
On the Consistency of GNN Explanations for
Malware Detection

Hossein Shokouhinejad, Griffin Higgins, Roozbeh Razavi-Far, Hesamodin Mohammadian, Ali A. Ghorbani
Canadian Institute for Cybersecurity (CIC), University of New Brunswick, Fredericton, NB, Canada

Email: {hossein.shokouhinejad, griffin.higgins, roozbeh.razavi-far, h.mohammadian, ghorbani}@unb.ca

Abstract—Control Flow Graphs (CFGs) are critical for ana-
lyzing program execution and characterizing malware behavior.
With the growing adoption of Graph Neural Networks (GNNs),
CFG-based representations have proven highly effective for
malware detection. This study proposes a novel framework
that dynamically constructs CFGs and embeds node features
using a hybrid approach combining rule-based encoding and
autoencoder-based embedding. A GNN-based classifier is then
constructed to detect malicious behavior from the resulting
graph representations. To improve model interpretability, we
apply state-of-the-art explainability techniques, including GN-
NExplainer, PGExplainer, and CaptumExplainer, the latter is
utilized three attribution methods: Integrated Gradients, Guided
Backpropagation, and Saliency. In addition, we introduce a
novel aggregation method, called RankFusion, that integrates
the outputs of the top-performing explainers to enhance the
explanation quality. We also evaluate explanations using two
subgraph extraction strategies, including the proposed Greedy
Edge-wise Composition (GEC) method for improved structural
coherence. A comprehensive evaluation using accuracy, fidelity,
and consistency metrics demonstrates the effectiveness of the pro-
posed framework in terms of accurate identification of malware
samples and generating reliable and interpretable explanations.

Index Terms—Graph Neural Network, Explainability, Machine
Learning, Malware Detection, Dynamic Analysis, Control Flow
Graph.

I. INTRODUCTION

In the past few years, malware attacks have escalated
dramatically, highlighting the limitations of conventional mal-
ware detection methods, such as signature-based techniques.
While these methods are quick and widely utilized, they
fall short in identifying zero-day and sophisticated malware
threats [1]. Consequently, there has been a significant shift to-
wards integrating machine learning (ML) strategies, noted for
their enhanced detection capabilities, adaptability to emerging
threats, and reduced false positives. Numerous studies have
thus shifted focus towards leveraging ML [2]–[5] for malware
detection and classification.

As malware becomes more complex and developers employ
advanced tactics to evade detection, the need for robust rep-
resentation of malware samples has become evident. Recent
research highlights the effectiveness of graph-based models
in depicting malware behavior, which facilitates improved
detection performance. These models provide a detailed view
of a program’s execution, helping analysts understand the
program’s logic, pinpoint vulnerabilities, and expose malicious
activities, including hidden or scrambled code. Various graph

structures, including Control Flow Graph (CFG) [6]–[9], Func-
tion Call Graph (FCG) [10]–[12], and Application Program-
ming Interface (API) Call Graph (ACG) [13]–[15], have been
increasingly utilized to feed data into ML models designed
for malware detection. Although initial efforts involved using
these graph structures with CNN or RNN architectures, the
advent of Graph Neural Networks (GNNs) with variants like
Graph Convolutional Networks (GCNs), Graph Isomorphism
Networks (GINs), GraphSage, and Graph Attention Networks
(GATs) have demonstrated superior outcomes when integrated
with CFGs and FCGs.

The complexity of graph-based models often results in
a lack of clarity in their decision-making processes, which
is particularly crucial in the field of malware detection. To
address this, various explainability methods for GNNs have
been developed to identify the key subgraphs that influence
the model’s decisions [16]. Explainability techniques provide
insights into how GNN models reach their decisions by
highlighting the most important nodes, edges, and subgraphs
that contribute to the prediction. These methods improve the
interpretability of GNN models, making them more transparent
and trustworthy, which is especially valuable in security-
related applications such as malware detection.

A critical factor influencing the performance of explainers
is the method used to generate the important subgraph based
on edge importance weights. Most existing research employs
a conventional approach that selects the top-weighted edges
to construct the important subgraph. However, the quality of
the generated subgraph directly affects the reliability of the
explanation and the model’s overall interpretability. Therefore,
evaluating the effectiveness and correctness of explainers is
essential to ensure consistent and meaningful insights.

To assess the quality of explainers, several quantitative
metrics are introduced to complement qualitative analyses.
Among these, fidelity is a widely recognized metric that
measures how faithfully the explainer represents the model’s
behavior. Specifically, fidelity assesses whether the model’s
performance on the original graph is consistent with its per-
formance on the identified important subgraph while showing
a significant deviation when evaluated on the unimportant
subgraph. Another useful metric is the explainer accuracy,
which measures how well the important subgraph retains the
crucial information needed for the model’s decision. Ideally,
the explainer accuracy should align closely with the target
GNN test accuracy, confirming that the identified subgraph

ar
X

iv
:2

50
4.

16
31

6v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
5

captures the essential decision-making components of the
model. However, evaluating the explainer with these metrics
without considering the robustness of these metrics can lead
to misleading conclusions. For example, high fidelity might
reflect overfitting to the original graph rather than true model
understanding. Similarly, explainer accuracy may be influ-
enced by noise in the data or the structure of the original
graph, potentially compromising the validity of the evaluation.
Therefore, ensuring the consistency and stability of these
metrics under different graph configurations is crucial for a
reliable assessment of the explainer’s performance.

In this paper, we propose a graph-based malware detection
framework that leverages dynamically generated CFGs and
hybrid node embeddings derived from assembly instructions.
A GNN model is trained to classify the resulting graphs as
benign or malicious. To enhance interpretability, we incorpo-
rate multiple explanation techniques and introduce a novel
aggregation-based approach to improve explanation quality.
We further propose an effective subgraph extraction strategy
and assess the framework’s robustness using fidelity and
consistency-based evaluation metrics.

The key contributions of this article are as follows:
• A dynamic graph-based malware detection framework uti-

lizing CFGs and a hybrid rule-based and autoencoder-based
node embedding strategy.

• A novel explanation aggregation method, RankFusion ex-
plainer, that enhances the informativeness and reliability of
subgraph-based interpretations.

• A new subgraph extraction technique, GEC, designed to
generate well-connected, high-importance subgraphs.

• A systematic evaluation using accuracy, fidelity, and a con-
sistency metric that measures the sensitivity of explanations
to input perturbations.
The structure of the paper is organized as follows: Section II

provides a review of the relevant background. Section III
details the proposed framework, while Section IV focuses on
the explainability metrics in more detail. Section V, presents
the experimental results and analysis, Finally, Section VI
concludes the paper and outlines potential directions for future
research.

II. BACKGROUND

The growing complexity and sophistication of malware
have driven the need for more advanced detection techniques
capable of thoroughly analyzing and identifying malicious
programs. In recent years, GNNs have emerged as a powerful
tool for malware detection due to their ability to model com-
plex relationships and dependencies within the structural data
of malicious code [16]. Unlike traditional machine learning
models that rely on flat feature representations, GNNs leverage
the inherent graph structure of malware, such as CFGs, to
capture both local and global patterns. Recent advances in
GNN-based malware detection have focused on improving
scalability, interpretability, and adaptability to evolving threat
landscapes. Moreover, explainability frameworks integrated
with GNNs are becoming increasingly important, allowing

security analysts to understand the rationale behind classi-
fication decisions, identify critical graph components, and
uncover hidden attack patterns. In this section, we provide
an overview of the state-of-the-art techniques in GNN-based
malware detection and discuss their approaches.

Recent advancements in GNN-based malware detection
have introduced innovative techniques to improve detection
accuracy, scalability, and robustness. One notable work is
the Spectral-based Directed Graph Network (SDGNet), which
addresses the challenge of detecting malware using directed
graphs. Traditional spectral-based GNNs struggle with di-
rected graphs due to the asymmetry of adjacency matrices.
SDGNet overcomes this by employing three weighted graph
matrix normalization methods (normal, aggregation-based, and
propagation-based) to transform directed graphs into symmet-
rical matrices. It then applies a Multi-aspect Directed GCN
(MDGCN) to learn comprehensive graph representations from
these matrices [17].

A dynamic malware analysis approach is presented in the
DMalNet framework [15], which constructs an API call graph
from API call sequences and applies a hybrid feature encoder
to extract semantic features from both API names and argu-
ments using techniques like Word2Vec, feature hashing, and
similarity encoding. A GNN combining a modified GIN and
GAT is then used to learn both content and structural features
from the graph, capturing complex relationships between API
calls for effective malware detection and classification.

An alternative static detection model for malicious
JavaScript is introduced in JStrong [18]. It generates an
abstract syntax tree from JavaScript source code and integrates
data flow and control flow information into a program depen-
dency graph. A GNN is then employed to analyze the graph
and classify malicious code based on its structural patterns.

A robust ensemble model for malware detection is described
in REMSF [19], which leverages semantic feature fusion. The
model extracts static and semantic features from PE files,
including byte histograms, entropy, and string information. It
constructs a heterogeneous graph to model the relationships
between PE files, imported DLLs, and APIs. By combin-
ing different classifiers through ensemble learning, REMSF
improves detection accuracy and captures complex semantic
relationships more effectively.

Another noteworthy approach is MalwareExpert [20], an
expert system that detects malicious binaries using a GNN-
based model. It identifies essential functions in the analyzed
sample and highlights the most critical subgraphs involved
in malicious behavior, providing an explainable output to im-
prove transparency and understanding of the detection process.

A few-shot malware classification model using a graph
transformer with a triplet-loss function is introduced in [21].
This method extracts CFGs from assembly-level code and
applies a path-sampling algorithm to capture functional pat-
terns. The graph transformer, equipped with an attention
mechanism, selectively embeds attack pathways from the
CFGs. The triplet-loss function enables the model to learn a
disentangled feature space, improving classification even with

limited samples.
Documentation-augmented malware detection is explored in

DawnGNN [22]. It constructs API graphs from Windows API
call sequences and enhances them with semantic information
extracted from official Windows API documentation using a
pre-trained BERT model. The enhanced API graphs are then
processed using GAT, which learns contextual information and
improves malware detection by capturing both structural and
semantic relationships among API calls.

Temporal and structural feature learning for malware detec-
tion is introduced in TS-Mal [23]. This model extracts fine-
grained temporal patterns from API call sequences using a
TextRCNN-based temporal vector learning method. It then
models the relationships between API categories using a
heterogeneous graph and generates dense structural repre-
sentations through GAT. By combining both temporal and
structural features, TS-Mal enhances the model’s ability to
detect complex malware patterns.

MalGNE [7] presents a novel malware detection framework
based on CFG node embedding in a low-dimensional space. It
addresses limitations in node feature extraction by applying a
unique instruction encoding rule to handle out-of-vocabulary
(OOV) issues and reduce redundancy. The model processes
node vectors through an aggregation layer and a sequence layer
to extract execution sequence and aggregation features. These
vectors are mapped into a low-dimensional continuous space,
improving both detection accuracy and efficiency through
GNN-based learning.

Recent advancements in malware detection have not only
focused on improving accuracy but also on enhancing model
interpretability using GNN explainers. GNN explainers aim to
provide insights into how a model reaches its decisions by
identifying the most influential graph components. A widely
adopted method in GNN explainability is GNNExplainer [24],
which provides model-agnostic explanations for predictions
made by any GNN model on tasks such as node classification,
link prediction, and graph classification. GNNExplainer iden-
tifies a compact subgraph structure and a small subset of node
features that are most influential for a GNN’s prediction. It
formulates the explanation process as an optimization problem
that maximizes the mutual information between a GNN’s
prediction and the distribution of possible subgraph structures.
By learning both a structural and feature mask, GNNExplainer
generates clear and consistent explanations, enhancing the
interpretability of complex GNN models.

Building on this foundation, SubgraphX [25] introduces
a GNN explanation method that explains GNN predictions
through subgraph exploration. Unlike methods that focus on
individual nodes or edges, SubgraphX identifies important
subgraphs using a Monte Carlo tree search (MCTS) algo-
rithm. It evaluates the importance of subgraphs by computing
Shapley values, which measure the marginal contribution of
each subgraph to the model’s prediction. This approach allows
SubgraphX to highlight key subgraph structures responsible
for the classification decision, providing more intuitive and
interpretable explanations.

In the context of malware classification, CFGExplainer
[26] is specifically designed to interpret GNN-based malware
classification results from CFGs. CFGExplainer identifies the
most influential subgraphs contributing to classification and
provides insight into the importance of individual nodes (basic
blocks) within these subgraphs. The framework employs a
two-stage process: an initial learning stage where a deep
learning model assigns importance scores to node embeddings,
and an interpretation stage where these scores are used to
prune the graph and identify critical subgraphs. CFGExplainer
enhances interpretability by revealing both the structural and
functional aspects of malware behavior.

To improve scalability and generalization, PGExplainer [27]
introduces a parameterized explanation method for GNNs
that provides consistent and generalized explanations for
multiple instances. Unlike GNNExplainer, which generates
explanations independently for each instance, PGExplainer
employs a deep neural network to parameterize the generation
of explanations, enabling it to generalize across different
instances. PGExplainer models the explanatory subgraph as
an edge distribution and generates explanations by optimizing
the mutual information between the subgraph structure and
the GNN’s prediction. This approach improves both scala-
bility and efficiency, making it suitable for inductive settings
where new instances can be explained without retraining the
explainer.

III. PROPOSED METHOD

Our proposed framework for malware detection begins with
dynamically generating a graph-based representation of the
input sample through dynamic analysis. Specifically, a CFG
is constructed, where each node represents a basic block
of assembly instructions and edges represent control flow
relationships between them. To enhance the accuracy and ro-
bustness of the detection model, a hybrid node feature embed-
ding technique is used, which combines rule-based encoding
and autoencoder-based embedding to convert the assembly
instructions in each node into numerical vectors. A GNN-
based model is then employed to classify the malware sample
based on the graph structure and node features. To improve
the interpretability of the model, the framework integrates
GNNExplainer, PGExplainer, and CaptumExplainer to identify
key subgraphs. Additionally, an aggregation scheme combines
the edge rankings from the two top explainers to enhance
the consistency of the extracted subgraphs. A new subgraph
extraction method, GEC, is also introduced to generate more
connected and meaningful subgraphs by prioritizing edges
with the highest importance weights. The overall structure of
the proposed framework is illustrated in Figure 1.

A. Node Feature Embedding

The dynamically generated CFGs contain several types of
features in each node, but not all are suitable or useful for
the decision-making module. The assembly instructions of
each node in the CFG are selected as the key features, and
a two-step embedding technique is used to map them into

Benign

⋮

⋮

GNN Layers

Node
Embeddings

Graph
Embedding

…
Readout Layer Classification Layer

Malicious

⋮ ⋮ ⋮ ⋮ ⋮

𝑥ଵ,ଵ 𝑥ଵ,ଶ ⋯ 𝑥ଵ,଺ସ
𝑥ଶ,ଵ 𝑥ଶ,ଶ ⋯ 𝑥ଶ,଺ସ
⋮ ⋮ ⋱ ⋮

𝑥଺,ଵ 𝑥଺,ଶ ⋯ 𝑥଺,଺ସ

Graph Structure

Node Features

Classification

𝑒ଵ

𝑒ଶ 𝑒ଷ
𝑒ସ

𝑒ହ

𝑒଺
RankFusion Explainer

Explainer 1

Explainer 2

Explainer n

⋮

Top Explainer 1

Top Explainer 2

Explanation

Fig. 1: Proposed framework for interpretable malware detection.

a 64-dimensional real-valued vector. This process includes a
rule-based instruction encoding strategy followed by machine
learning-based dimensionality reduction using an autoencoder,
as shown in Figure 2.

1) Rule-Based Instruction Encoding: To encode the as-
sembly instructions of CFG nodes, we adapted the encoding
process outlined in [7] with slight modifications to better
suit the structure of dynamically generated CFGs. Each x86-
64 assembly instruction consists of up to seven components:
option, prefix, opcode, ModRM, SIB, displacement, and im-
mediate. The encoding process for each component is defined
as follows:

• Prefix: The prefix includes four fields: the extra segment
(ES) register, operand-size override, address-size override,
and lock prefix. The ES segment register has seven possible
values, while the other three fields are binary (0 or 1). Thus,
the prefix is encoded as a nine-dimensional one-hot vector.

• Opcode: The opcode defines the core operation performed
by the instruction, with 256 possible values. It is encoded
as a 256-dimensional one-hot vector.

• ModRM: ModRM is a one-byte field divided into three
segments: two bits for the mode field, three bits for the
register field, and three bits for the memory address field.
This corresponds to four, eight, and eight possible val-
ues, respectively. Therefore, ModRM is encoded as a 20-
dimensional one-hot vector.

• SIB: SIB (Scale-Index-Base) is another one-byte field di-
vided into three segments: two bits for the scale factor, three
bits for the index, and three bits for the base register. This
results in four, eight, and eight possible values, respectively,
leading to a 20-dimensional one-hot vector for SIB encod-
ing.

• Displacement: In x86-64 assembly, displacement is an
offset value used in memory addressing to calculate the
effective memory address. It is part of the instruction’s
addressing mode and is added to a base or index register
to determine the actual memory address being accessed. It
is represented using a 64-dimensional binary vector.

• Immediate An immediate value is a constant value that
is directly encoded as part of the instruction itself. Unlike
a displacement, which is used for memory addressing, an
immediate is used as an operand directly in the instruction.
It is represented as a binary vector with 64 dimensions.

• Option: Since prefix, ModRM, SIB, displacement, and
immediate fields are optional, a 5-dimensional binary vector
is used to indicate their presence or absence.

The final encoded vector for each instruction is formed
by concatenating all these components, resulting in a 438-
dimensional vector.

Since a single CFG node may contain multiple instructions,
the instruction vectors within a node are aggregated using a
general aggregation function, which can be mean pooling, max

pooling, or a learnable attention-based mechanism:

Enode = A(E(1)
instr,E

(2)
instr, . . . ,E

(n)
instr) (1)

where n is the number of instructions within the node, A
represents the aggregation function (which can be mean, max,
or attention-based), and Enode ∈ R438 is the final aggregated
vector for the node.

Dimensionality Reduction: The high-dimensional 438-
dimensional vectors are reduced to a 64-dimensional latent
representation using an autoencoder. The autoencoder consists
of an encoder-decoder architecture, where the encoder reduces
the dimensionality, and the decoder reconstructs the original
vector. The reduced representation retains the most relevant
information for malware detection.

The autoencoder is optimized using a mean squared error
(MSE) loss function:

LMSE =
1

N

N∑
i=1

∥E(i)
instr − gϕ(fθ(E

(i)
instr))∥

2 (2)

where N is the number of training samples, fθ is the encoder
function, and gϕ is the decoder function. Once trained, the
encoder reduces the 438-dimensional instruction vector into a
compact 64-dimensional feature vector used as the final node
feature embedding for the GNN model:

E′
node = fθ(Enode) (3)

where E′
node ∈ R64.

B. Graph Classification Using GNNs

After generating node feature embeddings, the next step is
to classify the graph using a GNN model. The classification
process involves three key stages: node embedding through
GNN layers, graph-level representation generation using a
readout layer, and final classification using a downstream
classifier.

1) Node Embedding with GNN Layers: A GNN model gen-
erates node embeddings by iteratively aggregating information
from neighboring nodes through K layers [28]. The node
embedding at layer l is computed using the following general
update rule:

h
(l)
i = UPDATE

(
h
(l−1)
i ,AGG

(
{h(l−1)

j : j ∈ N (i)}
))

(4)

where h(l)
i is the embedding of node i at layer l, h(0)

i represents
the initial node feature vector, N (i) is the set of neighboring
nodes of node i, AGG(·) is an aggregation function that
collects information from neighboring nodes, and UPDATE(·)
is an update function that combines the aggregated information
with the node’s current embedding.

The aggregation function AGG(·) and update function
UPDATE(·) can vary depending on the specific GNN model.
For instance, in the case of Graph Convolutional Networks
(GCNs), the aggregation is based on a normalized summation

of neighboring node features, and the update step applies a
linear transformation followed by a non-linearity:

h
(l)
i = σ

 ∑
j∈N (i)∪{i}

1√
didj

W (l)h
(l−1)
j


where N (i) denotes the set of neighboring nodes of node i,
σ(·) is a non-linear activation function such as ReLU, W (l) is
the learnable weight matrix at layer l, and di and dj denote
the degrees of nodes i and j, respectively. The term 1√

didj

represents a normalization factor that accounts for the degree
of each node to ensure stability during training.

This message-passing mechanism allows the node em-
beddings to incorporate information from neighboring nodes
within a K-hop neighborhood, enabling the model to capture
local graph structure and node attribute interactions.

2) Readout Layer: Once the node embeddings are com-
puted through k GNN layers, a readout layer generates a fixed-
size graph-level representation by aggregating the final node
embeddings. A general readout function can be defined as:

hG = R({h(k)
i : i ∈ V }) (5)

where hG is the graph-level representation, V is the set of
nodes in the graph, and R(·) represents the readout function.
Common readout functions include Mean pooling, Sum pool-
ing, Max pooling, Attention-based pooling, Set2Set, and Sort
Pooling.

3) Graph Classification: The graph-level representation hG

is passed to a classifier, which is typically a fully connected
neural network (FCNN) followed by a softmax activation to
produce class probabilities:

ŷ = softmax(WchG + bc) (6)

where ŷ is the predicted class probability vector, Wc is the
weight matrix for the classifier, and bc is the bias term for the
classifier.

This process enables the GNN model to learn a graph-level
representation that captures both node features and structural
information.

C. GNN Explanation Techniques

While GNNs have demonstrated strong performance in
graph-based learning tasks, their decision-making processes
often remain opaque. Explainability methods aim to interpret
how GNN models arrive at their predictions by identifying the
most influential nodes, edges, or subgraphs within the input
graph. In this study, we employ five state-of-the-art explainers:
GNNExplainer, PGExplainer, and CaptumExplainer with three
attribution methods: Integrated Gradients, Guided Backpropa-
gation, and Saliency. All these explainability techniques assign
weights to the edges based on their importance to the decision
made by the GNN model. After evaluating their performance,
we select the two best-performing explainers and propose a
new explainer based on an aggregation method that combines
the edge rankings from these two explainers to generate more
consistent and informative subgraphs.

[0,0,0,1,0,0,1,…]

Immediate (ℛ଺ସ)

Displacement (ℛ଺ସ)

⋮

⋮

Assembly Instruction 𝑖

Assembly Instruction 𝑛

Option (ℛହ)

Prefix (ℛଽ)

Opcode (ℛଶହ଺)

ModRM (ℛଶ଴)

SIB (ℛଶ଴)

[1,1,1,1,1]

[0,0,1,0,1,0,…]

[0,0,1,0,0,1,…]

Concatenate

⋮

⋮

Encoded Vector 𝑖

Encoded Vector 𝑛

Encoded Vector 1Assembly Instruction 1

Aggregate

Autoencoder

Encoder Decoder

Reconstruction Error

𝑐ଵ

𝑐ଶ

𝑐ସଷ଼

⋮

𝑥ଵ

𝑥଺ସ

𝑥ଶ

⋮ ⋮

𝑐ଵ
ᇱ

𝑐ଶ
ᇱ

𝑐ସଷ଼
ᇱ

Basic Block 𝑘

Rule-based Encoding

Basic Block 𝑘 (Encoded)

ℛସଷ଼

[…,0,0,1,0,0,0,…]

[0,0,0,1,0,0,0,0,1]

[0,1,0,0,0,0,1,…]

Fig. 2: Embedding process for assembly instructions.

GNNExplainer and PGExplainer are based on the key
idea of identifying a subgraph that maximizes the mutual
information (MI) with the model’s prediction. This objective
can be formulated as:

max
Gs

MI(Y, (Gs, Xs)) = H(Y)−H(Y | G = Gs, X = Xs)

(7)
where Gs and Xs represent the explanatory subgraph and
its associated node features, respectively, Y is the prediction
of the GNN model, and H(·) denotes the entropy function.
The goal is to find the most informative subgraphs and node
features that contribute to the model’s prediction. Since H(Y)
is constant for a trained GNN, maximizing the mutual infor-
mation reduces to minimizing the conditional entropy. GN-
NExplainer proposes approximating the conditional entropy
using the cross-entropy loss between the true class label and
the model’s prediction, resulting in the following optimization
objective for binary classification, which can be optimized
using gradient descent:

min
M
−

2∑
c=1

1[y = c]logPΦ(Y = y|G = Ac ⊙ σ(M), X = Xc)

(8)
where c is the class label, y is the predicted label, Ac is the
adjacency matrix of the input graph, M is the learnable mask
that assigns a weight to each edge of the input graph based
on its importance for the model’s prediction, σ is the sigmoid
function that maps the weight to the range [0, 1], and Xc is the
corresponding node feature set. This optimization is performed
separately for each input sample to generate its corresponding
explanation. After optimization, the top-ranked edges based
on their weights are selected to form the important subgraph.

PGExplainer uses the following cross-entropy loss to train
the explainer on multiple samples. Once trained, the explainer
model can be applied to other samples without requiring
retraining. For binary classification, the objective is formulated
as:

min
Ψ
−
∑
i∈I

K∑
k=1

2∑
c=1

PΦ(Y = c|G = G(i)
o)

logPΦ(Y = c|G = Ĝ(i,k)
s) (9)

where G
(i)
o is the original input graph for sample i, Ĝ

(i,k)
s

is the sampled explanatory subgraph for sample i in the k-
th sampling step, and Ψ represents the parameters of the
explainer model.

In addition to GNNExplainer and PGExplainer, we em-
ployed CaptumExplainer to enhance the interpretability of
GNN models. CaptumExplainer provides a framework for
attributing the model’s predictions to individual nodes, edges,
and features, allowing a detailed understanding of how the
model processes graph data. We utilized three key attribu-
tion methods within CaptumExplainer: Integrated Gradients,
Saliency, and Guided Backpropagation.

Integrated Gradients computes the contribution of each input
feature by integrating the gradients of the model’s output with
respect to the input along a path from a baseline to the actual
input. This method satisfies two key axioms: sensitivity, which
ensures that attributions reflect the difference in the model’s
outputs between the baseline and the input, and implementa-
tion invariance, which guarantees consistent attributions across
functionally equivalent models.

Saliency measures the influence of each input feature by
calculating the gradient of the model’s output with respect to
the input, effectively performing a first-order Taylor expansion.
The magnitude of these gradients reflects the importance of
each feature in the model’s decision.

Guided Backpropagation refines the saliency method by
modifying the backpropagation process to propagate only
non-negative gradients through ReLU activations, thereby
highlighting the most impactful and positively contributing
features. These three methods provide complementary insights
into the model’s decision-making process, enabling a deeper
understanding of the structural and feature-based factors that
drive GNN predictions.

D. RankFusion Explainer: An Edge Ranking Aggregation
Strategy

To enhance the accuracy of explainers, we propose a novel
aggregation method called RankFusion explainer that com-
bines the edge rankings from two explainers. The goal is to
improve the quality of explanations across different sparsity
levels.

Algorithm 1 RankFusion Explainer

1: Input: Graph G = (V,E), Edge weights from Explainer
1 (W1), Edge weights from Explainer 2 (W2), Accuracy
of Explainer 1 (A1) and Explainer 2 (A2), Threshold
percentage (T)

2: Output: New edge weights (Wfusion)
3: n← |E|
4: Threshold τ ← T · n/100
5: Wfusion ← ∅
6: for each edge e in W1 ∩W2 do
7: d← |W1[e]−W2[e]|
8: if d ≤ τ then
9: Wfusion[e]← max(W1[e],W2[e])

10: else
11: if A1 ≥ A2 then
12: Wfusion[e]←W1[e]
13: else
14: Wfusion[e]←W2[e]
15: end if
16: end if
17: end for
18: return Wfusion

The RankFusion process involves reassigning edge weights
to their descending rank order for each explainer indepen-
dently. For each pair of similar edges present in both explain-
ers, we compute the absolute difference between their ranks.
If this difference is smaller than a predefined threshold, set as
a percentage of the total number of edges in the graph, we
assign the rank of the edge as the maximum of the two ranks.
However, if the difference exceeds the threshold, the rank of
the edge is assigned based on the rank from the explainer
with the highest accuracy at the corresponding explanation
percentage.

To evaluate the RankFusion explainer, we retain a certain
percentage of edges with the highest aggregated weights,
reconstruct the graph, and feed it into a trained GNN model.
The accuracy of the GNN on this reduced graph serves as
the performance measure of the RankFusion explainer. This
strategy ensures that the RankFusion explainer retains the most
meaningful edges, combining the strengths of both explainers
to produce more consistent and accurate explanations across
varying sparsity levels. The RankFusion algorithm is presented
in Algorithm 1.

IV. EXPLAINER SUBGRAPH EVALUATION AND
CONSTRUCTION

An effective GNN explainer should identify a subgraph that
preserves the model’s predictive capability while revealing
the key structural features driving the prediction. Ideally, an
important subgraph should produce a prediction outcome close
to that of the original input. At the same time, the model’s
performance should drop significantly, when it processes the
remaining part of the graph after the important subgraph is
removed. This behavior confirms that the identified subgraph

contains the critical features influencing the model’s decision-
making. To assess the quality of explainer-generated sub-
graphs, we rely on two primary evaluation metrics: explainer
accuracy and fidelity.

Explainer accuracy measures the model’s performance,
when using only the subgraph identified by the explainer as in-
put. A well-constructed subgraph explanation should preserve
the model’s original classification performance and accuracy.
This metric operates under the assumption that the identified
subgraph retains the most influential features necessary for
accurate predictions.

Fidelity measures the contribution of the important subgraph
to the model’s prediction. It evaluates how much the prediction
changes, when the important or unimportant parts of the graph
are removed. Fidelity is defined two complementary forms:

Fidelity+ =
1

N

N∑
i=1

(f (G)− f (G−Gs)) , (10)

Fidelity− =
1

N

N∑
i=1

(f (G)− f (Gs)) , (11)

where Gs is the important subgraph, G is the original input,
and f is the trained GNN model. Fidelity+ measures the
prediction difference between the original input and its unim-
portant part, capturing the contribution of the removed edges
to the model’s decision. Conversely, Fidelity− compares
the prediction between the original graph and the important
subgraph, reflecting the predictive capacity of the extracted
subgraph.

In addition to accuracy and fidelity, consistency is an
essential property for evaluating the reliability of explainers.
It reflects the stability of an explanation, when the input graph
is subjected to small structural perturbations that do not alter
the model’s prediction [29]. A consistent explainer should
yield similar explanations for slightly modified graphs, thereby
enhancing interpretability and trustworthiness.

Let G = (V,E) be an input graph, with M(G) denot-
ing the prediction of a trained GNN model. To evaluate
consistency, we generate a set of perturbed graphs Gpert =
{G′

1, G
′
2, . . . , G

′
m}, where each G′

i is created by randomly
removing a small subset of nodes or edges from G.

The number of removed elements is computed as:

|S| = ⌈log(|X|) + |X| · p⌉ , (12)

where X ∈ {V,E}, S ⊆ X , and p ∈ (0, 1) is a perturbation
ratio.

Each perturbed graph G′
i is retained for consistency evalu-

ation if it meets the following conditions:
• The model prediction is unchanged:

M(G′
i) =M(G) (13)

• The graph-level embeddings remain similar:

cos (ϕ(G), ϕ(G′
i)) < τ, (14)

where ϕ(·) denotes the model’s embedding function, and
τ is a threshold for cosine similarity.

For each valid G′
i, we compute the explainer’s fidelity scores

F+(G′
i) and F−(G′

i). The consistency of the explainer is
measured by the variability of these scores:

∆+ = max
i
F+(G′

i)−min
i
F+(G′

i) (15)

∆− = max
i
F−(G′

i)−min
i
F−(G′

i) (16)

Smaller values of ∆+ and ∆− indicate greater consistency,
as they reflect less variation in the explanation quality under
small, non-disruptive perturbations.

1) Top-Edge Selection (TES): Conventional methods for
subgraph extraction rank edges according to their weights and
select the highest-ranked edges to construct a subgraph of a
specific size relative to the original graph. We refer to this
approach as TES and use it as our baseline method.

However, extracting subgraphs using TES often results in
explanations composed of multiple disconnected components,
whereas original graphs typically consist of a single connected
component. This discrepancy can reduce the reliability of
evaluation metrics such as accuracy and fidelity, since the
target GNN is trained on connected graphs and may not
perform well on fragmented subgraphs.

2) Greedy Edge-wise Composition (GEC): To address the
limitations of TES, we propose Greedy Edge-wise Compo-
sition (GEC), an alternative subgraph extraction technique
designed to construct strongly connected subgraphs with high
cumulative edge importance. This method operates on a
weighted graph representation G′ = (V ′, E′,SE), where SE

is the edge importance scores.
The process begins by selecting the edge with the highest

importance weight:

emax = argmax
e∈E′

αe, (17)

where αe ∈ SE denotes the importance weight of edge e. The
two nodes incident to emax are added to the selected node set
Vselected, and the edge itself is added to the selected edge set
Eselected.

GEC then proceeds iteratively, at each step selecting the
next highest-weight edge that connects to the current set of
selected nodes:

enext = arg max
e∈E′

e connects to Vselected

αe. (18)

The corresponding node(s) from enext not already in Vselected
are added to the node set, and enext is added to the edge set.
This greedy procedure is repeated until a predefined number
of edges is included.

Let k be the target number of edges to select. The final
extracted subgraph is:

Gextracted = (Vselected, Eselected), where |Eselected| = k. (19)

By prioritizing both edge weight and structural connec-
tivity, GEC ensures that the selected subgraph retains the

most informative and influential components of the original
graph. This results in more faithful and robust explanations,
ultimately supporting a more reliable interpretation of the
model’s decision-making process.

V. RESULTS AND ANALYSIS

For our experiments, we selected 1,117 malicious sam-
ples from BODMAS [30], 1,029 malicious samples from
PMML [31], and 510 benign samples from DikeDataset [32],
providing a balanced dataset for evaluating the effectiveness
of the explainers across various malware families and sample
types. To recover CFGs dynamically, we employ the angr
library [33]–[35], a Python-based binary analysis tool. angr
constructs graphs by integrating both symbolic execution and
constraint solving, enabling comprehensive and precise CFG
recovery. The dynamically generated CFGs used in our exper-
iments are available for public access here.

We use a three-layer GCN with a 20% dropout rate for
malware detection. The detection model achieved strong per-
formance, with an accuracy of 94.74% and an F1 score
of 96.82%. These results highlight the effectiveness of the
proposed framework, which combines dynamically generated
CFGs, node feature embeddings based on assembly instruc-
tions, and a GNN-based detection model to accurately differ-
entiate between benign and malicious samples.

As previously discussed, the performance of the explainers
is evaluated using the Accuracy, Fidelity, and Consistency
metrics. The remainder of this section presents a detailed
comparison of five explainers: GNNExplainer, PGExplainer,
and three variants of CaptumExplainer based on different
attribution methods: Integrated Gradients, Guided Backpropa-
gation, and Saliency. The evaluation is conducted through two
different subgraph extraction techniques: TES and GEC, based
on these three metrics. Additionally, our proposed RankFusion
explainer is evaluated by selecting the top two best-performing
explainers.

Figure 3 presents a comparative analysis of model accuracy
based on different explainability techniques and subgraph
extraction methods. The x-axis denotes subgraph sparsity,
defined as the percentage of edges retained from the original
graph, ranging from 5% to 95%. The y-axis indicates the
accuracy of the trained GCN model, when evaluated on the
extracted subgraphs at each sparsity level.

For clarity, the abbreviations used in all figures are as
follows: IG (Integrated Gradients), GBP (Guided Backprop-
agation), SAL (Saliency), and RF (RankFusion explainer).

As illustrated in Figure 3, the GEC-based subgraph extrac-
tion method consistently outperforms the TES approach across
all explainers. The performance improvement is particularly
notable in the case of GNNExplainer, where the GEC method
achieves nearly double the accuracy of TES, when the sub-
graph retains less than 90% of the original edges.

Moreover, regardless of the extraction method (TES or
GEC), the ranking of explainers in terms of classification ac-
curacy remains consistent. CaptumExplainer variants (specifi-
cally IG, GBP, and SAL) demonstrate the highest performance,

https://www.unb.ca/cic/datasets/dgg-dataset-2025.html

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
ur

ac
y

IG GBP SAL PGExplainer GNNExplainer

(a) TES-based subgraph extraction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparsity

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

A
cc

ur
ac

y

IG GBP SAL PGExplainer GNNExplainer

(b) GEC-based subgraph extraction.

Fig. 3: Experimental comparison of explainers.

followed by PGExplainer, with GNNExplainer yielding the
lowest accuracy.

We assess the performance of the explainers using the
Fidelity−, Fidelity+, and Consistency metrics across different
sparsity levels. Figure 4 presents the Fidelity− and Fidelity+

results under the GEC approach. In each subplot, the x-
axis represents the sparsity level, defined as the percentage
of edges retained from the original graph, and the y-axis
indicates the fidelity score. The solid lines show the fidelity
values computed from the original, unperturbed graphs for
each explainer and sparsity level.

To assess consistency in practice, we generated 20 perturbed
versions of each input graph: 10 with random node removal
and 10 with random edge removal. In our implementation,
the perturbation ratio was set to p = 0.01. Each perturbed
graph was retained for analysis only if it preserved the model’s
original prediction and the cosine similarity between the
graph-level embeddings of the original and perturbed graphs
was below a selected threshold. We performed a sweep over
similarity thresholds τ ranging from 0.01 to 0.03 in increments
of 0.0025 to identify valid perturbations. For each explainer,
we visualized the variability of Fidelity+ and Fidelity− scores
across all valid perturbations. The solid lines represent fidelity
values computed on the original (unperturbed) graphs, while
the shaded regions reflect the range between the minimum and
maximum fidelity scores observed across the valid perturba-
tions.

The results show that Fidelity− values are generally low and
stable for explainers, when subgraphs are extracted using GEC.
This is particularly evident for GNNExplainer, whose perfor-
mance stabilizes significantly under this approach. According
to the definition of Fidelity−, lower values are desirable,
and this trend is clearly observed for the best-performing
explainers (IG, GBP, and SAL), which consistently yield lower
Fidelity− scores.

In contrast, Fidelity+ values demonstrate a consistent pat-
tern across sparsity levels. The top explainers (IG, GBP, and
SAL) achieve higher scores, indicating a substantial change

in model prediction when the important subgraph is removed.
This suggests that the identified important subgraph indeed
contains the critical predictive structure. Furthermore, the
consistency bands in the Fidelity+ plot are generally narrow,
indicating that explanations remain stable across perturbations.
Although Fidelity− bands are somewhat wider, the results still
indicate reasonable stability, particularly for the top explainers.
These findings highlight the advantage of using GEC in
conjunction with effective explainers for generating reliable
and robust explanations.

To assess the effectiveness of the proposed RankFusion
explainer, we investigate whether selecting and combining the
outputs of the top-performing explainers can lead to improved
subgraph quality and model performance. Based on the previ-
ous analysis across accuracy, fidelity, and consistency metrics,
the two most effective explainers identified were Integrated
Gradients and Guided Backpropagation. RankFusion is applied
by aggregating the edge importance rankings produced by
these two explainers using the methodology described earlier.

Figure 5 compares the model’s accuracy when using sub-
graphs generated by IG, GBP, and their aggregated result.
All subgraphs in this evaluation are extracted using the GEC
method. The x-axis represents the sparsity level, and the y-axis
shows the accuracy obtained by feeding the resulting subgraph
into the pre-trained GCN. Across all sparsity levels, the aggre-
gated explanation consistently achieves higher accuracy than
either of the individual explainers. While the improvement
over the best individual explainer (IG) is modest, the results
clearly support the hypothesis that selecting and combining
the outputs of strong explainers leads to more informative
subgraphs.

Figure 6 visually compares the explanations produced by
the RankFusion explainer, IG explainer, and GBP explainer
on the same CFG of a malicious sample. In each subfigure,
the colored region highlights the top 5% of ranked edges along
with their corresponding nodes, forming a connected subgraph
that is considered most informative by the respective explainer.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparsity

-0.05

0

0.05

0.1

0.15

0.2
F

id
el

ity
-

IG GBP SAL PGExplainer GNNExplainer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparsity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F
id

el
ity

+

IG GBP SAL PGExplainer GNNExplainer

Fig. 4: Fidelity performance of explainability methods under the GEC approach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparsity

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

A
cc

ur
ac

y

IG
GBP
RF

Fig. 5: Accuracy comparison of individual top explainers and
the RankFusion explainer.

VI. CONCLUSION

This paper presents a comprehensive framework for mal-
ware detection using dynamically generated CFGs. Node-level
assembly instructions are embedded into a continuous vector
space through an embedding approach that combines rule-
based encoding with autoencoder-based learning. These rep-
resentations are then used as input to a GNN-based classifier
for malware detection. To enhance the interpretability of the
model, five explainers are employed: GNNExplainer, PGEx-
plainer, and CaptumExplainer with three attribution methods,
namely Integrated Gradients, Guided Backpropagation, and
Saliency. In addition, we propose RankFusion, an aggregated
explainer that selects and integrates the outputs of the top-
performing explainers to improve the quality of generated
explanations. We also introduce GEC as a connectivity-aware
subgraph extraction strategy that mitigates the shortcomings
of traditional top-edge selection. Experimental results demon-
strate the strong detection performance of the framework, with
an accuracy exceeding 94% and an F1 score above 96%.
Further analysis based on Fidelity, Accuracy, and Consistency
metrics shows that the combination of RankFusion and GEC

produces more stable, interpretable, and accurate explanations,
reinforcing the value of incorporating both explainer aggrega-
tion and structurally coherent subgraph extraction in GNN-
based malware detection.

REFERENCES

[1] Y. Li, K. Xiong, T. Chin, and C. Hu, “A machine learning framework for
domain generation algorithm-based malware detection,” IEEE Access,
vol. 7, pp. 32765–32782, 2019.

[2] F. Manavi and A. Hamzeh, “A new method for ransomware detection
based on pe header using convolutional neural networks,” in 2020 17th
international ISC conference on information security and cryptology
(ISCISC), pp. 82–87, IEEE, 2020.

[3] R. Frederick, J. Shapiro, and R. A. Calix, “A corpus of encoded malware
byte information as images for efficient classification,” in 2022 16th
International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), pp. 32–36, IEEE, 2022.

[4] C. Li, Q. Lv, N. Li, Y. Wang, D. Sun, and Y. Qiao, “A novel deep
framework for dynamic malware detection based on api sequence
intrinsic features,” Computers & Security, vol. 116, p. 102686, 2022.

[5] A. Bensaoud and J. Kalita, “Cnn-lstm and transfer learning models for
malware classification based on opcodes and api calls,” Knowledge-
Based Systems, p. 111543, 2024.

[6] E. M. Dovom, A. Azmoodeh, A. Dehghantanha, D. E. Newton, R. M.
Parizi, and H. Karimipour, “Fuzzy pattern tree for edge malware
detection and categorization in iot,” Journal of Systems Architecture,
vol. 97, pp. 1–7, 2019.

[7] H. Peng, J. Yang, D. Zhao, X. Xu, Y. Pu, J. Han, X. Yang, M. Zhong, and
S. Ji, “Malgne: Enhancing the performance and efficiency of cfg-based
malware detector by graph node embedding in low dimension space,”
IEEE Transactions on Information Forensics and Security, vol. 19,
pp. 4881–4896, 2024.

[8] Y. Sun, A. K. Bashir, U. Tariq, and F. Xiao, “Effective malware detection
scheme based on classified behavior graph in iiot,” Ad Hoc Networks,
vol. 120, p. 102558, 2021.

[9] A. Abusnaina, M. Abuhamad, H. Alasmary, A. Anwar, R. Jang,
S. Salem, D. Nyang, and D. Mohaisen, “Dl-fhmc: Deep learning-based
fine-grained hierarchical learning approach for robust malware classifica-
tion,” IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 5, pp. 3432–3447, 2021.

[10] X. Deng, Z. Wang, X. Pei, and K. Xue, “Transmalde: An effective
transformer based hierarchical framework for iot malware detection,”
IEEE Transactions on Network Science and Engineering, vol. 11, no. 1,
pp. 140–151, 2024.

[11] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, “Learning features
from enhanced function call graphs for android malware detection,”
Neurocomputing, vol. 423, pp. 301–307, 2021.

[12] C.-Y. Wu, T. Ban, S.-M. Cheng, T. Takahashi, and D. Inoue, “Iot
malware classification based on reinterpreted function-call graphs,”
Computers & Security, vol. 125, p. 103060, 2023.

(a) RankFusion explainer result. (b) Integrated Gradients explainer result. (c) Guided Backpropagation explainer result.

Fig. 6: Visual comparison of the top 5% high-ranking subgraphs identified by three explainers on a malicious CFG.

[13] X. Zhang, M. Zhang, Y. Zhang, M. Zhong, X. Zhang, Y. Cao, and
M. Yang, “Slowing down the aging of learning-based malware detectors
with api knowledge,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 2, pp. 902–916, 2023.

[14] E. Amer, I. Zelinka, and S. El-Sappagh, “A multi-perspective malware
detection approach through behavioral fusion of api call sequence,”
Computers & Security, vol. 110, p. 102449, 2021.

[15] C. Li, Z. Cheng, H. Zhu, L. Wang, Q. Lv, Y. Wang, N. Li, and D. Sun,
“Dmalnet: Dynamic malware analysis based on api feature engineering
and graph learning,” Computers & Security, vol. 122, p. 102872, 2022.

[16] H. Shokouhinejad, R. Razavi-Far, H. Mohammadian, M. Rabbani,
S. Ansong, G. Higgins, and A. A. Ghorbani, “Recent advances in
malware detection: Graph learning and explainability,” arXiv preprint
arXiv:2502.10556, 2025.

[17] Z. Zhang, Y. Li, H. Dong, H. Gao, Y. Jin, and W. Wang, “Spectral-based
directed graph network for malware detection,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 957–970, 2021.

[18] Y. Fang, C. Huang, M. Zeng, Z. Zhao, and C. Huang, “Jstrong: Malicious
javascript detection based on code semantic representation and graph
neural network,” Computers & Security, vol. 118, p. 102715, 2022.

[19] Z. Yu, S. Li, Y. Bai, W. Han, X. Wu, and Z. Tian, “Remsf: A robust
ensemble model of malware detection based on semantic feature fusion,”
IEEE Internet of Things Journal, vol. 10, no. 18, pp. 16134–16143, 2023.

[20] Y.-H. Chen, S.-C. Lin, S.-C. Huang, C.-L. Lei, and C.-Y. Huang,
“Guided malware sample analysis based on graph neural networks,”
IEEE Transactions on Information Forensics and Security, vol. 18,
pp. 4128–4143, 2023.

[21] S.-J. Bu and S.-B. Cho, “Triplet-trained graph transformer with control
flow graph for few-shot malware classification,” Information Sciences,
vol. 649, p. 119598, 2023.

[22] P. Feng, L. Gai, L. Yang, Q. Wang, T. Li, N. Xi, and J. Ma, “Dawngnn:
Documentation augmented windows malware detection using graph
neural network,” Computers & Security, vol. 140, p. 103788, 2024.

[23] W. Li, H. Tang, H. Zhu, W. Zhang, and C. Liu, “Ts-mal: Malware detec-
tion model using temporal and structural features learning,” Computers
& Security, vol. 140, p. 103752, 2024.

[24] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnex-
plainer: Generating explanations for graph neural networks,” Advances
in Neural Information Processing Systems (NIPS), vol. 32, 2019.

[25] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph
neural networks via subgraph explorations,” in International Conference
on Machine Learning, pp. 12241–12252, PMLR, 2021.

[26] J. D. Herath, P. P. Wakodikar, P. Yang, and G. Yan, “Cfgexplainer:
Explaining graph neural network-based malware classification from
control flow graphs,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 172–184,
2022.

[27] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” in Proceedings of

the 34th International Conference on Neural Information Processing
Systems, 2020.

[28] H. Shokouhinejad, R. Razavi-Far, G. Higgins, and A. A. Ghorbani,
“Node-Centric Pruning: A novel graph reduction approach,” Machine
Learning and Knowledge Extraction, vol. 6, no. 4, pp. 2722–2737, 2024.

[29] E. Hajiramezanali, S. Maleki, A. Tseng, A. BenTaieb, G. Scalia, and
T. Biancalani, “On the consistency of GNN explainability methods,” in
XAI in Action: Past, Present, and Future Applications, 2023.

[30] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “Bodmas:
An open dataset for learning based temporal analysis of pe malware,” in
2021 IEEE Security and Privacy Workshops (SPW), pp. 78–84, IEEE,
2021.

[31] Practical Security Analytics LLC, “Pe malware machine learning
dataset.” https://practicalsecurityanalytics.com/pe-malware-machine-
learning-dataset/, 2024. Accessed: 2024-08-06.

[32] G.-A. Iosif, “Dikedataset.” https://github.com/iosifache/DikeDataset,
2021. Accessed on February 27, 2024.

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.

[34] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 2016.

[35] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.

https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://github.com/iosifache/DikeDataset

	Introduction
	Background
	Proposed Method
	Node Feature Embedding
	Rule-Based Instruction Encoding

	Graph Classification Using GNNs
	Node Embedding with GNN Layers
	Readout Layer
	Graph Classification

	GNN Explanation Techniques
	RankFusion Explainer: An Edge Ranking Aggregation Strategy

	Explainer Subgraph Evaluation and Construction
	Top-Edge Selection (TES)
	Greedy Edge-wise Composition (GEC)

	Results and Analysis
	Conclusion
	References

