
Paths Not Taken: a Secure Computing Tutorial

William Earl Boebert
Retired1

Abstract

This paper is a tutorial on the proven but cur-
rently under-appreciated security mechanisms asso-
ciated with ”tagged” or ”descriptor” architectures.
The tutorial shows how the principles behind such
architectures can be applied to mitigate or eliminate
vulnerabilities.

The tutorial incorporates systems engineering
practices by presenting the mechanisms in an infor-
mal model of an integrated artifact in its operational
environment. The artifact is a special-purpose hard-
ware/software system called a Guard which robustly
hosts defensive software.

It is hoped that this tutorial may encourage teach-
ers to include significant past work in their curricula
and students who are self-teaching to add that work
to their exploration of secure computing.

Organization of the Tutorial

This tutorial is divided by topic area to facilitate in-
corporation in curricula and to assist those who are
using it to self-teach. The topic areas are arranged in
order of detail, from the most general to the most spe-
cific. The first area, Concept of Operations, discusses
the issues of systems engineering and the importance
of understanding and exploiting the environment in
which systems operate. The second section, Models,
discusses mental models and the use of abstraction in
understanding computer systems. An overview of the
Guard model is then given. The Mechanisms topic
area is the most specific, where the known technol-
ogy is described both in detail and in the context of

the systems design given in the earlier sections. The
final section offers suggestionss to those who may be
interested in carrying this work further into an oper-
ational system.

Concept of Operations

No system can solve every aspect of a given problem,
and experience has shown that explicit prior consid-
eration of focus, limits, and approaches will often save
time, money, and blood. A major goal of the tuto-
rial is to show how an understanding of the context
in which a system operates influences the design of
mechanisms. To do so requires presenting a hypo-
thetical operating environment for the hypothetical
Guards.

A proven systems engineering [1] technique is to de-
fine an operating environment and a system’s place
in it by producing a Concept of Operations, or
Conops [2]. Three Conops-level topics are included
to help the student understand the rationale behind
the mechanisms: a statement of problem the Guard
is intended to solve, the general approach taken for
the solution, and the goals of the assurance process.

Statement of the Problem

A generic network of interest to attackers is one whose
purpose is to provide economic or social value. It
does this by running applications on general-purpose
platforms which directly or indirectly access the inter-
net. The platforms are typically feature-rich operat-
ing systems such as Windows, Linux, or Mac OS. The
applications may be a mix of locally developed, pur-

1

ar
X

iv
:2

50
4.

16
08

8v
1 

 [
cs

.C
R

] 
 1

2 
M

ar
 2

02
5



chased, and open source software. Some networks,
such as those which control processes such as water
supplies and electrical distribution, will be comprised
of specialized platforms and applications.

With rare exception, such networks are designed
and administered with the applications as a primary
concern and defense against attack as secondary.
This setting of priorities encourages attackers who
already enjoy inherent advantages: attackers can
choose the time, place, and nature of an attack and
they only need to find one exploitable fault, while de-
fenders must cope with all known and lurking ones,
and attacker’s motivation is enhanced by the often
overlooked fact that for many individuals attack is
an adventure while defense is just a job.

In today’s world attackers may also be directly
or indirectly protected from retaliation by sovereign
states. They will, in general, be adequately funded ei-
ther by sponsors or by the unregulated transnational
money flows made possible by cryptocurrency [3].
Being funded enables them to be persistent, to per-
form repetitive attacks and learn from each one. And
attackers can exploit features of the internet which
permit anonymous action at a distance.[4].

General Approach

The sole purpose of a Guard is to host Security Ser-
vices code. Development of that code is hosted else-
where. There is also no requirement to support a
browser, or data bases, or any other form of produc-
tive application.

The isolation and concentration of Security Ser-
vices in the Guard nodes means that Guards will be
the primary targets of competent attacks, for their
defeat would leave the network largely undefended.
The design, implementation, and administration of
Guard nodes recognizes this fact. Design and imple-
mentation places resistance to attack as a require-
ment above all others, and administration recognizes
that social engineering and supply chain attacks will
accompany direct attacks on the network.

Separation of Security Services from applications is

motivated by the radically different characteristics of
the two classes when viewed from a life-cycle perspec-
tive. Application platforms are large, complex bodies
of software which are subject to structural decay [5]
unless updated carefully, which means at wide inter-
vals. When new attacks appear, however, Services
code must be updated with all deliberate speed so
that attackers have the smallest practical window of
exploitation. Putting Services code on the same plat-
form leads to one of two undesirable options: if the
Services+applications platform is updated at the rate
required by Services, the application is at significant
risk of decay. If the Services+application platform
is updated at the careful pace necessary to prevent
decay, updated Services code will be delayed and its
effectiveness diluted.

Figure 1 depicts potential applications of Guard
instances to network defense.

Figure 1: A Network With Guards

The most basic application is a traditional firewall
that filters packets and raises alarms at the junc-
ture with the internet. Similar tasks could be carried
out within the application network to detect or pre-
vent adverse interactions between application nodes.
Guards could interact with each other by using out-
of-band communication or virtual private network

2



(VPN) technology. A Guard could protect a crit-
ical but vulnerable internal node such as a machine
learning system for intrusion detection, a network at-
tached storage for backups, or a “honeypot” to trap
attackers. In all cases the relevant Security Services
are determined by the combination of applications
and known attacks and therefore system-specific.

The isolation of the Guards from vulnerable net-
work elements is an adaptation of a design principle
called Zero Trust :

The Zero Trust Model is simple: cybersecurity
professionals must stop trusting packets as if they

were people. Instead, they must eliminate the idea of
a trusted network (usually the internal network) and
an untrusted network (external networks). In Zero

Trust, all network traffic is untrusted. [7]

Assurance

Assurance determines how human administrators
view the cyber systems they administer. Assurance
is essential to effective response. Administrators who
are assured of known system behavior are more likely
to respond decisively and correctly to alarms and
other indicators of potential attacks.

There are two assurance goals associated with a
Guard. The first is that the internal mechanisms of
the Guard operate as advertised even when attacked.
The second goal is to export assurance to the Services
code it hosts and from that to the administrators.
The second, external assurance goal can be some-
what flippantly expressed as “WYSIWYG2.” In more
dignified terms, it is the assurance that the seman-
tics of the source code for Services will be enforced
by every single instruction executed by the Guard.
That assurance enables individuals who are reading
the source code for the Services to do so with confi-
dence.

These assurance goals determine the nature of the
mechanisms in the model and its structuring. More
primitive elements are subject to the greatest amount
of testing and analysis. These results then form a ba-
sis for arguing that the higher level elements are cor-

rect, in the way that lemmas contribute to theorems
in mathematical reasoning.

It should be noted that the assurance exported by
the Guard to the Services does not guarantee or even
imply that a particular Service is effective. That final,
third form of assurance must be provided by those
who write and administer the Service.

It should also be noted that the Guard itself is
security policy agnostic. Any rules or restrictions to
be enforced on application data are the responsibility
of the application-specific security services hosted on
the Guard.

Models

Models of Nature

The role of modeling in science was described by Ar-
turo Rosenblueth and Norbert Wiener in the 1940s:

No substantial part of the universe is so simple that
it can be grasped and controlled without abstraction.
Abstraction consists in replacing the part of the

universe under consideration by a model of similar
but simpler structure.[8]

Similar observations about models were made and
expanded by Alan Turing in the preface to his last
scholarly paper :

This model will be a simplification and an
idealization, and consequently a falsification. It is to
be hoped that the features retained for discussion are
those of greatest importance in the present state of

knowledge.[9]

Note the depth of insight revealed by Turing’s
phrase “it is to be hoped.” All models are incom-
plete, and the nature and degree of what is left out
is arbitrary.

3



Models of Computer Systems

Turing, Wiener, and Rosenblueth wrote these words
before the advent of programmable computers, pro-
grammers, and software. That technology requires
its practitioners to operate in an arena largely free
from physical constraints, as described in a classic
passage by Fredrick Brooks:

The programmer, like the poet, works only slightly
removed from pure thought-stuff. [...] Few media of
creation are so flexible, so easy to polish and rework,

so readily capable of realizing grand conceptual
structures.[10]

Brooks goes on to discuss how these characteris-
tics of software make it so difficult to get right. Over
the years, practitioners coped with that difficulty by
adopting, mostly without explicit thought, an ap-
proach that reversed the sequence of scientific mod-
eling: instead of describing an existing tangible ob-
ject in intangible terms, they create abstract models
in advance as a way of discussing a largely intangi-
ble software/hardware artifact that does not yet ex-
ist, and reason about what they are doing in terms
of those models. A particular system may be mod-
eled at progressively greater degrees of detail until the
point at which a string of ones and zeros is loaded into
silicon and activity is generated. In informal terms it
is ”models all the way down,” and the choice given
to practitioners is not whether to use a model but
rather what kind of model to use.

The model presented in this paper is, as described
above, necessarily incomplete. The “features re-
tained for discussion” are those which give a Guard
the ability to resist attack. These are the mechanisms
of structured memory, demand linking, and layer en-
forcement, which will be described later. Any hy-
pothetical implementation of a Guard would involve
filling in the gaps and manifesting the result in soft-
ware and hardware. It is the intent of the model that
such an activity should require no more than under-
standing the above elements of known technology.

The Guard Model

The Guard has the general form of a resource-
management operating system, and is described in
terms of layers of functionality [11], as shown in Fig-
ure 2.

Figure 2: A Layered Structure

A “Layer” in the Guard model is a cluster of data
and code objects devoted to a common purpose, such
as a file system. When a program in execution (pro-
cess) has its execution point in procedure belonging
to a Layer it is said to be “in” the Layer. An object
“belongs” to a Layer if being there permits execute
access (for code objects) or read+write access (for
data objects.) These concepts will be discussed in
detail later.

Layers are used to apply structure to the complex
interactions that exist in resource-management op-
erating systems. The structure, which is motivated
by a principle called “separation of concerns,” [12] is
intended to improve understanding and support the
structured assurance goal described earlier.

The Guard model carries layering further and pro-
vides mechanisms to enforce the Layer structure.
These will also be described later.

There a variety of ways in which Layers could in-
teract, such as procedure calls, cooperating sequen-
tial processes, or shared data objects. All of these
forms of interaction between Layers can be assigned
the directional attribute of dependency.

4



Despite it being around for 50 years, there is no
industry standard terminology for this relationship.
Words like “depends upon,” and “uses” capture the
essence.[13] Analyses of dependency are employed in
Failure Mode and Effects Analysis (FMEA)[14] and
Fault Tree Analysis (FTA)[15]. In the latter cases
the emphasis is on the important question of what
happens if a failure occurs in a particular element.

The term “influences” turns the relation around:
B influences A if a difference in B causes a difference
in A. This paper will employ whichever term leads to
the simplest description.

Mechanisms by Layer

The platform software can then be separated out and
refined into three Layers∗ as shown in Figure 3.

Figure 3: Platform Hierarchy

The model assumes that in any hypothetical im-
plementation the amount of testing and analysis (and
the resulting assurance) would increase as one goes
down the Layers.

The general assignment of mechanism to Layers is
as follows:

Security Services: This is the software that pro-
vides the network defense. If one characterizes
a Guard as an operating system, this software
is the equivalent to the applications that run on
it. It is assumed that this is a highly dynamic
Layer, with modifications made in response to
the unannounced arrival of new attacks.

∗If a common term is capitalized in this paper (e.g. Layer)
it denotes the Guard definition; lower case denotes the generic
meaning.

Utilities: Mechanisms in this Layer are invoked
by procedure calls in the security service code.
This Layer includes a file system that associates
symbolic names with units of structured mem-
ory. It also includes the network interface and
things like event data recording or logging to
preserve and protect event sequences for forensic
use. These are well-known functions and accord-
ingly are not treated in detail in the model.

Kernel: This Layer manages the internal data
upon which the proper operation of the Instruc-
tion Layer depends. Functions in this Layer are
invoked by procedure calls in the Utilities Layer.

Instructions: The mechanism in this Layer are
invoked by instructions which mimic the inter-
face to conventional hardware with a command,
working, and addressing registers. One portion
of this Layer provides basic instructions such
as arithmetic, test and branch and so forth.
The other portion provides security instructions
which deal with memory safety and constraints
on instruction sequences.

Dependencies

The dependencies between Layers are shown in Fig-
ure 4.

Figure 4: Dependency Restrictions

This figure shows that the Security Services may
use the Utilities and the basic instructions provided
by the silicon. The Utilities may use the facilities

5



of the Kernel and the basic instructions. The Kernel,
and only the Kernel, is permitted to use the restricted
security instructions. These restrictions on depen-
dency are enforced by the mechanisms incorporated
in the model.

The dependency restrictions enforce a design prin-
ciple which states that no element of the Guard shall
depend upon an element of lower assurance. This
principle supports the structured assurance effort.

Operational Context

A basic tenet of systems engineering is that the con-
text in which a system operates must be a factor in
its design, and documented in the Conops. In the
case of the Guard, that context includes the person-
nel who build it and those who administer it. These
are shown in Figure 5.

Figure 5: Human and Technical Trust Boundaries

The code that provides the Security Services and
the personnel who develop and administer that code
form the outer enclave. The code that supports those
Services and provides the resistance to attack and the
personnel who develop and maintain that code form
the inner one. Each enclave grants limited trust to
the other.

Service code is reactive in nature and constantly
changing, with a premium placed on speed of imple-
mentation and updating. To be effective it must be
“quick and dirty” and therefore assumed to contain
errors and possibly subversions. Lower Layer code is
carefully planned and stable with a premium placed
on assurance, with secrecy of design as a secondary
protection. On the other hand, Service code may

contain information that the organization using the
Guard may wish to hold closely.

Outside the administrative enclave all network el-
ements are presumed compromised and hostile, so
there is assumed to be a communication channel be-
tween administrators and the Guard. Such a channel
would be out-of-band, secured by cryptography and
employ some convenient device physically controlled
by administrators. This channel is not included in the
model, but a general outline of functions and mech-
anisms may be found in [16].

Mechanisms

The primary mechanisms of the Guard model are
Structured Memory, Demand Linking, and Layer En-
forcement. These were chosen to show how mecha-
nisms can complement each other in a specific op-
erational environment to provide the emergent prop-
erty [17] that the ”WYSIWYG” assurance goal of the
system is met. Each mechanism is a variant of some-
thing that has appeared in one or more predecessor
system3, and has been modeled as simply as possible
to illustrate the mechanism’s principles.

The mechanisms are defined in terms of two system
primitives: Segments and Processes.

Segments

A Segment is an addressable sequence of bytes. All
addressing in a Guard is indirect. As shown in Figure
6, places an intermediary element between an instruc-
tion’s reference to a specific part of memory and the
value stored there.

There are several reasons for using indirect ad-
dressing, such as flexibility in managing memory, but
the one of greatest significance to resistance to attack
is the placing of metadata in the intermediary ele-
ment. ”Metadata,” in this context, means data about
data, security-relevant descriptions such as length or
whether the data can be interpreted as instructions.
Putting the metadata in the address path provides

6



Figure 6: Indirect Addressing

high assurance that it will uniformly be encountered
by the Instruction Layer.

The intermediary, metadata-holding element in the
Guard model are Segment Descriptors. Individual
bytes are addressed by Descriptor, Offset pairs.

Processes

A Process is modeled as an execution point mov-
ing through successive object code Segments. Move-
ment from code Segment to code Segment is achieved
through the traditional call/return mechanism and
pushdown stack.

Processes begin life in the Services Layer. As a
Process moves from code Segment to code Segment
it may move from Layer to Layer. A Layer Register is
used to track the current Layer the Process is in. The
Guard model describes a separate pushdown stack for
each Layer.

The Guard model explicitly and deliberately does
not include Process muliplexing.

Process multiplexing is the technique dividing mul-
tiple program sequences into fragments and interleav-
ing the fragments into a single sequence, as shown in
Figure 7.

Figure 7: Process Multiplexing

Simulated parallelism contradicts the “WYSI-
WYG” assurance goal. A programmer or analyst
reading a program text will naturally assume that
the sequence shown in the text is that which occurs
at the Instruction Layer of the Guard. Process mul-
tiplexing invalidates that assumption4.

If parallelism is needed then the design approach
is to add entire Guards with a shared memory and
synchronize them with messages[11]. This gives each
element in the parallel structure the full protection
benefit of Layers and “WYSIWYG” assurance.

Processes do not execute on behalf of human users
and there are no user-settable access rights in a
Guard. Guards are not intended to run productive
applications like browsers and data bases. As a con-
sequence Guard Processes would, in general, be sim-
ple polling loops or linear code sequences that would
sleep until woken by an external event. In traditional
operating system terms, all Processes are “daemons”
[25].

7



Individual instructions in a Process’s sequence
have the ability to invoke a special facility called
a Trap. The Trap mechanism5 is implemented at
the Instruction Layer. It enables a special class of
events to be handled at a lower Layer without ex-
plicit call/return sequences.

As shown in Figure 8, an Instruction initiating a
Trap causes a break in the code sequence, saving of
the Process state (register contents and stack) and
direct transfer of control to a code segment called
a Trap Handler. The illustration shows a Trap to
the Kernel Layer; Traps to the Utility Layer are also
possible.

Figure 8: The Trap Mechanism

The kind of Trap initiated determines which Trap
Handler is invoked. The Trap Handler performs
Trap-specific actions and then restores the Process
state and resumes execution at the instruction im-
mediately after the one that initiated the Trap.
Trap Handlers thereby become, in effect, software-
implemented extensions to instructions6.

Traps can be initiated explicitly by a ”Trap” in-

struction, as a response to an illegal or impossible
action such as divide by zero, or when the attempt
to fetch a byte encounters a special value.

Structured Memory

Structured memory is at the heart of the interaction
between processes and segments. It has two aspects:
the format and meaning of Descriptors, and the man-
ner in which a Descriptor address is mapped onto the
conventional primary and secondary memories at the
Instruction Layer7.

Descriptors

Figure 9: Descriptors

The generic form and an example of a Descriptor is
shown in Figure 9. Descriptors have two main fields,
a Segment UID or SUID which uniquely identifies
the Segment, and a set of metadata. The inclusion
of metadata makes the Guard model an example of
a “tagged architecture,” [26] where the tags apply to
segments rather than words or bytes.

The metadata consists of a length field, whose in-
clusion and checking by the mapping logic makes
memory safety [27] automatic, and a set of permis-
sions. There is one permissions field for each Layer.
The values shown (read, write execute) are exam-
ples and other values, such as “append” are possi-
ble. There is no manual setting of permissions in the
model; all permissions are determined at the time the
Guard software is initialized prior to installation.

When permission violations are detected by the

8



mapping logic, it generates a Trap to an error Trap
Handler which will perform appropriate actions like
sending an alarm to administrators and halting.

The example Descriptor in Figure 9 is for a data
Segment called “foo,” which will be used as an ex-
ample throughout the discussion of mechanisms. It
is assumed to be managed by a Utilities Layer routine
called “foo owner.”

The “SUID[foo]” value denotes its identity and
“Length[foo]” its size. It is a Utility Layer Segment,
and this is shown in its permissions. The first per-
mission field says that a Process executing in the Ser-
vices Layer has “read” only access to “foo,” one in
the Utilities Layer has “read” and “write,” and one
in the Kernel Layer is denied all access. This would
be a typical set of permissions for something like a
file system Segment.

Descriptor Addressing

Figure 10: Ideal Name Association

Figure 10 continues the example by showing the de-
sired relationship between the three levels of names
that connect source code to physical memory. The
source program for “foo owner” contains the decla-
ration of “foo” and a reference to a byte at the 8th
position in “foo” by means of an indexed instruction:

LDX #7: Load index register with constant “7”

LDA Des[foo],X: Load accumulator with byte at
physical address defined by the Descriptor for
foo offset by contents of index register.

The reference is then sent to an entity called the
Memory Management Unit which will perform a me-
diated mapping to physical memory in a manner de-
scribed later.

The addressing mechanism achieves the above ideal
association by adding a Process-specific Segment
called (again, for historical reasons) the Linkage Seg-
ment and having the compiler insert a local address
within the Linkage Segment in the LDA instruction.
(Figure 11) Local address 0 will, by convention, point
to a “scratch” Segment containing local variables.

Figure 11: Descriptor in Linkage Segment

The manner in which Linkage Segments are con-
structed will be described below. For now it is suffi-
cient to assume it happens correctly and consider the
logic that maps a descriptor to a physical memory
address.

Memory Management Unit

The Memory Management Unit, or MMU, is implic-
itly invoked whenever an address appears in one of
the Instruction Layer registers. The Memory Man-
agement Unit is assumed to move segments between

9



primary and secondary memory using any of a variety
of well-known techniques (paging, paged segments,
fixed segments) and is not further described here. It
likewise is assumed to use known caching strategies
to exploit locality of reference.

Placing the MMU between the Instruction Layer
and the physical memory means that it is uniformly
invoked at each memory access. That invocation pro-
vides the opportunity to check the attempted instruc-
tion against the metadata contained in the Descrip-
tor (Figure 12) before executing it. First, the bounds
check is made by comparing the indexing value (Off-
set) to the length of “foo.” Then the Layer Register
is used to retrieve the relevant permissions and those
are checked against the required permission of the
op code; in this case a “fetch” instruction so “read”
access is required. If either of those checks fail, a
Trap to an error Trap Handler occurs. Otherwise,
the SUID is used to index internal MMU caches of
SUID/physical address pairs to locate the segment
containing the byte. This physical address is then
combined with an Offset to send the byte to the des-
ignated working register.

Figure 12: MMU Checks Metadata

Observations

Inherent safety of memory makes the Guard resilient
against malfunctioning or malicious code at the Ser-
vices Layer. That resilience would permit service
code to be produced quickly by programmers or gen-
erative AI, which would then increase responsive-
ness to new or “zero day” attacks. Mistakes or ex-
ploits that would enable takeover of an entire plat-
form based on unstructured memory would simply
generate a Trap into an error Trap Handler.

Demand Linking

When originally formulated for the Multics [18] sys-
tem, this mechanism was called “dynamic linking.”
That term has been pre-empted over time by a dif-
ferent mechanism and so the more descriptive term
“demand linking” is used here.

Linking is the process of setting up the relations
shown in Figure 11. In the Guard model it is de-
ferred until the first time Process makes reference to
a Segment, hence it happens “on demand.”

The linking sequences begins with the translation
of source to object code, which as noted above, takes
place on a separate development platform. The com-
piler produces two segments for each unit of source
code: an object code segment, which contains local
addresses as described previously, and a Linkage Seg-
ment Template (Figure 13) which is initialized with
the symbolic names of external segments. The local
addresses incorporated in the object code are indexes
into the template.

When a Process is initialized a copy of the Linkage
Segment is made from the template and associated
with the (Process, object Segment) pair. This new
Linkage Segment will initially be filled with symbolic
names as shown in Figure 13.

When the LDA 3,X instruction is first encountered
by the Instruction Layer, that logic will fetch element
3 of the linkage segment and encounter the symbolic
name “foo” instead of a Descriptor. This will force
a Trap to a Utilities Layer Trap Handler which will

10



Figure 13: Linkage Segment Template.

start the sequence shown in Figure 14.

The Utilities Layer routine will use the file system
to extract the Segment UID associated with the sym-
bolic name “foo.” It will then call a Kernel Layer rou-
tine which will extract a partial Descriptor for “foo”
from a Global Segment Table or GST. The Segment
UID and Length fields of the GST will be used to
construct the first two fields of foo’s Descriptor. The
Type field of the GST will be used to extract the per-
Layer permissions from a Type Table and they will
complete the Descriptor, which will replace the sym-
bolic name “foo” in the Linkage Segment and leave
it as shown in Figure 11. The routines will then “un-
wind” back to the Services Layer, where the LDA 3,X
instruction will be repeated and this time trigger an
access through the MMU.

The full linkage association from symbolic name to
the storage subsystem is shown in Figure 15.

Observations

The linking mechanism makes use of indirection and
Traps instead of explicit procedure calls8. This fea-
ture, along with separate Linkage Segments for each
Process, enables a Guard to update security services
without interruption. Assume that a service, say
“firewall” has been running for some time.If it is nec-
essary to replace it, administrators can change its
name to “oldfirewall” without affecting its operation:

Figure 14: The Linking Process.

all linkage tests and actions have been performed.
The new version then can be installed with the name
“firewall” and as it executes its links will be resolved
on demand. Eventually the “oldfirewall” service code
will fall into disuse and it can be deleted. Such a
facility will enable new and updated Services to be
installed as soon as they are ready.

Demand linking also minimizes the number of com-
pleted links that are available to malicious or mal-
functioning code, a common vulnerability in other
linking approaches. Programmers can have a ten-
dency to include whole libraries on a “just in case”
basis. If these libraries are linked together as a large
“furball” of code, vulnerability exploits can theoreti-
cally go anywhere inside that code set. Demand Link-

11



Figure 15: From Source Code to Physical Storage

12



ing only links Segments that are actually referenced,
and has the ability to produce event data records that
can record malicious or malfunctioning code attempts
to improperly access Segments.

Layer Enforcement

The Layer Enforcement mechanism supports the as-
surance of the Guard itself by enforcing the separa-
tion of concerns and dependency restrictions upon
which that assurance is based. It is a run-time con-
trol mechanism which alters the permissions available
to a Process as it moves from Layer to Layer in the
course of execution.

Each of the three upper Layers has a dedicated
stack. Stacks contain only Descriptor,Offset pairs;
no data is pushed onto the stacks. Only Instruction
Layer code is permitted to operate on stacks. This
restriction insures that all memory references are me-
diated by the MMU, and eliminates the classic “stack
overflow” vulnerability.

The distinguishing characteristic of Layer Enforce-
ment is that permissions are both gained and relin-
quished as a Process moves between Layers. Properly
configured, this enforces unidirectional dependency
relationships which support structured assurance.

Figure 16 shows a characteristic arrangement of
object code Segments surrounding the data Seg-
ment “foo” used in the earlier examples. Segment
“foo” is managed by a Utilities Layer routine called
“foo owner,” whose responsibility it is to validate and
implement requests for changes to “foo.” Segment
“foo” is used by a Services Layer routine “foo user,”
which can access but not modify its contents. Lay-
ers are accessible through distinguished object seg-
ments called Gates which have the restricted ability
to change the value of the Layer Register and the
stack, as well as insuring proper sequence of transi-
tion during execution of call and return instructions.

There are two Gates, one which forms the entry to
the Utilities Layer from the Services Layer and a sec-
ond for entering the Kernel Layer from the Utilities
Layer. No Kernel Layer function is involved in the

Figure 16: Layers and Gates

example and its Gate and the associated link is in-
cluded only for completeness. The Instruction Layer,
as noted above, is invoked implicitly by changing val-
ues of the Instruction Register.

The execution sequence of a Process request-
ing manipulation of “foo” begins with a call from
“foo user” to the Utilities Gate. That Gate in turn
changes the value of the Layer Register and calls
“foo owner,” which performs the requested operation
and then returns back through the Gate to the Ser-
vices Layer.

Figure 16 shows the segments and links as if all
were visible to all, a circumstance that would never
occur in actual operation.

The permissions when the execution point of the
Process is in the Services Layer object code segment
“foo user” (shown in yellow) provide the visibility
shown in Figure 17. The Segment “foo user” is ex-
ercising its link to the Utilities Gate while the Layer
Register is set to “S” for Services.

When the execution point of the Process is in the
Gate shown in Figure 18, that Gate code will change

13



Figure 17: Process in Services Layer

the value of the Layer Register to “U” for Utilities
and execute a call to “foo owner.” At this point the
Gate code is prevented from depending upon (e.g.,
by calling) “foo user” or any other Services routine
by the configuration of permissions, thereby prevent-
ing attacks based on maliciously or erroneously mal-
formed parameter sets from “foo user.”

Finally, the Process executes the object code
Segment “foo owner” in the Utilities Layer, giving
the accesses shown in Figure 19. At this point
“foo owner” has the option of returning back through
the Utilities Gate to the Services Layer or initiating
a crossing into the Kernel Layer for some restricted
function, such as changing the size of “foo.”

Observations

The repetitive pattern of permissions shown in the ex-
ample explains why the permission fields are kept in
a separate Type Table rather than entered on a per-
descriptor basis in the Global Segment Table. Types
are essentially equivalence class of permission, and
grouping them as such in the Type Table simplifies

Figure 18: Process Executing Gate

Figure 19: Process in Utilities Layer

14



an inherently error-prone configuration process and
enables modifications to be made by changing a sin-
gle entry rather than having to examine every de-
scriptor in the Global Segment table to determine if
the change was relevant to it.

There is an alternate mechanism in which Gates
are initiated by a Trap when a link with execute
permissions crosses to a new Layer, as would oc-
cur if the Segment ”foo user” were directly linked
to “foo owner.” The mechanism involving explicit
calling of the Gate Segment by “foo user” was cho-
sen in the interests of the simplest explanation of the
principle that permissions are both gained and relin-
quished.

Notes on Further Work

It is clearly feasible for students who wish to pur-
sue this alternative approach to do so, even to the
point of attaching a running system to the internet
and watching it being attacked. Inexpensive x86 ma-
chines of sufficient power are available within a stu-
dent budget. Two such machines, one as a develop-
ment platform and the other as a target would be
enough to support even a team of students. Filling
in the omissions in the model presented here with ex-
ecutable code would provide experience in machine-
level programming, integration, and assurance in a
structured program with defined goals.

A logical plan would be to first construct a vir-
tual machine [28] beginning with a Memory Manage-
ment Unit and then an Instruction Layer to provide
a suitable register and command set9. The next step
would be to adapt a suitable compiler to generate
Linkage Segments as well as code for the virtual ma-
chine. This could be tested with hand-generated De-
scriptors until Demand Linking was built. The last
step in producing a basic platform would be Layer
Enforcement.

Once a platform had been built the students could
gain experience in vulnerability assessment by sub-
jecting it to penetration tests and eventually connect-
ing it to the internet to observe real-world attacks.

Acknowledgements

The author would like to thank Tom Berson and Se-
bastian Frazier for their comments on an earlier draft
of this paper.

15



References

[1] A. Zonnenshain and S. Stauber, “The Many
Faces of Systems Engineering,” In Proc. 14th
International Council on Systems Engineering
(INCOSE) Symposium 2104, pp 923-937.

[2] “Concepts of Operations (CONOPS) for
Systems Engineers,” Accessed December 3,
2024. https://reqi.io/articles/concept-

of-operations-conops

[3] J. M. Griffin and K. Mei, “How Do Crypto
Flows Finance Slavery? The Economics of
Pig Butchering” Accessed December 10, 2024.
http://dx.doi.org/10.2139/ssrn.4742235

[4] Boebert, W. E., “A Survey of Challenges in
Attribution.” In Proceedings of a Workshop on
Deterring Cyberattacks pp. 41-52. Washington,
DC: National Academies Press, 2011.

[5] L.A. Belady and M.M. Lehman, “A model of
large program development” In IBM Systems
Journal No. 3, July 1976, pp 225-252.

[6] F. McKee and D. Noever, (2023) “Chat-
bots in a Honeypot World” arXiv preprint
arXiv:2301.03771

[7] Forrester Research Inc. “Developing a Frame-
work to Improve Critical Infrastructure Cyber-
security” National Institute of Standards and
Technology, April 8, 2013.

[8] A. Rosenblueth and N. Wiener, “The Role of
Models in Science”, Philosophy of Science, Vol.
12, No. 4 (Oct., 1945), pp. 316-321

[9] A.M. Turing, “The Chemical Basis of Mor-
phogenesis”,Philosophical Transactions of the
Royal Society of London. Series B, Biological
Sciences, Vol. 237, No. 641. (Aug. 14, 1952),
pp. 37-72.

[10] F.M.Brooks, “The Tar Pit,” In: The Mythical
Man-Month, Addison-Wesley, 1975.

[11] E.W. Dijkstra, “Structure of the ‘THE’ -
Multiprogramming System” In Communica-
tions of the ACM V II, No. 5, May 1968 pp
34-346

[12] B. De Win, F. Piessens , W. Joosen, T. Verhan-
neman. “On the importance of the separation-
of-concerns principle in secure software engi-
neering.” In Workshop on the Application of
Engineering Principles to System Security De-
sign ACSA November 2002 (pp. 1-10).

[13] D.L. Parnas, “On a ‘Buzzword’: Hierarchical
Structure.” In: Gries, D. (eds) Programming
Methodology. Texts and Monographs in Com-
puter Science. Springer, New York, NY. 1978

[14] “Failure Mode and Effects Analysis.” Ac-
cessed December 3, 2024. https://asq.org/
quality-resources/fmea

[15] “Fault Tree Analysis (FTA): definition, ap-
plications and benefits.” Accessed Decem-
ber 3, 2024. https://blog.infraspeak.com/
fault-tree-analysis-fta/

[16] W.E. Boebert, T.R. Markham, R.A. Olmstead,
“Data Enclave and Trusted Path System,” U.S.
Patent US-5276735-A

[17] C.W. Johnson, “What are Emergent Prop-
erties and How Do They Affect the En-
gineering of Complex Systems?” (2005)
Accessed 17 December 2024. https:

//www.dcs.gla.ac.uk/~johnson/papers/

RESS/Complexity Emergence Editorial.pdf

[18] “Multics.” Accessed December 3, 2024. https:
//multicians.org/index.html

[19] L.J. Fraim,“Scomp: A Solution to the Multi-
level Security Problem,”IEEE Computer Mag-
azine, July 1983, pp. 26-34

[20] P.G. Neumann and R.J. Feiertag, “PSOS Re-
visited”, In Proc. of the 19th Annual Computer
Security Applications Conference, 2003

16



[21] W.E. Boebert, R.Y. Kaln, W.D. Young, S.A.
Hansohn, ”Secure Ada Target: Issues, Systems
Design, and Verification” In Proc. 1985 IEEE
Symposium on Security and Privacy, pp 176-
183

[22] R.E. Smith, “Cost Profile of a Highly Assured,
Secure Operating System” In ACM Transac-
tions on Systems and Information Security V
4, No. 1, Feb. 2001 pp 72-101.

[23] “The Origin of Sidewinder.” Accessed Jan-
uary 11, 2025. https://web.archive.

org/web/20020627134527/http://www.

securecomputing.com/index.cfm?sKey=

1024

[24] “Heisenbug” Accessed January 10, 2025.
https://wordspy.com/words/heisenbug/

[25] R. Niba. “Understanding Daemons:
Their Role and Function in Comput-
ing” Accessed December 30, 2024.
urlhttps://www.bioscentral.com/understanding-
daemons-their-role-and-function-in-
computing/

[26] E. A. Feustel, “On The Advantages Of Tagged
Architecture” In IEEE Transactions on Com-
puters, Vol. C-22, No. 7, July 1973, pp 644-656

[27] “What is memory safety and why does
it matter?” Accessed December 3, 2024.
https://www.memorysafety.org/docs/

memory-safety/

[28] I. Ali and N. Meghanathan, “Virtual Machines
and Networks – Installation, Performance,
Study, Advantages AND Virtualization Op-
tions” In International Journal of Network Se-
curity & Its Applications, Vol.3, No.1, January
2011, pp 1-15. DOI : 10.5121/ijnsa.2011.3101

[29] A. Badhoutiya, Z. Jaffer, H. M. Hussein, A.
Juyal, M. Mittal and R. Anand, “Field Pro-
grammable Gate Array: An Extensive Review,
Recent Trends, Challenges and Applications,”
In Proc. 2024 11th International Conference

on CoBmputing for Sustainable Global Devel-
opment (INDIACom) February 2024.

17



Notes

1Previously: Honeywell, Secure Computing Corporation,
Sandia National Laboratories. Author contact:
boebert@swcp.com

2“What You See Is What You Get,” originally a light-
hearted way to describe word processors that displayed for-
matted instead of raw text as you typed.

3Sources include Multics [18], Scomp [19], PSOS [20], SAT
[21], LOCK [22], and Sidewinder [23] The contributions of too
many individuals to list are hereby acknowledged; this model
is a synthesis and no claim of invention is made or should be
implied.

4The situation is worse if the interleaving is determined by
indeterminate external events. Such mechanisms can exhibit
the phenomenon called “Heisenbugs,” [24] where errors mani-
fest themselves in operational use but vanish when instrumen-
tation code is inserted to look for them.

5Also known as ”unprogrammed transfers” or ”internal in-
terrupts.”

6Because their operation is hidden from programmers or
analysts reading code, Traps and Trap Handlers should be used
sparingly and with care.

7The assumption here is that the Instruction Layer is even-
tually embodied in hardware

8Indirection and Traps carry a performance penalty, which
historically has inhibited their acceptance in application sys-
tem. This inhibition does not apply to a dedicated security
system.

9If the results of the effort looked promising, elements such
as a MMU coprocessor could be made with a a field pro-
grammable gate array [29].

18


