales are used to guide the next phase of
the adapting and refining embedding process during the training process.

In order to enhance the invisibility of steganographic images, researchers have tried to introduce various types of
attention mechanisms into the model structure improvement.Peng [14]et al. proposed multi-scale channel attention to
generate channel attention for feature maps at different scales, and orthogonal fusion was used to integrate the channel
information from different sensory fields to improve the decoding accuracy. In Yao et al.’s [15] study, multi-scale
attention is generated by widening the network width, and branches with different convolutional kernel sizes are added
to the base channel attention to obtain feature maps at different scales, which makes the model pay more attention to the
features that are useful for improving the performance of information embedding. Swin Transformer has received much
attention in the field of computer vision due to its excellent global modeling ability of multi-scale features from its
self-attention module, and has likewise been applied in the field of image steganography.Kashif et al [16] proposed
enhanced pixel privacy utilizing Swin transformer with multiple heads of attention in combination with CycleGAN
( EPPGAN); Li et al [17] proposed to add Shuffle Linear layer to the base of Swin transformer module to enhance
the inductive bias ability of self-attention module, and to enhance the extraction of local features by shuffling the
channels of the feature map in order to ensure that the feature information flows across the channels in the subsequent
convolutional layers. Ke et al [18] proposed that the original self-attention module only considers spatial information
and ignores channel information, and proposed Channel Adaptive Transformer Block (CATB) to utilize the global
information of each channel to adjust the difference between channels.

The earliest reversible neural network for image steganography task was proposed by Jing et al [7], which explicitly
modeled image recovery as an inverse process of image hiding, and only needed to train the network once to obtain all
the parameters of the hiding and recovery networks, which achieved state-of-the-art performances in image recovery
and hiding invisibility. Subsequently, Xu et al [19] proposed flow-based reversible neural network for steganography
task, which is easier to compute and adds structures such as content-aware noise projection to improve the robustness of
steganographic images. In addition, researchers have improved the invisibility of steganography by combining reversible
neural networks with Swin transfomer [20], combined spatial channel attention with reversible neural networks to guide
the embedding of secret information into more secure image regions [21], and utilized reversible neural networks to
guide multi-image steganography [22].

2.2 Curriculum Learning

The basic idea of curriculum learning originates from curriculum education in human behavior, humans need to
undergo a long period of training from birth to adulthood, and this training is highly organized, with different concepts
introduced at different stages, corresponding to a gradual increase in the difficulty, which leads to a gradual mastery
of the knowledge learned. The concept of curriculum learning was initially proposed by Bengio et al [23], where an
easier subset of data is used for training in the early stage of model training, and the difficulty of the subset of data is
gradually increased until the entire data set is utilized for training, claiming that this makes it easy for the model to find
better local optima, while speeding up the training speed. With the gradual application of curriculum learning in various
fields, many research results have emerged. Existing curriculum learning methods can be categorized into data-based,
task-based, and network model-based curriculum learning based on the object they are applied to [24].

Data-based curriculum learning advocates training models starting with simple samples and progressing gradually
to complex samples. For example, in medical image analysis tasks, e.g., starting training from heavy disease images (the
more severe the image lesion i.e., the simpler it is) [25] and progressively transitioning to moderate and mild, or starting
training from images with nodules [26] and unlabeled images containing high information content [27] are used to

3



balance out the problem of training bias in the medical image task because samples containing high information content
have a higher probability of belonging to a minority class ( rare cases). Task-based curriculum learning approaches
tasks incrementally by focusing on the connections between tasks, where each subtask is a simplified version of the
next, and each task uses previously learned knowledge of the task. For example, starting with simpler tasks [28], more
relevant [29] task sets, etc., and gradually expanding to more difficult and less relevant tasks.

Model-based curriculum learning allows network models to achieve superior performance by regularly modifying
them during the training process. For example, gradually increasing the number of network layers [9], controlling
filters [30], discarding neuron probabilities [10], and increasing the capacity and strength of the discriminator [31, 32].
In the research for generative adversarial network models, Karras et al [9] used to start with a low resolution image, so
that the model captures the contour information of the data from it, and gradually add new network layers dealing with
higher resolution details during the subsequent training process, which are used to increase the detail information of the
image; Sharma et al [33] proposed that by continuously enhancing the discriminator’s discriminatory ability is used to
find the generator the problem that the generator needs to progress under increasingly difficult curriculum tasks in order
to deceive the discriminator and achieve high quality images.

3 CLPSTNet

In this section, we present the overall architecture of CLPSTNet, describing in detail the design of the progres-
sive multiscale convolutional module, followed by the structure of the encoding and decoding networks, and the
cryptographic analysis network. Finally, the definition of the loss function is given.

3.1 Overall framework

As shown in Figure 1, the overall framework of CLPSTNet includes encoding network, decoding network and
steganalysis network. The encoding network accomplishes information hiding, the decoding network accomplishes
information recovery, and the steganography analysis network is used to evaluate the performance of the encoding
network. Encoding network Encoder takes original image and secret information as input.

Assuming that the inputs are the original image Xcover ∈ R3×H×W and the secret information Ysecret ∈
RD×H×W , the original image and the secret information are spliced on the channel as inputs to the encoding network
I ∈ R(3+D)×H×W :

I = Cat(Xcover, Ysecret) (1)

After processing by the Encoder, the steganographic image Xcontainer ∈ R3×H×W is generated, and the process
can be described as:

Encoder : (Xcover, Ysecret) → Xcontainer (2)

The decoding network Decoder accepts the steganographic image as input and generates the recovered secret
message Yrecovered ∈ RD×W×H from the steganographic image, the process can be described as:

Decoder : Xcontainer → Yrecovered (3)

The main goal of the coding network is to create a steganographic image that keeps the visual appearance of the
original image intact while preserving the secret information in the steganographic image from being discovered. The
steganalysis network Critic takes the steganographic image and the original image as inputs and outputs a steganalysis
score s ∈ [0, 1]. When the score is closer to 1, it indicates that the image is more likely to contain secret information:

Critic : (Xcover, Xcontainer) → s (4)

3.2 PMCB Module

In the process of realizing the embedding and reconstruction of multi-channel secret information, the quality of the
steganographic image and the reconstruction decoding rate decrease with the expansion of the embedding capacity,
which is related to the inability of the encoding and decoding network to deal with feature information of different
scales. Inspired by curriculum learning, it mimics the process of human learning, starting from smaller and simpler
knowledge and gradually expanding to macroscopic and more complex knowledge. As shown in Figure 2.
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Figure 2: PMCB Module

Fusing the Inception structure and dilation convolution to construct a multi-pathway convolution structure, the
Progressive Multi-scale Convolution Block (PMCB) is constructed, starting from a convolution containing a smaller
convolution kernel and a dilation rate, to extract the most basic and localized feature information from the feature map.
As the network deepens, it gradually expands to a convolution containing a larger convolution kernel and dilatation rate
for sensing feature information of a larger range and larger sensory field, and extracts features from shallow to deep and
from fine to coarse, with each layer observing different information features for each different convolution pathway to
enhance the model’s ability of extracting multi-scale information features.
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A single PMCB module contains five branching pathways, including 1×1conv, 3×3conv, 5×5conv, 3×3 dilated
convolution with dilation rate D1, and 3×3 dilated convolution with dilation rate D2. The 3×3 convolution kernel
and 5×5 convolution kernel, and the two dilation convolution branching paths are preceded by 1×1conv added for
dimensionality reduction to reduce the computational and parametric quantities due to the addition of large convolutions,
and to increase the model’s nonlinear expressive capability. The feature maps of the previous layer are input to
the PMCB module, and are processed in parallel by the five branching paths, thus obtaining the multiscale coded
information, and finally the results of the five branching paths are channel spliced in order to fuse the multiscale
information. Compared with the original Inception module, the PMCB module adds the branching path of dilation
convolution, which introduces dilation convolution processing to increase the receptive field and obtain denser feature
information, which is especially important for image steganography to better obtain the structural and visual redundancy
regions of the image to enhance the steganographic capacity.

Progressive Multiscale Convolution Module PMCB The progressive growth of scale in the coding network is
reflected in the size of the convolution kernel, dilation rate. First, the shallow layer of the network starts after the
PMCB1 module containing 1×1conv, 3×3conv, 5×5conv, dilation rate (Dilation=3) dilation convolution, and dilation
rate (Dilation=6) dilation convolution, from which the network captures local details of a smaller scale and a smaller
perceptual range, and the shallow network focuses more on the edge and detail features. It then expands to the
PMCB2 module containing 1×1conv, 3×3conv, 5×5conv, dilation rate (Dilation=6) dilation convolution, and dilation
rate (Dilation=12), which gradually captures feature information with larger sensory fields and more scales, and finally
contains 1×1conv, 3×3conv, 5×5conv, dilation rate ( Dilation=12) dilation convolution, and PMCB3 module with
dilation rate (Dilation=18) to perceive feature information with larger sensory field and more scales, so that the secret
information features and image information can be fused and refined at different fusion stages through the processing of
PMCB modules with different scales, in order to enhance the feature processing capability of the network for the fusion
and separation of secret information and images.

3.3 Encoder

As shown in Figure 1(b), the complete Encoder model mainly contains an initial convolution block, a downsampling
stage, an upsampling stage and an output convolution block. First, the input of Encoder is processed by the initial
convolution module, which contains four residual convolution modules, and the resolution of the output feature map
is not changed. Each residual convolution module contains 3×3 conv, BatchNorm and LeakyReLU and a residual
short-circuit join. Next, the feature maps here are processed by three Progressive Blocks1, each of which contains four
layers of densely connected layers, downsampling layers, and PMCB modules, as shown in Figure 1(c).

The structure of each densely connected layer is shown in Figure 1(e), containing 1 × 1 conv, BatchNorm,
LeakyReLU and Dropout, and the output of each layer is added to the subsequent network layer by channel splicing.
The inputs of each layer consider the feature mapping of all previous layers. The dense connectivity module is used
to alleviate the problem of gradient vanishing due to deepening of the network and to enhance feature propagation to
realize the reuse of low-level feature information about edges, shapes, etc. in the shallow layer, so that the shallow
secret information features and image features flow in different layers of the network. The resolution of the feature map
output inside the dense connectivity module is kept constant.

The downsampling layer contains a 3×3 conv, BN, activation function LeakyReLU with a step size of 2. The
resolution of the feature map output from this layer is halved. The internal construction in each PMCB module during
the encoding process is not always the same, where the two branching paths of the dilation convolution use progressive
growth, and the dilation rate parameter for this part uses [3,6,12,18,3,6,12,18], which is followed to ensure that the
region of use under the sensory field is continuous. The output of each Progressive Block1 is fed individually to the
Jump Connection Module for processing and is used to recover feature map resolution and supplemental details.

Subsequently, two PMCB modules are used as bottleneck layers for capturing multi-scale feature information at
low resolution. Next, we use a U-Net structure similar to downsampling for feature reconstruction, and the decoding
stage also contains three Progressive Blocks2, as shown in Figure 1(d). Each Progressive Block2 contains four layers
of dense connectivity layer, PMCB module, Transition Block and upsampling layer. Each Progressive Block2 in the
decoding stage accepts the processed feature maps from each Progressive Block1 in the encoding stage, and performs
feature fusion by channel splicing after changing the number of channels via 1×1 conv, which is used to recover
the feature map resolution and complementary details. The feature maps are then processed by the Dense Linking
Module without changing the resolution of the feature maps. Then it is processed by the Transition Block module for
adjusting the number of channels and reducing the computational effort, which contains BN, LeakyReLU, and 1×1conv.
Subsequently it is processed by the PMCB module with different dilation rate settings, and the input is fed into the
upsampling module, which contains an inverse convolutional module, BN, and LeakyReLU for recovering the feature
map resolution. Finally after two residual convolution layers are used for output.
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Table 1: Decoder model structure
Group/Layer Progress Output size

Input / 128× 128× 3

Residual Block Conv+BN+ReLU 128× 128× 32

PMCB Dilation=(3,6) 128× 128× 192

PMCB Dilation=(6,12) 128× 128× 288

PMCB Dilation=(12,18) 128× 128× 512

Conv / 128× 128×D

Table 2: Critic model structure
Group/Layer Progress Output size

Input / 128× 128× 3

ConvBlock1 Conv+BN+ReLU+AvgPool 64× 64× 8

ConvBlock1 Conv+BN+Tanh+AvgPool 32× 32× 16

ConvBlock2 Conv+BN+ReLU+AvgPool 16× 16× 32

ConvBlock2 Conv+BN+ReLU+AvgPool 8× 8× 64

ConvBlock3 Conv+BN+ReLU 4× 4× 128

SPPBlock / 3840× 1

FC / 128× 1

FC / 2× 1

3.4 Decoder

Decoder accepts the output of Encoder as input and recovers the secret information from the steganographic
image.Decoder consists of initial convolutional block, PMCB module and output convolutional block, the specific
network structure and the shape of output tensor are shown in Table 1.

3.5 Critic

Critic accepts the output of Encoder and the original image together as input, and outputs a score representing the
probability that the image contains secret information, the closer the score is to 1, i.e., the higher the probability that
the image contains secret information, which means that the image is more likely to be detected by the steganalysis
network.Critic chooses the XuNet-based steganalysis auxiliary network proposed by Zhang et al [5]. Critic uses XuNet
based steganalysis assisted network proposed by Zhang et al [5]. The steganalysis network is used to evaluate the
steganalysis resistance of the samples during the training process, and the encoder network-decoder network is formed
with adversarial training to improve the steganalysis resistance of the encrypted image, the specific network structure
and the shape of the output tensor of each layer are shown in Table 2.

3.6 Loss function

In order to improve the performance of the steganographic model, the objective function of the CLPSTNet model
can be categorized into embedding loss, recovery loss and steganalysis loss, which can be defined as follows:

Ltotal = Lencode + a× Ldecode + b× Lstehsis (5)
where Ltotal is the overall loss function of the network, Lencode is the embedding loss for information hiding, Ldecode

is the recovery loss for information reconstruction, and Lstehsis is the loss for steganalysis. α, β are the parameters
used to balance the three components of the loss.

Embedding Loss: In order to ensure the visual consistency between the original image and the steganographic
image, we consider several metrics for evaluating image similarity, including Mean Square Error (MSE), Structure
Similarity Index Measure (SSIM), and Multi-Scale Structure Similarity Index ( Multi-Scale Structure Similarity Index
Measure, MSSSIM) [?]

Lencode = λ1 ×MSE(x, y) + λ2 × (1− SSIM(x, y)) + λ3 × (1−MSSSIM(x, y)) (6)
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λ1λ2λ3 are the parameters used to balance the three components of the embedding loss. MSE is chosen to measure
the pixel-level difference between the original image and the steganographic image pair, and SSIM and MSSSIM
are chosen to ensure the visual consistency of the image pairs on the human visual system.SSIM takes into account
the sensitivity property of the human visual system to the structural information in terms of brightness, contrast and
structural information of the images.SSIM takes the value of [0,1], and when the value of SSIM is closer to 1 The
value of SSIM is [0,1], when SSIM value is closer to 1, it indicates that the two images are more similar in terms of
brightness, contrast and structural information:

SSIM(x, y) =
(2µxµy) + C1

µx
2 + µy

2 + C1

α

· 2σxσy + C2

σx
2 + σy

2 + C2

β

· σxy + C3

σxσy + C3

γ

(7)

where µx, µy are the mean values of the original and loaded images respectively, σx, σy is the variance of the original
and loaded images respectively, σxy is the covariance of the original and loaded images, C1, C2, C3 is used to avoid
parameters with denominators close to zero, α > 0, β > 0, γ > 0 which are parameters used to adjust the importance
of the three components.

MSSSIM is a variant of SSIM, a multiscale based SSIM metric that iteratively downsamples the image using
a low-pass filter, with the original image having a scale of 1 and the highest scale of M. MSSSIM is obtained by
calculating on different scales:

MSSSIM(x, y) = [l(x, y)]αM ×
M∏
j=1

[cj(x, y)]
βj × [sj(x, y)]

γj (8)

Recovery loss: Binary cross entropy (BCE) is chosen for evaluating the accuracy of information recovery:

Ldecode = BCE(Ysecret, Yrecovered) (9)

4 Experiments

4.1 Experimental Platform and Datasets

The experiments in this paper were all conducted on a Linux operating system using the PyTorch 1.10.1 deep
learning framework, with the system’s GPU being the NVIDIA GeForce RTX 3090. The datasets used were the
ALASKA2, Pascal VOC2012, and ImageNet, which are three publicly available large-scale datasets. The ALASKA2 is
a public dataset from the ALASKA2 Image Steganalysis competition on the Kaggle platform. Within the ALASKA2
dataset, 10,000 original images from the "Cover" category were selected for the training set, 3,000 for the validation set,
and 7,000 for the test set. ImageNet is a large-scale public computer vision dataset; 25,000 images were extracted from
it, with 20,000 used for the training set and the remainder for testing. VOC2012 is a dataset used for object detection
and semantic segmentation; 13,000 images were selected from it to form the training set, with the remaining 5,000
used for the test and validation sets. Due to computational power limitations, all original images from the datasets were
processed through a Matlab program to be resized to 128×128 pixels.

4.2 Parameters

The experiments in this paper utilize the Adaptive Moment Estimation (Adam) algorithm provided by the PyTorch
platform to optimize the encoding and decoding networks. The initial learning rate is set to 0.001, with momentum
parameters (betas) configured as (0.9, 0.999). The Stochastic Gradient Descent (SGD) algorithm is selected to optimize
the steganalysis adversarial network, with the initial learning rate (lr) set to 0.0001/3, and weight decay (weight decay)
set to 1e-8, updating the steganalysis network parameters every 5 batches. The number of samples selected for each
training session (Batch size) is 8, and the maximum number of iterations for the model (max-iter) is 120. The loss
function comprises encoding loss, decoding loss, and steganalysis loss. The encoding loss incorporates the Structural
Similarity Index (SSIM), Multi-Scale Structural Similarity (MS-SSIM), and Mean Square Error (MSE) as evaluation
metrics, with corresponding proportional coefficients of 0.5:0.5:0.3. Both the decoding loss and the steganalysis loss
employ binary cross-entropy. The ratio of the encoding loss to decoding loss to steganalysis loss in the loss function is
1:1:0.1. In the experiments, the steganographic capacity is D=1-6 bpp (that is, the hidden tensor in a 128×128 image is
128×128×D in size).

4.3 Experimental results

1) Test results of the model on multiple datasets. The CLPSTNet model is selected to be tested on the 1-6 bpp
ALASKA2, VOC2012, and ImageNet datasets, and the experimental results are shown in Table 3. As can be seen from
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Table 3: Performance of the CLPSTNet model in steganography and decoding accuracy
Dataset D SSIM MSSSIM PSNR RMSE Accuracy

ALASKA2

1 0.99932 0.99997 50.983 0.0028 0.98
2 0.99889 0.99996 44.819 0.0059 0.87
3 0.99518 0.99970 42.098 0.0092 0.60
4 0.98896 0.99920 39.190 0.0116 0.66
5 0.99184 0.99917 38.959 0.0319 0.67
6 0.98991 0.99919 37.419 0.0162 0.64

VOC2012

1 0.99930 0.99994 50.215 0.0032 0.94
2 0.99840 0.99993 46.085 0.0050 0.96
3 0.99550 0.99946 38.554 0.0132 0.68
4 0.99049 0.99943 39.399 0.0109 0.62
5 0.98053 0.99730 34.065 0.0249 0.72
6 0.96507 0.99732 33.874 0.0312 0.75

ImageNet

1 0.99933 0.99997 49.537 0.0034 0.95
2 0.99862 0.99991 44.573 0.0062 0.83
3 0.99819 0.99989 43.884 0.0067 0.83
4 0.99486 0.99971 37.994 0.0147 0.65
5 0.98880 0.99925 37.000 0.0207 0.67
6 0.98810 0.99887 36.669 0.0178 0.66

Table 3, the CLPSTNet model performs well in all indicators of 1-6 bpp steganographic capacity on the two datasets,
with the PSNR exceeding 40 under the 1-3 bpp indicator, and the SSIM indicator is close to 1, which indicates that the
steganographic image generated by the CLPSTNet model is very similar to the original image.

2) PMCB module validation for coding and decoding effectiveness. In order to explore the effectiveness of PMCB
module in encoding and decoding networks, the Conv model, which contains only the base convolutional module, is
chosen as the baseline model, and the ProgressiveNet model, which contains only the PMCB module in the decoding
network and only the base convolutional module in the encoding network, is chosen as a comparative model, to be
compared with the CLPSTNet model, which contains the PMCB module in both the encoding and decoding networks.
CLPSTNet model for comparison. The 1-6 bpp steganographic capacity on the ALASKA2 dataset was chosen for the
experiments, and the experimental results are shown in Table 4.

As can be seen from Table 4, the CLPSTNet model outperforms the baseline model in 1-6 bpp steganographic
capacity, and outperforms the baseline model in several metrics of steganographic image quality, such as SSIM, PSNR,
and MSSSIM, while the decoding accuracy is the same or slightly lower than that of the baseline model. On the other
hand, ProgressiveNet with PMCB selected for decoding network and basic convolutional structure selected for encoding
network has lower performance than CLPSTNet in several metrics of steganographic image quality, while the decoding
accuracy is slightly higher than that of CLPSTNet and the baseline model. It shows that the PMCB module is very
effective in improving the decoding accuracy, while the CLPSTNet model, which adopts the PMCB module for both
the encoding and decoding networks, is higher than PregressiveNet and the baseline model in several metrics of the
steganographic quality assessment, indicating that the PMCB module is also effective in improving the quality of
steganographic images.

3) PMCB module and Inception module comparison experiment. In order to further explore the effects of the
basic Inception module and the PMCB module improved by the Inception module on the model performance, the
steganographic network containing only the Inception module, the steganographic network containing the Inception
module and the dense connectivity module, and the CLPSTNet containing the PMCB module and the dense connectivity
module were selected for comparison. The 1-3 bpp steganographic capacity on the ALASKA2 dataset was chosen for
the experiments, and the experimental results are shown in Table 5.

As can be seen from Table 5, the PMCB module improved by the Inception module outperforms the model
containing only Incepiton or the model containing the Incetpion module and the Dense Connection module in several
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Table 4: Impact of the PMCB Module on the Performance of the Encoding and Decoding
D Model SSIM MSSSIM PSNR Accuracy

1
Conv 0.99027 0.99806 34.260 0.74

ProgressiveNet 0.98063 0.99771 33.788 0.99
CLPSTNet 0.99932 0.99997 50.983 0.98

2
Conv 0.98694 0.99651 35.263 0.61

ProgressiveNet 0.98934 0.99847 34.324 0.99
CLPSTNet 0.99889 0.99996 44.819 0.87

3
Conv 0.98632 0.99714 34.183 0.57

ProgressiveNet 0.99489 0.99877 35.714 0.87
CLPSTNet 0.99518 0.99970 42.098 0.60

4
Conv 0.98452 0.99703 33.768 0.52

ProgressiveNet 0.99267 0.99715 33.334 0.70
CLPSTNet 0.98996 0.99920 39.190 0.66

5
Conv 0.97835 0.99329 31.010 0.52

ProgressiveNet 0.99136 0.99760 34.427 0.67
CLPSTNet 0.99184 0.99917 38.959 0.67

6
Conv 0.97987 0.99405 32.366 0.50

ProgressiveNet 0.98845 0.99733 34.384 0.64
CLPSTNet 0.98991 0.99919 37.419 0.64

Table 5: Comparative experimental results of PMCB module and Inception module
D Inception PMCB Dense Block SSIM MSSSIM PSNR RMSE Accuracy

1

√ × × 0.98312 0.99625 28.286 0.0386 0.63
√ × √ 0.99850 0.99992 47.842 0.0040 0.79
× √ √ 0.99932 0.99997 50.983 0.0028 0.98

2

√ × × 0.95990 0.99114 27.974 0.0400 0.64
√ × √ 0.99316 0.99962 40.577 0.0094 0.82
× √ √ 0.99889 0.99996 44.819 0.0059 0.87

3

√ × × 0.92621 0.97698 23.670 0.0716 0.50
√ × √ 0.97997 0.99915 39.821 0.0110 0.50
× √ √ 0.99518 0.99970 42.098 0.0092 0.60
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Table 6: Influence of densely connected module and PMCB module on model performance
D Dense Block PMCB Block SSIM MSSSIM PSNR Accuracy

1

× × 0.99027 0.99806 34.260 0.74
√ × 0.99918 0.99997 46.299 0.95
× √ 0.99916 0.99995 43.728 0.83
√ √ 0.99932 0.99997 50.983 0.98

2

× × 0.98694 0.99651 35.263 0.61
√ × 0.99839 0.99994 47.565 0.82
× √ 0.99682 0.99972 39.228 0.81
√ √ 0.99889 0.99996 44.819 0.87

3

× × 0.98632 0.99714 34.183 0.57
√ × 0.99583 0.99979 43.569 0.69
× √ 0.99784 0.99985 42.897 0.83
√ √ 0.99518 0.99970 42.098 0.60

Table 7: Influence of dilation rate parameters in PMCB module on model performance
Dilation SSIM MSSSIM PSNR RMSE Accuracy

(3) 0.99941 0.99996 48.855 0.0036 0.94
(6) 0.99918 0.99996 48.991 0.0036 0.89

(3,6) 0.99948 0.99998 50.511 0.0030 0.93
CLPSTNet 0.99932 0.99997 50.983 0.0028 0.98

metrics of implicit writing evaluation, such as SSIM, PSNR, and Decoding Accuracy, indicating that the PMCB module
is more effective in improving the model performance compared to the Inception module.

4) PMCB module and dense connectivity module validation. In order to investigate the effect of the internal
structure of the proposed CLPSTNet model on the model performance, the dense connectivity module and the PMCB
module, which are included in the coding network of the CLPSTNet model, are selected for ablation experiments. The
test results of 1-3 bpp hidden writing capacity on the dataset ALASKA2 are shown in 6.

As can be seen from Table 6, the CLPSTNet models containing only the dense connectivity module, only the
PMCB module, and both the PMCB module and the dense connectivity module outperform the baseline model in terms
of image steganography quality and decoding accuracy, indicating the effectiveness of the dense connectivity module
and the PMCB module. At 1 bpp steganographic capacity, the CLPSTNet model outperforms the rest of the compared
models in all cases, indicating that the proposed CLPSTNet model structure has excellent steganographic performance
and decoding accuracy.

5) Comparison of CLPSTNet progressive modules.The expansion rate of several PMCB modules in the CLPSTNet
network is set to progressive growth.In order to explore the effectiveness of this progressive idea, the schemes that
contain only the expansion rate of 3, 6, 3, and 6 parameters are selected to be compared, and the test results are shown
in Table 7. As can be seen from Table 7, the scheme with the expansion rate parameter of the PMCB module set to
progressive growth performs the best in all the indicators, including SSIM, PSNR and decoding accuracy, which are
all better than the PMCB module scheme with only a single expansion rate set, indicating the effectiveness of the
progressive PMCB module in CLPSTNet.

6) Comparison with other models. In order to more fully demonstrate the excellent performance of CLPSTNet,
different structures of image steganography models are selected for experimental comparative analysis, including the
classical image steganography network structures ResNet [34], SteganoGAN [4], and HCISNet [8], as well as the
multiscale network models DenseASPP [35], FC-DenseNet [6], the as well as network structures that include attention
mechanisms such as SENet [36], ECANe [37] and CBAM [38]. In addition, ProgressiveNet models that only decode
networks containing PMCB modules were added for comparison, and the test results of these models and the CLPSTNet
model for 1bpp hidden write capacity on the dataset ALASKA2 are shown in Table 8.
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Table 8: Comparison experiments between CLPSTNet and other models
Model SSIM MSSSIM PSNR RMSE Accuracy
Conv 0.98351 0.99771 33.788 0.020 0.99

ResNet 0.98993 0.99708 33.435 0.021 0.78
steganGAN 0.98970 0.99907 37.669 - 0.95
DenseASPP 0.99753 0.99933 36.008 - 0.95

SENet 0.99432 0.99881 37.131 0.014 0.96
ECANet 0.99438 0.99919 39.934 0.010 0.86
CBAM 0.99470 0.99869 37.878 0.012 0.92

FC-DenseNet 0.98179 0.99236 30.510 - 0.72
HCISNet 0.96532 0.99822 41.221 - 0.99

ProgressiveNet 0.98351 0.99771 33.788 0.020 0.99
CLPSTNet 0.99932 0.99997 50.983 0.0028 0.98

As can be seen from Table 8, the steganographic quality metrics MSSSIM and PSNR of CLPSTNet are higher
than those of the other comparison models, which proves the excellent performance of the CLPSTNet model in image
steganography quality. Under the same experimental conditions, the decoding accuracy of the ProgressiveNet model
with only the decoding network containing the PMCB module has the best performance among the many comparison
models, indicating the effectiveness of the PMCB module in improving the decoding accuracy.

7) Visual test of steganographic images. In order to further validate the quality of steganographic images for the
CLPSTNet model, a part of images from ImageNet, ALASKA2, and VOC2012 datasets were selected for testing. This
part of the images did not participate in the model training and verified the carrier-confidential images under 1-6 bpp
steganographic capacity, and the test results are shown in Figure 3. As can be seen in Figure 11, the steganographic
images generated by the CLPSTNet model with 1-6 bpp steganographic capacity are more similar to the original images
in terms of color and brightness, which indicates that the model has superior image steganographic quality.
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Figure 3: The original image and the stego image generated by CLPSTNet at 1-6 bpp
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5 Conclusion

In this paper, a multi-scale convolutional steganography method, called CLPSTNet, is proposed.Based on GAN,
encoding, decoding network, and steganographic analysis network are chosen as the information embedding, information
recovery and evaluation parties. The progressive multi-scale convolutional module is used in the encoding network and
decoding network, which integrates the idea of curriculum learning algorithm and combines the idea of curriculum
learning with the model structure of steganography, which greatly improves the quality of steganographic images and
the embedding capacity of images. We use multiple steganography evaluation metrics and steganography analysis
network to analyze our proposed model, which realizes the invisibility and undetectability of information. However,
the CLPSTNet model also has some weaknesses. First, CLPSTNet can only embed binary information, and cannot be
embedded for other data such as images. In addition, the CLPSTNet model does not perform well enough in terms of
information recovery accuracy, which appears to decrease with the expansion of information embedding capacity. In
the future, we will explore the performance of progressive multi-scale convolutional modules for decoding.
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