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Abstract
Binary Code Similarity Detection (BCSD) is not only essential for
security tasks such as vulnerability identification but also for code
copying detection, yet it remains challenging due to binary strip-
ping and diverse compilation environments. Existing methods tend
to adopt increasingly complex neural networks for better accuracy
performance. The computation time increases with the complexity.
Even with powerful GPUs, the treatment of large-scale software be-
comes time-consuming. To address these issues, we present a frame-
work called ReGraph to efficiently compare binary code functions
across architectures and optimization levels. Our evaluation with
public datasets highlights that ReGraph exhibits a significant speed
advantage, performing 700 times faster than Natural Language
Processing (NLP)-based methods while maintaining comparable
accuracy results with respect to the state-of-the-art models.

CCS Concepts
• Security and privacy → Malware and its mitigation; Embedded
systems security; Software reverse engineering.
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1 Introduction
Binary Code Similarity Detection (BCSD) plays a critical role in
various downstream applications such as vulnerability identifica-
tion, firmware security analysis, and software reuse detection [4,
15, 20, 27, 37]. Despite significant progress, it remains an active
research area. A key difficulty lies in that, even when compiled
from the same source code, binaries can exhibit substantial dif-
ferences across various compilation options in both structure and
semantics. Furthermore, to minimize file size, binary stripping is
commonly employed [22], eliminating symbol tables and debug in-
formation [11], thereby exacerbating the challenge of binary-level
code analysis [29].
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Manually reverse engineering binary code functions is a solu-
tion but a very time-consuming one, especially when analyzing
millions of stripped binary functions [32]. Hence, research direc-
tions focus on automatic methods. At first, methods have compared
binary file elements such as operator counts, jumps, and Control
Flow Graphs (CFGs) [8, 30], but different compilation options sig-
nificantly alter CFGs and other extracted features [23], limiting
their performance in cross-optimization and cross-architecture sce-
narios [22, 25]. More recently, new methods have been proposed
to leverage neural networks and have outperformed earlier meth-
ods [31, 35, 36]. Despite that, the differences caused by different
compilation options require an increasing amount of neural net-
work parameters [5, 14, 31], as well as the creation of large mod-
els [9, 21, 36]. These models require powerful and expensive GPUs
and render the computation time impractical when analyzing large
amounts of functions.

To address these challenges, we propose ReGraph, a function-
level cross-architecture and cross-compilation binary code match-
ing framework. ReGraph efficiently identifies known functions
within a given software by leveraging code lifting, re-optimization,
Code Property Graphs (CPGs), and Graph Neural Networks (GNNs)
to compute function similarity. This enables analysts to further ex-
amine the most likely similar functions within a binary executable.
We evaluate ReGraph on public datasets [22]. The results demon-
strate that our framework exhibits high accuracy and fast matching
speed with much lower resource consumption than state-of-the-art
solutions. Our contributions can be summarized as follows:

• We propose mitigating binary discrepancies by offloading
them to the lifter and re-optimizer. Our experiments show
that these techniques improve similarity scores by an average
of 72.8% with respect to those reported by BinDiff [10]. Our
results demonstrate that these techniques can serve as a
generalizable meta-method for other binary code similarity
detection frameworks.

• We integrate CPGs andGNNswith lifting and re-optimization
to develop ReGraph. ReGraph achieves a 700× speedup over
NLP-based methods while maintaining comparable perfor-
mance to state-of-the-art approaches.

• With ReGraph, our proposed command-line tool, analysts
can focus on the top-K most similar functions rather than
analyzing the entire binary file, significantly reducing their
workload.

This paper is structured as follows: Section II presents the usage
of our tool, and Section III provides a detailed explanation of each
component of ReGraph. We evaluate ReGraph in Section IV. Section
V concludes the paper and discusses potential directions for future
research.
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2 Usage
In this section, we demonstrate the usage of ReGraph, A Python-
based command-line tool that detects similar binary code functions.
It operates in two phases: the training phase, which processes newly
encountered binary files, and the inference phase, which computes
similarity results based on the trained model.

2.1 Requirements
ReGraph is built in Python with additional dependencies. It requires
RetDec [17] for binary lifting, LLVM [18] for re-optimization, and
Joern [33] for extracting CPGs. These dependencies should be in-
stalled before using ReGraph.

2.2 Training
Preprocessing: Preprocessing includes binary lifting, re-optimization,
CPG extraction, and CPG vectorization. We have integrated the
first three functionalities into a Python script, allowing them to
be executed with a single command. By default, we assume the
directory structure follows the format project/architecture/
optimization-level. If not, users can specify custom file paths
through the extra-provided Python programming interface. Once
CPGs are extracted, a separate command-line script vectorize the
CPGs into datasets for training and inference. Additionally, an aux-
iliary file, the op_file, will be generated to store statistics about
operators extracted from binaries to assist in encoding the CPGs.

Training: To achieve optimal performance on new binary files,
we recommend training the model on these files. All hyperparam-
eters governing the training process are defined within the con-
figuration file called train_config.yaml. Subsequent to data pre-
processing, this file requires modification to specify the dataset
directory path and finalize the parameters for training execution.
Then, running the model training script will initiate the training
process and generate the trained model file in the specified output
folder.

2.3 Inference
With the trained model file and the corresponding op_file, in-
ference can be performed. Given a target function in a binary file
(target binary file), our tool identifies the top K’s most similar func-
tions, in which the user pre-defines the K, from another binary
file (candidate binary file). To minimize user interaction, our tool
outputs all functions from the target binary file along with their
top-K matches from the candidate binary file, including the corre-
sponding similarity scores, rather than requiring users to select a
target function manually. This functionality is encapsulated in a
script, where users specify the pre-trained model path, the op_file,
and the two binaries via the command line to generate the results
in the Excel spreadsheet.

2.4 Illustrative Example
In this section, we present an example using two files from Open-
PLC (a collection of open-source programs for Programmable Logic
Controllers, PLCs) [3], compiled under different environments. The
target binary is compiled for the x86 architecture with -O0 opti-
mization, while the candidate binary is compiled for the ARM archi-
tecture with -O3 optimization. We use the function __time_sub as

a case study. Despite originating from the same source code, their
corresponding assembly code demonstrates significant differences,
as shown in Figure 1.

MOV R12 , R0
SUB SP , SP , #8
PUSH { R4 , LR }
. . .
ADD SP , SP , #8
BX LR

push ebp
mov ebp , esp
sub esp , 28h
. . .
l e a v e
r e t n 4

Figure 1: The assembly code of example functions compiled
in ARM -O3 (left) and X86 -O0 (right).

After training ReGraph and utilizing the pre-trained model, we
set K = 5. Table 1 presents the example output of functions similar
to __time_sub, In stripped binaries, function names are typically
removed. In such cases, security analysts can inspect the top-K
functions to identify the target function, rather than searching
through the entire binary, which significantly reduces the workload
and improves efficiency in binary analysis. To aid in understanding
the results, we provide the function names in the last column,
labeled Real Name. Due to minor operator differences between
__time_sub and __time_add, their similarity scores are close. In
contrast, INTEGRAL_body__ exhibits more structural differences
from __time_sub, resulting in a lower similarity score.

Top K Score Stripped Name Real Name

1 0.921 function_154 __time_sub
2 0.917 function_104 __time_add
3 0.809 function_2cc8 INTEGRAL_body__
4 0.806 function_35b8 PROG0_body__
5 0.797 function_74 __normalize_timespec

Table 1: Top K functions with corresponding scores and ad-
dresses.

3 ReGraph
In this section, we detail each component of ReGraph, whose struc-
ture is depicted in Figure 2. Given a target binary code function, our
objective is to measure its similarity score with each function of
a test set via their corresponding CPGs. ReGraph first uses a lifter
to lift the binary code function to LLVM Intermediate Representa-
tion (IR) [18]. Then, the optimizer further re-optimizes it to the -O3
level, representing the highest optimization level commonly used
in compilation.

However, when the lifter and optimizer attempt to reorganize the
binary code, in some cases, differences persist. Hence, we employ
CPG and GNN to tolerate these differences. Once we obtain the op-
timized LLVM IR, we decompile it into pseudo-C code and convert
it into a CPG using Joern [33]. We then encode the CPG into the
GNN to obtain its corresponding function vector that represents the
whole function. The similarity score is finally computed using the
Pearson coefficient [24] applied to their respective function vectors.
A higher coefficient score indicates a greater similarity between
the two functions. In the rest of this section, we detail the design
choices for each component.
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Figure 2: The structure of ReGraph.

3.1 Lifter
Decompilers such as IDA Pro [13] and Ghidra [1] are widely used
in reverse engineering. These decompilers maintain their own IR
systems as fundamental platforms supporting their decompilation
analysis frameworks, which lift all binary files to intermediate
levels where subsequent optimizations and analyses are performed.
The IR system decouples program logic analysis from specific CPU
architectures, eliminating the need to implement program analysis
and optimization methods for each architecture. However, the IR
generated by decompilers is primarily intended to produce more
readable pseudo-C code rather than implement the optimizations
typically found in compilers. Therefore, we choose to use another
lifter, RecDec [17], that lifts binary codes from diverse architectures
into standardized LLVM IR, thereby reducing differences caused by
varying architectures.

3.2 Re-optimization
Different software vendors employ different optimization options
to meet their specific requirements. According to the documenta-
tion of GCC [12] and Clang [6], the relationship between different
optimization levels is hierarchical. For instance, -O2 includes all
optimization options from -O1 and adds its own additional opti-
mizations. -O3 encompasses all optimization options from -O2 and
represents the highest optimization level. Applying -O3 to code
that has already been optimized at lower levels optimizes the code
to its maximum potential. Conversely, applying lower optimiza-
tion levels to code undergoing -O3 optimization does not yield
additional changes, as -O3 has already implemented all available
optimizations. Therefore, if we can re-optimize the program to the
highest optimization level, the difference arising from different op-
timization options would be mitigated [7]. We utilize the built-in
toolkit of LLVM [18] to re-optimize the LLVM IR obtained after
lifting the binary.

3.3 CPG
Compilers generate a code’s Abstract Syntax Tree (AST) by parsing
the programming language, followed by semantic validation. The
AST serves as the fundamental structure for representing code at a
low level and captures more semantic information than CFGs [34].
CPG is an enhanced version of the AST. It explicitly incorporates
information such as data dependencies and program dependencies,

providing a richer semantic representation than the AST alone.
With the CPG in hand, we can infer the corresponding code’s syntax
and semantic information in a uniform graph representation. After
decompiling the re-optimized LLVM IR into pseudo-C code, we use
Joern [33] to transform C code into CPG [2].

3.4 Graph Neural Network
The process of lifting, code re-optimization, and CPG reconstruc-
tion does not always produce identical graphs for similar functions.
Some structural differences can still exist, and some information
remains unrecoverable, leading to variations in the control flow of
the codes. These differences are reflected in the graphs as structural
discrepancies. Hence, we need a graph-matching algorithm that tol-
erates partial structural differences based on semantic relationships,
enabling the determination of graph similarity between two seman-
tically similar functions even when there are differences in their
graph structures. As GNNs comprehensively consider not only the
graph topology but also global information based on the features
of nodes and edges [19, 28], we incorporate semantic information
into the node features of CPGs and train a GNN based framework
capable of evaluating the similarity between two CPGs.

4 Evaluation
In this section, we evalute ReGraph on open-source software [3]
and public datasets [22], we aim to answer the following evaluation
questions (EQs):

(1) EQ 1: Can lifters and optimizers reduce differences between
binary code functions from different compilation environ-
ments?

(2) EQ 2: Compared with state-of-the-art methods, how much
speedup can ReGraph achieve while keeping similar perfor-
mance?

4.1 BinDiff Enhancement
To answer EQ 1, we choose to apply lifting and re-optimization on
binary files to be compared among each other with the BinDiff [10]
tool, a widely used open-source framework that computes structural
similarity scores between functions in binary executables. This
enables us to show substantial improvement in the results. To do
this, we carry out the following experiment using the OpenPLC
dataset [3]. We take the default example ladder logic file from
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Table 2: The similarity score reported by BinDiff [10] before and after applying lifting, re-optimization and re-compilation

O3
ARM PowerPC MIPS X86 AVG

Before After Inc Before After Inc Before After Inc Before After Inc Before After Inc

O0

ARM 0.239 0.676 183% 0.415 0.657 58% 0.346 0.672 94% 0.386 0.628 63% 0.347 0.658 90%
PowerPC 0.233 0.573 146% 0.373 0.622 67% 0.348 0.578 66% 0.376 0.555 48% 0.333 0.582 75%
MIPS 0.258 0.591 129% 0.435 0.601 38% 0.532 0.672 26% 0.462 0.596 29% 0.422 0.615 46%
X86 0.233 0.626 169% 0.415 0.641 54% 0.347 0.697 101% 0.400 0.632 58% 0.349 0.649 86%

AVG 0.241 0.617 157% 0.410 0.630 54% 0.393 0.655 72% 0.406 0.603 49% 0.362 0.626 74%

OpenPLC Editor [16] as the input and compile it into binary files
for four different architectures: MIPS, X86, PowerPC, and ARM.
We use two extreme optimization levels: -O0 for no optimization
and -O3 for the highest optimization. We then use the BinDiff [10]
and IDA Pro [13] to have the similarity score for the same function
but from binaries with different compilation environments. In the
BinDiff, the similarity score ranges from 0 to 1.

To simulate conditions involving cross-architecture and cross-
optimization option scenarios, a function that originates from -O0
of a certain architecture is compared with the same name functions
from all architectures using the -O3. Then, we extract the corre-
sponding similarity scores from Bindiff, and calculate the average
similarity score from all the functions from that binary as the total
result for one compilation environment versus another compilation
environment. Next, we lift, re-optimize, and recompile the binary
files using the x86-O3 setup. Subsequently, we repeat the same
process to observe changes in the similarity scores.

The results are displayed in Table 2 to provide a clear visual
representation. The percentage increase in the similarity score for
each comparison is presented in the increase (Inc.) column. Further-
more, the average similarity scores for each column and row are
calculated and presented in the last row and column, respectively.
From the results, we conclude our answer to the EQ 1.

Answer to EQ 1: The similarity scores reported by BinDiff
show a significant increase across all comparisons by 74%
on average, highlighting the effectiveness of our method in
mitigating differences between optimization levels and distinct
architectures.

Since BinDiff relies on graph matching and some functions can-
not be fully re-optimized, some differences remain between graphs.
Despite major improvement, those differences prevent the similar-
ity scores from reaching 1 with BinDiff. Moreover, we noticed that
BinDiff performs very poorly when comparing stripped binaries
with non-stripped ones.

4.2 Public Dataset Evaluation
We evaluate ReGraph with the state-of-the-art models using the
identical dataset proposed by [22] to answerEQ2. Our experimental
platform is a general-purpose PC with an Intel i7-12700F CPU and
an RTX 2080 Ti GPU. We align the exact GPU specifications and
other experiment conditions as defined in [22]. We separately train
and evaluate our model on two distinct, non-overlapping datasets

Zeek
on GPU

Gemini
on GPU

Asm2Vec
on GPU

GMN
on GPU

ReGraph
on CPU

ReGraph
on GPU

Recall@1 0.21 0.33 0.18 0.54 0.65 0.65
Time

secs/100 functions 0.091 0.135 7.17 0.876 0.283 0.011

Table 3: Perf. comparison with SotA methods from [22].

from [22] to simulate scenarios where the model encounters unseen
binary files. From [22], Recall@1 is used to evaluate the accuracy
of a model’s first prediction, while secs/100 functionsmeasures
its inference speed. We run ReGraph on CPU and GPU separately.
Table 3 shows our result compared to other models in [22]. Given
that preprocessing, lifting, and re-optimization utilize external tools
outside the scope of our control, we restrict our evaluation to model
inference time, which is consistent with that used in [22]. From the
results, we conclude our answer to the EQ 2.

Answer to EQ 2:While maintaining high accuracy as mea-
sured by the Recall@1 metric, ReGraph achieves a speedup of
over 700× compared to the NLP-based model Asm2Vec [9] and
9× compared to Zeek [26]. Moreover, it performs efficiently
even when running solely on a CPU.

5 Conclusion and Future Work
In this paper, we propose ReGraph, a BCSD framework that ef-
fectively handles variations introduced by different compilation
environments. ReGraph mitigates discrepancies caused by different
compilation options by leveraging lifters and re-optimizers. With a
lightweight GNN model, our experiments empirically demonstrate
that ReGraph can yield promising results compared with those
state-of-the-art solutions but with considerably less resource con-
sumption. Furthermore, our experiment demonstrates that lifting
and re-optimization can serve as a meta-method to enhance the per-
formance of existing BCSD tools. We hope that our tool will inspire
new perspectives in binary code analysis. In the future, we plan to
extend our framework to the snippet level to enhance robustness.

Tool Availability
We open-source ReGraph and pre-trained models on GitHub: https:
//github.com/damaoooo/ReGraph. Additionally, our demo video
can be seen on YouTube: https://youtu.be/5CSJkZh89hs.
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