
ar
X

iv
:2

50
4.

16
25

1v
3

 [
cs

.O
S]

 3
1

M
ay

 2
02

5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Adaptive and Efficient Dynamic Memory Management
for Hardware Enclaves

Vijay Dhanraj*, Harpreet Singh Chawla†, Tao Zhang‡, Daniel Manila‡,
Eric Thomas Schneider‡, Erica Fu‡, Mona Vij*, Chia-Che Tsai†, Donald E. Porter‡

* Intel Corporation
‡The University of North Carolina at Chapel Hill

†Texas A&M University

Abstract
The second version of Intel® Software Guard Extensions
(Intel SGX), or SGX2, adds dynamic management of
enclave memory and threads. The first version required
the address space and thread counts to be fixed before
execution. The Enclave Dynamic Memory Management
(EDMM) feature of SGX2 has the potential to lower
launch times and overall execution time. Despite reduc-
ing the enclave loading time by 28–93%, straightforward
EDMM adoption strategies actually slow execution time
down by as much as 58%.

Using the Gramine library OS as a representative en-
clave runtime environment, this paper shows how to
recover EDMM performance. The paper explains how
implementing mutual distrust between the OS and en-
clave increases the cost of modifying page mappings.
The paper then describes and evaluates a series of op-
timizations on application benchmarks, showing that
these optimizations effectively eliminate the overheads
of EDMM while retaining EDMM’s performance and
flexibility gains.

1 Introduction
Intel SGX [26] is a powerful building block for protecting
application code and data on a remote system, such as
cloud. Specifically, an application can create a private
region called an enclave, wherein the hardware protects
sensitive code and data from system software, includ-
ing the OS and hypervisor(s). The hardware encrypts
enclave memory using a key known only to the CPU,
thereby protecting the enclave from unauthorized ac-
cess by system software and, in some configurations, via
physical access (§2). SGX is particularly beneficial for
securing cloud applications, and multiple cloud providers
offer SGX-protected platforms [1, 2, 13, 14, 27, 50].

SGX is an ambitious attempt at hardware supporting
mutual distrust between system and application soft-
ware. However, Intel SGX version 1 (SGX1) imposes
constraints on runtime management of enclave virtual
memory, leading to performance overheads as high as
58% (§3.6). Specifically, the enclave cannot dynamically
add, remove, or protect virtual pages during execution.
The SGX driver can swap physical pages for an enclave,

but the enclave’s virtual memory layout must be set
before execution. The startup time for an enclave is di-
rectly correlated with enclave size, creating an unsavory
trade-off: a small enclave may run out of heap space, but
has a fast startup time; in contrast, a large enclave has
high startup times, but may over-allocate heap space.
These limitations negatively affect the utility of SGX1
in practical deployments.

Intel SGX version 2 (SGX2) addresses these limi-
tations with Enclave Dynamic Memory Management
(EDMM) [25]. SGX2 adds new instructions that the
SGX driver can use to add, remove, and change permis-
sions of virtual pages in an enclave. In order to maintain
the integrity of the enclave, the enclave must explicitly
accept any allocation, deallocation, or modification of
virtual memory before the change will be accepted into
the TLB. In addition, newly allocated pages are zeroed
by the hardware, as are deallocated pages.

Why does EDMM matter? Dynamic memory manage-
ment is a fundamental necessity for any application that
cannot statically predict its memory requirements, such
as sizing its heap. Similarly, some applications need the
ability to remove or change a mapping, such as to read-
protect static data after initialization. Without EDMM,
an application must overestimate its heap size and over-
permission the heap’s pages as readable, writable, and
executable. Overestimating the heap size increases the
enclave loading time in order to map and measure each
page. This issue is particularly salient for a compatibil-
ity layer, such as a library OS that implements system
APIs such as brk, mmap, and mprotect, as well as any
userspace runtime environment that dynamically man-
ages memory, such as a language runtime.

Why is designing an efficient EDMM scheme chal-
lenging? Intuitively, one would expect EDMM use to
be a strict win: eliminate over-provisioned memory re-
sources, and reduce application startup time spent on
measurement of heap pages that may never be used. And
indeed, using EDMM improves startup time. However,
straightforward use of EDMM makes runtime application
performance worse in many cases. For SGX2, we evaluate
two separate strategies: one strategy immediately maps
pages into the enclave when the applications makes a

1

https://arxiv.org/abs/2504.16251v3

call such as mmap; the second strategy, proposed but not
evaluated by Xing et al. [46], is demand allocation, which
allocates upon the first access to a virtual page. The
results of an experiment running GCBench, a garbage
collection benchmark, shows that both EDMM designs
cause significant slow down to the execution time, up
to 41% and 58%, compared to just using SGX1. More
details of the result are in §3.6.

The key intuition behind this result is that modify-
ing memory mappings is more expensive in an enclave
than in a normal process, due to the additional con-
text switching required for the enclave to accept the
changes. Adding an enclave mapping requires at least
three context switches, and at least five if the mapping is
added using demand paging (§2). Removing an enclave
mapping is even more expensive, requiring at least nine
context switches to ensure that the TLB entry is prop-
erly flushed. On our test machine, the cost of a demand
fault on a newly mmap-ed area in a normal process is
about 8 𝜇s, whereas creating an enclave page mapping
takes around 30 𝜇s on SGX2.

Primary goals and findings: This paper investigates
and addresses these overheads. We evaluate real-world
applications on Gramine (formerly Graphene) [40, 41],
as a representative compatibility layer for SGX. The
contributions of this paper are as follows:

∙ An analysis on how straightforward use of EDMM
increases application execution time, as does the
optimization suggested in previous work [46].

∙ A series of optimizations for EDMM in Gramine
and SGX that remove the overheads while retain-
ing the space efficiency gains of EDMM.

∙ A thorough evaluation of these optimizations using
both microbenchmarks and applications. These
optimizations significantly enhance application
performance, making EDMM in Gramine compa-
rable or better to static allocation, while greatly
improving application startup time.

2 Background
This section introduces background on SGX and the
Enclave Dynamic Memory Management (EDMM) fea-
ture of SGX2, and relates this model to the more recent
VM-based trusted-execution model of Intel TDX and
AMD SEV.

Hardware trusted execution environments (TEEs),
such as Intel SGX [26] and AMD SEV [3], protect
security-sensitive computation and data from system-
level attackers, including malware, OS rootkits, and
sometimes even physical attackers. TEEs isolate the exe-
cution of a program, including CPU registers and mem-
ory, from the host operating system and other software.
The CPU ensures integrity, and can generate attestation

Leaf Func. Description

System-tier (ENCLS)

EAUG Add a zeroed virtual page to an enclave.
EMODT Modify the page type of a virtual page.
EMODPR Reduce access permissions of a virtual page.

User-tier (ENCLU)

EACCEPT Accept addition or changes of a virtual page
made by the OS

EACCEPT-
COPY

Copy an existing virtual page into an
EAUG’ed page and accept the EAUG’ed page
into the enclave.

EMODPE Extend access permissions of a virtual page.
Table 1. Summary of EDMM leaf functions.

reports as proofs of integrity to remote entities. When
a program runs inside a TEE, the program’s memory
is protected by hardware, using encryption [3, 5, 26] or
access control [22], preventing a system attacker from
accessing program memory. Currently, hardware TEEs
have been widely applied for data-intensive computa-
tion [18, 20, 21, 34, 35, 37], control-plane software [8, 33],
and privacy-preserving systems [9, 10, 19, 28, 33].

This paper focuses on Intel SGX, one of the earliest
hardware TEEs in widespread production. A hardware
enclave created by SGX is a protected virtual memory
range within a process’s address space. In SGX version 1,
the CPU does not allow changes to the enclave’s virtual
address space after initialization of the enclave. The
only exception is swapping: the untrusted host OS may
update the page table to unmap or remap an enclave
page, but this involves a more complex check that the
contents did not change while the page was unmapped.
Swapped pages are encrypted by the hardware. Early
versions of SGX limited the physical memory for all
enclaves on a machine to 128MB; with the addition of
Intel Total Memory Encryption (TME) [15], SGX now
supports enclaves as large as 1 TB.

2.1 Enclave Dynamic Memory Management (EDMM)
Intel SGX version 2 (SGX2) introduced Enclave Dy-
namic Memory Management (EDMM). EDMM includes
new leaf functions to SGX’s ENCLS (system-tier) and
ENCLU (user-tier) instructions, to add, remove, and pro-
tect a virtual page within an enclave. In SGX, ENCLS
is only called inside the kernel, while ENCLU is called
from userspace, either within or outside an enclave. The
functionality of ENCLS and ENCLU is determined by an
extra opcode (given by the EAX register), to indicate a
leaf function. Table 1 lists the new leaf functions added
for EDMM. For simplicity, this paper describes these
leaf functions as instructions.

2

System-tier leaf functions (ENCLS) require agreement
from the enclave software, since the host OS is not
trusted to always provide the correct parameters. A
benign OS is responsible for adding, removing, or pro-
tecting a virtual page in an enclave, as well as updating
the page table accordingly. For example, to make an
initially unmapped virtual page available, the OS needs
to call EAUG with a physical page from the EPC (En-
clave Page Cache, or physical pages reserved for use in
enclaves). The OS subsequently maps the virtual page to
the physical page in the page table, with the correspond-
ing access permissions. The enclave must then approve
the changes using EACCEPT to make the changes take
effect. Note that to extend the access permissions of a
virtual page, the enclave does not need the OS to inter-
vene and can directly request the change using EMODPE,
assuming that the page table is more permissive for this
virtual address.

Anecdotally, the introduction of EDMM is useful for
libraries or unikernels [6, 7, 40] for porting legacy appli-
cations into enclaves: (1) EDMM allows dynamic alloca-
tion or deallocation of virtual pages after enclave launch.
Without EDMM, most enclaves will have to overpopu-
late virtual memory, increasing enclave startup time. (2)
EDMM allows an enclave to dynamically and securely
change page permissions after enclave launch, which is
crucial for implementing systems APIs like mprotect,
as well as supporting the process of ELF loading. With-
out EDMM, a library OS needs to unsafely make the
entire heap readable, writable, and executable, because
mprotect does not function after enclave launch. (3)
EDMM allows dynamically changing a virtual page to a
Thread Control Structure (TCS) page, which is needed
for thread creation. Without EDMM, the number of
enclave threads must be determined statically, and mul-
tithreaded enclaves may have to overestimate the number
of threads since TCS pages cannot be added afterwards.

In this paper, we focus on optimization of the system
flow for allocation and deallocation of virtual pages and
kernel threads. We leave optimization of thread creation
and changing page permissions to future work.

2.2 VM-based TEE Memory Management
Another trend of trusted execution environment (TEE)
is to place an entire virtual machine (VM) in a hardware-
protected domain, in which the sensitive application can
be fully supported by a trusted guest OS. For example,
AMD SEV-SNP [3, 4] isolates VM state from the hosting
hypervisor, with the VM’s associated physical memory
encrypted by the CPU, and changes to guest-to-host
memory mapping being detectable. Intel Trusted Domain
Extensions (TDX) [17] adopts a similar strategy, by
including the entire DRAM as the EPC (Total Memory

Encryption) and protecting the extended page table
(EPT) from the host.

For these VM-based TEEs, the virtual memory of the
sensitive application(s) in the VM is fully managed by the
guest OS, which also manages a pool of physical pages
with hardware encryption. Unlike SGX, a VM-based
TEE does not require intervention of the host to extend
or shrink the virtual memory space of applications. But
because both VMs and EDMM-enabled enclaves must
dynamically add and remove physical pages from a TEE,
they require a similar flow to SGX’s EDMM. For example,
in TDX, a protected VM needs the host OS to issue the
same EAUG instruction to add a physical page, and then
the VM needs to approve the change using EACCEPT.
This suffers a similar as SGX2’s EDMM, although it
may occur less frequently since some changes, such as
changing page permissions or remapping a page, can be
made by the guest OS without involving the host OS.

3 Baseline EDMM Performance
We study the overheads of EDMM in the Gramine li-
brary OS [41], as a representative example of a “lift-
and-shift” framework for running applications in SGX.
This section begins by describing baseline virtual mem-
ory management support in Gramine, followed by our
straightforward implementation of EDMM support in
Gramine. We implemented all operations synchronously.

3.1 Threat Model
This work follows a common threat model for SGX ap-
plications. The only trusted components are the CPU(s),
remote attestation services, and the code and data run-
ning inside the enclave. For remote attestation, we trust a
special enclave and its containing software, called aesmd,
provided by Intel. The hardware outside of the CPU
package, the hypervisor, OS, and other code outside
of the enclave are untrusted. The recent Scalable SGX
foregoes integrity protection against physical attacks,
such as a memory interposer, but does ensure confiden-
tiality against physical tampering. Our prototype, based
on Gramine, uses the in-kernel SGX driver, but does
not trust this driver. Denial-of-service, cache-based side-
channels, and controlled channel attacks [47] are out of
the scope of this work.

3.2 Experimental Setup
We use a desktop, with a 144-core 2.40 GHz Intel(R)
Xeon(R) Platinum 8360Y CPU with a 108 MB L3 cache
and hyperthreading enabled, 248 GB RAM, an approx-
imately 4 GB EPC, and a Samsung 970 EVO 500 GB
SSD. The host OS is Ubuntu 20.04.6 LTS, with Linux
kernel 6.7.0 and the in-kernel SGX driver. Our kernel

3

Page PoolSGX1 PAL

PAL ABI (~50 calls)

PalVirtualAlloc()

Linux System Call Table (~350 functions)

mmap()

 Unmodified Application Binary
 and Libraries

Enclave

Gramine

Patched libc

Figure 1. The Gramine architecture on SGX1. The PAL
(platform adaptation layer) internally manages a page
pool to return statically allocated, free virtual pages (in
cyan) to mmap.

includes a patch to the SGX driver to support an opti-
mization described later (§4.2); this patch does not affect
the behavior of the SGX driver when the optimization
is not used, as in these tests.

Unless otherwise noted, results are the average of 10
runs, and error bars represent 95% confidence intervals.
Application Workloads. We use three applications to eval-
uate EDMM performance: GCBench, RBench, and Re-
dis. GCBench [32] exercises the Python (version 3.8.10)
garbage collector by allocating and reclaiming represen-
tative data-structures, such as a set of balanced binary
trees and a large array of floating point values. We use
version 2.5 of RBench [43], which tests a variety of scien-
tific computing tasks, such as matrix computation and
calculating Fibonacci numbers, using version 3.6.3 of
R. Lastly, Redis [36] uses Yahoo! Cloud Serving Bench-
mark (YCSB) [48] to test the performance of Redis
(version 6.0.5), an in-memory key-value database. For
RBench and GCBench, we collect the end-to-end exe-
cution time using the time command. YCSB on Redis
reports throughput across six sub-workloads. We size
enclaves for running RBench benchmark at 2 GB, and
GCBench benchmark, Redis server at 512 MB, based on
their memory usage.

3.3 Baseline 1: Static Allocation (static)
Gramine was originally designed for SGX1, on which
the enclave’s virtual memory layout is determined stati-
cally. Because of this limitation, Gramine on SGX1 can-
not implement memory-related system calls, including
brk, mmap, munmap, and mprotect. Although the virtual
memory space is statically configured, Gramine does still
dynamically assign allocated pages to purposes such as
the heap, using Gramine-internal bookkeeping.

Gramine implements enclave management memory
logic in its Platform Adaptation Layer (PAL). Gramine

Enclave Untrusted Runtime
① Attempt EACCEPT

SGX Driver

Userspace

Kernel

③ ERESUME

④ Retry EACCEPT

② EAUG

Page fault handler

page fault

iret

enter

Figure 2. The current system flow for dynamically adding
a page to an SGX enclave with EDMM. Trusted software
is shaded blue. Compared to allocating a page to a nor-
mal process, this requires an additional context switch,
back into the enclave, and that the enclave accepts the
new mapping.

implements one PAL per supported host platform (e.g.,
Linux on SGX); the PAL abstracts and encapsulates host-
specific differences, so that the library OS can run on top
of any PAL without modification. The three PAL APIs
for memory management include: PalVirtualMemory-
Alloc, PalVirtualMemoryFree, and PalVirtualMemory-
Protect. Figure 1 shows the architecture of Gramine
and its memory management mechanisms.

On SGX1, Gramine implements these APIs using a
page pool to manage the heap. Gramine pre-allocates a
range of virtual pages within the enclave as the page pool.
The page pool is used to serve subsequent requests for
pages, including mapping files or extending the heap. Be-
cause these pages cannot change permission dynamically,
they are mapped readable, writable, and executable. Be-
cause most dynamic linking happens after enclave launch
in Gramine, only the PAL loader binary is mapped read-
only; all other binaries are in writable inside the enclave.
Gramine implements PalVirtMemoryProtect as a no-
op on SGX, since SGX1 does not allow changing page
permissions during runtime. In the experimental results,
we refer to this design as static.

3.4 Baseline 2: Basic EDMM Support (edmm)
We first describe a straightforward approach to adopting
EDMM in Gramine. We use the same page pool abstrac-
tion as described previously, but rather than map all of
these pages at enclave launch, we instead map them in
response to the first use by an enclave-level, emulated
system call in Gramine. For instance, when an enclave
application issues an mmap call to Gramine, Gramine will
select an unmapped page from the page pool to return to
the application. The application could trigger a demand
fault by simply reading or writing to the page, which
would be serviced by the SGX kernel driver. The SGX
kernel driver then creates the mapping (using EAUG),
and returns to the enclave, which in turn accepts the
new mapping, exits the enclave, and then re-enters the

4

Enclave Untrusted Runtime

⑦ EACCEPT(PT_TRIM)

SGX Driver

Userspace

Kernel

⑥ ERESUME

③ EMODT(PT_TRIM)

① ocall(TRIM_PAGES) ② ioctl(TRIM_PAGES)

Up to N pages

④ ETRACK

⑤ TLB flush IPI
Up to N pages

⑧
ocall(RM_TRIM_PAGES)

⑨ ioctl(RM_TRIM_PAGES)

⑫ ERESUME

⑩ Unmap PTE

⑪ EREMOVE

Up to N pages

Figure 3. The system flow for removing a virtual page
mapping from an enclave.

enclave to resume execution. This additional enclave exit
is an SGX hardware requirement.

We adopt an optimization proposed, but not evaluated,
by Xing et al. [46] (their §5.2), that avoids the additional
exit between accepting the mapping and resuming execu-
tion. The trick is to have the EACCEPT be the instruction
that triggers the fault, so that the page is accepted
while resuming execution. This is illustrated in Figure 2.
When an enclave issues an EACCEPT instruction on an un-
mapped virtual address, this exits the enclave and raises
a page fault in the kernel. Then, the SGX driver will
map the faulting address using EAUG. When the process
resumes execution, it will pass through the untrusted
runtime to transition back into the enclave; then, the
enclave will sucessfully retry the EACCEPT. Gramine im-
plements this by synchronously calling EACCEPT on each
virtual page mapped by PalVirtMemoryAlloc (called
by either mmap or brk). In the experiment results, we
refer to this design as edmm.

Removing a mapping in EDMM uses a similar, but
more complex system flow, in order to avoid race condi-
tions with stale TLB mappings. Figure 3 illustrates the
system flow recommended by the Intel manual, which
is implemented by the SGX driver. To remove a virtual
page, the enclave first issues an ocall to exit the enclave,
and then uses ioctl to get the SGX driver to transition
each page in the range into the TRIM (or pending re-
moval) state. The driver also blocks creation of any new
mapping at the page (using ETRACK) and shoots down
any cached TLB mappings on each CPU core. Then, the
flow returns to the userspace and re-enters the enclave
to call EACCEPT. Next, the enclave issues an ocall again
to exit the enclave and then uses ioctl to officially call
EREMOVE on each virtual page.

Enclave Untrusted Runtime

① Read/Write

SGX Driver

Userspace

Kernel

③ ecall(ALLOC_PAGE)

④ EACCEPT

② EAUG

Page fault handler

page fault
⑤ ERESUME

Exception handler

iret

Figure 4. System flow of creating a new enclave virtual
memory mapping via demand allocation, involving five
context switches among the untrusted kernel, Gramine’s
untrusted runtime, and the enclave. Trusted components
are in blue, untrusted in pink.

3.5 Baseline 3: Demand Allocation (edmm+demand)
Demand allocation is a standard optimization in memory
management. In prior work, Xing et al. [46] propose,
but do not implement or evaluate, a design for demand
allocation in SGX. They propose an implicit region as an
abstraction within the enclave’s address space, wherein
a page fault is assumed to be an implicit allocation
request to the kernel. The enclave would communicate
these regions to the kernel and SGX driver in advance
of the page faults.

We adapt this design to Gramine by treating the en-
tire enclave page pool as the implicit region. When the
enclave launches, the page pool is initially unmapped.
Just as with the baseline EDMM design, as the applica-
tion or library OS requests mappings, Gramine logically
allocates regions of the page pool. The key difference is
that each page in the page pool now has a state, mapped
or unmapped, which Gramine tracks with an additional
bit per page. The first time a page from the page pool is
allocated to an application, it will be in the unmapped
state. Once the page is faulted in, Gramine transitions it
to the mapped state, where the page remains until the
mapping is removed.

A key distinction compared to Baseline 2 is that the
faulting instruction is no longer EACCEPT; this means
that the enclave must provide an exception handler to
issue the EACCEPT. Figure 4 illustrates the revised sys-
tem flow. When the enclave accesses a virtual address
that is not yet mapped, a page fault is raised and the
kernel handles the fault. The SGX driver maps the page
using EAUG and returns to untrusted, user-level runtime,
which then re-enters the enclave in order to invoke the
in-enclave exception handler. The exception handler con-
sults Gramine’s internal bookkeeping to confirm that the
faulting address is in a virtual page that the application
requested and not yet been accepted. Then the exception
handler calls EACCEPT on the virtual page and marks the
page as mapped.

5

static edmm edmm
+demand

(a)RBench

0

5

10

15

20

25

30

35

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
RBench completed time

10000

10500

11000

11500

12000

8000

A B C D E F
0

500

(b)YCSB workloads on Redis

T
hr

ou
gh

pu
t(

op
s/

se
c)

static
edmm

edmm+demand

static edmm edmm
+demand

(c)GCBench

0

5

10

15

20

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
GCBench completed time

static edmm edmm
+demand

(d)#PF, AEXs, EEXITs, and EENTERs for GCBench

100

101

102

103

104

105

106

V
al

u
es

 (
lo

g
sc

al
e)

Page Faults
AEXs

EEXITs
EENTERs

Figure 5. Benchmarking of three application workloads: (a) RBench; (b) Redis; (c) GCBench, and (d) the numbers of
page faults, AEXs, EEXITs, and EENTERs during the GCBench execution. Each set of results is collected on static
allocation (sgx1), basic EDMM support (edmm), and EDMM with demand allocation (edmm+demand). Lower is
better.

After accepting the new mapping, the enclave must
again context switch back to the untrusted runtime and
re-enter the enclave to resume execution. The underlying
issue is the hardware needs to decrement a counter that
tracks the number of register-saving regions used so far,
and this can only happen when resuming an enclave
execution using ERESUME. Newer versions of SGX (in-
cluding upcoming firmware updates for some existing
chips) has a feature called AEX-Notify [16] that will
allow an enclave exception handler to resume normal
execution without the additional context switches. We
will adopt and evaluate the impact of AEX-Notify in
future work.

3.6 Baseline Performance Evaluation
We start with measuring the performance of three ap-
plication workloads in Gramine on the three baselines:
static allocation, basic EDMM support, and EDMM

with demand allocation. Figure 5 shows the enclave load-
ing time and execution time of RBench and GCBench,
as well as the throughputs of YCSB benchmarks on
Redis, and the numbers of page faults, asynchronous ex-
its (AEXs), enclave exits (EEXITs), and enclave enters
(EENTERs) for GCBench. We omit these numbers for
RBench and Redis because they show a similar trend as
the numbers for GCBench.

The trends in Figure 5 for loading time and execu-
tion time are consistent: while basic EDMM support
decreases the enclave loading time by 28–93%, it in-
creases the execution time by 5% for RBench and 41%
for GCBench versus static configuration. This perfor-
mance degradation correlates with an increase in costly
page faults and other enclave crossings.

Not only does adding basic EDMM support harm per-
formance, demand allocation worsens the situation fur-
ther. Overall, demand allocation increases the execution

6

time by 10% for RBench and 58% for GCBench; worse,
demand allocation does not reduce enclave loading time
further compared to basic EDMM support. For Redis,
demand allocation results in both gains and losses across
different workloads. These variations are relatively small,
due to the minimal demand allocation occurring during
individual requests. Although demand allocation is an
optimization in other contexts, in the case of EDMM,
demand allocation requires an additional, costly enclave
entrance and exit to accept the new mapping, which is
not offset by any gains from delaying creation of the
mapping.

Insight: EDMM’s enclave loading time gains can be
quickly offset by expensive enclave crossings required
for dynamic memory management, causing a net
slowdown in application performance.

4 Removing EDMM Overheads
This section presents four optimizations that reduce the
overheads demonstrated in the previous section. First,
because it is cheaper to create static mappings at loading
time than dynamic mappings, we show how a modest
pre-allocation strategy can reduce overheads without
over-provisioning space. Second, one can amortize the
cost of dynamic mappings by batching one set of en-
clave entrace and exits across multiple mmap requests.
Third, we observe that demand allocation often occurs
on contiguous virtual pages, so we can proactively map
neighboring pages in response to a demand fault. Finally,
because unmapping is more expensive than mapping
pages in an enclave, an asynchronous, lazy unmapping
strategy can further reduce costs and create opportuni-
ties for mapping reuse. In order to understand the impact
of each optimization, we evaluate the improvement over
baseline Gramine (and the prior optimizations) in each
subsection.

4.1 Optimization 1: Pre-allocation (+pre)
Given that it is faster to allocate memory at enclave
launch than during runtime, the first optimization is sim-
ply to pre-allocate a reasonable starting size for the heap.
Although the number of pages used by an application
can be input-dependent, one can often reliably predict a
minimum amount of expected dynamic memory usage,
say based on the smallest input.

Our first optimization, named pre-allocation (denoted
as +pre), allows the user to specify an initial page pool
size to fully allocate during enclave launch. Gramine
allocates an initial set of pages at launch, and after the
application exhausts this allocation, Gramine switches
to dynamic allocation. During the initial stage of the en-
clave execution, Gramine has a fixed memory footprint,

mostly storing internal data structures of Gramine and
loading application binaries. Pre-allocation prevents fre-
quent enclave exits or page faults until the application is
fully loaded, as well as servicing some memory allocation
requests from application itself.

We note that pre-allocating too much memory may
have downsides: first, the enclave potentially uses more
memory than needed, and, with a sufficiently large initial
page pool size, degenerates to the static configuration.
Second, as our evaluation shows, pre-allocating memory
increases enclave loading time. If the space is going to
be used, pre-allocation is more efficient than dynamic
allocation and this is a net win; if the space is unused,
this is a needless performance cost. Worse, if the system
is under memory pressure, needless pre-allocation can
impact the performance of other running enclaves or even
regular applications. We leave experiments on memory
pressure for future work.

Evaluation. Figure 6 shows the impact of pre-allocation
on our three application workloads: RBench, Redis, and
GCBench. We experiment with different preallocation
sizes: 64M, 128M, 256M, and 512M. We also test the opti-
mization on two EDMM baselines: the basic EDMM sup-
port, and demand allocation. For RBench, pre-allocation
with 512M brings down the cost of using EDMM to be
on par with static allocation, yielding only a 4% slow-
down in execution time but 3.5× faster enclave load
time compared to static allocation. For GCBench, pre-
allocation with 128M shows performance on par with
static allocation regarding execution time, while also
providing better enclave load time. Contrast this with
baseline EDMM overheads of 58% with and 41% without
demand paging. For Redis, pre-allocation with 256M im-
proves almost all of the workloads over static allocation.
Workload A has improvement up to 4%.

Fig. 6(d) presents enclave entrances and exits for
GCBench, showing a reduction in enclave crossings that
corresponds to the performance gains for pre-allocation.

Insight: Pre-allocating pages trades an increase in
loading time for a larger reduction in execution time,
provided the pages are used. Pre-allocating unused
pages lowers execution time compared to not map-
ping them.

4.2 Optimization 2: Batch Allocation (+batch)
A major source of runtime overhead in EDMM is the
additional, synchronous context switch for the enclave to
approve each change to a page mapping. Xing et al. [46]
propose, but do not implement or evaluate, a solution
that amortizes one single round trip into the kernel over
a virtually contiguous set of pages. We call this technique
batch allocation (denoted as +batch). We note that the

7

static edmm edmm
+demand

edmm
+pre

 (128M)

edmm
+pre

 (256M)

edmm
+pre

 (512M)

edmm
+pre

 (128M)
+demand

edmm
+pre

 (256M)
+demand

edmm
+pre

 (512M)
+demand

(a)RBench

0

5

10

15

20

25

30

35

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time RBench completed time

10000

10500

11000

11500

12000

12500

13000

8000

A B C D E F
0

500

(b)YCSB workloads on Redis

T
hr

ou
gh

pu
t(

op
s/

se
c)

static
edmm
edmm+demand

edmm+pre64M
edmm+pre128M
edmm+pre256M

edmm+pre64M+demand
edmm+pre128M+demand
edmm+pre256M+demand

static edmm edmm
+demand

edmm
+pre

 (64M)

edmm
+pre

 (128M)

edmm
+pre

 (256M)

edmm
+pre

 (64M)
+demand

edmm
+pre

 (128M)
+demand

edmm
+pre

 (256M)
+demand

(c)GCBench

0

5

10

15

20

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time GCBench completed time

static edmm edmm
+demand

edmm
+pre

 (64M)

edmm
+pre

 (128M)

edmm
+pre

 (256M)

edmm
+pre

 (64M)
+demand

edmm
+pre

 (128M)
+demand

edmm
+pre

 (256M)
+demand

(d)#PF, AEXs, EEXITs, and EENTERs for GCBench

100

101

102

103

104

105

106

Va
lu

es
 (l

og
 sc

al
e)

Page Faults # AEXs # EEXITs # EENTERs

Figure 6. (Pre-allocation) Benchmarking of three application workloads: (a) RBench; (b) Redis; (c) GCBench, and (d)
the numbers of page faults, AEXs, EEXITs, and EENTERs during the GCBench execution. Each set of results is
collected on the three baselines (sgx1, edmm, and edmm+demand), EDMM with different pre-allocation sizes: 64M
(+pre(64M)), 128M (+pre(128M)), 256M (+pre(256M)), and 512M (+pre(512M)), either with or without demand
allocation (+demand).

technique of batch allocation defined in this paper is
specifically an optimization to the basic EDMM support.
A similar idea of “batching” can be applied to demand
allocation, which we will discuss in §4.3.

Recall that, in basic EDMM support without demand
paging, when an application issues a multiple-page mmap,
Gramine allocates a region from the page pool. Gramine
then issues an EACCEPT instruction on each virtual page
in the newly mapped range, which triggers a demand
fault on each page. This causes the kernel to issue the
EAUG instruction, which then allows the EACCEPT to suc-
ceed. Put differently, this strategy incurs one enclave
crossing and one system call per page mapped.

Rather than demand fault these pages one at a time,
the key intuition of batch allocation is to amortize one
enclave and kernel crossing over an mmap-ed range. Be-
fore Gramine’s mmap implementation issues an EACCEPT
instruction on each page, it first issues an ocall to
the untrusted runtime, which in turn issues a special
madvise system call to the SGX driver on behalf of the
enclave. This madvise call tells the kernel the location
and size of the mapping change, causing the driver to
issue a series of EAUG instructions over the requested

virtual address range. Upon return to the enclave, the
enclave can then issue a series of EACCEPT instructions
over the same range without further page faults.

This madvise feature is not implemented in the Linux
SGX driver yet. We are working with the Intel team and
plan to upstream a patch to Linux in the future.

In total, the batch optimization lowers the costs of
dynamically modifying page mappings from one enclave-
kernel round trip per page to one per contiguous memory
region. From the application’s perspective, there is no
demand allocation in either the baseline or with this op-
timization; after an mmap, the returned region of virtual
address space is fully mapped and usable.
Evaluation. Fig. 7 shows the impact of batch alloca-
tion on our three application workloads over the basic
EDMM support with the pre-allocation optimization.
For simplicity, we pick the smallest pre-allocation size
tested so far (64M), based on the diminishing returns
of increasing this size. Adding batch allocation yields
throughput improvement on most of the YCSB Redis
workloads. It also brings down the execution time of
RBench and GCBench. With 64M pre-allocation, batch

8

static edmm edmm
+batch

edmm
+pre

 (64M)

edmm
+pre

 (64M)
+batch

(a)RBench

0

10

20

30

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
RBench completed time

10000

10500

11000

11500

12000

8000

A B C D E F
0

500

(b)YCSB workloads on Redis

T
hr

ou
gh

pu
t(

op
s/

se
c)

static
edmm
edmm+batch

edmm+pre64M
edmm+pre64M+batch

static edmm edmm
+batch

edmm
+pre

 (64M)

edmm
+pre

 (64M)
+batch

(c)GCBench

0

5

10

15

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
GCBench completed time

static edmm edmm
+batch

edmm
+pre

 (64M)

edmm
+pre

 (64M)
+batch

(d)#PF, AEXs, EEXITs, and EENTERs for GCBench

100

102

104

106

V
al

u
es

 (
lo

g
sc

al
e)

Page Faults
AEXs

EEXITs
EENTERs

Figure 7. (Batch Allocation) Benchmarking of three application workloads: (a) RBench; (b) Redis; (c) GCBench, and
(d) the numbers of page faults, AEXs, EEXITs, and EENTERs during the GCBench execution. Each set of results
is collected on the three baselines (sgx1, edmm, and edmm+demand), EDMM with only batch allocation (+batch),
EDMM with 64M pre-allocation (+pre(64M)), either with or without batch allocation (+batch).

allocation further reduces the overhead of EDMM on
GCBench from 41% in the baseline to 28%.

Insight: Batch allocation can further lower the over-
heads of mapping changes for memory that cannot
be pre-allocated.

4.3 Optimization 3: Contiguous Demand Allocation
(+demand<N>)

Demand allocation is a common optimization because a
typical application commonly mmaps more virtual mem-
ory than the application accesses. Thus, demand allo-
cation can potentially lower enclave memory footprints.
The downside we have already illustrated is that the cost
of page faults is very high on SGX. However, a high
cost can potentially be amortized over more mappings.

Contiguous Demand Allocation (denoted as +demand<N>
amortizes the cost of a demand allocation fault over as

many as 𝑁 neighboring pages. Figure 9 shows the op-
timized system flow to implement contiguous demand
allocation. Similar to demand allocation, the allocation
process is triggered by a memory access to a virtual page
that is not yet mapped by the kernel (the application
has logically mmap-ed it in Gramine). As with baseline
demand paging, the in-kernel page fault handler will
call EAUG on the faulting virtual page. When the kernel
returns to the exception handler of Gramine’s untrusted
runtime, it issues the same madvise system call as used
in batched allocation to map the subsequent 𝑁 − 1 vir-
tual pages. Then, the untrusted runtime re-enters the
enclave, which will iteratively call EACCEPT on 𝑁 con-
tiguous virtual pages starting with the faulting page.
Finally, to restore enclave state, it exits and resumes
back to the original execution inside the enclave.
Evaluation. Figure 8 shows the impact of contiguous de-
mand allocation on our three application workloads over

9

static edmm edmm
+demand

edmm
+pre

 (64M)
+demand

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+demand

(64)
(a)RBench

0

10

20

30

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
RBench completed time

10000

10500

11000

11500

12000

8000

A B C D E F
0

500

(b)YCSB workloads on Redis

T
hr

ou
gh

pu
t(

op
s/

se
c)

static
edmm
edmm+demand

edmm+pre64M+demand
edmm+pre64M+demand8
edmm+pre64M+demand64

static edmm edmm
+demand

edmm
+pre

 (64M)
+demand

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+demand

(64)
(c)GCBench

0

5

10

15

20

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time
GCBench completed time

static edmm edmm
+demand

edmm
+pre

 (64M)
+demand

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+demand

(64)
(d)#PF, AEXs, EEXITs, and EENTERs for GCBench

100

102

104

106

V
al

u
es

 (
lo

g
sc

al
e)

Page Faults
AEXs

EEXITs
EENTERs

Figure 8. (Contiguous Demand Allocation) Benchmarking of three application workloads: (a) RBench; (b) Redis; (c)
GCBench, and (d) the numbers of page faults, AEXs, EEXITs, and EENTERs during the GCBench execution. Each
set of results is collected on the three baselines (sgx1, edmm, and edmm+demand), EDMM with 64M pre-allocation
(+pre(64M)) and three different demand allocation sizes:

demand allocation, with 64M pre-allocation. We tested
with three demand allocation sizes: 1 page (baseline),
8 pages, and 64 pages. Unsurprisingly, in the absence
of memory pressure, increasing contiguous demand al-
location size lowers overheads. In the case of RBench,
demand allocating 64 pages at once effectively offsets
the cost of demand allocation to only 2% compared to
baseline EDMM support—gaining the potential space
savings of demand allocation without the high runtime
cost. In the case of Redis, contiguous demand allocation
with 64 pages offsets not only the costs of demand al-
location, but EDMM in general—bringing throughput
up to match static. For GCBench, contiguous demand
allocation with 8 pages and 64 pages further reduces the
overhead of demand allocation by 5% and 10%, compared
to baseline EDMM. The root cause of this improvement
can be seen in Figure 8(d), in which both the number of

page faults and enclave entrance and exit are reduced
with contiguous demand allocation.

Insight: Demand paging must be at a larger gran-
ularity than one page to amortize higher mapping
costs on SGX.

4.4 Optimization 4: Lazy Free (+lf)
Based on the observation that unmapping enclave mem-
ory is more expensive than allocating it, the lazy free
optimization caches some number of freed pages in a
pool to serve subsequent allocation requests. We add a
manifest configuration option where the user can set a
maximum amount of freed memory to hold in reserve
for future allocations. We also add bookkeeping for the
page pool to track the state of free pages (allocated,
unmapped, or cached). When an application issues an
munmap to Gramine, if the cached page count is below

10

Enclave Untrusted Runtime
① Read/Write

SGX Driver

Userspace

Kernel

⑤ ecall(ALLOC_PAGE)

⑥ EACCEPT

② EAUG

Page fault handler

page fault
⑦ ERESUME

Exception handler

Up to N pages

④ EAUG

fadvise() for /dev/sgx

③ madvise(addr+4096,
 4096*(N-1))

Up to N pages

Figure 9. The optimized system flow of allocating N new
enclave virtual memory mappings (N is a parameter set
in the enclave’s configuration) via demand allocation,
involving seven context switches among the untrusted
kernel, Gramine’s untrusted runtime, and the enclave.
Trusted components are in blue, untrusted in pink.

the threshold, these pages change state from allocated
to cached. When the cached page count goes above the
threshold, pages are unmapped accordingly.

When an application issues an mmap to Gramine, Gra-
mine first checks for a cached page region of an appropri-
ate size; if the allocation can be satisfied, cached pages
are used. Otherwise, new pages are demand faulted in,
as in prior subsections.

Lazy free does risk exacerbating internal fragmenta-
tion of the virtual address space over time. However,
the virtual address space of an enclave can be large and
sparse. In the case where there are enough total free
physical pages, but an allocation by the OS fails, one
can simply free all of the cached pages and try again.

Another important caveat to this optimization is that
it is not strictly POSIX compliant. An application that
attempts to access an munmap-ed region should page
fault. We believe that applications deliberately faulting
on an unmapped page are rare in practice. For these
rare cases, this optimization should be disabled.
Evaluation. Figure 10 shows the impact of lazy free on
our three application workloads with the optimizations
we explored so far. In particular, we test the strategy
of lazy free on both batch allocation and contiguous
demand allocation (8 pages at each page fault), and
compare with the results in which lazy free is disabled.
We also choose two different de-allocation threshold, 5%
and 15%, to control the eagerness of lazy free. We also
tested with 64 pages at each page fault instead of 8, but
did not find a significant difference.

For GCBench, with a very modest threshold of 5%, the
execution time overhead drops from 28% to a 1.8% gain
with batch allocation, and drops from 36% to a 2.8% gain
with 8-page contiguous demand allocation. Increasing

the threshold to 15% further improves the GCBench
execution time performance on par with static allocation.
For RBench, increasing the threshold to 15% even yields
improved performance over static allocation in both cases
with batch allocation and contiguous demand allocation.
For Redis, lazy free also yields improved performance
on YCSB workload A and F over static allocation.

Figure 10(d) shows the reduction of enclave exits and
entrances during the execution of GCBench with lazy
free, which contributes to the performance improvement.

Insight: For applications that aggressively allocate
and free virtual pages, lazy free further eliminates
the remaining overheads of EDMM.

5 Related Work
The memory management of hardware enclaves has been
long explored by previous works. As one of the earli-
est work, Eleos [30] introduces the use of Secure User-
Managed Virtual Memory (SUVM) to swap the virtual
pages in and out of an enclave, without relying the
untrusted SGX driver to swap the pages. Eleos shows
significant performance benefits (up to 2.3× through-
put), by eliminating the cost of context switching and
the subsequent cache pollution. A key requirement for
Eleos is that the application be compiled with an in-
direction mechanism for pointers, wherein the trusted
runtime system could intercept dereferencing of pointers
to objects that are swapped out. CoSMIX [31] extends
the idea of using a compilation pass to indirect pointers
with a software-managed oblivious RAM (ORAM), to
hide page access patterns from the untrusted OS and
defend against controlled-channel attacks [47] and other
side-channel attacks [11, 12, 44, 45]. As a follow-up work,
Autarky [29] explore self-paging in enclaves as a way to
eliminate controlled-channel attacks, as an extension to
SGX [47]. They introduce a page cluster abstraction,
which must be swapped as a group, and a cooperative
page management framework.

VAULT [39] introduces architectural changes to reduce
the cost of page swapping in and out of the Enclave Page
Cache (EPC). VAULT replaces Intel’s SGX Integrity
Tree, an in-memory data structure for authenticating the
values and versions of enclave memory, with a Variable
Arity Unified Tree, significantly reducing the memory
accesses necessary to verify a virtual memory block.

Civet [42] explores enclave-aware garbage collection
in the OpenJDK runtime. Specifically, Civet introduces
a three-generational garbage collection design, which
corresponds to the primary performance regimes in an
enclave: one generation fits in last-level cache (LLC),
another generation fits in EPC, and the even larger,
oldest generation.

11

static edmm edmm
+demand

edmm
+pre

 (64M)
+batch

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+batch
+lazy
 (5%)

edmm
+pre

 (64M)
+demand

(8)
+lazy
 (5%)

edmm
+pre

 (64M)
+batch
+lazy

 (15%)

edmm
+pre

 (64M)
+demand

(8)
+lazy

 (15%)
(a)RBench

0

10

20

30

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time RBench completed time

10000

10500

11000

11500

12000

8000

A B C D E F
0

500

(b)YCSB workloads on Redis

T
hr

ou
gh

pu
t(

op
s/

se
c)

static
edmm
edmm+demand
edmm+pre64M+batch
edmm+pre64M+demand8

edmm+pre64M+batch+lazy5%
edmm+pre64M+demand8+lazy5%
edmm+pre64M+batch+lazy15%
edmm+pre64M+demand8+lazy15%

static edmm edmm
+demand

edmm
+pre

 (64M)
+batch

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+batch
+lazy
 (5%)

edmm
+pre

 (64M)
+demand

(8)
+lazy
 (5%)

edmm
+pre

 (64M)
+batch
+lazy

 (15%)

edmm
+pre

 (64M)
+demand

(8)
+lazy

 (15%)
(c)GCBench

0

5

10

15

20

Ti
m

e
in

 se
co

nd
s

SGX enclave loading time GCBench completed time

static edmm edmm
+demand

edmm
+pre

 (64M)
+batch

edmm
+pre

 (64M)
+demand

(8)

edmm
+pre

 (64M)
+batch
+lazy
 (5%)

edmm
+pre

 (64M)
+demand

(8)
+lazy
 (5%)

edmm
+pre

 (64M)
+batch
+lazy

 (15%)

edmm
+pre

 (64M)
+demand

(8)
+lazy

 (15%)
(d)#PF, AEXs, EEXITs, and EENTERs for GCBench

100

102

104

106

Va
lu

es
 (l

og
 sc

al
e)

Page Faults # AEXs # EEXITs # EENTERs

Figure 10. (Lazy Free) Benchmarking of three application workloads: (a) RBench; (b) Redis; (c) GCBench, and (d)
the numbers of page faults, AEXs, EEXITs, and EENTERs during the GCBench execution. Each set of results is
collected on the three baselines (sgx1, edmm, and edmm+demand), EDMM with 64M pre-allocation (+pre(64M))
and either batch (+batch) or demand allocation (+demand), either with or without lazy free with 15% threshold
(+lf(15%)).

Liu et al. [24] show how swapping overheads in SGX
can be alleviated by preloading pages likely to be ac-
cessed in the future into the Enclave Page Cache, either
based on source analysis or observed behavior in prior
execution.

RISC-V Keystone [22] uses the Linux memory alloca-
tor to assign memory to its enclaves. Page faults caused
during memory management incur high overheads, damp-
ening the performance when stressed. Ashman [23] per-
forms dynamic memory management on RISC-V by
moving the mappings of the enclaves in order to avoid
fragmentation, such that allocated and free memory are
contiguous.

Occlum [38] is another library OS akin to Gramine,
albeit written in Rust, which utilizes Intel Memory Pro-
tection eXtensions (MPX) to isolate memory regions.
Without EDMM, it has a better overall average per-
formance than Gramine without EDMM. As EDMM
degrades the performance of SGX-based enclave, we
show that our optimizations with Gramine-SGX reduce
these overheads over baseline EDMM. Occlum has an

up-to-date EDMM implementation, and we leave a com-
parison between Occlum and Gramine with EDMM as
future work.

Elasticlave [49] is an extension to Keystone providing
first-class support for sharing pages between enclaves.
Unlike SGX, Elasticlave allows enclaves to selectively
share memory to other enclaves, reducing overhead, as
well as natively guaranteeing atomicity.

6 Conclusion
In this paper, we have examined the performance impact
of dynamic memory management strategies on enclave
applications, including the effect on garbage collection
and server workloads. The results of our experiments
show that, despite the reduction of enclave start time,
naïve implementations of dynamic memory allocation,
either at user-level mapping or at first access, cause sig-
nificant slowdowns to runtime. We have demonstrated
that by optimizing the system flow of demand alloca-
tion and lazy freeing, the runtime overhead of dynamic
memory management can be significantly reduced to

12

being comparable to workloads under static memory
allocation.

Acknowledgments
This work was supported in part by NSF grant CNS-
2244937, CNS-2148374, Intel, and the Confidential Com-
puting Consortium (CCC). Porter also has a significant
financial interest in Fortanix and Amazon.

References
[1] Alibaba. 2020. Alibaba Cloud Released Industry’s First

Trusted and Virtualized Instance with Support for SGX 2.0
and TPM. https://www.alibabacloud.com/blog/alibaba-cloud-
released-industrys-first-trusted-and-virtualized-instance-with-
support-for-sgx-2-0-and-tpm_596821. (October 2020).

[2] Alibaba. 2023. Alibaba Cloud, Elastic Compute Services,
Instance Type Families, Overview. https://www.alibabacloud
.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95
.32ae1160CQKT0I. (August 2023).

[3] AMD. [n. d.]. AMD Secure Encrypted Virtualization (SEV).
https://developer.amd.com/sev/. ([n. d.]).

[4] AMD. 2020. White PaperAMD SEV-SNP: Strengthening
VM Isolationwith Integrity Protection and More. https://ww
w.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf. (2020).

[5] ARM. [n. d.]. ARM Secure IP. https://developer.arm.com/ip-
products/security-ip. ([n. d.]).

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind, Di-
vya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David
Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch,
and Christof Fetzer. 2016. SCONE: Secure Linux Contain-
ers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementa-
tion (OSDI’16). USENIX Association, Berkeley, CA, USA,
689–703. http://dl.acm.org/citation.cfm?id=3026877.3026930

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014.
Shielding Applications from an Untrusted Cloud with Haven.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 267–283. https://www.usenix.org/conferenc
e/osdi14/technical-sessions/presentation/baumann

[8] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weich-
brodt, Matthias Lorenz, Christof Fetzer, Peter Pietzuch,
and Rüdiger Kapitza. 2016. SecureKeeper: Confidential
ZooKeeper Using Intel SGX. In Proceedings of the 17th Inter-
national Middleware Conference (Middleware ’16). Associa-
tion for Computing Machinery, New York, NY, USA, Article
14, 13 pages. https://doi.org/10.1145/2988336.2988350

[9] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Obliv-
ious Query Processing for Secure Databases. Proc. VLDB
Endow. 13, 2 (Oct. 2019), 169–183. https://doi.org/10.14778
/3364324.3364331

[10] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and
Sergey Gorbunov. 2017. IRON: Functional Encryption Using
Intel SGX. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS
’17). Association for Computing Machinery, New York, NY,
USA, 765–782. https://doi.org/10.1145/3133956.3134106

[11] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Müller. 2017. Cache Attacks on Intel SGX. In Proceed-
ings of the 10th European Workshop on Systems Security

(EuroSec’17). Association for Computing Machinery, New
York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/
3065913.3065915

[12] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017.
High-Resolution Side Channels for Untrusted Operating
Systems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17). USENIX Association, Santa Clara, CA,
299–312. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/hahnel

[13] IBM. 2020. IBM Cloud Data Shield Now Generally Available.
https://www.ibm.com/blog/announcement/ibm-cloud-data-
shield-now-generally-available/. (April 2020).

[14] IBM. 2023. Provisioning a bare metal server with Intel®
Software Guard Extension architecture. https://cloud.ibm.
com/docs/bare-metal?topic=bare-metal-bm-server-provision-
sgx. (January 2023).

[15] Intel. 2021. Intel&Reg; Hardware Shield–Intel&Reg; Total
Memory Encryption. https://www.intel.com/content/dam/
www/central-libraries/us/en/documents/white-paper-intel-
tme.pdf. (2021).

[16] Intel. 2022. Asynchronous Enclave Exit Notify and the
EDECCSSA User Leaf Function. https://cdrdv2.intel.c
om/v1/dl/getContent/736463?explicitVersion=true. (2022).

[17] Intel. 2022. Intel Trust Domain Extensions. https://cdrdv2.i
ntel.com/v1/dl/getContent/690419. (2022).

[18] Kyungtae Kim, Chung Hwan Kim, Junghwan "John" Rhee,
Xiao Yu, Haifeng Chen, Dave (Jing) Tian, and Byoungyoung
Lee. 2020. Vessels: Efficient and Scalable Deep Learning
Prediction on Trusted Processors. In Proceedings of the 11th
ACM Symposium on Cloud Computing (SoCC ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 462–476.
https://doi.org/10.1145/3419111.3421282

[19] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and
Dongsu Han. 2017. Enhancing Security and Privacy of Tor’s
Ecosystem by Using Trusted Execution Environments. In
14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston,
MA, 145–161. https://www.usenix.org/conference/nsdi17/tec
hnical-sessions/presentation/kim-seongmin

[20] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon,
and Jaehyuk Huh. 2019. ShieldStore: Shielded In-Memory
Key-Value Storage with SGX. In Proceedings of the Four-
teenth EuroSys Conference 2019 (EuroSys ’19). Association
for Computing Machinery, New York, NY, USA, Article 14,
15 pages. https://doi.org/10.1145/3302424.3303951

[21] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N.
Asokan, Andrew Simpson, and Robin Ankele. 2016. Exploring
the Use of Intel SGX for Secure Many-Party Applications.
In Proceedings of the 1st Workshop on System Software for
Trusted Execution (SysTEX ’16). Association for Computing
Machinery, New York, NY, USA, Article 5, 6 pages. https:
//doi.org/10.1145/3007788.3007793

[22] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. 2020. Keystone: An Open
Framework for Architecting Trusted Execution Environments.
In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys ’20). Association for Comput-
ing Machinery, New York, NY, USA, Article 38, 16 pages.
https://doi.org/10.1145/3342195.3387532

[23] Haonan Li, Weijie Huang, Mingde Ren, Hongyi Lu, Zhenyu
Ning, Heming Cui, and Fengwei Zhang. 2022. A Novel Mem-
ory Management for RISC-V Enclaves. In Proceedings of the
10th International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP ’21). Association

13

https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://developer.amd.com/sev/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/ip-products/security-ip
https://developer.arm.com/ip-products/security-ip
http://dl.acm.org/citation.cfm?id=3026877.3026930
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://doi.org/10.1145/2988336.2988350
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1145/3133956.3134106
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.ibm.com/blog/announcement/ibm-cloud-data-shield-now-generally-available/
https://www.ibm.com/blog/announcement/ibm-cloud-data-shield-now-generally-available/
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://cdrdv2.intel.com/v1/dl/getContent/736463?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/736463?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://doi.org/10.1145/3419111.3421282
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1145/3007788.3007793
https://doi.org/10.1145/3342195.3387532

for Computing Machinery, New York, NY, USA, Article 3,
9 pages. https://doi.org/10.1145/3505253.3505257

[24] Ximing Liu, Wenwen Wang, Lizhi Wang, Xiaoli Gong, Ziyi
Zhao, and Pen-Chung Yew. 2020. Regaining Lost Seconds:
Efficient Page Preloading for SGX Enclaves. In Proceedings of
the 21st International Middleware Conference (Middleware
’20). Association for Computing Machinery, New York, NY,
USA, 326–340. https://doi.org/10.1145/3423211.3425673

[25] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi,
Simon Johnson, Rebekah Leslie-Hurd, and Carlos Rozas.
2016. Intel&Reg; Software Guard Extensions (Intel&Reg;
SGX) Support for Dynamic Memory Management Inside an
Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016 (HASP 2016). ACM,
New York, NY, USA, Article 10, 9 pages. https://doi.org/10
.1145/2948618.2954331

[26] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution. In Proceedings of
the 2nd International Workshop on Hardware and Architec-
tural Support for Security and Privacy (HASP 13). ACM.
http://doi.acm.org/10.1145/2487726.2488368

[27] Microsoft. 2023. DCsv3 and DCdsv3-series. https://learn.micr
osoft.com/en-us/azure/virtual-machines/dcv3-series. (January
2023).

[28] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Popa. 2018. Oblix: An Efficient Oblivious
Search Index. 279–296. https://doi.org/10.1109/SP.2018.0004
5

[29] Meni Orenbach, Andrew Baumann, and Mark Silberstein.
2020. Autarky: Closing Controlled Channels with Self-Paging
Enclaves. In Proceedings of the Fifteenth European Con-
ference on Computer Systems (EuroSys ’20). Association
for Computing Machinery, New York, NY, USA, Article 7,
16 pages. https://doi.org/10.1145/3342195.3387541

[30] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark
Silberstein. 2017. Eleos: ExitLess OS Services for SGX En-
claves. In Proceedings of the Twelfth European Conference
on Computer Systems (EuroSys 17). 238–253.

[31] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark
Silberstein. 2019. CoSMIX: A Compiler-based System for
Secure Memory Instrumentation and Execution in Enclaves.
In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 555–570. https:
//www.usenix.org/conference/atc19/presentation/orenbach

[32] Samuele Pedroni, Hans Boehm, John Ellis, and Pete Kovac.
2018. GCBench. https://github.com/mozillazg/pypy/blob/407
95dcad7e1b0be53d2f95a94f0278086d2d448/rpython/translat
or/goal/gcbench.py. (2018).

[33] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof
Fetzer. 2016. Secure Content-Based Routing Using Intel Soft-
ware Guard Extensions. In Proceedings of the 17th Interna-
tional Middleware Conference (Middleware ’16). Association
for Computing Machinery, New York, NY, USA, Article 10,
10 pages. https://doi.org/10.1145/2988336.2988346

[34] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. 2018. Safebricks: Shielding Network Functions in
the Cloud. In Proceedings of the 15th USENIX Conference on
Networked Systems Design and Implementation (NSDI’18).
USENIX Association, USA, 201–216.

[35] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018.
EnclaveDB – A Secure Database using SGX. In Oakland.
IEEE. https://www.microsoft.com/en-us/research/publicatio

n/enclavedb-a-secure-database-using-sgx/
[36] Redis. 2023. Redis benchmark. https://redis.io/docs/manage

ment/optimization/benchmarks/. (2023).
[37] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkant-

sidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russi-
novich. 2015. VC3: Trustworthy data analytics in the cloud
using SGX. In 2015 IEEE Symposium on Security and Pri-
vacy (S&P 15). IEEE, 38–54.

[38] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji
Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. 2020. Oc-
clum: Secure and efficient multitasking inside a single enclave
of Intel SGX. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, New York, NY,
USA.

[39] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian.
2018. VAULT: Reducing Paging Overheads in SGX with
Efficient Integrity Verification Structures. In Proceedings of
the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’18). Association for Computing Machinery, New
York, NY, USA, 665–678. https://doi.org/10.1145/3173162.
3177155

[40] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan
Jain, William Jannen, Jitin John, Harry A. Kalodner, Vrushali
Kulkarni, Daniela Oliveira, and Donald E. Porter. 2014. Co-
operation and Security Isolation of Library OSes for Multi-
Process Applications. In EuroSys.

[41] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017.
Graphene-SGX: A Practical Library OS for Unmodified Appli-
cations on SGX. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 645–658. https://www.usenix.org/conference/atc17/tech
nical-sessions/presentation/tsai

[42] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey,
Raluca Ada Popa, and Donald E. Porter. 2020. Civet: An
Efficient Java Partitioning Framework for Hardware Enclaves.
In USENIX Security.

[43] Simon Urbanek and Philippe Grosjean. 2008. R Benchmark.
https://mac.r-project.org/benchmarks/. (2008).

[44] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-
Step: A practical attack framework for precise enclave execu-
tion control. In Proceedings of the 2nd Workshop on System
Software for Trusted Execution. 1–6.

[45] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. 2017. Telling your secrets
without page faults: Stealthy page table-based attacks on
enclaved execution. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 1041–1056.

[46] Bin (Cedric) Xing, Mark Shanahan, and Rebekah Leslie-
Hurd. 2016. Intel® Software Guard Extensions (Intel® SGX)
Software Support for Dynamic Memory Management Inside
an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016 (HASP 2016). ACM,
New York, NY, USA.

[47] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015.
Controlled-Channel Attacks: Deterministic Side Channels for
Untrusted Operating Systems. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland).

[48] Yahoo. 2019. Yahoo! Cloud Serving Benchmark. https:
//ycsb.site. (2019).

[49] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson,
and Prateek Saxena. 2022. Elasticlave: An efficient memory
model for enclaves. In 31st USENIX Security Symposium

14

https://doi.org/10.1145/3505253.3505257
https://doi.org/10.1145/3423211.3425673
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
http://doi.acm.org/10.1145/2487726.2488368
https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1145/3342195.3387541
https://www.usenix.org/conference/atc19/presentation/orenbach
https://www.usenix.org/conference/atc19/presentation/orenbach
https://github.com/mozillazg/pypy/blob/40795dcad7e1b0be53d2f95a94f0278086d2d448/rpython/translator/goal/gcbench.py
https://github.com/mozillazg/pypy/blob/40795dcad7e1b0be53d2f95a94f0278086d2d448/rpython/translator/goal/gcbench.py
https://github.com/mozillazg/pypy/blob/40795dcad7e1b0be53d2f95a94f0278086d2d448/rpython/translator/goal/gcbench.py
https://doi.org/10.1145/2988336.2988346
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1145/3173162.3177155
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://mac.r-project.org/benchmarks/
https://ycsb.site
https://ycsb.site

(USENIX Security 22). 4111–4128.
[50] ZDNet. 2020. Cloud security: Microsoft Azure’s SGX VMs

hit GA, Google’s Shielded VM is now default. https://www.

zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-
hit-ga-googles-shielded-vm-is-now-default/. (April 2020).

15

https://www.zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/
https://www.zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/
https://www.zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/

	1 Introduction
	2 Background
	2.1 Enclave Dynamic Memory Management (EDMM)
	2.2 VM-based TEE Memory Management

	3 Baseline EDMM Performance
	3.1 Threat Model
	3.2 Experimental Setup
	3.3 Baseline 1: Static Allocation (static)
	3.4 Baseline 2: Basic EDMM Support (edmm)
	3.5 Baseline 3: Demand Allocation (edmm+demand)
	3.6 Baseline Performance Evaluation

	4 Removing EDMM Overheads
	4.1 Optimization 1: Pre-allocation (+pre)
	4.2 Optimization 2: Batch Allocation (+batch)
	4.3 Optimization 3: Contiguous Demand Allocation (+demand<N>)
	4.4 Optimization 4: Lazy Free (+lf)

	5 Related Work
	6 Conclusion
	References

