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Abstract

In-context learning (ICL)—the ability of transformer-based models to perform new
tasks from examples provided at inference time—has emerged as a hallmark of
modern language models. While recent works have investigated the mechanisms
underlying ICL, its feasibility under formal privacy constraints remains largely
unexplored. In this paper, we propose a differentially private pretraining algo-
rithm for linear attention heads and present the first theoretical analysis of the
privacy–accuracy trade-off for ICL in linear regression. Our results characterize
the fundamental tension between optimization and privacy-induced noise, formally
capturing behaviors observed in private training via iterative methods. Additionally,
we show that our method is robust to adversarial perturbations of training prompts,
unlike standard ridge regression. All theoretical findings are supported by extensive
simulations across diverse settings.

1 Introduction

Attention-based models, particularly large language models (LLMs), have demonstrated remarkable
capabilities in performing in-context learning [Brown et al., 2020, Lieber et al., 2021, Rae et al.,
2021, Black et al., 2022, Bubeck et al., 2023]. This paradigm has transformed human-AI interaction,
enabling AI models to tackle complex tasks without explicit parameter updates. A growing body of
theoretical work has aimed to explain this emergent behavior [Dong et al., 2022, Akyürek et al., 2022,
Garg et al., 2022, Wang et al., 2023, Xie et al., 2022], often using simplified settings. These studies
suggest that transformers can implicitly infer patterns or rules from training examples in the prompt
and apply them to new, related inputs during inference.

The growing use of LLM-based agents in sensitive domains such as medicine [Li et al., 2025,
Dennstädt et al., 2025] and psychology [Ke et al., 2024] underscores the urgent need for robust
privacy safeguards. In particular, model providers must prevent adversaries from extracting sensitive
training data, a risk highlighted by recent work demonstrating that LLMs can memorize and reveal
specific examples when prompted adversarially [Carlini et al., 2021, 2022, Tirumala et al., 2022].
A principled approach to mitigating such leakage is differential privacy (DP) [Dwork et al., 2006],
which ensures that an algorithm’s output remains nearly unchanged when a single training point is
modified. This is typically achieved by injecting calibrated noise to limit individual influence.

However, integrating privacy-preserving mechanisms into the pretraining process of a transformer
inevitably degrades the downstream performance of in-context learning on test prompts. This trade-
off motivates a rigorous study of the cost of privacy of in-context differentially-private algorithms:
what additional error is incurred at test time?
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1.1 Main Results

We study the effect of differentially-private pretraining on in-context learning (ICL) for linear regres-
sion, where each data point is a noisy linear response to input features. We propose a differentially-
private pretraining algorithm for a linear attention head that performs ICL—predicting the response
for a query input by attending to a sequence of labeled input-output examples. The model is trained
on N prompts, each containing L feature-response pairs sampled from a noisy linear model, and
optimized to minimize squared prediction error on the query token. To enforce privacy, we apply
the Gaussian mechanism—gradient clipping followed by additive noise—commonly used in private
empirical risk minimization [Dwork et al., 2006, Chaudhuri et al., 2011, Abadi et al., 2016, Cai et al.,
2021]. Our method, NoisyHead (Algorithm 1, Section 3), formalizes this approach.

We define the cost of privacy as the difference, between attention heads trained with and without
privacy constraints, in average prediction error of the response to a query token from a held-out test
prompt. Our main theoretical result characterizes how the cost of privacy scales with the number of
training prompts N , the prompt length L, the token dimension D, and the privacy parameters (ε, δ).
We state it informally below:

Theorem 1.1 (Informal). In the low dimensional regime, when L and
√
N are asymptotically of

same order and D = O(1), the cost of privacy satisfies

Cost of Privacy ≲
1

N3/2L2

log(1/δ)

ε2
.

In the high dimensional regime, when N/D2 = O(1) and L/D = O(1), the cost of privacy scales as

Cost of Privacy ≲
D2

N2L2

log(1/δ)

ε2
,

up to polylog factors.

A formal version of this result is presented in Theorem 4.2, followed by a detailed discussion of its
implications. The theorem highlights that the cost of privacy exhibits fundamentally different behavior
in the low- and high-dimensional regimes. In the low-dimensional setting, the minimax cost of privacy
for learning a linear model from L labeled data points is known to scale as (εL)−2 · log(1/δ), as
established in Cai et al. [2021]. The result above shows that leveraging contextual data reduces this
cost to N−3/2(εL)−2 · log(1/δ). However, because test-time prediction requires learning an unseen
coefficient vector w, we do not achieve the rate N−2(εL)−2 · log(1/δ), which would be expected if
the coefficient was identical across all training and test prompts. In contrast, in the high-dimensional
regime, where the feature dimension scales with the number of prompts N , we incur an additional
multiplicative factor of

√
N in the denominator due to the increased complexity of the learning

problem.

We also show that our private pretraining procedure is more robust to adversarial perturbations of
training prompts than its non-private counterpart. When a fraction of prompts are corrupted, the
prediction risk on test instances remains significantly more stable under our method — a property
especially relevant given recent concerns about adversarial attacks in LLMs [Anwar et al., 2024].

Our key contributions are as follows:

(1) We propose a differentially-private pretraining algorithm (NoisyHead) based on the Gaussian
mechanism for training linear attention heads to perform in-context learning in linear regression
(see Algorithm 1). Our method is motivated by the differentially-private stochastic gradient descent
algorithm [Abadi et al., 2016], containing a tuned noise-injection at the gradient steps.

(2) We provide a detailed theoretical analysis of the excess risk incurred by enforcing differential
privacy during pretraining in Theorem 4.1. In particular, it characterizes the privacy–utility trade-off,
quantifying the impact of privacy constraints on the prediction error of NoisyHead across any number
of iterations T of the algorithm. This trade-off exhibits dichotomous behavior depending on how the
feature dimension D scales with the number of training samples N . We identify two distinct regimes:
one where D = O(logN) and another where N/D2 = O(1). These lead to qualitatively different
error decay rates with respect to N , L, and D, as formalized in Theorem 4.2. In the over-parametrized
setting when N,L2, D2 are asymptotically of the same order, we show that there is a delicate interplay
between the number of training iterations and the generalization error on unseen prompts. Due to the
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injection of noise at each iteration, longer training can degrade generalization, necessitating careful
selection of the number of optimization steps. This highlights the importance of “early stopping” for
the algorithm. See Proposition 4.1 and the following remark for related discussion.

(4) We establish that NoisyHead exhibits a notable robustness property under adversarial perturba-
tions to the training data, particularly during the pretraining stage. Compared to the baseline method
proposed in Lu et al. [2024], our approach shows significantly less degradation in generalization error
in the presence of such perturbations. In the baseline setting, where the linear attention module is
pretrained using ridge regression, even moderately large perturbations can induce a distributional
shift in the training data, leading to inaccurate estimation of model weights and consequently poor
generalization. In contrast, NoisyHead incorporates a truncation mechanism that clips responses,
predictors, and weights within prescribed compact sets. This simple yet effective step restricts the
influence of corrupted or outlying data points, enhancing robustness to adversarial noise introduced
during training. Theoretical support for this robustness is provided in Theorem 5.1.

(5) We conduct a comprehensive empirical study to validate the theoretical predictions of our
analysis. In both low- and high-dimensional regimes (Section 6.1), we demonstrate that the excess
prediction risk of NoisyHead decays with increasing sample size and privacy parameter, consistent
with the rates derived in Theorem 4.2. Moreover, in the overparameterized regime (Section 6.2), our
experiments reveal a distinct phase transition in the generalization error: initially decreasing due
to optimization, but eventually increasing due to cumulative noise from differential privacy. This
phenomenon, visualized in Figure 2, substantiates the theoretical trade-off outlined in Proposition 4.1
and underscores the critical role of early stopping. Finally, robustness experiments (Section 6.3)
confirm that NoisyHead maintains stable performance under adversarial perturbations, while ridge-
based pretraining degrades significantly. These results highlight the practical utility of our method
and affirm the relevance of our theoretical contributions in realistic settings.

1.2 Related literature and notations

Since its introduction by Dwork et al. [2006], differential privacy has become a cornerstone of
privacy-preserving machine learning, inspiring a wide range of algorithms across classical and deep
learning tasks [Cai et al., 2021, Wang and Xu, 2019, Gu et al., 2024, Jain and Thakurta, 2013, Ni et al.,
2016, Ji et al., 2019, Abadi et al., 2016, Feldman et al., 2018]. In parallel, recent work has explored
the in-context learning (ICL) capabilities of transformers, demonstrating that pretraining enables
them to emulate diverse algorithms—including ridge regression, generalized linear models, Lasso,
and neural networks—purely from contextual examples [Dai et al., 2023], with theoretical insights
provided for linear attention models by Zhang et al. [2024] and Lu et al. [2024]. Despite significant
advances in both areas, their intersection remains underexplored: while prior work has investigated
differentially-private pretraining for transformers [Majmudar et al., 2022, Yu et al., 2023, Li et al.,
2022] and evaluated the privacy properties of language models [Hoory et al., 2021, Anil et al., 2021],
the impact of privacy on downstream ICL performance has not been theoretically analyzed. This
paper bridges this gap by providing the first rigorous analysis of how imposing differential privacy
during pretraining influences the in-context learning capabilities of attention-based models.

1.2.1 Notation

In this paper, we denote the set {1, . . . , n} by [n]. d-dimensional Euclidean space is Rd, with Rd
>0

the positive orthant. The set of m× n real matrices is Rm×n, and Sd−1 denotes the d-dimensional
unit sphere. The Frobenius norm of a matrix A is ∥A∥F , and ⟨·, ·⟩ denotes the standard inner product.
We write an ≲ bn if an ≤ Cbn for some constant C > 0, and an ≍ bn if C1bn ≤ an ≤ C2bn for
some constants C1, C2 > 0. We also write an ≍ bn as an = Θ(bn).

2 Problem Formulation

We consider a set-up where we observe a sequence of labeled tokens {(yi, xi) : i ∈ {1, . . . , L}}, for
xi

i.i.d∼ U(SD−1) and yi = w⊤xi + ϵi, with w ∼ ND(0, ID) and ϵi
i.i.d∼ N (0, τ2). Here U(SD−1)

denotes the uniform distribution on the D-dimensional hypersphere and Nk(µ,Σ) denotes the k
dimensional normal distribution with mean µ and covariance Σ. For a test token (yL+1, xL+1)
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generated independently from the same distribution as the training tokens, we want to predict yL+1

based on xL+1.

This setting was used by Zhang et al. [2024] and Lu et al. [2024], both of whom considered the
noiseless case of τ2 = 0. As proposed therein, we embed the prompt as

E =

(
x1 x2 · · · xL xL+1

y1 y2 · · · yL 0

)
∈ R(D+1)×(L+1). (2.1)

This matrix is passed through a single linear attention head as follows:

f(E; θ) = E +WPV E · E
⊤WKQE

L
, (2.2)

where θ = (WPV ,WKQ) with WPV ∈ R(D+1)×(D+1) and WKQ ∈ R(D+1)×(D+1). The prediction
of the query response is given by the (D + 1, L + 1)-th entry of f(E; θ); that is, ŷL+1(E) =
(f(E; θ))(D+1,L+1). We aim to learn the parameters of the model f(E; θ) by pretraining the model
based on N training prompts {(yk,1, xk,1), . . . , (yk,L, xk,L), (yk,L+1, xk,L+1)}Nk=1, where the L+1-
th token is the query token. Putting the prompts into matrices E1, . . . , EN , we have

Ek :=

(
xk,1 xk,2 · · · xk,L xk,L+1

yk,1 yk,2 · · · yk,L 0

)
∈ R(D+1)×(L+1).

Now we minimize the standard loss function L(θ) = 1
2N

∑N
i=1(ŷL+1(Ek)−yk,L+1)

2. The predictor
(f(E; θ))(D+1,L+1) can be simplified by linear algebra to

ŷL+1 := [(f(E; θ)[D+1,L+1]] =
[(
wPV

21

)⊤
wPV

22

](EE⊤

L

)[ WKQ
11(

wKQ
21

)⊤]xL+1, (2.3)

where we have used the matrices WPV and WKQ, partitioned as follows:

WPV =

[
WPV

11 wPV
12(

wPV
12

)⊤
wPV

22

]
, WKQ =

[
WKQ

11 wKQ
12(

wKQ
12

)⊤
wKQ

22

]
,

with WPV
11 ,WKQ

11 ∈ RD×D, wPV
21 , wKQ

21 ∈ RD, and wPV
22 , wKQ

22 ∈ R. The quadratic form (2.3) can
be expanded to yield

ŷL+1 =
1

L
⟨xL+1, Q

(1)
W +Q

(2)
W ⟩, (2.4)

where Q(1)
W := wPV

22 WKQ
11

∑L
i=1 yixi +wPV

22 wKQ
12

∑L
i=1 y

2
i and Q

(2)
W := WKQ

11

∑ℓ+1
i=1 xix

⊤
i w

PV
12 +

wKQ
12

∑ℓ
i=1 yix

⊤
i w

PV
12 . Following Yu et al. [2023] and Zhang et al. [2024], we adopt the assumption

that wKQ
12 = 0 and wPV

12 = 0 throughout this paper. This particular choice is also explained in
Section A.1. Let us define

Γ = wPV
22 WKQ

11 ∈ RD×D, and Z =
1

L
xL+1

L∑
i=1

yix
⊤
i ∈ RD×D. (2.5)

With this definition of Γ and Z, the predictor ŷ simplifies to the inner product ŷ = ⟨Γ, Z⟩, and we
train the model using the following regularized squared error loss:

Lλ(Γ) :=
1

N

N∑
i=1

(yi − ⟨Γ, Zi⟩)2 + λ∥Γ∥2F . (2.6)

The solution to this optimization problem is denoted by Γ⋆ ∈ RD×D, whose vectorized form is given
by

vec(Γ⋆;E1, . . . , EN ) =

(
λNI +

N∑
k=1

vec(Zk) vec(Zk)
⊤
)−1 N∑

k=1

yk,L+1 vec(Zk). (2.7)
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Algorithm 1 In-Context Differentially private pretraining of linear attention head (NoisyHead)

Input: Training prompts (Ek)k∈[N ] ∈ R(D+1)×(L+1); noise scale σ; privacy parameters ε, δ;
clipping parameter C ≥ 0; projection parameters R,G ≥ 0; regularization parameter λ := λ(n, d) ≥
c > 0; number of iterations T ; step-size η0; and initialization Γ0 ∈ RD×D with ∥Γ0∥F ≤ R.

• For k ∈ [N ], Z̃k := ΠG

(
L−1xk,L+1

∑L
i=1 clipC(yk,i)x

⊤
k,i

)
.

• For t in 0, 1, . . . , T − 1:

– Generate zt ∈ RD×D such that vec(zt) ∼ ND2

(
0, 2η20

T 2σ2

ε2N2 log
1.25T

δ ID2

)
.

– Do Γt+1 = ΠR

(
(1−2λη0)Γ

t−η0N
−1
∑N

k=1

(
⟨Γt, Z̃k⟩ − clip(yk,L+1)

)
Z̃k+zt

)
.

Output: Γ̂ := ΓT .

3 Differentially Private Pretraining

In this section, we present our differentially-private pretraining program of a linear attention network.
Before proceeding to the main algorithm, we recall the definition of differential privacy.

Definition 3.1. A randomized algorithm M(·) over a set of prompts is said to be in-context (ε, δ)-
differentially private if for any two sequences of prompts D = (E1, . . . , EN ) and D′ = (E′

1, . . . , E
′
N )

differing in at most one entry, and for all measurable subsets W of outputs,

P[M(D) ∈ W] ≤ eεP[M(D′) ∈ W] + δ.

The probability is taken over the internal randomness of the mechanism M, while the prompt
sequences D and D′ are treated as fixed. This definition ensures that the inclusion or exclusion of any
individual data point has a limited effect on the algorithm’s output, thereby preserving privacy. A
standard approach to enforce DP in the iterative training of machine learning models (e.g. gradient
descent) is to inject noise at each update step. The cumulative effect of this noise is carefully
calibrated to satisfy user-specified (ε, δ)-differential privacy guarantees but minimize degradation in
model performance. This technique, introduced as differentially private stochastic gradient descent,
has been echoed in recent works [Abadi et al., 2016, Cai et al., 2021, Zhang et al., 2021, Gopi et al.,
2021, Majmudar et al., 2022, Bombari and Mondelli, 2025]. In what follows, we improvise the
aforementioned differentially-private training strategy while using the gradient descent to minimize
the regularized loss Lλ(Γ) over a sequence of prompts:

Γt+1 = (1− 2λη0)Γ
t − η0

N

N∑
k=1

(
⟨Γt, Zk⟩ − yk,L+1

)
Zk,

where η0 is the learning rate, and λ is the regularization parameter.

To ensure privacy, we inject carefully calibrated Gaussian noise into each update step. The variance
of this noise is set proportional to the ℓ2-sensitivity of the update, which measures the maximum
change in the update (in Frobenius norm) resulting from the change of a single training example.
Formally, the ℓ2-sensitivity at iteration t is defined as:

∆(Γ̂) =
∥∥∥Γ̂(E1, . . . , EN )− Γ̂(E′

1, . . . , E
′
N )
∥∥∥
F
, (3.1)

where the datasets (E1, . . . , EN ) and (E′
1, . . . , E

′
N ) differ in exactly one training prompt. Intuitively,

privacy is preserved because an adversary observing the output of the algorithm (i.e., the final
parameters) cannot reliably distinguish whether a change in the result is due to the presence or
absence of a particular training prompt or due to the added random noise. However, in the problem
setup considered in this paper, the ℓ2-sensitivity of the gradient updates may not be uniformly bounded
across all possible sequences of training prompts due to the unbounded nature of the weights w
and the noise ϵ. To mitigate this, we clip the responses yk and project the gradient updates Γt onto
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compact sets. With these modifications, our differentially-private pretraining algorithm is presented
in Algorithm 1, where the clipping and projection operators are defined as follows:

clipC(x) := arg min
y∈[−C,C]

∥x− y∥2, ΠR(X) := arg min
Y ∈R(D+1)×(D+1)

∥Y ∥F≤R

∥X − Y ∥F .

Theorem 3.2. Given the set of hyperparameters (C, R,G) ∈ R3
>0, Algorithm 1 is (ε, δ)-differentially

private if the noise scale σ ≥ 2G(C +RG).

Theorem 3.2 (which we prove in Section A.2) hints at the minimum amount of noise to be injected in
the gradient descent step to achieve differential privacy. In particular, the amount of noise depends
crucially on the projection parameters C and R. On the other hand, the higher the noise variance σ2,
the more we expect the predictive performance of the differentially-private estimate Γ̂ to degrade
compared to the ridge estimate Γ⋆ (as defined in (2.6)). However, it can still be argued that performing
an appropriate number of iterations, governed by an “early stopping criterion”, can improve accuracy.
In fact, the additional error from noise injection can be made much smaller than the overall gradient
descent error by properly tuning the hyper-parameters. This angle is explored in detail in Section 4.

4 Cost of In-Context Differential Privacy

In this section, we rigorously characterize the additional error incurred due to enforcing privacy
constraints in Algorithm 1. Let Etest be a test prompt and ytestL+1 be the corresponding query response.
Let us consider the prediction error in the test prompt given by

Ltest(Γ) = (ytestL+1 − ⟨Γ, Z(Etest)⟩)2,

where Z(Etest) is constructed from Etest as described in (2.5). We bound Ltest(Γ) by the following
two types of error terms:

Ltest(Γ̂) ≤ 2Ltest(Γ
⋆) + 2(⟨Γ̂, Z(Etest)⟩ − ⟨Γ⋆, Z(Etest)⟩)2.

While Ltest(Γ
⋆) is the prediction error of the non-private procedure, the extra error is proportional to

(⟨Γ̂, Z(Etest)⟩ − ⟨Γ⋆, Z(Etest)⟩)2. The following theorem characterizes this extra error.

Theorem 4.1. Consider the pretrained weights Γ̂ generated by running NoisyHead (Algorithm 1)
on prompt set (E1, . . . , EN ) , ensuring (ε, δ) differential privacy for T iterations with a fixed stepsize
η0 ∈ ( λ

c(2λ+G2)2 ,
λ

(2λ+G2)2 ) for some large c > 1, and Γ⋆ generated by solving the ridge regression
described in (2.6). If the clipping and projection parameters are set as:

ν = 1 + τ2, C =
√
2ν log(NL/κ), G =

C√
L

(
1 +

(log(N/κ))1/2

D

)
,

G0 =
C√
L

(
1 +

(log(1/κ))1/2

D

)
, and R ≍ λ−1C2

√
N

L

(
1 +

(log(1/κ))1/2

D

)
, (4.1)

then for a test prompt E independent of (Ek)k∈[N ],

(⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩)2 ≤ G2
0

(
(1− η0λ)

TR2 + σ2η20D
T 2 log(2T/δ)

N2ε2

)
. (4.2)

with probability greater than 1− c1 exp(−c2D)− 4κ, where Z is formed via E as in (2.5).

The above theorem is proved in Section A.3.
Remark 4.1. The “cost of privacy” on the right hand side of (4.2) naturally decomposes into two
components. The first arises from the optimization error of gradient descent, hereby referred to
as the “cost of descent”, and is given by (1 − η0λ)

T , where η0 is the step size, λ is the strong
convexity parameter, and T is the number of gradient steps. The second component stems from
the noise injected at each iteration to ensure DP, and takes the form σ2η20D · T 2 log(2T/δ)

N2ε2 , where σ2

denotes the variance of the added noise, D is the feature dimension, N is the number of training
samples, and (ε, δ) are the privacy parameters. This term will henceforth be referred to as the “cost
of noise injection”. The trade-off between these two terms plays a crucial role in determining the
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generalization error. While the optimization error decays exponentially with T , the privacy-induced
error increases quadratically. Therefore, it is essential to choose an optimal stopping time for the
gradient descent iterations. This optimal stopping time depends on the problem hyper-parameters η0,
λ, and the feature dimension D. In the following theorem (proved in Section A.4), we characterize
how the interplay between the dimensionality and the stopping time governs the behavior of the
generalization error in different settings of interest.
Theorem 4.2. Assume N ≳ D2L−2, and suppose the noise scale σ in Algorithm 1 satisfies σ ≍
2G(C + RG) where (C, R,G) is the set of hyper-parameters. Then, under the assumptions and
hyper-parameter specifications of Theorem 4.1, the following assertions hold:

(i) (Low-dimensional setting) If κ ≳ exp(−D2), and D2 ≲ log(NL), then, after T =
log(N2LD3)

log((1−η0λ)−1) many iterations of Algorithm 1 with η0 ≍ λ ≍ 1 such that η0λ ∈ (0, 1), the

cost of privacy of Γ̂(= ΓT ) behaves as follows:

(⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩)2 ≲ ν5
log10(NL)

NL3

(
1 +

log(1/δ)

ε2

)
, (4.3)

with probability at least 1− c1 exp(−c2D)− 4κ.

(ii) (High-dimensional setting) If κ ≳ (NL)−1, and D2 ≳ log(NL), then for some r (possibly
depending on N,L and D), let T = log r

log((1−η0λ)−1) . If η0 < λ
(2λ+G2)2 , then

(⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩)2

≲
Nν5 log3(NL)

L2λ2r

(
1 +

D r log3 r

N3

(
1 + log2(NL)

N

L2λ2

)
log(1/δ)

ε2

)
, (4.4)

with probability at least 1− c1 exp(−c2D)− 4κ.
Remark 4.2. In the low-dimensional setting with a specific choice of T , the cost of gradient descent
is negligible, and the cost of noise injection becomes the dominant contributor to the overall cost
of privacy. Notably, the restriction on D renders it irrelevant in determining the cost of privacy in
this regime. On the other hand, among the many possible high-dimensional scenarios, a particularly
interesting case is the over-parameterized regime where N ≍ L2 ≍ D2.
Proposition 4.1. If N ≍ L2 ≍ D2, then with λ ≍ N

D , it holds that(
⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩

)2
≲ ν5 log3(NL)

D2

NL2r

(
1 + r log3 r · D

N3
· log(1/δ)

ε2

)
, (4.5)

with probability at least 1 − c1 exp(−c2D) − 4κ. In particular, when r ≍ N , or, equivalently,
T ≍ logN, it holds that (

⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩
)2

≲ ν5 log3(NL)
D2

N2L2
(4.6)

with probability at least 1− c1 exp(−c2D)− 4κ.

This result is proved in Section A.5. The choice of λ in Proposition 4.1 is standard and also appears
in the ridge regression analysis of Lu et al. [2024]. Equation (4.5) highlights the trade-off between
the two components of the cost of privacy, as previously discussed in Remark 4.1. For fixed values of
N , L, and D, the test risk of the estimates generated by NoisyHead decreases with the number of
iterations T at a rate of Θ(e−T ) whereas the test error increases at a rate of Θ(T 3). As a result, in
this high-dimensional regime, the optimal stopping point for pretraining is T = Θ(logN) iterations.
This phenomena is explored numerically in Section 6.1.

5 Robustness properties of NoisyHead

In this section, we demonstrate that NoisyHead is inherently robust to adversarial perturbations to
the training data. Specifically, we show that such perturbations during the pretraining stage affect the
generalization error of our method significantly less than the baseline approach proposed in Lu et al.
[2024].
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Consider a set of training prompts E1, . . . , EN , and suppose a malicious attacker aims to degrade
performance on an independent test prompt E by perturbing the training data, thereby inducing
inaccurate estimation of the weights in the attention module. To disrupt the training process, the
attacker selects a prompt uniformly at random from the training set, say Ei, and replaces it with a
perturbed version,

Ebad,i(µ, α) =

(
x′
i,1 x′

i,2 · · · x′
i,L x′

i,L+1

y′i,1 y′i,2 · · · y′i,L 0

)
∈ R(D+1)×(L+1), (5.1)

where the perturbed components are given by x′
i,k = xi,k + µ for all k ∈ [L+ 1] and y′i,ℓ = yi,ℓ + α

for all ℓ ∈ [L]. Let the parameter trained by the NoisyHead algorithm acting on the perturbed
set of prompts (E1, . . . , Ei−1, Ebad,i, Ei+1, . . . , EN ) be Γ̂bad. Correspondingly, let the parameter
trained on the original, unperturbed prompts be Γ̂. Let the ridge regression solutions of (2.7) on
the “perturbed” and “original” set of prompts, be denoted by Γ⋆

bad and Γ⋆, respectively. Then the
following theorem characterizes the robustness properties of the estimates generated by NoisyHead.
Theorem 5.1. Consider the NoisyHead algorithm with the hyper-parameter specifications as in
Theorem 4.1. Further, consider an adversarial prompt perturbation as in (5.1), with µ, α satisfying

α2µ4 ≤ cuNLλ and α2µ2 ≥ cℓC2L−1/2(1 ∨ λNR2L−1/2), (5.2)

for large enough constant cu > 0 and small enough constant cℓ > 0. If κ > Ne−D2

and λ > C2L−1,
then for an “unperturbed” test prompt E and the corresponding Z from (2.5), it holds that

(⟨Γ̂, Z⟩ − ⟨Γ̂bad, Z⟩)2 ≲
N

L2
log2(NL/κ) <

α2µ2

Nλ
≤ (⟨Γ⋆, Z⟩ − ⟨Γ⋆

bad, Z⟩)2, (5.3)

with probability at least 1− c1 exp(−c2D)− 5κ for constants c1, c2 > 0.
Remark 5.1. Theorem 5.1 (proved in Section A.6) shows that under bounded perturbations, pretraining
with NoisyHead yields generalization error closer to that from the unperturbed setup than does ridge
regression. If λ ≍ 1 and D2 ≳ logN , the bounds in (5.2) simplify to N2

L2 ≲ α2µ2 ≤ α2µ4 ≲ NL.
In the regime N

L2 log
2(NL) → 0, an adversary can choose α, µ such that α2µ2 → ∞ while still

satisfying α2µ4 ≲ NL, leading to (⟨Γ⋆, Z⟩ − ⟨Γ⋆
bad, Z⟩)2 P−→ ∞. In contrast, NoisyHead ensures

(⟨Γ̂, Z⟩ − ⟨Γ̂bad, Z⟩)2 P−→ 0 even under such adversarial conditions, as confirmed by experiments in
Section 6.3.

6 Numerical experiments

We evaluate the empirical behavior of the NoisyHead algorithm. Section 6.1 examines how pre-
diction risk changes under different privacy constraint strengths. Section 6.2 explores the trade-off
between optimization and noise under different iteration counts. Section 6.3 validates the robust-
ness of NoisyHead to adversarial perturbations. All code to reproduce the figures can be found at
https://github.com/kingsleyyeon/DP.

Figure 1: Excess risk of NoisyHead for the low-
dimensional set-up with D = 5.

Figure 2: Interplay between the cost of descent
and the cost of privacy in the overparameterized
setting with N = 1000 and ε = 0.8.
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6.1 Effect of privacy on prediction risk

We evaluate the impact of privacy on ICL in a low-dimensional setting with D = 5. Full simulation
details, as well as high-dimensional experiments, are provided in Appendix 6.1. In this experiment,
we vary the number of prompts N and privacy level ε. We use T = logN5/2/ log(1− λη0) and set
other parameters according to Theorem 4.1. The excess test risk, averaged over B = 500 trials, is
measured relative to that of ridge regression as Etest = 1

ntest

∑ntest

k=1

(
⟨Γ̂− Γ⋆, Zk,test⟩

)2
, where Γ̂

is the DP estimate and Γ⋆ is the ridge regression solution. As shown in Figure 1, the excess risk
decreases with N and increases under stricter privacy, aligning with Theorem 4.2.

6.2 Effect of early stopping in over-parametrized setting

Next, we fix N = 1000 and study how the test error evolves with the number of iterations T , in
an over-parameterized regime with L ≍ D ≍

√
N and ε = 0.8. For each T , we average test error

over 500 trials, comparing that of the differentially-private training with that of non-private gradient
descent. Figure 2 illustrates a phase transition in DP training: first the error decreases with T as
optimization improves the solution, but then it passes a critical point and the error rises as injected
noise accumulates. Early stopping around T ≈ 140 optimally balances under-optimization and noise
accumulation in this setting. This validates the need for early stopping under privacy constraints.

Figure 3: Comparison of prediction error under adversarial perturbations for different values of c.
Left: c = 2; Right: c = 4. The differentially private estimator (NoisyHead) consistently outperforms
the ridge estimator (Γ⋆) as the perturbation magnitude α = cNp increases.

6.3 Robustness of NoisyHead

We test robustness by changing one training prompt with the additive perturbation α = cNp (as
described in Section 5) for c ∈ {2, 4} and p ∈ [2, 2.1], while fixing N = 5000, L = 500, and D = 5.
We compare the prediction error of NoisyHead and ridge regression on 500 test prompts across 500
trials. Figure 3 shows that while ridge regression is increasingly affected by larger perturbations,
NoisyHead remains robust, demonstrating its resilience to adversarial training examples.

7 Conclusion

Maintaining privacy during the pretraining of large language models is an increasingly important
challenge as such architectures become ubiquitous. To the best of our knowledge, this work provides
the first systematic theoretical characterization of differentially-private in-context learning. We
quantify the cost of privacy on the performance of linear attention heads and formally justify the
widely observed phenomenon of early stopping [Zhang et al., 2023, Majmudar et al., 2022, Bu
et al., 2024, Bombari and Mondelli, 2025] in the context of training attention-based models under
differential privacy—previously unexplored even for simplified architectures using the attention
mechanism. Recent studies [Dai et al., 2023, Vladymyrov et al., 2024, Liang et al., 2025] show that
multi-layered transformers can emulate gradient-based learning. Our framework offers a pathway
toward understanding the theoretical behavior of such models when executing privacy-preserving
pretraining, with potential implications for mitigating the “regurgitation” Carlini et al. [2021] behavior
observed in large language models.
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A Theoretical Details

A.1 Choice of parameters

Yu et al. [2023] provides an intuitive explanation for the behavior of the predictor (2.4). The term
wPV

22 WKQ
11 is approximately equal to E[(X⊤X)−1], capturing the inverse second-moment structure

of the features. The second term does not depend on the features, and the third term is independent of
the labels y. They act as an extra additive term, which can be assumed to have no significant impact
on the final prediction. The fourth term represents the effect of projecting the input features xi onto
the direction wPV

12 in the final prediction. However, since the features are assumed to be isotropic, it
is reasonable to expect that projections onto any particular direction carry no special predictive value.
Consequently, it is justified to assume that wKQ

12 = 0 and wPV
12 = 0, which simplifies the predictor

to:

ŷL+1 =
1

L

〈
xL+1, w

PV
22 WKQ

11

L∑
i=1

yixi

〉
.
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This assumption is further supported by the observation in Zhang et al. [2024], where the authors
show that when the parameters of WPV and WKQ are learned via gradient flow on the average
reconstruction loss E[(ŷ − y)2], initializing with wKQ

12 = 0 and wPV
12 = 0 ensures that the parameter

remains zero throughout training.

A.2 Proof of Theorem 3.2

Consider two datasets of prompts (Ek)k∈[N ] and (E′
k)k∈[N ] that differ in exactly one prompt. Without

loss of generality, assume E1 ̸= E′
1 and Ek = E′

k for all k ≥ 2. The change in the gradient update
due to this single difference is bounded by:

η0
N

(
∥⟨Γ̂, Z̃1⟩Z̃1∥F + ∥⟨Γ̂, Z̃ ′

1⟩Z̃ ′
1∥F + ∥clipC(y1,L+1)Z̃1∥F + ∥clipC(y

′
1,L+1)Z̃

′
1∥F

)
≤ 2η0(RG2 + CG)

N
≤ η0σ

N
, (A.1)

where the final inequality follows from the assumption on σ.

By Lemma 2.5 of Kamath and Ullman [2020], each gradient step in Algorithm 1 is (ε/T, δ/T )-
differentially private. The overall guarantee then follows by composition, using Fact 2.2 of Cai et al.
[2021].

A.3 Proof of Theorem 4.1

Consider the set D1 := {∥Γ⋆∥F ≤ R}. Moreover, denote

Γ̃t+1 = (1− 2λ)Γt − η0N
−1

N∑
k=1

(
⟨Γt, Z̃k⟩ − clip(yL+1)

)
Z̃k.

Clearly, Γt+1 = ΠR(Γ̃
t+1 + zt). Under D1, it is easy to see that

∥Γ̂− Γ⋆∥2F ≤ ∥Γ̃T + zT−1 − Γ⋆∥2F ≤ (1 + C−1
0 )∥Γ̃T − Γ⋆∥2F + (1 + C0)∥zT−1∥2F , (A.2)

where, the choice of the constant C0 ensures

(1 + C−1
0 )κ < 1− η0λ , with κ := 1− 2η0λ+ η20(G

2 + 2λ)2. (A.3)

Further consider the sets D2 :=
{
maxk∈[N ]

∥∥∥∑L
i=1 xk,i

∥∥∥
2
≤ GLC−1

}
, and D3 :={

maxk∈[N ],i∈[L+1] |yk,i| ≤ C
}

. Since ∥xk,L+1∥2 = 1, under the events D2 and D3, it follows
that

max
k∈[N ]

∥∥∥∥∥L−1xk,L+1

L∑
i=1

yk,ix
⊤
k,i

∥∥∥∥∥
F

≤ G, (A.4)

which implies Z̃k = Zk for all k ∈ [N ] by the definition of Zk in (2.5). The sets Di, i = 1, 2, 3 allow
us to bear down the classical theory of convex minimization, and our choice of the parameters R,G
and C will emphasize that these events occur with high probability. In particular, under D := ∩3

i=1Di,
we note the L is λ-strongly convex:

⟨∇ΓL(Γ, (Zk)k∈[N ]),Γ− Γ⋆⟩ ≥ λ∥Γ− Γ⋆∥2F , (A.5)

and the (G2 + 2λ)-smooth:∥∥∇ΓL(Γ, (Zk)k∈[N ])−∇ΓL(Γ′, (Zk)k∈[N ])
∥∥
F
≤ (G2 + 2λ) ∥Γ− Γ′∥F . (A.6)

Therefore, for the term ∥Γ̃T − Γ⋆∥F in (A.2),

∥Γ̃T − Γ⋆∥2F =∥ΓT−1 − η0∇ΓT−1L(ΓT−1, (Zk)k∈[N ])− Γ⋆∥2F ≤ κ∥ΓT−1 − Γ⋆∥2F , (A.7)

where we recall κ from (A.3), and (A.7) employs (A.5) and (A.6). Note that we must require κ < 1,
which makes use of η0 < λ

(G2+2λ)2 . Putting (A.7) back into (A.2), one obtains under D that

∥Γ̂− Γ⋆∥2F ≤ (1 + C−1
0 )κ∥ΓT−1 − Γ⋆∥2F + (1 + C0)∥zT−1∥2F .
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Proceeding recursively, we can show that for all T > 1, we have

∥Γ̂− Γ⋆∥2F ≤ (1− η0λ)
TR2 + (1 + C0)

T−1∑
i=0

(1− η0λ)
T−i−1∥zi∥2F . (A.8)

Since the errors (zi)Ti=1 are independent of the prompts (Ek)k∈[B], an application of Lemma A.2. of
Cai et al. [2021] implies

∥Γ̂− Γ⋆∥2F ≲ (1− η0λ)
TR2 + σ2η20D

T 2 log(2T/δ)

N2ε2
,

with probability at least 1− c1 exp(−c2D) under D. An application of Cauchy-Schwarz inequality
entails

(⟨Γ̂, Z⟩ − ⟨Γ⋆, Z⟩)2 ≤ G2
0

(
(1− η0λ)

TR2 + σ2η20D
T 2 log(2T/δ)

N2ε2

)
(A.9)

with probability at least 1− c1 exp(−c2D) under D ∩ {∥Z∥F ≤ G0}. Now we turn to tackling the
individual events Di, i = 1, 2, 3. For D3, note that if (xi)i∈[L]

i.i.d.∼ U(SD−1) and w ∼ N(0, ID)

independently of xi’s, then (w⊤xi)∼N(0, 1) marginally. Therefore, Lemma A.1 implies

P(D3) ≥ 1− κ, for C =
√
2ν log(NL/κ). (A.10)

Furthermore, with G ≍ C√
L

(
1 +

(
log(N/κ)

D2

)1/4)
, from Lemma A.2 we get that

P(D2) ≥ 1− κ. (A.11)

Finally, noting that

N∑
k=1

yk,L+1 vec(Zk) ≤ max
k∈[N ]

|yk,L+1|
(

max
k∈[N ],i∈[L]

|yk,i|
)

1

L

∑
k,i

vec(xk,L+1x
⊤
k,i),

an application of Lemma A.1 on (2.7), in conjunction with Lemma A.3, yields

P(D1) ≥ 1− κ, with R = λ−1C2

√
N

L

(
1 +

(
log(1/κ)

D2

)1/4
)
. (A.12)

Finally, similar to Lemma A.2 it can be argued that

P(∥Z∥F ≤ G0) ≥ 1− κ, for G0 ≍ C√
L

(
1 +

(
log(1/κ)

D2

)1/4)
. (A.13)

Summarizing (A.10)-(A.12), it holds that

P(D ∩ {∥Z∥F ≤ G0}) ≥ 1− 4κ. (A.14)

Putting these bounds back into (A.9), we invoke (A.14) to conclude (4.2).

A.4 Proof of Theorem 4.2

(i) Low-dimensional setting. Recall T = log(N2LD3)
log((1−η0λ)−1) . Note that, with κ > e−D2

, we have

G0 ≲ C/
√
L, R ≲ λ−1C2

√
N/L, η0 ≍ λ

(λ+G2)2 ≲ 1/λ and λ ≍ 1 ≍ η0 from (4.1).
Hence, the first term of (4.3) can be bounded as

G2
0(1− η0λ)

TR2 ≲
C6

NL3D3
≲ ν3 log3

NL

κ

1

NL3D3
.

Moreover, from log( 1κ ) ≲ D2 ≲ log(NL), we have that

G2
0(1− η0λ)

TR2 ≲ ν3(log3 NL) · 1

NL3
. (A.15)

14



On the other hand, write the second term as

G2
0σ

2η20D
T 2

N2

log(2T/δ)

ε2
≲

C2

L
(CG+RG2)2D

T 3

N2

log(1/δ)

ε2
. (A.16)

Clearly, for σ, one obtains,

CG+RG2 ≲
C2

√
L

(
1 +

(
log(NL)

D2

)1/2
)

+ C2

√
N

L

C2

L

(
1 +

(
log(NL)

D2

))
≲ ν2 log3(NL)

√
N

LD2
,

where the second inequality is attained by using log(N/κ) = logN + log 1/κ ≲ logN +
D2 ≲ logNL, and the final assertion follows from (logNL)/D2 >> (

√
logNL)/D.

Therefore, from (A.16), the second term is bounded by,

≲
ν5 log7(NL)

L
· N

L2D4
·D · log

3(N2LD3)

N2
· log(1/δ)

ε2

≲
ν5 log7(NL) log3(N2LD3)

NL3D3
· log (1/δ)

ε2

≲
ν5 log10(NL)

NL3
· log(1/δ)

ε2
. (A.17)

Combining (A.15) and (A.17) yields the proof for the low-dimensional case.

(ii) High-dimensional setting. Here, κ ≳ (NL)−1, and D2 ≳ log(NL) implies that
log(NL/κ)

D2 ≲ 1. We also have G ≲ C/
√
L, G0 ≲ C/

√
L and, R ≲ λ−1C2

√
N/L. The first

term of (4.4) can be bounded as

G2
0R

2(1− η0λ)
T ≲

C2

L
· C4N

L
· 1

λ2
· 1
r
≲ ν3 log3(NL) · N

L2λ2r
. (A.18)

Furthermore, for the second term, observe that η0 ≲ 1/λ, and

σ = G(C +RG) ≍ C2

√
L

+ C2

√
N

L
· 1
λ
· C

2

L
=

C2

√
L

(
1 +

√
N

λL
C2
)
.

Therefore, the second term can be bounded as

G2
0σ

2η20D
T 3

N2
≤ C2

L
· σ2 1

λ
D · T

3

N2
≤ C2

L
· log3 r · D

N2λ2
· σ2

≤ C2

L
log3 r

D

N2λ2
· C

4

L

(
1 +

N

λ2L2
C4

)
≤ C6D

N2L2λ2

(
1 +

N

λ2L2
log2(NL)

)
log3 r

≲ ν3
N log3 r

L2λ2
log3 NL

D

N3

(
1 +

N

λ2L2
log2 NL

)
.

(A.19)

Assertions (A.18) and (A.19) conclude the proof.

A.5 Proof of Proposition 4.1

From λ ≍ N/D ≍
√
N , it follows that D2

NL2 ≍ N
L2λ2 ≍ N−1, and hence, log2(NL)

λ2 ≲ 1. Therefore,
from (4.4), (4.5) follows trivially. Further, the first term in (4.5) dominates as long as r log3 r ≪ N3

D ,
yielding (4.6) when r ≍ N .
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A.6 Proof of Theorem 5.1

Recall the definition of G0 and R from Theorem 4.1. In view of κ > N exp(−D2), (A.4) and
∥Γ̂∥F ∨ ∥ΓT bad∥F ≤ R, using (A.13), it holds that

(⟨Γ̂, Z⟩ − ⟨Γ̂bad, Z⟩)2 ≤ C2

L
R2, (A.20)

with probability at least 1− κ. On the other hand, for the analysis of the ridge estimates, recall (2.7).
Clearly, from Lemma A.3, it holds with probability ≥ 1− 2κ that∥∥∥∥∥

N∑
k=1

vec(Zk) vec(Zk)
⊤

∥∥∥∥∥
F

≤ C2N

L
< Nλ, (A.21)

where the final equality follows from λ > C2L−1. Moreover, from Lemma A.2, it holds with
probability ≥ 1− 2κ that∥∥vec(Zbad,i) vec(Zbad,i)

⊤∥∥
F
≲

C2

L
+

α2µ4

L
≍ α2µ4

L
≲ Nλ, (A.22)

where the first part of the inequality follows from the lower bound on α2µ2 and the second inequality
follows from the upper bound on α2µ4 as stated in (5.2). Consequently, combining (2.7) with (A.21)
and (A.22) jointly yields,

∥ vec(Γ⋆
bad − Γ⋆)∥ ≥

∥y′i,L+1 Vec(Z
′
i)− yi,L+1 Vec(Zi)∥
Nλ

(A.23)

with probability at least 1 − 4κ. Since ∥yi,L+1 vec(Zi)∥ ≤ C2
√
L

with probability at least 1 − κ,
invoking (5.2), yet another application of Lemma A.2 yields

∥y′i,L+1 Vec(Zbad,i)− yi,L+1 Vec(Zi)∥ ≥ α2µ2 (A.24)

with probability at least 1− κ. Since (5.2) also implies α2µ2

Nλ > R2 C2

L , from (A.20), (A.22), (A.23),
and (A.24), we obtain (5.3).

A.7 Auxiliary Lemmas

The following lemmas are instrumental to proving our theorems 4.1 and 5.1, and hereby are listed. In
particular, Lemma A.1 and A.3 follows using Hoeffding’s inequality and a union bound argument.
Lemma A.1. If zkj ∼ N(0, 1 + τ2) k ∈ [N ], j ∈ [L] are not necessarily independent, then

P
(
max
k,j

|zij | ≲

√
(1 + τ2) log

(
4NL

κ

))
≥ 1− κ.

For the Lemmas A.2 and A.3, note that for any vector x ∈ RD, the Euclidean norm ∥x∥2 =

supa∈SD−1 a⊤x. For any fixed a ∈ SD−1 and k ∈ [N ], a⊤
∑L

i=1 xk,i is a sub-Gaussian random
variable with variance proxy L/D . Therefore

P

[∣∣∣∣a⊤ L∑
i=1

xk,i

∣∣∣∣ >√L/D t

]
≲ exp

(
−t2

)
.

Therefore, using a covering number argument similar to Theorem 1.19 of Rigollet and Hütter [2023]
one can show the following.

Lemma A.2. Suppose (xk,i)k∈[N ],i∈[L]
i.i.d.∼ U(SD−1). Then,

P
(

max
k∈[N ]

∥
L∑

i=1

xk,i∥2 ≲
√
L(1 +D−1/2(log(

N

κ
))1/2)

)
≥ 1− κ.

Lemma A.3. Suppose (xk,i)k∈[N ],i∈[L]
i.i.d.∼ U(SD−1). Then,

P
(
∥

N∑
k=1

L∑
i=1

vec(xk,L+1x
⊤
k,i)∥2 ≲

√
NL(1 +D−1(log(

1

κ
))1/2)

)
≥ 1− κ.
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Figure 4: Excess risk of NoisyHead as a function of training set size N for different values of the
privacy parameter ε with D = ⌊

√
N⌋.

B Numerical Experiments Details

This section details and extends upon the numerical examples presented in Section 6.

B.1 Effect of privacy on prediction risk: low- vs. high-dimensional regimes

In Section 6.1, we empirically investigate how the level of privacy, parameterized by ε, affects the
prediction accuracy of NoisyHead through its impact on the excess risk.

Low-dimensional regime. We first consider the low-dimensional regime with feature dimension
fixed at D = 5. Training set sizes are varied over N ∈ {1000, 1500, 2000, 2500, 3000, 3500, 4000},
with prompt length set as L = ⌊

√
N⌋ and privacy levels ε ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. The hyperpa-

rameters C,G,R are chosen according to Theorem 4.1, with κ = 1 and δ = 10−5. The step size is set
as η0 = 3.17/(5 +G2)2, where G denotes an upper bound on the norm of the projected features Z̃,
and the ridge regularization parameter is fixed at λ = 5. We work in a noiseless setting with τ2 = 0.

For each (N, ε) pair, we generate N prompts according to (2.1) and run T iterations of NoisyHead,
where T = logN5/2/ log(1− λη0), as prescribed by Theorem 4.2. Test performance is evaluated
on ntest = 500 held-out prompts. Each test prediction is computed as ⟨Γ̂, Ztest⟩, where Ztest is
constructed using (2.5). The excess risk is defined as

Etest =
1

ntest

ntest∑
k=1

(
⟨Γ̂− Γ⋆, Zk,test⟩

)2
, (B.1)

where Γ⋆ denotes the non-private ridge estimator trained on the same data. We repeat the entire
procedure B = 500 times and report the average excess risk ĒN,ε.

The left panel of Figure 4 illustrates that for each fixed ε, the excess risk decreases with N at a
super-quadratic rate, in agreement with Theorem 4.2(i). For fixed N , the excess risk also decreases
with increasing ε, highlighting the trade-off between privacy and predictive accuracy in this regime.

High-dimensional regime. We also consider the high-dimensional regime where D ≍ L ≍√
N . We vary N ∈ {500, 600, 700, 800, 900, 1000} and ε ∈ {0.01, 0.05, 0.1, 0.5, 1.0}. The ridge

regularization parameter is set as λ = N/D, and we use a fixed number of iterations T = 5 with step
size η = 0.07ND/(N + DG2)2. All other parameters mirror those used in the low-dimensional
setting. The average excess risk, computed over B = 500 repetitions, is reported in the right panel
of Figure 4. The excess risk decreases with both N and ε, though at a slower rate than in the
low-dimensional case, consistent with Theorem 4.2 and reflecting the increased challenge of private
learning in high dimensions.

B.2 Effect of early stopping in over-parametrized setting

In Section 6.2, we investigate how the number of gradient descent steps T affects the test performance
of the linear attention head trained using NoisyHead. We fix N = 1000 and consider the overparam-
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eterized setting with L ≍ D ≍ ⌊
√
N⌋, under fixed privacy parameters ε = 0.8 and δ = 10−5. The

step size is set as η0 = 0.007λ/(λ+G2)2, and remaining hyperparameters follow the setup from the
previous experiment. We vary T over {1, 20, 40, . . . , 480} and compute the average test error over
500 held-out prompts, repeated over B = 500 independent trials.

Figure 2 plots the evolution of two components of the prediction error: the cost of descent (blue)
incurred by underoptimization, and the cost of privacy (orange) due to noise injection. For small T ,
the descent cost dominates and the error decreases with additional optimization. However, beyond a
critical number of iterations, the cost of privacy dominates, causing error to increase as more noise
accumulates. This trade-off, predicted theoretically in Remark 4.2, yields a phase transition in the test
error under privacy constraints. In contrast, in the noiseless setting (approximating ridge regression),
the error decreases monotonically with T .

B.3 Robustness of NoisyHead

In Section 6.3 we evaluate the robustness of NoisyHead under adversarial perturbations, following
the setup in Section 5. A single training prompt is perturbed by adding 1 to all features and α = cNp

to all responses, with c ∈ {2, 4} and p ∈ {2, 2.02, 2.04, 2.06, 2.08, 2.1}. We fix N = 5000, L = 500,
D = 5, ε = 0.5, and δ = 10−2. Generalization error is measured via (5.3). We compare the ridge
estimator Γ⋆ with the output of NoisyHead after T = logN iterations, using λ = 0.01 and step
size η0 = 0.007/(0.01 +G2)2, with all other parameters unchanged. Figure 3 reports the average
prediction error over 500 test prompts, averaged over 500 trials. As p increases, ridge regression
becomes increasingly sensitive to the perturbation, while differentially private pretraining with
NoisyHead remains substantially more robust.
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