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Abstract

Static vulnerability detection is still a challenging problem and
demands excessive human efforts, e.g., manual curation of good vul-
nerability patterns. None of prior works, including classic program
analysis or Large Language Model (LLM)-based approaches, have
fully automated such vulnerability pattern generations with rea-
sonable detection accuracy. In this paper, we design and implement,
MoCQ, a novel holistic neuro-symbolic framework that combines
the complementary strengths of LLMs and classical static analysis
to enable scalable vulnerability detection. The key insight is that
MoCQ leverages an LLM to automatically extract vulnerability pat-
terns and translate them into detection queries, and then on static
analysis to refine such queries in a feedback loop and eventually
execute them for analyzing large codebases and mining vulnerabili-
ties. We evaluate MoCQ on seven types of vulnerabilities spanning
two programming languages. We found MoCQ-generated queries
uncovered at least 12 patterns that were missed by experts. On a
ground truth dataset, MoCQ achieved comparable precision and
recall compared to expert-crafted queries. Moreover, MoCQ has
identified seven previously unknown vulnerabilities in real-world
applications, demonstrating its practical effectiveness. We have
responsibly disclosed them to the corresponding developers.
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1 Introduction

Static vulnerability detection examines source code without execu-
tion and thus is scalable and efficient for analyzing large codebases.
It has been widely adopted in both industry and open-source secu-
rity research. Classic static approaches conduct rigorous program
analysis involving control- and data-flows on program representa-
tions (e.g., code property graph) generated from large codebases.
One popular technique is to query the representations to search for
given vulnerability patterns. This has been adopted by prominent
tools like CodeQL [8], Semgrep [55], and Joern [6, 70], and has
detected many zero-day vulnerabilities in the past [6, 57, 58, 70].

Despite the success, one remaining barrier is that static vulner-
ability detection still requires excessive human efforts, especially
manual curation of vulnerability patterns. Such manual efforts are
not only time-consuming (e.g., spanning seven weeks [15]) but also
introduce inaccuracies due to limited human knowledge, reducing
the overall effectiveness of static detection [3, 41]. As codebases
evolve and new threats emerge, maintaining accurate detection
patterns further requires continuous updates and efforts.

A natural solution to reduce the human efforts and inaccura-
cies is to introduce Large Language Models (LLMs). For example,
researchers [13, 34, 72] recently have explored using LLMs for
static vulnerability detection without classic program analysis. The
intuition is that LLMs excel at pattern recognition—they can iden-
tify recurring syntactic and semantic structures, and typical usage
patterns, and understand semantics across diverse codebases and
programming languages. For example, LLMs can understand pro-
grams based on natural language cues such as identifier names
and comments. However, LLMs lack rigorous reasoning and often
produce inconsistent or incomplete results due to their probabilistic
nature and hallucinations. Additionally, token constraints limit their
applicability to real-world complex software. Existing evaluation
indicates that even state-of-the-art LLMs performed poorly with
high false positive rates and often non-deterministic outputs [61].

Since neither the classic nor LLM-based static approach is suffi-
cient for effective vulnerability detection, a promising direction is
to integrate them into a neuro-symbolic framework

1 that combines
their complementary strengths. Some recent works have already
taken a step forward in such an integration. For example, IRIS [29]
and Artemis [18] use LLMs to extract taint specifications such as
sources and sinks and integrate them into existing detection pat-
terns. However, human efforts are still needed, indicating significant
engineering efforts and inaccuracies due to human errors also exist
because they rely on existing expert-crafted detection patterns.

In this paper, we design a novel, static, fully automated, neuro-
symbolic vulnerability detection framework, called MoCQ (Model-
Generated Code Queries), which splits the tasks for LLMs and
static program analysis based on their respective strengths. The
core idea is to leverage LLMs to automatically extract vulnerability

1Neuro refers to LLM-based analysis, which leverages neural models for semantic
reasoning; and symbolic refers to classic static analysis with symbolic representations
and formal logic systems.
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patterns and incorporate the patterns into static program analy-
sis. This achieves the best of both worlds: the pattern recognition
capability of LLMs, and the scalability and rigorousness of classic
static analysis. More specifically, MoCQ uses LLMs to generate
vulnerability patterns and express them as queries to the program
representations generated via classic program analysis.

While the idea is intuitively simple, the LLM-driven generation of
vulnerability patterns faces multiple challenges. LLMs often do not
have enough knowledge of domain-specific languages (DSLs) used
by static vulnerability detection tools (e.g., Scala-like DSL for Jo-
ern [70] and SQL-like DSL for CodeQL), resulting in unparseable or

uncompilable queries. Specifically, our study shows that pretrained,
commercial LLMs, e.g., ChatGPT [51], often fail to generate valid
queries, frequently producing syntax errors or triggering execution-

time exceptions. To deal with this challenge, MoCQ adopts a tech-
nique, specifically DSL subsetting, to refine DSL by selecting a core
set of features to guide the automated query generation, without
sacrificing expressiveness. The intuition is that such a refined subset
can be better understood by pretrained LLMs while still preserving
the core semantics due to the redundant nature of the DSL.

Besides, even when the LLM-generated queries are syntactically
correct and executable, they may fail to capture vulnerabilities ef-
fectively. Specifically, they may trigger semantic errors (i.e., fail to
report vulnerabilities), be overly specific (i.e., overfitting to known
instances via matching exact variable names or fixed control flow
paths), or be overly general (i.e., underfitting by matching many
irrelevant code cases). To deal with these, MoCQ adopts a feedback-
driven approach, which incorporates fine-grained feedback from a
symbolic query validator for iterative query refinement. The query
validator executes the LLM-generated queries and monitors the
exhibited behaviors, including syntax errors, execution exceptions,
and semantic errors. Specifically, we instrument the query execu-
tion runtime to obtain a block-level program state of the query
execution to precisely locate the errors and inconsistencies. These
are then used for the LLM to refine the incorrect query. The val-
idator further uses heuristics to detect if a query is too specific
and instructs the LLM to generalize it; it also instructs LLMs to
eliminate false positives (if any) to improve the precision.

We implemented MoCQ for two state-of-the-art static vulner-
ability detection tools (Joern [70] and CodeQL [8]). We then ex-
tensively evaluated MoCQ on seven types of vulnerabilities from
the OWASP Top Ten [52], covering two popular programming lan-
guages PHP and JavaScript. Our results show that, given only a
few (e.g., 5-18) vulnerability examples, MoCQ can efficiently gen-
erate detection queries within hours. These queries demonstrate
strong detection capability, comparable to those crafted by security
experts. Notably, MoCQ uncovered at least 12 vulnerability pat-
terns that were missed in expert-crafted queries, highlighting the
strength of our LLM-based approach. A comprehensive ablation
study further confirms the importance of DSL subsetting and the
symbolic validator, which significantly contribute to the validity
of the generated queries. MoCQ-generated queries successfully de-
tected seven new vulnerabilities in real-world applications and four
could not be identified by expert-crafted patterns.

This paper makes the following contributions.
• We proposed a novel way to split the tasks for neural and sym-
bolic components to achieve their complementary benefits.

• We developed a DSL subsetting technique and a feedback-driven
approach to automatically generating vulnerability patterns.
• We implemented a holistic, fully-automated, neuro-symbolic
vulnerability detection framework MoCQ.
• We demonstrated that MoCQ could automatically generate vul-
nerability patterns for real-world vulnerabilities and achieve
comparable results with patterns from security experts. MoCQ
uncovered at least 12 new patterns and seven new vulnerabilities.

2 Background

2.1 Large Language Models

Recent advancements in LLMs such as ChatGPT [51], Claude [5],
and Gemini [11] have demonstrated their capability in various
tasks including code generation, unit testing, and reasoning over
structured data [14, 60]. Trained onmassive codebases, thesemodels
can understand complex programming structures by learning the
cues from natural language semantics such as identifier names and
human-written comments. For example, Artemis [18] uses an LLM
to analyze the function name to decide if a function accepts user
inputs in web applications. LLMs can also generate syntactically
and semantically correct code snippets to solve code challenges like
LeetCode. Some attempts leverage LLMs for security-relevant tasks.
For example, Fuzz4All [69] uses LLMs to generate fuzzing inputs;
ChatAFL [39] employs LLMs to extract input format (grammar)
from network protocol specifications for protocol fuzzing. These
efforts showcase the effectiveness of LLMs in extracting information
from natural language descriptions and code.
In-context Learning. In-context learning is a fundamental ca-
pability of modern LLMs, allowing them to perform new tasks
without explicit retraining or post-training. Instead of modifying
model weights, in-context learning enables LLMs to generalize pat-
terns and behaviors from a few examples as part of input prompts
like in few-shot learning.

2.2 Query-based Static Analysis

Query-based static analysis tools formulate vulnerability patterns
as structured queries in the domain-specific languages (DSLs) of
the tools. They typically employ a language-specific frontend to
convert source code into graph-like program representations, such
as an abstract syntax tree (AST), control-flow graph (CFG), or code
property graph (CPG) [70]. Security analysts then define precise
analysis queries that operate on the representations to find vulner-
abilities. By decoupling analysis logic (queries) from the language
semantic reasoning backend, this approach could achieve high flex-
ibility and maintainability. For example, to extend to a different
programming language, one only needs to develop an additional lan-
guage frontend and could reuse the backend. Notable tools include
Joern [6, 70], GitHub’s CodeQL [8], and Amazon’s CodeGuru [56].
More specifically, Yamaguchi et al. introduced Joern by modeling
programs in CPG [4]. GitHub’s CodeQL [8] further popularized
query-based analysis by integrating it into security workflows for
large-scale vulnerability detection.

The query DSLs allow security analysts to specify vulnerability
patterns. Each analysis tool typically comes with its own DSL. For
example, Joern uses a Scala-like DSL with a rich set of APIs and
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1 // find obj["__proto__"] in t = obj["__proto__"]
2 def objProto = cpg.call
3 .where(_.name(Operators.assignment))
4 .argument(2)
5 .isCall
6 .arrayAccess
7
8 // find t["toString"] in t["toString"] = "Hacked"
9 def objProp = cpg.call
10 .where(_.name(Operators.assignment))
11 .argument(1)
12 .isCall
13 .arrayAccess
14
15 // find a data-flow path from objProp to objProto
16 objProp.array.reachableBy(
17 objProto
18 )
19 .filter(...)

Figure 1: Example real-world query in Joern, simplified for clarity.

custom data structures. CodeQL, on the other hand, adopts a SQL-
like DSL. During query execution, the static analysis tools often
enforce strict syntax and semantic validations.

3 Problem Statement

3.1 Motivation

The effectiveness of query-based static analysis hinges not only on
rigorous language semantic reasoning but more importantly, on the
quality of vulnerability patterns. High-quality, well-crafted patterns
are essential. Without them, even the most powerful static analysis
may miss critical vulnerabilities or generate excessive noise.
A Query Example. Figure 1 illustrates a simplified version of a
real-world Joern query designed to JavaScript detect prototype pol-
lution [15]. Specifically, JavaScript is a prototype-based language
where objects inherit properties and methods through a mecha-
nism known as prototypes. Modifying the prototype of one object
can affect all other objects that inherit from the same prototype,
resulting in vulnerabilities known as prototype pollution. For ex-
ample, an attacker can overwrite the toString method by first
accessing the prototype reference using t=obj["__proto__"] and
then modifying it via t["toString"]="Hacked". As a result, any ob-
ject inheriting from the fundamental prototype Object.prototype
now have a tampered toString method. This type of vulnerability
can lead to severe security consequences, including arbitrary code
execution, cross-site scripting, privilege escalation, and denial of
service [9, 21, 26, 32, 57].

Figure 1 comprises three main steps: (1) identifying the object
prototype (lines 1-6), (2) identifying the property access (lines 8-13),
and (3) verifying whether there is a data connection between them
(lines 15-19). Constructing such queries requires a profound under-
standing of the query DSL and is inherently challenging.2 As an
example, consider the first step. The dot operator (".") in Joern’s
DSL enables query chaining, meaning that each stage operates on
the intermediate results produced by the preceding stage to pro-
gressively refine the search. The query begins by identifying assign-
ment operations via Operators.assignment (in Joern, assignment
is modeled as a form of call operation). It then extracts the second
argument of the assignment using argument(2), which corresponds

2The original query is more complex and includes additional operations, such as
verifying whether the accessed values and properties are controllable by user inputs.
We simplified it for illustration and clarification purposes.

to the right-hand side (RHS) of the assignment expression. Finally,
arrayAccess is used to filter results, narrowing the matches to cases
where the RHS is an indexed (array-style) access.
Summary. Designing robust vulnerability patterns remains a sig-
nificant challenge. First, it requires expertise in security vulner-
abilities, programming languages, the static analysis tool, and
DSLs, resulting in a time-consuming process that is difficult to get
right. Maintaining these queries to account for emerging threats
further demands ongoing expertise and sustained efforts. For ex-
ample, from the Git history, the version shown in Figure 1 took
three weeks to develop, followed by an additional month of refine-
ment [2]. Second, experts cannot always capture the full breadth
of attack vectors, leading to missed vulnerabilities. In practice,
many queries—even those written by GitHub’s CodeQL team—
have been found to be imprecise or buggy [3, 41]. In the above
example, an attacker can bypass the query detection by chaining
property access and assignment in a single expression, such as
obj["__proto__"]["toString"] = "Hacked". Beyond that, as we
will show in §6.3.2, three more advanced mechanisms for manipulat-
ing object properties—automatically uncovered by our research—
were overlooked even in the latest version of the example query.

3.2 Challenges

This work aims to explore an automated approach to generating
vulnerability patterns using LLMs. When new threats are publicly
disclosed, a developer can rapidly generate comprehensive vulner-
ability patterns to scan their codebases without the long delays
traditionally required for manual pattern engineering. While the
idea of using LLMs to generate queries is intuitively simple, the task
is challenging as shown in our study on five vulnerability types
among the OWASP Top Ten [52]. Specifically, we asked ChatGPT-
4o [51] to generate vulnerability queries for these vulnerabilities.
Among all 300 cases spanning five vulnerability types with three
prompting strategies, only one successfully generated a query to
retrieve a JavaScript command injection under the few-shot setting.
More details can be found in Appendix A.

(Simplified) Prompt : You are an expert on Joern and static
analysis. You are given two query examples and a vulnerabil-
ity example, please generate a Joern query to detect JavaScript
prototype pollution.

(Simplified) Answer:
1 ...
2 val assign = code.call
3 .nameExact("assignment")
4 ...

In the above, we show a prompt to generate a query for JavaScript
prototype pollution under the few-shot setting, and the response
query. The generated query actually could not successfully run
in Joern’s analysis engine. We summarize the following four key
technical problems.
DSL Syntax Correctness. The LLM-generated queries frequently
raise grammar and syntax errors, which stem from the model’s
incomplete understanding of the DSL grammar. Specifically, static
analysis tools use complex DSLs, and LLMs typically lack sufficient
exposure to their syntax, semantics, and typical usage. For example,
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Joern queries based on the code property graph usually require the
root object cpg (e.g., Figure 1). However, the query generated above
did not follow this requirement. This issue is further aggravated by
the hallucinations of LLMs.
Runtime Execution Correctness. Queries must execute within
domain-specific runtime (i.e., analysis engine) and interact mean-
ingfully with structured program representations. LLM-generated
queries often use incorrect or non-existent function calls, miss-
ing parameters, and incompatible data types or operations, re-
sulting in execution-time exceptions. For example, the nameExact
operation in the above query used "assignment" instead of
"<operator>.assignment", which led to execution-time exceptions
after we first manually fixed the syntax error.
Semantic Validity. Even when queries are syntactically correct
and executable, ensuring their semantic validity remains challeng-
ing. They must satisfy runtime constraints and capture the correct
traversal logic. Executable queries may still fail to reflect intended
program behaviors, leading to semantic errors, where the query
runs without crashing but misses the vulnerable code.
Precision-recall Balance. Similar to how security analysts craft
queries, LLM-generated queries must be not only correct but also
comprehensive and precise. Patterns that are too specific (i.e., over-
fitting) may miss variants of the same vulnerability, resulting in
high false negatives, whereas overly general patterns (i.e., underfit-
ting) can produce excessive false positives. Achieving this balance
between precision and recall remains a fundamental challenge in
query generation.

4 MoCQ

We design MoCQ, a novel static neuro-symbolic system whose
workflow is outlined in Figure 2. MoCQ first analyzes open knowl-
edge such as documentation and tool implementations to extract
the query DSL, and then constructs a core DSL subset (§4.1). MoCQ
then generates vulnerability queries (§4.2) through a feedback loop
with a trace-driven symbolic query validator to refine (§4.3) and
optimize (§4.4) the queries. Finally, MoCQ outputs the generated
query, which can be applied to detect new vulnerabilities. We sum-
marize two key techniques in MoCQ that facilitate solving the
aforementioned challenges.
Query DSL Extraction and Subsetting. To help generate
syntactically- and semantically-correct queries, we first obtain the
formal specifications of the query DSLs used by the static analy-
sis tools, which also define the desired output structure for LLMs.
MoCQ extracts the DSL specifications—including DSL grammars,
data types, compatible APIs, and their functionalities—by auto-
matically parsing the online documentation and implementations.
However, directly using all extracted DSL specifications would over-
whelm an LLM because of the DSL’s complexity, and would still
not enable the LLM to efficiently generate valid queries. We thus
propose a language subsetting technique, which selects a core subset
of DSL features from the extracted full set with the help of a few
real-world query examples. This is based on our observation that
query DSL often contains redundant features, for example, those
that can be equally expressed by other language features. Such a
DSL subset could be better understood by the LLMs to significantly
reduce the query generation complexity.

Iterative Feedback Loop. Atop the core DSL subset, MoCQ em-
ploys an LLM to generate queries and iteratively refines them based
on fine-grained feedback from our symbolic query validator. Specif-
ically, we instrument query execution runtime, which executes
and analyzes the generated queries to locate the exact locations or
causes of the syntax and semantic errors. Beyond that, the validator
also tracks the intermediate program states on the query execution
traces and validates whether the generated query could retrieve
the given vulnerability examples. During such an iterative process,
MoCQ is able to gradually generate valid queries that can analyze
complex real-world programs. Moreover, the validator incorporates
heuristics to detect potential overfitting in queries and guides the
LLM to generalize them. It also instruments the LLM to refine the
query to eliminate the false positives.

4.1 DSL Specification Extraction

As mentioned in §3.2 and detailed in Appendix A, many query
execution failures arise from a lack of grammar and semantic un-
derstanding. This suggests that it is difficult for LLMs to generate
valid queries without domain-specific context. The simplest way to
equip pretrained LLMs with such knowledge is through few-shot
learning, where a few domain-specific query examples are provided
to illustrate DSL usage. However, the effectiveness of this approach
depends on the coverage and diversity of the examples. In practice,
for DSLs with the complexity of Joern and CodeQL, the highly
structured output space cannot be effectively captured by just a
handful of examples. On the other hand, fine-tuning LLMs requires
a large volume of task-specific training data—in this case, valid and
diverse query examples—which is often impractical to collect.

We thus propose to extract the DSL specifications in a concise
way and feed the DSL specifications to the pretrained LLMs to guide
query generation. Our DSL specification includes both the gram-
mar and the semantics of the query language. The former governs
the code structure while the latter encapsulates the operational
meaning behind query statements like the APIs or data structures
accessed, parameter processing logic, and resulting runtime behav-
iors. Note that the DSL specifications are tool-specific and we only
need to extract once per tool.

4.1.1 DSL Extraction. The extraction process targets both syntax
and semantics. To this end, MoCQ first analyzes the static analysis
tool’s documentation (e.g., online use instructions) and source code
(e.g., API implementations and comments). Documentation typi-
cally contains structured content (e.g., HTML tables) that describes
grammar, operations, and usage patterns. We first crawl the online
documentation of the tools and prompt a pretrained LLM to extract
grammar rules, data types, operations, and API usage. For example,
Joern’s website [47] lists its query operations (termed “Steps”) along
with their descriptions.

Online documentation only briefly mentions the APIs’ behav-
iors. We seek more precise and comprehensive definitions from
their code implementations, which offer ground-truth definitions
through function signatures, type annotations, inline comments,
etc. We first manually identify and retrieve relevant source code
files from each tool’s implementation, then leverage an LLM to
automatically summarize the functionality of the functions. This
process is manageable and needs to be done only once per tool,
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although it could be automated by linking function names from the
documentation with their implementations in the source code. The
prompt template used for extraction is shown in Appendix E.

4.1.2 DSL Subsetting. The extracted query DSL specification is
complex and could overwhelm the model. For example, static anal-
ysis tools like Joern and CodeQL have thousands of APIs. Each API
can have multiple parameter choices, resulting in an exponential
number of combinations of these rules and operations. Even though
MoCQ has known the precise description for each operation, our
evaluation (details in §6.4.2) demonstrates that providing LLMs
with the full-set DSL does not efficiently produce good queries.

We design a language subsetting technique to resolve the DSL
complexity issue. We observe that DSL specification contains sig-
nificant redundancy not strictly necessary for constructing useful
queries. A smaller common subset is often sufficient for most com-
mon queries. In essence, we limit the DSL to a more tractable subset
of features, rather than exposing every possible construct, for query
generation. Concretely, the subsetting process operates at the gran-
ularity of APIs, which can strike a balance between expressiveness
and control—it preserves flexibility for query construction while
keeping the DSL surface concise and understandable. MoCQ first
associates typical parameter choices with each API. It then analyzes
the full set of DSL APIs, and decides and selects these important,
necessary DSL APIs for common usage. This is feasible since the
LLM can refer to features’ intended behaviors or functionalities
collected in §4.1.1 to evaluate if one is necessary.

We also provide a small collection of queries to help MoCQ learn
the core DSL subset. Here the LLM only needs to base on them
to select the API subset from the full set, which is much simpler
than generating new queries using few-shot prompting with query
examples. Nevertheless, if a security analyst identifies additional
needs or corner cases, they can perform a one-time augmentation
to expand the DSL subset.

4.1.3 DSL Prompting. We provide the core DSL subset to the LLM
to guide query generation. We adopt a grammar prompting tech-
nique [63] to concisely express the grammar. Specifically, we supply
an abstract grammar specification of the DSL using the Backus-
Naur Form (BNF) [37], which is a standard way of defining language
syntax. Although BNF is itself domain-specific, it appears more fre-
quently in training data than custom query DSLs. Moreover, the
BNF structure is simpler and more concise than real query exam-
ples, while still conveying rich information about DSL usage. We

⟨traversal⟩ ::= ⟨cpg_start⟩ . ⟨step_chain⟩

⟨cpg_start⟩ ::= cpg | cpg.method | cpg.call | ...

⟨step_chain⟩ ::= ⟨step⟩ | ⟨step⟩ . ⟨step_chain⟩

⟨step⟩ ::= ⟨filter_step⟩ | ⟨complex_step⟩

⟨filter_step⟩ ::= .where( ⟨predicate⟩ )

⟨complex_step⟩ ::= .filter( ⟨predicate⟩ ) | .reachableBy( ⟨traversal⟩ ) | ...

⟨predicate⟩ ::= _.name( ⟨reference⟩ ) | ⟨identifier ⟩

⟨reference⟩ ::= Operators. ⟨operator ⟩

⟨operator ⟩ ::= assignment | arrayAccess | fieldAccess | ...

Figure 3: BNF grammar for Joern, extracted by MoCQ.

also specify the subset semantics like APIs to the LLM in a compact
form, including their signature, data types, and API functionalities.

Figure 3 presents a simplified grammar for Joern using BNF. It
details the fundamental grammar rules, such as the cpg_start that
initializes a traversal query, and how various components connect
to form complete expressions. The grammar rules explicitly define
the structure and permissible compositions of the DSL, guiding
models to produce syntactically valid statements. For example,
by following the grammar, an LLM knows to begin queries with
cpg followed by appropriate method chaining through step_chain
elements, effectively avoiding common syntax errors. The grammar
also clarifies how to construct complex queries using operations
like filter_step and complex_step, enabling more sophisticated
code analysis patterns.

4.2 Query Generation

Atop the core DSL subset, MoCQ generates detection queries as
described in Algorithm 1. Each time, MoCQ is tasked to generate a
query (𝑄𝑡 ) for a specific vulnerability type (𝑡 ). It takes as input (1)
a task description (𝐷𝑡 ) that contains a natural language explana-
tion of the vulnerability type, and (2) a small set of vulnerability
examples in the type (𝐸𝑡 = {𝑒𝑡

𝑖
| 𝑖 = 1, . . . ,𝑚}). To make query

generation more manageable, MoCQ first produces a per-example
query (𝑄𝑡

𝑖
) that could analyze and retrieve the corresponding exam-

ple 𝑒𝑡
𝑖
. Then, MoCQ performs optimizations to address overfitting

and underfitting (line 8). Finally, the system merges all per-example
5
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Algorithm 1: Iterative query generation in a feedback loop.

Input :Task-Description 𝐷𝑡 , Vulnerability examples 𝐸𝑡
Output :Query𝑄𝑡

1 𝑄𝐿𝑖𝑠𝑡 ← [ ]
2 foreach 𝑒𝑡

𝑖
∈ 𝐸𝑡 do

3 𝑃𝑆𝑡𝑎𝑡𝑒 ← 𝑛𝑢𝑙𝑙

4 for 𝑖 ← 1 to𝑀𝑎𝑥𝑁 do

5 𝑄𝑡
𝑖
← LLMQueryGen (𝑒𝑡

𝑖
, 𝐷𝑡 , PState)

6 error, PState← Validation (𝑄𝑡
𝑖
, 𝑒𝑡

𝑖
)

7 if not error then

8 𝑄𝑡
𝑖
← Optimize (𝑄𝑡

𝑖
)

9 QList.add (𝑄𝑡
𝑖
)

10 break

11 end

12 end

13 end

14 𝑄𝑡 ← ⋃
𝑞∈𝑄𝐿𝑖𝑠𝑡 𝑞 // Merge per-example queries

15 return𝑄𝑡

16

17 function Validation (Q, e):
18 𝑆 ← 𝑛𝑢𝑙𝑙

19 foreach 𝐵 ∈ 𝑄 do

20 S = Execute (B, e, S) // Capture fine-grained runtime info
21 end

22 return S.err, S.programState
23 end

queries into a unified per-type query (𝑄𝑡 =
⋃𝑚

𝑖=1𝑄
𝑡
𝑖
) for effective

real-world vulnerability detection (line 14).
The vulnerability examples play a crucial role in our design. First,

they help LLMs understand the semantics and patterns associated
with each vulnerability type, especially for unseen threats. Nev-
ertheless, MoCQ goes beyond simple pattern matching through
our dedicated generalization technique described in §4.4.2. Second,
MoCQ uses these examples as test cases to validate the generated
queries. Specifically, as we will show in §4.3, MoCQ executes the
query and checks whether it can retrieve the corresponding ex-
amples from the application under analysis. We believe this is a
reasonable and practical assumption for deploying MoCQ in real-
world scenarios because vulnerability examples are often available,
for example, from the CVE database. To this end, MoCQ takes a pro-
gram slice for each vulnerability example—retaining the necessary
code syntax and semantics for query generation.

As an initial step, we include the general workflow of the vulner-
ability type in the task description. Instead of composing a single
monolithic query with hundreds or thousands of operations, MoCQ
applies a chain-of-thought prompting strategy to decompose the
detection task into smaller, well-defined subtasks. For example, to
detect prototype pollution, MoCQ splits the task into four steps:
(1) identifying object property modifications, (2) determining if
user-controlled input affects the property name, (3) inspecting the
property name itself, and (4) checking for sanitization. Importantly,
MoCQ can automatically perform this decomposition based on the
task descriptions, without manual intervention.

4.3 Iterative Query Refinement

Given the difficulty of query generation, it is almost impossible
to produce a qualified query in a single LLM attempt, even when
provided with the DSL grammar and semantics. Therefore, MoCQ
incorporates an iterative feedback loop (shown as the for loop
on lines 4-11 of Algorithm 1) to debug and refine the query using
fine-grained feedback from a trace-driven symbolic query validator.
This process terminates either when a valid query is generated or
when the maximum attempt threshold (MaxN) is reached.

4.3.1 Reflection with Symbolic Validation. MoCQ first asks the
LLM to reflect on its past query output, suggest an improved version,
and then retry the task [28, 54]. This helps mitigate randomness
and hallucinations. Different from prior self-reflection techniques,
MoCQ employs a trace-driven symbolic query validation to provide
fine-grained feedback information to the LLM.

In particular, the generated query (𝑄𝑡
𝑖
) can be represented as a

sequence with 𝑛 blocks denoted as [𝐵1, 𝐵2, . . . , 𝐵𝑛]. The query pro-
duces a trace when executing. When applying the𝑄𝑡

𝑖
to analyze the

application containing the vulnerability example 𝑒𝑡
𝑖
, MoCQ records

the intermediate program states for its blocks along the trace. Specif-
ically, when the first 𝑗 blocks have been executed, MoCQ collects
the set of in-scope variables and their runtime values by instru-
menting the query execution runtime. Formula 1 formulates the
program state 𝑆 𝑗 , where 𝑣𝑎𝑟 represents the in-scope variable till
block 𝐵 𝑗 , and 𝑣𝑎𝑙 𝑗 is the corresponding value at current time.

𝑆 𝑗 = {𝑣𝑎𝑟 = 𝑣𝑎𝑙 𝑗 | 𝑣𝑎𝑟 ∈ 𝐵≤ 𝑗 } (1)

To help locate the root cause of failure, we provide the LLM fine-
grained program state information with annotated trace values
[𝑆1, 𝑆2, . . . , 𝑆𝑛]. Our design of feedback further includes checks for
syntax errors, execution exceptions, and semantics errors.
Syntax Validation. Syntax validation checks if the query com-
plies with the extracted DSL grammar. The static analysis tool itself
provides a runtime for the queries and is naturally equipped with
grammar validation capability. However, it is often coarse-grained
without pinpointing the exact error locations. Therefore, we instru-
ment and hook the grammar validator to obtain the corresponding
grammar rule of the errors. Alternatively, one can leverage off-the-
shelf grammar parser (e.g., constructing an ANTLR [53]).
Execution Validation. Similarly, MoCQ refers to the collected
DSL specifications for execution exceptions. There are multiple
types of semantic errors such as undefined variables, missing at-
tributes, type mismatches, or incorrect API usage. Our symbolic
validator checks these behaviors and outputs the error locations. Be-
sides merely identifying the errors, MoCQ also searches on the col-
lected DSL semantics to suggest (potentially correct) operations by
fuzzilymatching the name similarities. For example, it could suggest
"<operator>.assignment" as a similar argument for "assignment"
to fix the exactName exception mentioned in §3.2.
Semantic Validation. MoCQ also evaluates and inspects the
semantic behaviors of the query execution. Specifically, MoCQ
debugs the runtime behavior of the query with the account of
the vulnerability example 𝑒𝑡

𝑖
. This leverages the knowledge of the

vulnerability example to provide feedback to the LLM for refining
the query. A naive approach is to check whether the query as a
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whole retrieves the vulnerability example (i.e., boolean feedback).
However, this is insufficient for helping an LLM pinpoint the root
cause when the query fails to retrieve the example. MoCQ thus
filters in only the program states corresponding to the vulnerability
example from the whole-project analysis, enabling the LLM to
cross-check query behavior and self-correct potential issues.

4.4 Query Optimization

We develop three optimizations to mitigate query underfitting and
overfitting and to improve query execution efficiency.

4.4.1 Eliminating FPs for Precision. When using the query 𝑄𝑡
𝑖
to

analyze the project containing the input vulnerability example 𝑒𝑡
𝑖
, it

might return false positives. A false positive must be introduced at a
certain code block 𝐵 𝑗 . MoCQ thus similarly leverages the program
state 𝑆 𝑗 to help the LLM reason about how the false positive is
introduced. The elimination also goes through multiple iterations.
Note that it is common for a static analysis query to produce false
positives—many of them cannot be excluded, for example, those
involving complex path constraints.

We currently assume the cases outside the collected known true
positives are false positives. In our evaluation, we take a best-effort
manner to manually collect all true-positive vulnerabilities in a
project as the example set 𝐸𝑡 , therefore, all cases outside are con-
sidered false positives. In practice, non-vulnerable code is much
more prevalent than vulnerable code, so a report from an underde-
velopment query is more like to be a false positive. Recent research
has shown it is possible to leverage an LLM to assess if a case is
false positive or not [29]. We leave this as a future work.

4.4.2 Generalization for Recall. The generated queries could be
overly specific, especially when given input vulnerability examples.
To mitigate the overfitting issue, MoCQ generalizes the queries to
not just focus on a specific example. This is especially important
to make the queries capable of real-world detection later on. As
an initial step, we design a few heuristics to assess if a query is
overfitting. First, MoCQ checks whether the query relies on exact
constant values (e.g., hardcoded variable names and string literals)
that are unique to a specific example. Such reliance limits the ap-
plicability of the query to other contexts. Second, MoCQ examines
whether the query includes structural patterns or constraints that
are overly specific to the layout of a particular program, such as
deep AST chains or unique call sequences. Once any such situation
is found, MoCQ employs the LLM to paraphrase or abstract queries
by asking it to identify the core intention behind the original query
and express it in a more general form to resolve the identified over-
fitting situation. Such generalization improves the reusability of
queries and enables the detection of vulnerability variants.

4.4.3 Merging for Efficiency. After generating individual queries
for different vulnerability examples, MoCQ performs query merg-
ing to consolidate detection rules and improve efficiency. A naive
approach would simply apply a logical OR operation to combine all
per-example queries—sequentially running each one independently.
However, this can lead to performance degradation, as many queries
share redundant and repetitive conditions. To address that, MoCQ
introduces an LLM-assisted query merging stage. All individual
queries 𝑄𝑡

𝑖
are given to an LLM, which attempts to merge them

into a single optimized query (𝑄𝑡 ) while preserving their detection
capability. The merged query is passed through the symbolic query
validator for all vulnerability examples to verify its correctness
and effectiveness (this process is omitted from Algorithm 1). If the
merged query fails validation on any of the examples, MoCQ fur-
ther undergoes the feedback loop to iteratively improve themerging
process. By optimizing queries before real-world adaption, MoCQ
minimizes redundant computation and ensures that vulnerability
detection remains scalable and precise.

5 Implementation

We implemented our solution for Joern [70] and CodeQL [8] and
present important implementation details in this section.
Instrumentation of Symbolic Validator. We realized the run-
time program state tracking by instrumenting the query execution
runtime. In particular, we enhanced the query parsing process to
locate syntax errors. For the other two, we hooked the internal lan-
guage interpreter. Specifically, these query languages’ interpreters
typically contain a main interpretation loop that switches over the
instruction types and invokes specific handlers. We thus added
additional hookers for selected handlers to collect variables and
their runtime values.
Query Execution Server. The iterative query generation would
invoke the symbolic validator and static analysis runtime multiple
times. The invocations often operate on the same codebase—the
project containing the input vulnerability example. To improve
the overall efficiency, we eliminate the repetitive project loading
process by starting a local server to host the codebase for interactive,
continuous query execution. This could significantly improve the
efficiency of the symbolic validator.
Function References in Joern. During our implementation, we
realized that Joern could not correctly connect a function’s ref-
erence to its definition. When generating queries, the LLMs (and
human experts) all would first assume such function inferences are
properly handled. This introduces a lot of failures in the generated
queries. Therefore, we carefully modified the variable references in
Joern [70] and complemented the DSL of Joern to support explicit
function dereference.

6 Evaluation

In this section, we extensively evaluate MoCQ to answer the fol-
lowing questions.
• New Vulnerability Detection. How effective is MoCQ in
discovering new vulnerabilities in real-world applications?
• Query Effectiveness. How effective are the MoCQ-generated
queries for detecting vulnerabilities? How do they compare to
related approaches?
• Ablation Study. How does each component of MoCQ con-
tribute to its performance?
• DSL Subsetting. What are the characteristics of the DSL subset
used by MoCQ?

6.1 Experimental Setup

Dataset. We consider seven types of vulnerabilities in PHP and
JavaScript from OWASP Top Ten [52] for our evaluation. For each
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Table 1: New vulnerabilities and the contributing new patterns.

Project Vul. Type Experts’ MoCQ Contributing New Pattern Status

forkcms [45] PHP SQLi ✓ ✓ - Rep.
SyliusCmsPlugin [42] PHP XSS × ✓ Ctx-sensitive san. via htmlspecialchars Rep.
parse-static-imports [46] JS Cmd. × ✓ Vulnerable operation with repl Ack.
es2015-proxy [44] JS Proto. × ✓ Data flow via Object.assign Rep.
web-worker [48] JS Proto. ✓ ✓ - Rep.
koa-send [49] JS Proto. ✓ ✓ - Rep.
content-type [43] JS Proto. × ✓ Data flow via Reflect.set Rep.

vulnerability type, we selected 20 popular projects that contain
known vulnerabilities. We examined relevant public sources, in-
cluding the CVE database and GitHub issues, and incorporated
findings from our previous research, to collect all known vulner-
abilities as the ground truth on a best-effort basis. In total, we in-
cluded 265 vulnerabilities for our evaluation. Vulnerabilities within
a single project may share similarities, potentially leading to data
leakage if some are used for query generation and others for per-
formance evaluation. To mitigate this, we randomly selected 15
projects (192 vulnerabilities) for query generation—the generation
dataset, and the remaining 5 projects (73 vulnerabilities) for perfor-
mance evaluation—the testing dataset. We consistently adhere to
this dataset split throughout the entire evaluation. In addition to
the two datasets with ground truth, we collect 19 projects in their
latest versions to evaluate new vulnerability discovery—referred to
as the latest project dataset.
Configuration of MoCQ. MoCQ is a complex system influenced
by various factors, particularly the number of projects and vulnera-
bilities used for query generation, as well as the choice of under-
lying model and static analysis engine. Unless otherwise noted,
our default setting involves generating queries from vulnerability
examples drawn from ten randomly selected projects in the genera-
tion dataset, using the Claude 3.7 Sonnet model and static analysis
engine Joern. These ten projects cover 113 input vulnerability ex-
amples. A more comprehensive ablation study evaluating other
settings is presented in §6.4. We ran the experiments three times
with an attempt threshold of 5,000 iterations and used the mean
values for the results.

6.2 Zero-day Detection

We first evaluate MoCQ on the latest project dataset. MoCQ-
generated queries effectively discover seven zero-day vulnerabili-
ties, shown in Table 1, including four JavaScript prototype pollution,
one JavaScript command injection, one PHP SQL injection, and one
PHP cross-site scripting. We responsibly reported the vulnerabili-
ties and to date one has been acknowledged.

As a comparison, we collected queries from the official Joern
tool [4] as well as from recent publications [15, 25]. When there are
multiple queries for a vulnerability type, we use the one with the
best detection results. On the same dataset, expert-crafted queries
identified three new vulnerabilities, all of which were also detected
by MoCQ-generated queries. The other four vulnerabilities were
exclusively detected using the new patterns discovered by MoCQ. Our
in-depth study revealed four unique vulnerability patterns that
contributed to MoCQ’s superior performance; these were entirely
missed by existing Joern queries, leading to their failure to detect
the vulnerabilities. A more comprehensive list of new patterns
uncovered by MoCQ is discussed in §6.3.2 and Table 4.

1 function mergeOptions(target, source) {
2 for (let key in source) {
3 Object.assign(target[key], source[key]);
4 }
5 return target;
6 }
7
8 // Proof-of-Concept (PoC)
9 const obj = {}
10 const payload = ’{"__proto__": {"toString": "Hacked"}}’;
11 mergeOptions(obj, JSON.parse(payload));
12
13 // All objects have the polluted property
14 const newObj = {};
15 console.log(newObj.toString); // "Hacked"

Figure 4: A JavaScript prototype pollution vulnerability.

Case Study. Figure 4 shows the prototype pollution vulnerabil-
ity in es2015-proxy [44]. The mergeOptions function iterates over
the properties of source object and assigns the property values to
target object. When source is crafted to include the special prop-
erty "__proto__", the mergeOptions function inadvertently assigns
its value to overwrite target["__proto__"], which refers to the
object’s prototype. Specifically, the proof-of-concept (PoC) payload
we created modifies the implementation of the toStringmethod of
target["__proto__"]. This modification impacts not only target
but also all objects that inherit from the foundational object pro-
totype Object.prototype, such as the newObj on line 14. Detecting
this vulnerability requires capturing the Object.assign in the pat-
tern for property modification, which was missed by expert-crafted
queries.

6.3 Query Effectiveness

We apply the queries generated under the default setting to the
testing dataset and compare them to related approaches.

6.3.1 Performance of MoCQ. The testing dataset contains 72 true
vulnerabilities and per-type breakdown is shown as TP𝑡𝑜𝑡𝑎𝑙 in Ta-
ble 2. Overall, MoCQ-generated queries could detect a broad range
of vulnerabilities across PHP and JavaScript ecosystems. Out of
72 known vulnerabilities, MoCQ-generated queries successfully
detected 56 cases with 90 false positives. We also computed the
recall (𝑅𝑒𝑐. = 𝑇𝑃

𝑇𝑃+𝐹𝑁 = 𝑇𝑃
𝑇𝑃𝑡𝑜𝑡𝑎𝑙

) and precision (𝑃𝑟𝑒𝑐. = 𝑇𝑃
𝑇𝑃+𝐹𝑃 ).

MoCQ achieved a strong overall recall of 0.77 and a precision of
0.40. The precision, especially the false positive rate, is reasonable
in practice, especially given the challenge of statically analyzing
dynamic PHP and JavaScript codebases. As we will show in §6.3.2,
even expert-crafted queries have similar precision.

We analyzed the 16 vulnerabilities missed by MoCQ-generated
queries. These false negatives stem frommultiple root causes. There
are 11 cases caused by incomplete patterns, including missing
taint source specifications—particularly involving customized third-
party sources—missing vulnerable operations, etc., which could
have been detected if a more comprehensive pattern had been gen-
erated. Besides, two cases involved incomplete data flows where the
targets of dynamic function calls were missing from the project’s
program representations. This occurred because the static construc-
tion of representations failed to properly handle dynamic language
features. Three cases were caused by flaws in type-related issues.
For instance, inaccurate type information led to one false negative
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Table 2: Vulnerability detection using Joern on the testing dataset. It contains true vulnerabilities reported by both MoCQ and expert-crafted

queries (M∩E), only MoCQ (M\E), or only expert-crafted queries (E\M).

MoCQ Experts’ Detection Delta MoCQ+Experts’ Pure LLM

Vul. Type # TP𝑡𝑜𝑡𝑎𝑙 # TP # FP Rec. Prec. # TP # FP Rec. Prec. # M∩E # M\E # E\M # TP # FP Rec. Prec. # TP # FP Rec. Prec.

PHP SQLi 19 16 14 0.84 0.53 17 21 0.89 0.45 15 1 2 18 23 0.95 0.44 9 45 0.47 0.17
PHP XSS 13 8 10 0.62 0.44 7 14 0.54 0.33 7 1 0 8 15 0.62 0.35 9 27 0.69 0.25
PHP Type. 6 4 22 0.67 0.15 3 18 0.50 0.14 3 1 0 4 24 0.67 0.14 2 23 0.33 0.08
PHP Deser. 8 5 4 0.62 0.56 4 6 0.50 0.40 2 3 2 7 7 0.88 0.50 5 57 0.63 0.08
JS Proto. 11 10 8 0.91 0.56 7 12 0.64 0.37 6 4 1 11 13 1.00 0.46 4 39 0.36 0.09
JS Cmd. 5 5 17 1.00 0.23 5 15 1.00 0.25 5 0 0 5 20 1.00 0.20 3 25 0.60 0.11
JS XSS 11 8 15 0.73 0.35 9 11 0.82 0.45 6 2 3 11 12 1.00 0.48 6 34 0.55 0.15

Total / *Avg. 73 56 90 *0.77 *0.40 52 97 *0.70 *0.34 44 12 8 64 114 *0.87 *0.37 38 250 *0.52 *0.13

Table 3: Query generation efficiency.

PHP SQLi PHP XSS PHP Type. PHP Deser. JS Proto. JS Cmd. JS XSS

MoCQ

# Examples 23 28 11 13 15 10 13
Time 15.3h 24.6h 5.2h 18.7h 21.4h 7.9h 10.5h

Experts’

# Commits 5 5 10 17 28 1 1
Time Span 2d 3d 7d 5w 7w - -

in PHP type juggling and two in JavaScript prototype pollution.
The latter two categories could not be fixed by refining the patterns.

6.3.2 Comparison to Expert-crafted Queries. We further evaluated
the collected expert-crafted queries on the same testing dataset.
Engineering Efforts. MoCQ is efficient in generating queries
and demonstrates a significant advantage in required engineering
efforts. We report the number of input vulnerability examples and
the total query generation time per vulnerability type in Table 3.
In general, MoCQ required only a few hours to generate queries
for each vulnerability type, significantly shorter than previous best
practices that relied heavily on expert engineering. Generally, types
with more input examples took longer to process. On average, it
took 0.9 hours to construct a query for a single example across
different types. Complex vulnerabilities like PHP deserialization
and JavaScript prototype pollution were the most time-consuming
cases, requiring 1.4 and 1.5 hours per example, respectively.

We analyzed the Git commit history in the open-source reposi-
tories of the expert-crafted queries. We find that experts often use
multiple commits to develop and revise the queries, and the commit
history often spans days to a few weeks. We acknowledge that Git
commit history does not precisely reflect the actual, continuous
engineering effort involved. For instance, the time span between
the first and last commit may overestimate or underestimate the
true effort, as substantial work may have occurred before the first
commit or between commits without being recorded. Nevertheless,
we argue that it serves as a reasonable proxy for estimating the
engineering effort required. As a comparison, MoCQ, as a fully-
automated solution, can run continuously and shorten the amount
of time to construct queries.
Vulnerability Detection. Overall, MoCQ-generated queries
achieved a comparable performance to expert-crafted queries—
despite the latter demanding abundant security expertise and engi-
neering efforts. As shown in Table 2, expert-crafted queries detected
fewer true positives and produced more false positives, yielding an

average recall of 0.7 and precision of 0.34. A closer look at their
detailed detection differences revealed 44 vulnerabilities were de-
tected by both of them. In three vulnerability types (PHP XSS, PHP
Type., and JavaScript Cmd.), MoCQ-generated queries successfully
detected all the vulnerabilities identified by expert-crafted queries,
as indicated by a zero count of E\M.

In the remaining four types, however, MoCQ-generated and
expert-crafted queries demonstrated complementary strengths—
each was able to detect some vulnerabilities missed by the other.
Motivated by this, we explored how their combination would per-
form. We combined both MoCQ-generated and experts’ queries,
and then used the combined set for Joern in vulnerability detec-
tion (MoCQ+Experts’). This combined version achieved promising
results, with a high recall of 0.87 and a precision of 0.37 on av-
erage. Notably, it successfully detected all known vulnerabilities
in three vulnerability types, achieving a perfect recall of 1. This
shows that although MoCQ-generated queries alone do not surpass
expert-crafted queries in all cases, their combination is an effective
strategy.

Following that, we tried to apply MoCQ to refine the expert-
crafted query for JavaScript prototype pollution as an example.
MoCQ ran for around one hour and automatically revised the query,
which in return detected 3 previously missed vulnerabilities. This
highlights that MoCQ not only automatically generates detection
queries but also can improve an existing expert-crafted query.
New Patterns. We highlight the new patterns MoCQ discov-
ered. We define an atomic operation—such as a specific API call,
expression type, or data flow—that is not recognized by expert-
crafted queries as a new pattern. We then conservatively locate
these new operations through pair-wise comparison with expert-
crafted queries and found 12 new vulnerability patterns, as shown
in Table 4. We constructed a minimal PoC vulnerability example
to validate each new pattern. Compared to expert-crafted queries,
MoCQ uncovered new operations that propagate data flows, or new
vulnerability operations that can lead to security consequences. By
filling in these missing components, static analysis could more
comprehensively search vulnerabilities in target application code.

MoCQ not only found nine new patterns specific to a vulner-
ability type but also three general patterns applicable to the vul-
nerabilities in the entire programming language. For example, four
mechanisms for PHP type juggling were missed by experts, e.g.,
PHP built-in functions array_search and array_flip where im-
plicit type casting could occur. MoCQ also detected a new general
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Table 4: New vulnerability patterns uncovered by MoCQ. *MoCQ

uncovered 34 distinct operations in the phar category for PHP dese-

rialization and we conservatively counted one.

Vul. Type Pattern Functionality

General PHP htmlspecialchars Ctx-sensitive sanitization
PHP Type. in_array Implicit type casting
PHP Type. array_search Loose comparison
PHP Type. array_flip Implicit type casting
PHP Type. case in switch Type coercion in case matching
PHP Deser. phar* Object deserialization
PHP Deser. copy Object deserialization
General JS Object.assign Data propagation
General JS Reflect.set Data manipulation
JS Proto. Object.assign Data propagation
JS Proto. Object.defineProperty New property manipulation
JS Proto. obj.__defineGetter__ New property manipulation

way in JavaScript to propagate data flows via Reflect.set—which
could benefit the detection of different types of vulnerabilities. We
submitted the new patterns to the maintainers of expert-crafted
queries. One of them has been acknowledged.

6.3.3 Comparison to LLM-based Approaches. We compare MoCQ
to LLM-based approaches including pure LLM-based and IRIS [29].
Pure LLM-based Detection. This approach directly provides
the source code to an LLM and asks it to assess if there is any
vulnerability. Unlike MoCQ, there is no LLM-based tool that can
perform whole project analysis for large codebases, to the best of
our knowledge. We thus take the common practice by separately
checking individual code snippets (source code file) [13, 40] with
Claude 3.7 Sonnet. To handle non-determinism across multiple LLM
runs, we assign the final label based on majority agreement—if at
least two out of three runs agree, we adopt that label for the case.

The evaluation results in the last part of Table 2 show lower
precision and recall. This is primarily due to the lack of cross-file
information, such as global variables and inter-procedural function
calls defined outside the current file, leading to many false positives
and false negatives. For instance, detecting JavaScript prototype
pollution requires tracking data flow from external user input to
object property manipulation. It is thus often infeasible when an-
alyzing a single file in isolation. We also observed that when the
entire vulnerability is contained within a single file, the LLM tends
to produce fairly reliable results.
IRIS. IRIS [29] is a related work that combines LLM-identified taint
specifications with existing queries. We consider its contribution
orthogonal or complementary to that of MoCQ. IRIS is designed
for Java programs and is not directly applicable for an end-to-end
comparison.We thus incorporated its main technique and evaluated
how could help resolve our false negatives. The results showed that
IRIS could successfully identify missing data sources for three false
negative cases. Nevertheless, IRIS does not have a holistic, fully-
automated way of query generation.

6.4 Ablation Study

We conduct a comprehensive ablation study to measure the individ-
ual contributions of the techniques on the testing dataset. We use
the F1 score (2 · 𝑃𝑟𝑒𝑐.·𝑅𝑒𝑐.

𝑃𝑟𝑒𝑐.+𝑅𝑒𝑐. ) as our evaluation metric, as it captures

0 2 4 6 8 10 12 14
# Projects

0.0

0.2

0.4

0.6

0.8

F1
Sc

or
e

PHP-SQLi
PHP-XSS
PHP-Type.
PHP-Deser.

JS-Proto.
JS-Cmd.
JS-XSS

Figure 5: F1 scores with queries generated with different numbers

of input projects.

both precision and recall, and is well-suited for imbalanced data
where non-vulnerable code is muchmore than vulnerable code. Due
to the space limit, we put the efficiency analysis of query merging
in Appendix D.

6.4.1 Vulnerability Examples. MoCQ takes as input a few vulner-
ability examples to generate queries. The queries might perform
better when generated with more examples. Here, we gradually
added more projects and applied the queries to the testing dataset.
This incremental setup helps us understand the impact of addi-
tional projects on performance. We conduct our experiments at the
project granularity rather than the vulnerability granularity due to
similar data leakage concerns (discussed in §6.1).

Figure 5 illustrates the F1 scores on the same testing dataset un-
der different numbers of input projects. The F1 score increased as
more projects were used for query generation. However, the point
at which performance stabilized varies by vulnerability type. For
example, JavaScript XSS achieved a stably high F1 score with four
projects, whereas JavaScript prototype pollution generally required
ten. Overall, we find that ten projects are typically sufficient to
generate high-quality queries. This corresponds to the 5-18 vul-
nerability examples across different vulnerability types (details in
Appendix B).

6.4.2 DSL Subset. To understand the effect of the subsetting tech-
nique, we developed a variant containing the full set of DSL, denoted
as DSL100, and used it to generate queries. Generally, we observed
a much longer time in query generation, and DSL100 frequently
reached the attempt threshold before producing valid queries. This
further resulted in lower quality of merged queries, and accordingly,
worse detection results, as shown in Table 5. We also attempted to
remove another 10% of random APIs from the DSL and used the
remaining for query generation. It turned out that many previously
successful queries could no longer be generated. This highlights
the importance of performing a practical DSL subsetting to retain
core features.

6.4.3 FP Elimination. During the iterative query generation,
MoCQ treats those cases outside the generation dataset as false pos-
itives and uses them to refine the queries (§4.4.1). To understand the
impact of such false positive signals, we experimented by disabling
them as a comparison and showed the results as W/O𝐹𝑃 in Table 5.
Naturally, more false positives were introduced in the final reports
when analyzing the projects in the testing dataset, even though
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Table 5: Ablation study with F1 scores, experimented using 10 input

projects. The default setting is with Joern and Claude 3.7 Sonnet.

Vul. Type MoCQ DSL100 W/O𝐹𝑃 W/O𝐺𝑒𝑛 GPT-4o CodeQL

PHP SQLi 0.65 0.38 0.54 0.37 0.44 -
PHP XSS 0.52 0.23 0.32 0.25 0.43 -
PHP Type. 0.25 0.15 0.19 0.23 0.31 -
PHP Deser. 0.59 0.41 0.34 0.28 0.50 -
JS Proto. 0.69 0.54 0.33 0.28 0.54 0.72
JS Cmd. 0.37 0.29 0.18 0.32 0.22 0.35
JS XSS 0.48 0.33 0.23 0.32 0.35 0.38

Average 0.51 0.33 0.30 0.29 0.40 0.48

the true positives remained the same. This in turn decreased the
average F1 score to 0.3.

6.4.4 Generalization. Query generalization is important in the de-
sign of MoCQ. It enables MoCQ to capture diverse vulnerability
patterns beyond the given input vulnerability example. Many new
patterns could only be discovered with generalization.When we dis-
abled it fromMoCQ (W/O𝐺𝑒𝑛), the F1 score significantly dropped to
0.29. Our manual analysis of some queries revealed many new vul-
nerability patterns that the full-fledged MoCQ previously identified
now disappeared. It is reasonable because by explicitly instrument-
ing the LLM to generalize the patterns, the LLM can better capture
structural variations across vulnerabilities.

6.4.5 Models. MoCQ is not limited to only Claude 3.7 Sonnet. We
further experimented with another model, GPT-4o [51]. The results
on Joern are shown in Table 5. In our experiments, ChatGPT-4o has
an average F1 score of 0.4, while full-fledged MoCQwith Claude 3.7
Sonnet has the best performance of 0.51. Our experience suggests
that the Claude 3.7 Sonnet model has a better capability in coding
tasks than ChatGPT-4o. Though we did not integrate other models
due to our cost constraints, we believe MoCQ has wide applicability.

6.4.6 Static Tools. Besides Joern, we further experimented MoCQ
with CodeQL. CodeQL is capable of analyzing JavaScript but not
PHP. We thus evaluated it using the same setup for the three types
of JavaScript vulnerabilities in our dataset. From our experience,
CodeQL queries are often considered harder due to their higher DSL
complexity, so the results on two types of vulnerabilities were worse
than MoCQ with Joern. It is interesting to observe that MoCQ with
CodeQL achieved a better F1 score (0.72) on JavaScript prototype
pollution.

6.5 DSL Subset

In this section, we evaluate and characterize the DSL subset ex-
tracted by MoCQ.
Number of Queries. The query examples would have an impact
on the DSL subset. We thus provided the Claude 3.7 Sonnet with
progressively more query examples to understand how the amount
of provided queries could impact the size core DSL subset. We con-
ducted the experiments for Joern and CodeQL and presented the
results in Figure 6a. Initially, more queries enriched the resulting
core DSL subset, and the subset became gradually stable with 12
to 16 query examples. Ultimately, the subsetting technique could
remove approximately half of the available APIs—48% for Joern and
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Figure 6: Factors impacting the core DSL subset

55% for CodeQL—and significantly reduce the exploration space
for query generation. Our earlier evaluation already demonstrated
that the preserved subset was sufficiently expressive for vulnerabil-
ity detection. While we do not claim this subset to be optimal or
minimal, our manual analysis suggests that some preserved APIs
could still be pruned. Nonetheless, the current design is effective
and useful in practice.

Different choices of query examples might impact the resulting
DSL subset. To measure this, we randomly selected 16 queries from
a pool of 40 to construct the core DSL subset. We repeated this
three times. The Venn diagram in Figure 6b demonstrates that
the three different query choices still resulted in a large overlap
(93.8%). There could be some divergence across choices due to the
variability in query examples. This suggests that the majority of the
necessary features are consistent. We also measured the impact of
using language-specific queries on the DSL subset in Appendix C.
Details of Removed Features. We randomly sampled 50 removed
APIs to explain why they were removed. We made a few key obser-
vations. First, the majority (45 out of 50) of removed DSL features in
Joern could be equivalently expressed using the retained ones. For
example, the whereNot() condition in Joern can be rewritten as a
valid .where(not). This is particularly interesting, as DSL features
are typically introduced to simplify usage and improve expressive-
ness [17]—yet here we find that some offer redundant functionality
that can be composed of other constructs. Two removed features
are debugging interfaces and textual processing operations, such
as printing. They are not necessary for production-environment
queries. The other three are language-specific operations—those
required only for specific programming languages. For example,
address operation in Joern is applicable to binary code and not
required for JavaScript or PHP. Similar findings were observed in
CodeQL, though it has relatively more language-specific operations
removed (7 out of 50).

7 Discussion

In this section, we discuss the current limitations and future direc-
tions.
Vulnerability Examples. At present, MoCQ requires a small
set of true positive vulnerability samples, which helps the LLM
understand the vulnerabilities and also serves as test cases to vali-
date the queries. For our current evaluation, we randomly selected
the vulnerability examples. A more careful selection of the vul-
nerability examples (e.g., cover diverse vulnerability perspectives)
or providing more examples would advance the performance of
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MoCQ. Besides, we believe negative cases can be helpful to im-
prove the precision of generated queries. We currently assume the
reports outside the known true positives as the negative signals
and wish the queries could exclude them. One can also additionally
provide negative cases, including well-annotated true negatives
and false negatives. For example, patched vulnerabilities can be a
good source of true negatives.
Other Use Scenarios. We present a generic pipeline for generating
detection queries, which enables multiple practical use scenarios.
For example, MoCQ can be used to enhance existing expert-crafted
queries by automatically extending them with additional detection
capabilities. We have showcased this for JavaScript prototype pol-
lution. In addition, MoCQ can serve as a foundation for building a
digital twin of an existing (black-box) static analysis tool. In this set-
ting, feedback—such as true/false positives or partial results—from
a closed-source tool can guide MoCQ in generating queries that
approximate its behaviors. This is especially useful in industrial
contexts where high-performing yet opaque tools lack extensibility
or transparency. By mimicking such tools, MoCQ enables more
flexible, explainable analysis for smooth integration into modern
development workflows.
Model Fine-tuning. We currently leverage in-context learning to
generate detection queries in DSL. Our DSL specification mitigates
the errors triggered during the generation process but MoCQ may
still require many iterations to correct errors and refine the queries.
Fine-tuning pretrained models could be an effective way to make
MoCQ even more powerful. Our pipeline can then serve as a foun-
dation to generate synthetic query data for resolving issues like lack
of training data in fine-tuning. Our symbolic query validator can
also be used as the reward function in reinforcement learning-based
model training.
Ethical Considerations. We strive to adhere to the best prac-
tices of research ethics throughout this project. We employed LLMs
to generate vulnerability detection patterns in a controlled, local
environment, ensuring that the generated outputs did not pose
any risk to public systems or external stakeholders. Any newly
discovered vulnerabilities were responsibly disclosed to the cor-
responding application developers. We are also actively engaging
with the maintainers of expert-crafted vulnerability patterns to
share our insights and improve existing queries.

8 Related Work

Learning-based Detection. Various transformer-based methods
have been applied for vulnerability detection, including encoder-
only [1],I encoder-decoder [66, 67], and decoder-only [60] architec-
tures. Researchers have also adapted various fine-tuning strategies,
such as domain-specific pretraining [12], instruct-tuning [7, 36],
supervised fine-tuning [65, 73], parameter-efficient fine-tuning [36]
to improve models’ performance. Complementary to fine-tuning ap-
proaches, prompt engineering using variations like few-shot, chain-
of-thought, and progressive prompting strategies [16, 33, 50, 71]
have achieved promising results. However, multiple studies [61]
have identified limitations like response inconsistency and dimin-
ished efficacy when addressing under-represented vulnerabilities
or large codebases. Compared with these works, MoCQ has the
additional advantage of symbolic methods and is highly scalable.

Neuro-symbolic Program Analysis. Generally, neuro-symbolic
program analysis combines a neural and a symbolic component.
IRIS [29] and Artemis [18] leverage LLMs to infer project-specific
taint specifications for Java and PHP applications, respectively. They
rely on signatures and comments to decide whether the functions
are sources or sinks. IRIS further uses an LLM to eliminate false
positives by providing the slices. There is also work that leverages
neural methods to validate vulnerabilities, e.g., WAP [38]. Further-
more, LLMSA [64] uses an LLM to decompose the vulnerability
analysis problem into several simple syntactic or semantic proper-
ties upon smaller code snippets, which are handled by the symbolic
analysis rules. LLift [24] uses an LLM to analyze the post constraints
for use-before-initialization bugs within the Linux kernel. MoCQ
distinguishes itself from these by targeting automated query gener-
ation from scratch, and we believe MoCQ can complement them
to reduce engineering demands.
Cloned Vulnerability Detection. Software developers might bor-
row code (thus vulnerabilities in it) from others. Multiple work uses
the signature of a known vulnerability to detect such vulnerable
code clones in other codebases. VUDDY [22] leverages a function-
level granularity signature after code abstraction and normalization.
It can only find extract clones without modifications (type-1) and
renamed clones with identifier changes (type-2). TRACER [20] rep-
resents the signature as an inter-procedural data-flow trace by
collecting the operations in the trace; HiddenCPG [68] constructs
a graph structure and RecurSan [58] calculates a symbolic expres-
sion for existing vulnerabilities. MoCQ is different by extracting
and generalizing vulnerability patterns for a class of vulnerabilities
instead of focusing on specific vulnerability instances.
General Static Analysis. Lots of tools specifically target the
analysis of PHP and JavaScript applications—the primary testing
target of this paper—including TChecker [35], RIPS [10], Pixy [19],
and ODGen [27]. Unlike query-based systems, these tools typically
rely on hard-coded analysis logic and do not support customiz-
able or extensible analyses through user-defined queries. Realizing
such customization on them requires additional implementation
considerations and engineering. More generally, there is a line of
efforts analyzing other programming languages such as C/C++ [59],
Java [23, 62], Rust [30, 31], etc.

9 Conclusion

This work presented MoCQ, a novel neuro-symbolic approach that
combines the complementary advantages of LLMs and static analy-
sis to achieve fully automated vulnerability detection. With a DSL
subsetting technique and trace-driven symbolic validation, MoCQ
automatically extracts vulnerability patterns using an LLM. These
patterns are then integrated with query-based static analysis to
achieve high scalability in analyzing large codebases. Our evalua-
tion demonstrates that MoCQ could achieve comparable detection
performance as expert-crafted queries. It significantly reduces the
required engineering efforts, lowers the barrier to building tailored
vulnerability detectors, and makes automated security analysis
more accessible and adaptable. We believe that our novel neuro-
symbolic approach represents a promising new direction for general
software security.
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A Details of Preliminary Study

We conducted a preliminary study evaluating ChatGPT-4o’s capa-
bility to generate queries for five types of vulnerabilities among the
OWASP Top 10 [52]. To invoke the LLM, we experimented with
three different prompting strategies: (1) zero-shot, where the model
is directly asked to generate a query for a vulnerability type without
any query example; (2) chain-of-thought (CoT), which prompts the
model to break down its reasoning step by step; and (3) few-shot,
where the model is provided with two query examples. Each time,
we also provided a true positive vulnerability example. The prompt
templates are present in Table 9.

We evaluated the queries generated by ChatGPT-4o based on two
key criteria: (1) execution success (% Exe.), which checks whether
a query runs without runtime errors, and (2) result correctness (%
Res.), which verifies if the query successfully identifies the intended
vulnerability example. We did not assess whether the queries gener-
alize to additional vulnerabilities beyond the input case. To reduce
randomness, each experiment was repeated ten times.

Table 6 reports the success rates across ten trials for each vul-
nerability type. To our surprise, among all cases, only one query
was successfully generated to retrieve a JavaScript command injec-
tion under the few-shot setting. Most of the queries raised errors
or exceptions and could not be executed successfully. Compared
to other settings, the few-shot approach offered limited guidance
on DSL syntax and structure but was generally inadequate for
producing valid or effective queries. In most cases, the generated
queries failed to compile due to syntax or structural issues. Only
a few compiled successfully, and among those, just one retrieved
the intended vulnerability. This suggests that while few-shot ex-
amples provide partial insights, they are insufficient for generating
functional queries in real-world scenarios. An iterative approach
incorporating feedback or contextual information could further
improve outcomes.

These issues are non-trivial to address, even for human experts.
Two authors manually reviewed and attempted to fix the broken
queries. Repairing syntax and structural errors alone often required
several hours per query, underscoring both the complexity of the
query languages and the steep learning curve involved.

Table 6: Evaluation of LLM-generated queries. Exe. and Res. denote

execution success and result correctness, respectively.

Zero-shot CoT Few-shot

Vul. Type % Exe. % Res. % Exe. % Res. % Exe. % Res.

Joern

PHP SQLi 0 0 0 0 30 0
PHP XSS 0 0 0 0 10 0
PHP Type. 0 0 0 0 0 0
JS Proto. 0 0 0 0 0 0
JS Cmd. 0 0 0 0 50 10

CodeQL JS Proto. 0 0 0 0 50 0
JS Cmd. 0 0 0 0 20 0

B Vulnerability Examples for High F1 Scores

In Table 7, we report the number of vulnerability examples required
to reach such a stably high F1 score. We consider an F1 score high
and stable when it no longer improves bymore than 5% compared to
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the previous step in Figure 5. Note that each project may contribute
a different number of examples. Despite this variation, the results
indicate that fewer than 20 vulnerability examples are typically
sufficient across different vulnerability types.

Table 7: Minimal number of examples for high F1 scores.

PHP SQLi PHP XSS PHP Type. PHP Deser. JS Proto. JS Cmd. JS XSS

15 18 5 13 14 14 6

C DSL Subset with Language-specific Queries

We assessed the impact of language-specific queries on the DSL
subset. To explore this, we conducted another experiment on Jo-
ern comparing the core DSL subsets on PHP and JavaScript. We
used two sets of 16 queries: one comprising general queries and
PHP-specific queries, and the other comprising general queries
and JavaScript-specific queries. Figure 7 shows that the two sub-
sets overlapped by 95.11%. This demonstrates the target languages
of the queries do not have a huge impact on obtaining the core
subset. This also reflects that language-specific operations are not
prevalent. We did not evaluate this in CodeQL because it does not
support PHP.

681

(95.11%)

12

(1.68%)

23

(3.21%)

PHP JS

Figure 7: Impact of the query languages on the DSL subset.

D Query Merging and Efficiency

The query merging stage in MoCQ could improve the analysis effi-
ciency. We thus designed a baseline version by sequentially running
each per-example query and accumulating the query execution time
compared to the merged version. Table 8 shows the analysis time
for each vulnerability type on the testing dataset. As we can see,
the merging component (W/ M.) could finish the analysis several
times faster than the unmerged one (W/O M.), demonstrating the
necessity of query merging.

Table 8: Analysis time (in hours) with or without the merging com-

ponent on the testing dataset.

PHP SQLi PHP XSS PHP Type. PHP Deser. JS Proto. JS Cmd. JS XSS

W/ M. 4.2h 4.9h 8.2h 1.5h 2.3h 0.4h 1.1h 0.7h
W/O M. 24+h 24+h 6.2h 5.4h 2.8h 3.4h 2.7h

E Prompt Design

We detail our prompt templates used in this project in Table 9.
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Table 9: Prompt templates for various tasks in this paper.

Task Prompt

Preliminary Study

(Appendix A)
Zero-shot You are a security expert in analyzing PHP and JavaScript application vulnerabilities. You are proficient in tool-name.

Given the following code snippet of a vulnerability-type, please generate a tool-name query that could be used to
detect the given vulnerability-type vulnerability.

Chain-of-
thought

You are a security expert in analyzing PHP and JavaScript application vulnerabilities. You are proficient in tool-name.
Given the following code snippet of a vulnerability-type, please generate a tool-name query that could be used to
detect the given vulnerability-type vulnerability. Please provide step-by-step reasoning outlining how you arrive at
the final query, including how you identify user-controlled data and its flow into dangerous methods.

Few-shot You are a security expert in analyzing PHP and JavaScript application vulnerabilities. You are proficient in tool-name.
Given the following code snippet of a vulnerability-type, please generate a tool-name query that could be used to
detect the given vulnerability-type vulnerability. We provide the following two query examples for your reference.

DSL Extraction (§4.1) Grammar You are an expert on the tool-name. You are given the documentation of tool-name. Your task is to analyze the
documentation below to summarize the grammar of the domain-specific query language for the queries of tool-name.
Please summarize the language’s grammar in the Backus-Naur Form.

Semantics You are an expert of the tool-name. You are given the source code implementations of tool-name. Your task is to
analyze the implementations to summarize the functionalities or behaviors of the domain-specific APIs listed below.

Query Generation

(§4.2)
Generation You are an expert in tool-name. You will write a vulnerability detection query to detect vulnerability-type using the

domain-specific language (DSL): {DSL syntax and semantics}. To do this, follow a step-by-step reasoning process to
break down the detection task into smaller subtasks. For each step, generate a corresponding DSL query fragment.
Finally, combine the fragments into a complete query. Here is a vulnerability example in vulnerability-type and a
few query examples.

Refinement You are an expert on tool-name. Your previously generated query for vulnerability-type produced unexpected
errors: syntax errors / execution exceptions / semantic errors. Please refer to the detailed error messages and our
execution state to revise the query.

False-
positives

You are an expert on tool-name. Your previously generated query for vulnerability-type could successfully retrieve
the input vulnerability example. However, it produced a few false positives: {false positive cases}, and the execution
states concerning the false positives are: {execution states}. Please refer to that to revise the query.

Generalization You are an expert on tool-name. Your previously generated query for vulnerability-type could successfully retrieve
the input vulnerability example. However, it is too specific to the input vulnerability example and is potentially
overfitting for the pattern: {overfitting pattern}. Please refer to the program language specifications to generalize
the query to also search other venerability variants beyond the input example.

LLM-based Detection

(§6.3.2)
Single-file
analysis

You are a security expert in analyzing PHP and JavaScript application vulnerabilities. Here are a few vulnerability
examples in vulnerability-type. Please help me evaluate if the code snippet below contains any vulnerabilities in
vulnerability-type. Here is the code to analyze: {code-in-a-file}.
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