
RRC Signaling Storm Detection in O-RAN
Dang Kien Nguyen

Standards & Technology
Ericsson France

dang.kien.nguyen@ericsson.com

Rim El Malki
Standards & Technology

Ericsson France
rim.el.malki@ericsson.com

Filippo Rebecchi
Standards & Technology

Ericsson France
filippo.rebecchi@ericsson.com

Abstract—The Open Radio Access Network (O-RAN) marks a
significant shift in the mobile network industry. By transforming
a traditionally vertically integrated architecture into an open,
data-driven one, O-RAN promises to enhance operational flexi-
bility and drive innovation. In this paper, we harness O-RAN’s
openness to address one critical threat to 5G availability: signal-
ing storms caused by abuse of the Radio Resource Control (RRC)
protocol. Such attacks occur when a flood of RRC messages
from one or multiple User Equipments (UEs) deplete resources
at a 5G base station (gNB), leading to service degradation. We
provide a reference implementation of an RRC signaling storm
attack, using the OpenAirInterface (OAI) platform to evaluate
its impact on a gNB. We supplement the experimental results
with a theoretical model to extend the findings for different
load conditions. To mitigate RRC signaling storms, we develop
a threshold-based detection technique that relies on RRC layer
features to distinguish between malicious activity and legitimate
high network load conditions. Leveraging O-RAN capabilities,
our detection method is deployed as an external Application
(xApp). Performance evaluation shows attacks can be detected
within 90ms, providing a mitigation window of 60ms before gNB
unavailability, with an overhead of 1.2% and 0% CPU and
memory consumption, respectively.

Index Terms—O-RAN architecture, OAI, RRC signaling
storms, attack, detection.

I. INTRODUCTION

O-RAN (Open Radio Access Network) is a 5G architecture
that emphasizes openness, flexibility, and interoperability by
disaggregating traditional RAN components and using stan-
dardized interfaces [1]. One of its key capabilities is allowing
applications to be plugged-in for various functions, including
the detection and mitigation of security threats, offering a
modular approach to optimizing network performance [2].
Leveraging cloud-native principles and AI/ML (Artificial In-
telligence/Machine Learning) technologies, O-RAN enhances
dynamic resource allocation and real-time network adaptation,
making it a vital part of the next-generation telecommunication
ecosystem [3], [4].

In 5G networks, RRC signaling storms refer to a form
of Denial-of-Service (DoS) attack (i.e., against the control
plane) where a malicious User Equipment (UE) overwhelms
the network by sending a surge of RRC connection requests,
depleting available resources and potentially causing service
degradation or outages (i.e., unavailability of the base station,
hence preventing new UEs from reaching the RRC connected
state). These storms exploit vulnerabilities in the signaling pro-
cess, particularly in the RRC layer, which handles connections
between the UE and gNodeB (gNB) [5].

Existing detection solutions focus on higher-layer features
and do not adequately consider low-layer characteristics of
the RRC protocol. Furthermore, they overlook specific causes,
such as emergency or high-priority establishment requests, and
fail to differentiate between genuine high-load scenarios and
malicious attacks (i.e., since both may have similar traffic
patterns), making them less effective in real-world conditions
where such distinctions are critical [6], [7].
In this paper, we have two main objectives:

1) to implement and test the impact of RRC signaling
storms using OpenAirInterface (OAI);

2) to propose and evaluate a detection technique for these
attacks in 5G networks based on the O-RAN architec-
ture.

In particular, we leverage on O-RAN’s capability to integrate
applications (e.g., rApps, xApps) for detection. Our proposed
solution requires to differentiate accurately between attack
scenarios and legitimate high-load conditions using RRC
layer features. We test the detection method in the most
challenging cases, e.g., when UEs use a random identity to
register and with emergency or high-priority establishment
causes. In such cases, it is challenging to determine whether
requests originate from a single Malicious UE (MUE) or
multiple Benign UEs (BUEs). Additionally, the prioritization
of these establishment causes allows a MUE to reserve RRC
resources more effectively, complicating detection. To validate
the experimental findings of the RRC signaling storm, we
also propose a theoretical model that aligns with the observed
attack behavior. The detection solution is evaluated for security
and performance, proving its ability to distinguish between
an attack and a high-load scenario before the gNB becomes
unavailable (i.e., with an acceptable delay of ≈ 90ms), with
minimal resource overhead (i.e., ≈ 1.2% CPU and ≈ 0%
memory consumption).

II. LITERATURE REVIEW

The work in [6] introduces an O-RAN xApp for detecting
abnormal activities in Industrial Internet of Things (IIoT)
devices during registration by using O-RAN interfaces to
gather long-term network statistics. However, this approach
relies on statistical threshold-based detection, which limits its
ability to differentiate between attacks and high-load scenarios.
In [7], the authors combine time series prediction, adaptive
thresholds, and anomaly detection to forecast signaling storms.

ar
X

iv
:2

50
4.

15
73

8v
1 

 [
cs

.C
R

] 
 2

2 
A

pr
 2

02
5



While effective, this method lacks the inclusion of lower-
layer features such as RRC, reducing its precision in detecting
attacks targeting lower network layers. Similarly, [8] addresses
5G-RAN security challenges, focusing on two specific DoS
attacks targeting RRC state transitions and fake system in-
formation requests. The proposed countermeasures include
introducing randomness in system parameters to mitigate these
threats. The randomization technique in [9] effectively reduces
signaling volume in 5G RRC, demonstrating its efficacy in
mitigating DoS signaling attacks. In [10], the authors ap-
ply Dempster-Shafer theory to classify network operations
as either attacks or normal activity. However, this method
struggles with distinguishing high-load scenarios and is not
applicable in cases involving random UE IDs. Meanwhile, the
approach in [11] employs a supervised RNN-based (Recurrent
Neural Network) model to detect excessive RRC signaling
by monitoring packets at the network edge, though it does
not analyze lower radio layers. The research in [12] uses
thresholds on consecutive UE requests to identify low-volume
attacks, but faces challenges with false positives and limited
knowledge of UE identities. Lastly, [13] utilizes OpenRAN
combined with machine learning for early attack detection in
the RAN, focusing on a set of features, other than those at the
RRC layer, which remain underexplored.

The existing literature insufficiently analyzes RRC layer
features for detecting signaling storms, often lacks testing
under high-load conditions, and provides vague threat models
in complex scenarios like random UE IDs and emergency
access. Section VI addresses these gaps with a threshold-based
detection solution.

III. BACKGROUND

This section provides the necessary background information
on O-RAN architecture, the 5G connection establishment
process, and the OAI platform which has been used for attack
implementation and detection evaluation.

A. O-RAN Architecture

The O-RAN architecture consists of [14]:

• Disaggregated components: The architecture separates
traditional base station functions into components such as
the Central Unit (O-CU), Distributed Unit (O-DU), and
Radio Unit (O-RU), which can be deployed flexibly.

• RAN Intelligent Controller (RIC): It is comprised of a
Near-Real-Time RIC (for decisions within milliseconds)
and a Non-Real-Time RIC (for long-term tasks).

• Service Management and Orchestration (SMO): It
ensures efficient resource management across O-RAN
components.

• Open Interfaces: Open, standardized interfaces for com-
munication between network elements (e.g., O-RU, O-
DU, and O-CU), ensuring interoperability between dif-
ferent vendors’ equipment.

Fig. 1: 5G connection establishment

B. 5G Connection Establishment

The 5G connection establishment process allows UEs to
connect to the network for services such as data and voice
communication. This involves authentication, authorization,
and configuration of the UE. Figure 1 details its key steps, e.g.,
the downlink synchronization (step 1), the RACH (Random
Access Channel) procedure (step 2), and the RRC connec-
tion establishment procedure (step 3). The RRC procedure,
managed by the CU at Layer 3, controls the connection
between the UE and the gNB, overseeing the establishment,
maintenance, and release of the radio link for efficient com-
munication [15], [16].

• RRC Setup Request: The UE initiates the RRC pro-
cedure by sending an RRC setup request (Msg3) to
the network after the RACH process. It includes the
UE’s identity, that can be S-TMSI (SAE Temporary
Mobile Subscriber Identity) or a random value, and an
establishment cause.

• RRC Setup: The gNB responds with an RRC setup
message (Msg4), allocating resources and providing nec-
essary configuration parameters. This includes assigning
a radio bearer and specifying the initial settings for
communication.

• RRC Setup Complete: The UE confirms the setup by
sending an RRC setup complete message (Msg5). This
step finalizes the connection, allowing the UE to begin
data transmission and other communication tasks (i.e.,
UE will be in the RRC CONNECTED state).

C. OAI Platform

OpenAirInterface (OAI) is an open-source software frame-
work designed to provide a flexible and configurable imple-
mentation of 4G and 5G mobile communication systems [17].



OAI is modular and consists of the following elements: OAI-
UE, OAI-gNB (i.e., a software-based implementation of a 5G
base station gNB), FlexRIC (i.e., an open-source Near-RT-
RIC which, in the proposed setup, extracts lower layer features
such as RRC features from the OAI-gNB and relays them to
the xApp) [18], xApp (i.e., it can be used to perform different
functions, e.g., the proposed detection solution), and OAI-5G-
Core. The OAI-UE and OAI-gNB communicate over an RF-
simulated (Radio Frequency) air interface.

IV. RRC SIGNALING STORMS

In this section, RRC signaling storms are first defined,
followed by a description of the considered test scenarios and
the presentation of the theoretical model.

A. RRC Signaling Storm Definition

RRC signaling storms impact the control plane’s availability,
leading to the inability for new UEs trying to connect to
transition to the “RRC CONNECTED state” [5]. In a nutshell,
a signaling storm may occur when the rate of connection
requests (i.e., Msg3s) that are received at the gNB exceeds
a given capacity. Detecting and mitigating such malicious
activities during the initial attachment procedure is challenging
because they occur prior to authentication, and limited infor-
mation is available at the gNB about the communicating UEs.
For instance, a malicious UE (the attacker) can repeatedly
cycle through Msg1 to Msg3, without waiting for the RRC
procedure to complete (e.g., it will never respond back with a
Msg5). If this loop is executed rapidly enough, it can deplete
resources at the gNB, leading to its unavailability [19]. An
important factor to consider in the RRC procedure is the
waiting time at the gNB, as it plays a crucial role in RRC
signaling storms.

Waiting time: Upon receiving Msg3, the gNB typically
allocates a context (resource) for the UE, responds with Msg4,
and starts a timer to await Msg5. This timer, known as the
“waiting time”, can range from 2 to 3 seconds. In our setup,
it is configured to 2.7 seconds. This means that the gNB
(roughly) reserves UE context for the duration of the waiting
time. In normal operation, the processing time between the
reception of a Msg3 and the transmission of Msg4 is in the
order of milliseconds. Once the waiting time expires, the
gNB releases the reserved resources. Since the gNB has a
limited amount of resources to be reserved for context, if
all resources are occupied, the RRC processing at the gNB
becomes unavailable. In other words, the attacker’s goal is
to exhaust these resources by reserving them without ever
completing the RRC process.

We also define the drop time as the moment when all
available resources are consumed, rendering the gNB blocked
or unavailable. Prior to the drop time, there is an availability
period that we define as the duration of accept, during which
the gNB can respond to UE connection attempts. Following
the drop time is the duration of reject, defined as the time
duration when the gNB has no available RRC resources and
rejects incoming RRC messages. During this period, new UEs

cannot connect, and the gNB is overloaded. Resources may
become available again when at least one waiting time expires.
However, in the event of an attack, these resources are quickly
reoccupied after their release.

B. Possible Scenarios

We consider two main scenarios: 1) a deliberate attack, and
2) a high-load scenario.
Attack scenario: The attacker aims to exhaust all RRC
resources at the gNB by sending Msg3s at a high rate, leading
to a decrease in the gNB’s availability. Consequently, a drop
in the availability of the gNB occurs.

By increasing the attack rate (i.e., more Msg3s per second),
we expect the duration of accept to decrease, meaning the
drop time occurs faster. Consequently, the duration of reject
increases, amplifying the attack’s impact. The severity of an
attack is also directly related to the number of available RRC
resources. As the number of available resources decreases —
e.g., when more benign UEs are connected — the overload
state is reached faster and maintained for prolonged periods,
requiring less effort from the attacker.

To induce an overload state, all available RRC resources
must be occupied/reserved in less time than the waiting time
(i.e., drop time < waiting time), ensuring that the duration of
reject is sustained.
High-load scenario: It represents a legitimate surge in net-
work activity due to an increased number of UEs or elevated
traffic demand (e.g., flash mob event, natural disaster site, etc.).

Available resources are also reserved faster than their wait-
ing time, causing the gNB to enter an overload state. The key
difference with an attack scenario is that benign UEs attempt
to complete the RRC setup procedure, and several Msg5s are
received by the gNB. Resources are only released when at
least one benign UE disconnects.

It is important to differentiate between a legitimate high-
load scenario and a malicious attack to ensure that appropriate
responses are applied, maintaining network performance and
security without unnecessarily disrupting service or misallo-
cating resources.

C. Theoretical Model

In addition to the practical implementation of the attack,
we have developed a theoretical model of the behavior of a
5G gNB under an RRC signaling storm attack. This model
aids in understanding the performance of a gNB’s response to
varying attack intensities and in predicting its behavior under
different load conditions.

Based on the proposed model, six output metrics can be
calculated/derived: number of accepted Msg3s (NA), number
of rejected Msg3s (NR), drop time (TD), duration of accept
(TA), duration of reject (TR), and the overall gNB’s availability
rate (Ravai). To obtain these outputs, five input parameters
are required: the waiting time (TW ), the max number of
UEs supported/handled by the gNB simultaneously (gNB’s
capacity) (NUE), the attacker’s rate (Ratt), the rate of benign



UEs (RBUE), and the number of connected (benign) UEs in
the network (NBUE).

The drop time, a critical moment when the gNB can no
longer respond to new incoming Msg3s and becomes unavail-
able or blocked, can be calculated by dividing the current gNB
capacity (i.e., the maximum capacity minus the number of
connected UEs) by the attacker’s rate:

TD =
NUE −NBUE

Ratt
, NBUE ̸= 0 (1)

TD =
NUE

Ratt
, NBUE = 0 (2)

The duration of accept is equal to the drop time (TA = TD),
hence, the duration of reject can be derived as follows: TR =
TW − TA = TW − TD.

To calculate the number of accepted Msg3s, the number
of connected (benign) UEs is subtracted from the gNB’s
maximum UE capacity:

NA = NUE −NBUE (3)

If no BUEs are connected to the gNB, then NA = NUE .
Having calculated the duration of reject, the number of

rejected Msg3s can be determined by multiplying the duration
of reject by the rate of incoming Msg3s (considering the rates
of the attacker and BUEs):

NR = TR ∗ (Ratt +RBUE) (4)

In the case of an attack, the attacker’s rate is much higher
than the rate of BUEs (Ratt ≫ RBUE). Thus, the rate
of BUEs becomes negligible. Consequently, the number of
rejected Msg3s can be approximated as follows:

NR ≈ TR ∗Ratt (5)

Finally, the gNB’s availability (Ravai) and unavailability
(Ravai) rates can be obtained as follows:

Ravai =

∑Nrep

i=1 N i
A∑Nrep

i=1 N i
A +N i

R

∗ 100, (6)

Ravai = 100−Ravai, (7)

where Nrep is the number of periodic repetitions (i.e.,
alternation between normal and attack states). Ravai refers
to the percentage of time during which the gNB has available
resources and is able to respond to incoming requests.

V. ATTACK IMPLEMENTATION AND VALIDATION

A. Attack Implementation with OAI

To execute the RRC signaling storm attack (pseudo-code
in Algorithm 1), we modified the OAI-UE code to send a
Msg1 to the gNB in every frame (note that in the current
implementation of the OAI-gNB, there is a limit in the
maximum number of Msg1 that can be received per frame).

The attack is then carried out by continuously looping
through Msg1, Msg2, and Msg3, repeatedly initiating the
RRC connection procedure. The RACH procedure must be
performed before the RRC process and before sending Msg3,

as the UE cannot transmit Msg3 without receiving an uplink
grant, which is provided by the gNB in Msg2. This ensures
that the necessary Random Access (RA) steps are completed
before each transmission of Msg3, maintaining the attack loop.

Upon sending a Msg3 to a gNB, a BUE starts a T300
timer, which can range from 100ms to 2000ms, to retransmit
Msg3 if Msg4 is not received before T300 expires. In an RRC
signaling storm, we assume that the attacker ignores this timer
and continuously sends Msg3s at intervals much shorter than
the T300 value.

Algorithm 1 RRC Signaling Storm Implementation Steps

1: Step 1: Modify RRC Behavior
2: repeat
3: Repeatedly flush the Msg3 buffer
4: Prepare Msg3 again
5: Always ignore reception of Msg4
6: until Attack stops
7: Step 2: Ignore T300 Timer Expiration
8: Step 3: Trigger RA Procedures on Msg3 Send
9: if Msg3 is sent then

10: Trigger a new RACH
11: Set the flag for Msg2 as not received
12: Reset random access state to generate a preamble
13: end if

B. Attack Validation

An attack rate of 132.07 Msg3s/sec was achieved, corre-
sponding to one message every frame (i.e., duration of frame
is 7ms).

To validate the theoretical model presented in Section IV-C,
four RRC signaling storm attacks were conducted under
varying load conditions, i.e., with different numbers of UEs
connected to the gNB. Table I compares the theoretical and
experimental values across four scenarios: no UEs connected
(16 resources are available for the attacker), 25% resource
occupancy (12 resources are available for the attacker), 50%
resource occupancy (8 resources are available for the attacker),
and 75% resource occupancy (4 resources are available for
the attacker). For each scenario, the table lists the number
of accepted Msg3s, the number of rejected Msg3s, the drop
time, the duration of accept, the duration of reject, and the
availability rate. The close alignment between the theoretical
and experimental values confirms the accuracy of the model.
As expected, the severity of the attack increases (i.e., availabil-
ity rate decreases) with the number of connected UEs. Using
a total of 16 resources at the gNB and a waiting time of
2.7 seconds, the attacker can render the gNB unavailable for
around ≈ 95% of the time. If the gNB is already serving UEs,
its capacity would be further strained, leading to an extended
period of unavailability. It is important to note that in certain
experimental scenarios (specifically at 50% and 75% loads),
the OAI-gNB crashes (i.e., due to the severity of the attack
on OAI-gNB), making it impossible to retrieve experimental
values (i.e., N/A).



TABLE I: Comparison of theoretical and experimental values for different attack scenarios

Connected UEs Value type # of accepted # of rejected Drop time Duration of Duration of Avai. rate
Msg3s Msg3s accept reject

0% (0/16) Exp. values 16 382 0.146s 0.146s 2.611s 4.02%
Theo. values 16 346 0.121s 0.121s 2.636s 4.42%

25% (4/16) Exp. values 12 346 0.121s 0.121s 2.636s 3.35%
Theo. values 12 352 0.091s 0.091s 2.666s 3.29%

50% (8/16) Exp. values 8 N/A 0.083s 0.083s N/A N/A
Theo. values 8 356 0.061s 0.061s 2.696s 2.2%

75% (12/16) Exp. values 4 N/A 0.021s 0.021s N/A N/A
Theo. values 4 359 0.03s 0.03s 2.727s 1.1%

VI. PROPOSED DETECTION TECHNIQUE

To effectively detect RRC signaling storms and distinguish
them from high-load scenarios, the initial connection process
between a UE and a gNB is analyzed to identify, understand,
and detect attack patterns. Since RRC signaling storms occur
at the RRC layer, it is essential to consider the relevant features
at this layer, as well as those in the lower layers. These features
have been examined to determine the most significant and
useful ones for the detection system.

To this end, three key features have been identified: the
number of Msg3s, R1, and R2. The first feature, the number
of Msg3s, is crucial as it indicates/flags an abnormal event,
whether it is an attack or a high-load scenario. In both cases,
the gNB would experience a significant increase in the number
of Msg3s. Additionally, the gNB will also observe a decrease
in the number of Msg5s. During an attack, the Malicious
UE (MUE) will not respond to the received Msg4s with a
Msg5. In a high-load scenario, the gNB will receive a large
number of Msg3s, leading to an overload that prevents it from
accommodating all new UEs. Hence, not all UEs will receive
a Msg4. The subset of UEs that do receive a Msg4 will send
a Msg5, resulting in a reduction in the number of Msg5s.

The second feature, R1, represents the ratio of the number
of Msg5s to the number of Msg3s (i.e., R1 values range
between 0 and 1). It reflects the proportion of completed
(or incomplete) RRC setup procedures. Since the number
of Msg5s decreases in both attack and high-load scenarios,
R1 will also decrease. As a result, this ratio serves as a
supportive feature that helps confirm the detection of an
abnormal event from the gNB’s perspective. However, R1
alone is not sufficient to distinguish between an attack and
a high-load scenario.

The third feature, R2, is defined as the ratio of the number
of Msg5s to the number of Msg4s (with R2 values ranging
between 0 and 1). This ratio reflects the proportion of Msg5s
received by the gNB in response to the Msg4s it sends. In
a high-load scenario, UEs that receive a Msg4 will typically
respond with a Msg5, making R2 (ideally) equal to 1. Con-
versely, during an attack, the MUE will not respond with a
Msg5 even after receiving a Msg4, causing R2 to decrease
and tend toward 0. Therefore, R2 can be used to differentiate
between an attack and a high-load scenario. The threshold for
both R1 and R2 is set to 0.5.

In this research, we use fixed threshold values as an initial
step in a simple detection system. While this approach is not
adaptive to complex environments, it helps validate the theory
and assess the model’s feasibility. Future work on adaptive
thresholds can build upon the findings of this study.

It is important to note that, alongside the continuous mon-
itoring of the discussed features, capturing the timestamps of
the received messages is crucial. This ensures the proper and
accurate tracking of feature variations over time.

The proposed features will exhibit distinct values and vary-
ing trends depending on the state of the gNB, whether it is
in a normal, attack, or high-load condition. These differences
can be leveraged to develop an RRC signaling storm detection
system. The trend (or profile) associated with each state is
detailed in Table II.

TABLE II: Feature trends for different states

State # of Msg3s R1 R2

Attack ↑ ↓ ↓
High-Load ↑ ↓ = (i.e., 1)

VII. DETECTION SOLUTION IMPLEMENTATION AND
EVALUATION IN O-RAN

A. Environment

The simulated system runs on a virtual machine with
Ubuntu 20.04.6 and 12 GB of RAM.

In the implemented scenario, a single OAI MUE targets the
gNB, generating an attack rate of 132 Msg3s per second with
a waiting time of 2.7 seconds. To simulate normal conditions
with background traffic from BUEs directed toward the base
station, a Truncated Poisson Distribution is employed. This
distribution periodically adds a new number of RRC messages
to the counters in the xApp, mimicking normal traffic behavior.
The distribution has a mean of 2, with lower and upper bounds
of 0 and 3, respectively. The OAI-gNB supports up to 16 UEs
(i.e., 16 resources) simultaneously. A sliding window of 625ms
is used for detection.

B. Results and Discussion

The evaluation focuses on two key aspects, performance
(impact) of the proposed detection solution and its effective-
ness, under two test scenarios, attack and high-load.

– Impact of Detection Solution: To assess the performance
of the proposed detection solution, we measured its impact on



(a)
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Fig. 2: Performance of the proposed detection solution under (a) normal traffic conditions, (b) attack, and (c) high-load

resource usage and the associated overhead. Key performance
metrics include CPU (Central Processing Unit) and memory
consumption. CPU consumption refers to the amount of pro-
cessing power utilized by the detection solution, while memory
consumption indicates the amount of used RAM (Random
Access Memory). The detection system, which comprises
FlexRIC and the xApp, demonstrates minimal resource usage
compared to the overall OAI system. It utilizes approximately
1.2% of the CPU and nearly 0% of the memory, showcasing
a highly efficient performance with minimal impact on pro-
cessing and computing power. Similar results were observed
for the high-load scenario.

– Detection Solution Effectiveness: The effectiveness of
the solution, particularly during an attack, has been evaluated
by measuring detection time, or latency. Detection time refers
to how quickly the solution can identify abnormal activity
and differentiate it from a high-load situation, signaling an
attack. Ideally, this latency should be minimized to ensure
swift detection.

Figure 2a illustrates the incoming messages to a gNB
over time, incorporating values from the Truncated Poisson
distribution. An attack is initiated towards the end of the
monitored period. Messages Msg3, Msg4, and Msg5 are
added, periodically. The plots of Msg3 and Msg4 overlap

due to their simultaneous occurrence, while Msg5 exhibits a
delay due to the natural lag between Msg4 and Msg5. The
values of R1 and R2 are determined based on the number
of messages within a sliding window. During normal traffic
simulation, the R1 and R2 ratios fluctuate around 1 without
dropping significantly below the thresholds, thus avoiding any
alerts. However, towards the end of the period, a substantial
increase in incoming Msg3s occurs, generated by the MUE
with the highest possible attack rate. Figure 2b provides a
detailed view of the attack phase. The detection state has
four possible values representing the gNB’s status: Normal,
Attack, High-load, and Overload. The figure precisely depicts
the behavior of incoming RRC messages. Initially, the gNB
responds with some Msg4s to the attacker’s Msg3s but does
not receive any Msg5s. Eventually, as resources are exhausted,
the gNB stops sending Msg4s, though it continues receiving
a high volume of Msg3s. Throughout the attack, R1 and R2
values progressively decline, eventually reaching 0, prompting
the gNB’s detected state to shift from Normal to Attack, and
then to Overload. This transition occurs shortly after the attack
begins.

To evaluate detection latency, the RRC signalling storm has
been executed 20 times with an attack rate of 132 Msg/sec.
On average, attacks are detected in about ≈ 90ms, which is
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Fig. 3: Detection latency (i.e., attack case)

≈ 60ms before the gNB becomes overloaded (i.e., drop time
is equal to ≈ 150ms, thus, 150 − 90 ≈ 60ms) (Figure 3).
This detection latency is considered acceptable since it enables
the system to identify attack attempts before the gNB reaches
overload or becomes unavailable. This early detection provides
a short window for implementing mitigation measures to
safeguard the gNB’s availability.

On the other hand, Figure 2c shows the variation of features
over time for the high-load test case. The proposed detection
solution accurately identifies when the gNB is experiencing a
high load and when it becomes unavailable or blocked (i.e.,
enters the overload state). Throughout the simulated scenario,
the value of R1 progressively decreases until it eventually
reaches 0, while the value of R2 remains close to 1. The
proposed detection system can effectively distinguish between
an attack and a high-load. On average, high-load scenarios are
detected within 131ms.

VIII. CONCLUSION

In this paper, we implemented an RRC signaling storm
and assessed its impact using OpenAirInterface (OAI). Our
experiments revealed an attacker rate of approximately 132
Msg3s/sec, rendering the gNB unavailable 95% of the time.
The observed impact aligns closely with our proposed theoret-
ical model, confirming its accuracy. To address the challenge
of RRC signaling storms within the O-RAN architecture, we
introduced a threshold-based detection solution that leverages
RRC layer characteristics to effectively distinguish between
benign high-load scenarios and malicious attacks. Our valida-
tion results demonstrate that this solution can reliably detect
(i.e., within ≈ 90ms) and potentially mitigate RRC signaling
storms with minimal resource overhead (i.e., negligible CPU
and memory consumption), significantly enhancing network
resilience and reliability. This approach strengthens 5G net-
work security by providing robust protection against disruptive
signaling storms while maintaining low resource impact.

As next steps, we will focus on refining and enhancing the
detection mechanism, expanding our evaluation to encompass
a broader range of scenarios, and developing effective mitiga-
tion techniques. Additionally, we aim to explore methods for

predicting optimal detection thresholds to better anticipate and
prevent future signaling storms. An adaptive threshold-based
algorithm can be studied and used to improve the detection
performance and increase the flexibility of the detection tech-
nique in different systems and environment.
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