
Trusted Compute Units: A Framework for Chained
Verifiable Computations

Fernando Castillo, Jonathan Heiss, Sebastian Werner, Stefan Tai
Information Systems Engineering

Technische Universität Berlin
Berlin, Germany

{fc,jh,sw,st}@ise.tu-berlin.de

Preprint. This work has been accepted to the 2025 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). © 2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media.

Abstract—Blockchain and distributed ledger technologies
(DLTs) facilitate decentralized computations across trust bound-
aries. However, ensuring complex computations with low
gas fees and confidentiality remains challenging. Recent ad-
vances in Confidential Computing —leveraging hardware-based
Trusted Execution Environments (TEEs)—and Proof-carrying
Data—employing cryptographic Zero-Knowledge Virtual Ma-
chines (zkVMs)—hold promise for secure, privacy-preserving off-
chain and layer-2 computations. On the other side, a homoge-
neous reliance on a single technology, such as TEEs or zkVMs,
is impractical for decentralized environments with heterogeneous
computational requirements.

This paper introduces the Trusted Compute Unit (TCU), a
unifying framework that enables composable and interoperable
verifiable computations across heterogeneous technologies. Our
approach allows decentralized applications (dApps) to flexibly
offload complex computations to TCUs, obtaining proof of cor-
rectness. These proofs can be anchored on-chain for automated
dApps interactions, while ensuring confidentiality of input data,
and integrity of output data.

We demonstrate how TCUs can support a prominent
blockchain use case, such as federated learning. By enabling
secure, off-chain interactions without incurring on-chain con-
firmation delays or gas fees, TCUs significantly improve system
performance and scalability. Experimental insights and perfor-
mance evaluations confirm the feasibility and practicality of this
unified approach, advancing the state of the art in verifiable
off-chain services for the blockchain ecosystem.

Index Terms—Service Workflow, Data Sharing, Verifiable
Computation, Trusted Execution, Zero-knowledge, Blockchain.

I. INTRODUCTION

In recent years, decentralized applications (dApps) and
blockchain-based solutions have begun proposing off-chain
computation mechanisms to address the high costs and pri-
vacy challenges of fully on-chain execution. For instance, a
hospital might outsource AI-based diagnostic analytics to a
specialized service that collaborates with multiple healthcare
providers—similar to a federated learning (FL) setup. In this
scenario, the hospital must trust that the external computation
is performed correctly and confidentially, without exposing
sensitive patient data on the blockchain or to unauthorized
parties.

Such cross-organizational workflows often extend beyond a
single “provider–consumer” pair, forming a directed acyclic
graph (DAG) of dependent computations, thereby forming a

cross-organizational workflow where one organization’s output
can become another’s input. In these contexts, data integrity
and the correctness of the underlying service computations are
critical. Not only do organizations rely on accurate external
data for sound decision-making, but they must also comply
with stakeholder and regulatory demands to demonstrate the
correctness of their claims. For example, the EU AI Act
requires organizations to verify that their machine-learning
applications conform to relevant regulations [1].

However, achieving verifiability in computations across
organizations is inherently challenging [2] due to the need
to protect sensitive inputs while proving the correctness of
computations. A naı̈ve approach, such as re-executing com-
putations with original inputs, introduces confidentiality risks,
and verifying every computation on-chain translates to more
gas fees and confirmation delays. Sensitive internal inputs,
such as proprietary business data or personally identifiable
information, cannot be exposed without violating confidential-
ity and security requirements [3]. Moreover, prior research on
verifiable computation1 has shown that no single technique or
cryptographic construct can fully meet all desired properties
of functionality and efficiency [4]–[6]. Instead, combining
heterogeneous methods—such as zero-knowledge proofs and
trusted hardware attestation [7]—remains a challenging yet
promising direction, particularly in real-world scenarios where
each organization maintains its own distinct technological
stack.

Addressing these problems, we propose the Trusted Com-
pute Unit (TCU) as a key component to enable interoperable
and composable trusted computations across organizations.
At its core, TCU builds upon containers that wrap around
services and execute data processing tasks within verifiable
computation environments like zero-knowledge virtual ma-
chines (zkVM), or trusted execution environments (TEE),
to enable trusted chained computations. A Blockchain-based
Program Registry is applied to enable decentralized and cross-
organizational management and traceability of the TCU’s in-
and outputs.

1Some authors reserve ’verifiable computation’ strictly for cryptographic
proof systems. In this paper, we include TEEs under the broader category of
trusted or verifiable techniques, while noting that TEEs rely on hardware trust
assumptions.

ar
X

iv
:2

50
4.

15
71

7v
2

 [
cs

.C
R

]
 2

8
A

pr
 2

02
5

In this paper, we make the following individual contribu-
tions:

1) We present the TCU as a unifying framework that
enriches chained off-chain computations with verifiable
computation and blockchain technology. TCUs are mod-
ular and combinable components encapsulating service
logic for verifiability and a foundational infrastructure.
A blockchain-based registry enables cross-organizational
traceability of workflow executions thereby also allow-
ing for ex-post auditability.

2) We demonstrate the technical realization of TCU using
two fundamentally different technologies, i.e., TEE and
zkVMs, and evaluate the impact achieving trustworthi-
ness has on the system’s performance through initial
experiments in a federated machine learning scenario,
highlighting performance trade-offs between technology
choice.

In the remainder of this paper, we introduce the Model in
section 2 to introduce the system model, threat and require-
ments. We present the TCU Design in Section 3 and TCU
Technical Realization in Section 4. In Section 5, we describe
the experiment-driven evaluation. We present related work in
Section 6, and finally, conclude in Section 7.

II. MODEL AND REQUIREMENTS

In this section, we characterize how cross-organizational
service workflows operate in a decentralized manner, and the
threat model, define the core notions of computational and
workflow integrity, discuss the confidentiality and verifiability
challenges that arise, and derive the requirements our frame-
work must fulfill.

A. System Model: A Decentralized Service Workflow

We define cross-organizational service workflows as con-
nected services, where each is executed by a different orga-
nization (Orgi, with i the id for the location on the work-
flow). By decentralized, we stress that no single coordinator
or authority orchestrates the entire process. Instead, every
organization controls and deploys its own service. Each service
can consume:

• External inputs: EIni = {EIn1
i , EIn2

i , . . . }, typically
a set of outputs from one or more predecessor services
(e.g., Outi = {Out1(i−1), Out2(i−1), . . . }, as different
models to aggregate in a global model for FL).

• Internal inputs IIni, kept under the exclusive con-
trol of Orgi and deemed confidential (e.g., proprietary
weighting schemes for models or personally identifiable
information).

Internal inputs are considered confidential, i.e., they must not
be shared with external parties, while external inputs can be
obtained by any organization.

In a typical workflow cycle, each required service in the
DAG is invoked at least once, so that its output can serve
as external input (EIn) for any successors. Once a service
Out is not shared as EIn, we consider the workflow instance,

conforming the particular DAG, complete. An example of such
workflows can be seen in the context of decentralized AI
application, as described in 1:

Federated learning [8]–[10] comprises worker nodes and
an aggregator node, each of which can be represented by a
different organization. In each learning cycle, the worker nodes
execute a machine learning task on local data representing
confidential IIni and collective learning results of the previous
cycle representing EIni/Outi−1. The resulting local models,
representing Outi, are sent to the aggregator node where they
are combined into a global model which is returned to the
worker nodes as EIni+1 for the next cycle. Additionally,
the inference from a global model can be used to make
recommendations for other patients.

Although a workflow may seem “complete” when terminal
services produce their outputs, decentralized environments
naturally allow new computations to extend the DAG. For
example in the FL scenario, a workflow execution represents
a learning cycle, and a DAG composing all the computations
could be recreated from the first local training until the last
model aggregation after many learning cycles. Any output can
serve as a fresh external input for a newly introduced service,
underscoring the ongoing need for integrity guarantees across
an evolving cross-organizational workflow.

B. Threat Model

We characterize the threat model by classifying each orga-
nization Orgi as:

• Honest-but-negligent: Executes its service but may in-
advertently misconfigure or misuse the code, generating
incorrect outputs (Outi) or failing to implement the
intended logic P accurately.

• Malicious: Intentionally alters its logic P , data, or out-
puts to gain advantage (e.g., skipping computation in FL,
not using the indicated ML model for inference).

We assume no organization can forcibly read another’s
internal inputs (IInj ̸=i); thus, data theft is not the primary
threat. Instead, we focus on detecting incorrect computa-
tions—whether caused by negligence or malice.

We do not consider side-channel or fault-injection attacks
on hardware, nor do we assume any trusted setup. Other well-
known security practices such as network security (e.g., TLS)
to prevent eavesdropping in transit are assumed to be in place.

C. Computational and Workflow Integrity

Building on prior approaches for integrity and verifiability
(e.g., [6], [11]), we require that a program P produce a proof π
demonstrating computational correctness under confidentiality
constraints. Formally, given a proving key PK, the execution
is P (EIn, IIn, PK) → (Out, π). Any verifier holding the
corresponding verification key V K can then check the cor-
rectness via verify(Out, π, V K) → {0, 1}, without needing
access to the confidential inputs IIn.

Computational Integrity (Single Service): To define com-
putational integrity, we adopt the model presented in [11] for
trustworthy pre-processing off-chain data. A service program

OrgA

Service

Private

Patients Data

IIn

Local Training
A

A

Org Research

Facility

Hospital D

Service

Weight

Scheme

IIn

 Model

 Aggregation

D

D

Org Doctor’s

Office

E

Service

Private

Patient Data

IIn

 Model

 Inference

E

E

OrgB

Service

Private

Patients Data

IIn

Local Training
B

B

Hospital OrgC

Service

IIn

Local Training
C

C

Hospital

Icons: Flaticon.com

RecommendationML Model
Out / A
EInD1

{ }

{ }

ML Model
Out / B
EInD2

{ }
ML Model

Out / C
EInD3

{ }
ML Model

Out / D
EInE{ }

{ } Private

Patients Data{ } { }{ }

EOut{ }

Traning Stage

Inference Stage

Aggregation Stage

Fig. 1. Illustration of a federated learning workflow. Organizations A, B, and C (Hospitals) perform local model training on private datasets (IInA,B,C), then
send model updates (OutA,B,C /EInD1−3

) to Organization D (Research Facility), which aggregates them into a global model (OutD /EInE) with a private
weight scheme (IInD). Finally, Organization E (Doctor’s Office) applies this aggregated model for making patient treatment recommendations (OutE).

P is executed on external input EIn and some internal input
IIn and returns output Out such that P (EIn, IIn) → Out. A
malicious organization may benefit from corrupting either the
program P or the inputs. In the former case, an organization
creates a manipulated program P’ such that P ′(EIn, IIn) →
Out′ |Out′ ̸= Out. Furthermore, an organization may manipu-
late the EIn such that P (Ein′, IIn) → Out′ |Out′ ̸= Out or
manipulate IIn such that P (Ein, IIn′) → Out′|Out′ ̸= Out.

Workflow Integrity (Chained Services): Because the out-
put Outi−1 from one service can become the external input
EIni of another, the entire DAG preserves computational
integrity, as long as EIni is verified as part of Pi, step by
step ensuring end-to-end workflow integrity. Consequently, a
final consumer can verify only the last output without re-
verifying all preceding services. In other words, they need not
check that every intermediate output (Outj<i) was produced
by the intended program (Pj<i) on the correct inputs, even
when (IInj<i) remain private—this guarantee is provided
transitively through chained verifiable computations proofs,
as each step verifies its input and computation, ensuring
correctness propagates through the chain.

D. Confidentiality and Verifiability Challenges
Enforcing both computational and workflow integrity in a

decentralized environment is non-trivial for several reasons:
• Preserving Internal Inputs: Organizations cannot ex-

pose proprietary or personal data (IIni) to external re-
execution or naive on-chain logging or verification.

• Preventing Undetected Code Changes: If verification
keys depended on hidden parameters or a trusted setup,
an organization could surreptitiously modify the intended
P , e.g., if the building process is not reproducible.

• Heterogeneous Execution Technologies: Some organi-
zations might use trusted execution (TEEs), while oth-
ers might use cryptographic zero-knowledge systems. A
unifying approach must handle both while preserving
verifiability and low on-chain overhead.

E. Requirements
From the above setting and challenges, we derive the

following key requirements for a cross-organizational trusted
computation framework:

R1 - Confidential Internal Inputs: Each organization must
retain confidentiality over its internal inputs (IIni); no

party should be forced to disclose or re-execute these
sensitive data externally.

R2 - Verifiable Correctness of Outputs: Any output (Outi)
must be provably correct with respect to the intended
program P on (EIni, IIni), without revealing private
inputs. This includes deterministic reference to the code
of P during verification so that any modification to P
invalidates existing proofs and no hidden parameters can
be introduced.

R3 - End-to-End Chainability: Because the output of one
service can become the input of another, proofs of cor-
rectness must chain through the workflow. A final con-
sumer should not need to re-verify every step individually
to ensure end-to-end correctness.

R4 - Cross-Organizational Traceability: A transparent
record (e.g., on a blockchain registry) must indicate
which service produced which outputs, under which
code version. This enables ex-post audits and dispute
resolution without exposing proprietary data.

R5 - Low On-Chain Overhead and Heterogeneity: Mini-
mizing on-chain interactions avoids high gas fees and
prevents data leakage on public ledgers. Moreover, the
framework must handle multiple verifiable computation
technologies (e.g., TEEs or ZKPs) so each organization
can choose the technology best suited to its needs without
compromising overall verifiability.

In the following section, we present the TCU framework
that addresses these requirements by combining off-chain
verifiable computation technologies (TEEs or zkVMs) with
a blockchain-based registry for deterministic code references
and proof traceability.

III. TRUSTED COMPUTE UNIT DESIGN

To fulfill the requirements described in the previous sec-
tion, we introduce our framework for Trusted Compute Units
(TCUs) by describing their key architectural components and
the framework procedures.

A. TCU Architecture

As depicted in Figure 2, the proposed framework advances
cross-organizational workflows through two major architec-
tural elements, the TCU and the Program Registry (PR).

TCUs are service units assumed to execute a program P
using a verifiable computation technology that allows a TCUi

Trusted Compute Unit

Gateway

Program Registry - Smart Contract

Organization

Infrastructure

Database/Filesystem

Verifiable Computation Component

Container-based CPU, Memory, Network

and Storage provisioning

Stores EIn

Provides EIn

EIn /Out

Application Component � /comput�
� /proofRetrieva�
� /info

P (EIn , IIn , VK) -> (Out ,)
TEE/zkVM - Based

Register(Org , hash(P), hash(VK), IPFS URI) i

i
i i

i

i

i i

i
i-1

i-1

i+1

i

API endpoints ->

Containerized Service

Security Enforcement (e.g., authentication, TLS)

Icons: Flaticon.com

i

AC/GW Exchange

AC Executes on VCC

IS Provides

Resources for
AC/VCC

Manages

Interacts with GW,

using IIn and EIn

IT Department

Blockchain

Client

Decentralized

Blockhain

IPFS
Decentralized Storage

User

Registers own P and VK

 EIn /Out
Org Submits Org Receives

Fig. 2. TCU Framework Diagram

to create proofs π with a TCU-specific PK and the successor
TCUi+1 to verify π with the corresponding V K.

The TCU can be modeled through 2 main components, the
Application Component and Verifiable Computation Compo-
nent, and a foundational Infrastructure for provisioning them.

1) Application Component (AC): The AC provides a
lightweight RPC interface for submitting computation tasks,
retrieving results, and obtaining Program P specifications. We
assume that incoming requests have already passed through
gateway-based authentication and authorization filters. By
delegating these policies to external components, the TCU
retains a simple boundary and focuses on core compute
functionality. The minimal endpoints are a “/compute” call
for scheduling tasks, and a “/proofRetrieval” route
for obtaining proofs. A “/info” endpoint reveals metadata
such as TCU Program P location for validation and used
technology for verification. In practice, the TCU only trusts
requests that have already passed through the gateway’s au-
thentication and authorization filters, keeping the component
minimal and easily composable with other (micro)services.
As illustrated in Figure 2, its primary responsibility is to
expose a minimal set of endpoints that interact with the TCU’s
Verifiable Computation Component.

2) Verifiable Computation Component (VCC): The VCC
can be modeled through three operations that are all executed
(via the AC “/compute” call) within the same verifiable
computation technology and a key pair consisting of the
proving key (PK) used to create proofs π by the TCUi and
the verification key (VK) used to verify π by the successor
TCUi+1.

The (1) External Input Verification (EIV) takes the proofs
from its predecessor TCUs as input and verifies them using
the respective verification keys. With that, the computational
integrity of the previous TCU operations can be confirmed. On
successful EIV, the (2) service is executed. It takes the IIn and
the verified EIn and returns the computational output. Finally,
the TCU (3) commits to the internal inputs which is necessary
to bind the inputs to the service execution. The TCU execution
returns the computational output to the AC (so it’s retrieved
in the “/proofRetrieval” endpoint), the commitment to
the internal inputs, and the proof of computational correctness.
The V K of a TCU is used for EIV by the successor TCU.

3) Infrastructure (IS): The IS includes provisioning CPU,
memory, and storage resources, orchestrating container de-
ployments, and managing lifecycle events such as rolling up-
dates. Container orchestration frameworks (e.g., Kubernetes)
or virtualization managers typically provide these capabilities.

The IS supports features like automatic scaling, which starts
additional TCU instances in response to rising workloads, or
rolling upgrades to deploy patches with minimal downtime. It
also enforces isolation boundaries between routine and verifi-
able computations, ensuring the TCU remains shielded from
potential interference. Deterministic builds and cryptographic
checksums can verify that the deployed code matches the
audited binaries (matching the “/info” endpoint), mitigating
supply-chain attacks [12] and preserving trust over time.

In practice, the Infrastructure is typically administered by
the organization’s internal IT Department or DevOps teams,
whether running on-premises or via a cloud provider. While
the Figure 2 shows this infrastructure ‘inside’ the organiza-
tion, its physical location can vary according to each team’s
operational policies without affecting the TCU’s verifiability
or confidentiality guarantees.

4) Program Registry: We introduce a smart contract-based
program registry (PR), on a decentralized blockchain, that
stores the specifications of the program P . By anchoring
program P ’s logic, configuration, and cryptographic references
on an immutable ledger, external verifiers can confirm exactly
which code and parameters generated any given proof—even
after the TCU has gone offline or been replaced. This approach
decouples ephemeral TCU computations from the enduring
record of the application-specific program, allowing auditors
or external services to validate that a proof indeed corresponds
to the original, trusted version of P (matching the “/info”
endpoint). By maintaining a tamper-proof ledger entry, we
ensure that verifiability persists long-term, preserving integrity
and trust in the computed results.

B. TCU Life Cycle

As depicted in Figure 2, the service lifecycle consists of
a one-time setup and recurring “/compute” calls. As a
prerequisite, we assume that the Program Registry is deployed
to a decentralized public infrastructure as provided by smart
contract-enabled blockchains.

Setup: During the setup, the TCU is instantiated and the
program P registered in the registry. The instantiation involves

the specification of the logic as P , the compilation into an
executable and provable format. This ensures that the AC has
a well-defined program P to execute within the VCC. Once
integrated, the TCU-specific proving and verification keys are
generated for the VCC.

For registration, the organization registers P into the Pro-
gram Registry, the TCU’s identifier, and the V K.

Operation: Once the setup is complete, the TCU can
operate in a service workflow. On receiving the “/compute”
call, with EIni−1 from a predecessor TCU, the AC
checks the validity of the predecessor TCUi−1, from the
corresponding record on the PR. Then, the AC calls the TCU
i’s VCC to execute the program P with the operations on
the internal and external inputs, with the successful EIV as
a prerequisite for the service execution and the conclusive
internal input commitment. The execution returns a proof of
computational correctness π with the output and the internal
input commitment C(IIn). Then an authorized User submits
π and C(IIn) to the successor Organization’s TCU, using
the “/proofRetrieval” endpoint through the AC.

In our framework, we use the term “Trusted Compute
Unit” (TCU), reflecting how trust emerges from satisfying the
framework’s requirements within a self-contained, manageable
unit-like service interface. Besides the V K, each TCU offers
a deterministically generated reference to P for verification
(R2: Verifiable Correctness of Outputs) and anchors that
reference and the V K on a Program Registry (R4: Cross-
Organizational Traceability), ensuring any code changes
become self-revealing. The AC presents a uniform API so
heterogeneous verifiable computation technologies—TEEs or
zkVMs—can be integrated without modifying service end-
points (R5: Low On-Chain Overhead and Heterogene-
ity). Meanwhile, the VCC preserves confidential inputs (R1:
Confidential Internal Inputs) and chains correctness proofs
across computations (R3: End-to-End Chainability). Lastly,
because only sink computations need on-chain verification (if
required by a dApp), the on-chain overhead remains minimal
(R5 again), while the IS orchestrates off-chain deployments
seamlessly. This design unifies code provenance, proof genera-
tion, and cross-technology composability in a portable, tamper-
evident framework for verifiable off-chain services.

IV. TECHNICAL REALIZATIONS

In this section, we describe how TCUs can be realized with
current Container Orchestration Frameworks for the IS, with
Trusted Execution Environments (TEEs) and Zero-knowledge
Virtual Machines (zkVMs) for the VCC, and lightweight web
frameworks for the AC. While we consider these technologies
as candidates, we would like to underline the generality of
TCU which may be used as a blueprint for further technolo-
gies, in particular for other Verifiable Computation Technolo-
gies, e.g., FHE and SMPC [4]–[6]. Finally, we outline how
the PR can be realized with blockchain smart contracts.

A. Infrastructure with Orchestration Framework

In practice, this layer leverages container orchestration
frameworks (e.g., Kubernetes or Argo Workflows) to provision
and lifecycle-manage TCU instances. For TEE-based TCUs
(e.g., Intel TDX or AWS Nitro Enclaves), the corresponding
container images include both the application logic and en-
clave drivers, deployed only on nodes that support enclave-
capable hardware. For zkVM-based TCUs (e.g., Risc0), the
container images embed the zkVM runtime and deterministic
ELF binaries. The IS ensures correct scheduling (e.g., via node
labels), secure distribution of proving and attestation keys,
and rolling updates to patch or replace TCU containers with
minimal disruption. In the case of TEEs, it also facilitates
remote attestation workflows, where the container attests to a
trusted authority (e.g., Intel TA or AWS Nitro) prior to accept-
ing inputs. For zkVMs, container-level integrity checks (e.g.,
Docker Image signing) ensure the correct zkVM runtime is
loaded. Finally, the IS integrates with DevOps pipelines (e.g.,
reproducible builds, image signing) to maintain a consistent,
verified environment for TCU operations.

B. Verification Computation Component with Trusted Execu-
tion Environments

Trusted Execution Environments (TEEs) are secure hard-
ware components that safeguard data and code from external
tampering and disclosure [13]. Programs executed within
TEEs operate within isolated and/or encrypted memory re-
gions, shielding the content even from the hardware owner
and ensuring the integrity of computations conducted within.
While TEEs also enable confidential computation, i.e., pro-
tecting data in use from the executor, we leverage its ability
to make internally executed programs externally verifiable.

Remote Attestation enables external parties to verify the
integrity of a Trusted Execution Environment (TEE)’s internal
state and the authenticity of messages from within it. TEE-
enabled machines have a machine identity key embedded
into the hardware during manufacturing. Using this key, each
TEE instance generates an identity certificate that can be
externally verified through a Public Key Infrastructure (PKI).
These keys are used to sign measurements that represent a
complete snapshot of the TEE’s internal state at boot. When
a remote attestation request is made, the TEE returns signed
measurements that can be reconstructed outside the TEE to
verify the integrity of its internal state. These measurements
can include a reference to a specific container, whose correct-
ness can be validated with a deterministic build system [12],
thereby enabling verification of a trustworthy computation of
the program P . This general model of TEEs represents the
essential concepts of confidential VMs, or containers [14], like
AWS Nitro [15] which we use for the TCU realization.

During the setup, the TCU’s program logic with the ver-
ification keys of the predecessor TCUs are specified and
compiled during the initialization of the TEE. On initialization,
the measurements of the internal state, i.e., the TCU’s binaries,
are created and signed through the TEE-specific key for remote
attestation. This attestation report and the TEE’s public key

and specific container are registered at the Program Registry.
The attestation represents a commitment to the TCU allowing
other workflow parties to check the integrity of the TEE’s
internal state whereas the TEE-specific public pair represents
the verification key.

In the case of the workflow operation, the EIn and
IIn are provided through the AC, the host of the TEE,
where the TCU logic is executed. After executing the three
TCU VCC operations, the computational output Out and the
commitment to the internal inputs com(IIn) are signed with
the TEE’s private key. The signature representing the proof of
computational integrity can be verified using the corresponding
TEE’s public key.

C. Verification Computation Component with Zero-Knowledge
Virtual Machines

Zero-Knowledge Virtual Machines (zkVMs) leverage non-
interactive zero-knowledge proof (ZKP) protocols to make
the computational integrity of programs executed inside the
zkVMs independently verifiable. ZKPs can encode program
logic in mathematical constraint systems called circuits. Com-
putational integrity can be asserted if a valid, input-specific
variable assignment of the constraint system can be found. To
enable external verifiability without disclosing computational
inputs, elliptic curve cryptography applies where proofs are
constructed and verified with a circuit-specific key pair. Zk-
STARKs, as described in [16], define a class of such protocols,
which is typically used in zkVMs, characterized by fast proof
generation and a transparent, deterministic setup free of trust
assumptions, enabling verification of P ’s computation.

Different from application-specific circuits, zkVMs encode
the instruction set of virtual machines in circuits. This allows
for executing programs in a format compliant with the zkVM’s
instruction set. Risc0 [17], for example, is a zkVM built upon
the RiscV instructions and, hence, allows executing programs
deterministically compiled to general Executable and Linking
Format (ELF) binaries. The execution of an ELF binary file
returns a cryptographic proof that can be verified in any other
Risc0 zkVM through a reference to the binary, called the
ImageID. For the following, we assume Risc0-enabled TCUs.

During the setup, the TCU logic is specified in a high-
level language and compiled into an ELF binary file. From
that, the ImageID can be created which is a cryptographic
(hash-based) representation of the initial zkVM memory state
produced when the ELF binaries are loaded. The ImageID
allows the zkVM of the successor organization to verify that
the computational proof has been generated by the expected
ELF binary. The ImageID corresponding to the verification
key and the ELF binary representing the TCU commitment
are made available on the Program Registry.

In the case of operation, the AC provides the IIn, EIn,
and ELF binary to the zkVM’s executor which runs the ELF
binary and records the session as complete snapshots of the
state of the zkVM throughout the execution. Based on that,
the Receipt is created which serves as proof of computational
integrity. The Receipt contains the computational outputs, the

execution’s imageID, and the seal, a cryptographic artifact that
attests to the validity of the outputs and imageID. The Receipt
can be verified with the original ImageID in the VCC of the
successor organization.

D. Application Component with Containers

For a real-world deployment, the AC is realized as a
lightweight containerized service exposing RPC endpoints
(e.g., /compute and /proofRetrieval). An external
gateway (such as Envoy or Istio) is delegated with the handling
of advanced features like authentication tokens, TLS termina-
tion, and rate limiting before requests reach the TCU.

Inside the TCU container or enclave, a minimal web frame-
work (e.g., a Flask service) receives validated requests and
forwards them to the VCC. When the /compute endpoint is
called, the AC packages EIn along with any local IIn and
invokes the verifiable code inside the TEE or zkVM runtime.
Once the computation finishes, on the VCC, it returns the
resulting output with a verifiable proof.

For chained trusted computations, the AC also records
a proof reference or TCU identifier on the Program Reg-
istry (also available at the /info endpoint), enabling
cross-organization independent verification. Similarly, the
/proofRetrieval endpoint serves as a lightweight re-
trieval mechanism for downstream consumers to obtain ex-
isting proofs on demand. Because business logic and ad-
vanced security checks reside outside the TCU, this component
remains easy to adapt and integrate into existing DevOps
pipelines or microservice meshes, ensuring each TCU instance
can be deployed with minimal friction.

E. Program Registry with Blockchains

Blockchains are decentralized systems designed to resolve
trust issues among collaborating parties without depending on
trusted third parties (TTPs). Submitted transactions are redun-
dantly processed through a collectively executed consensus
protocol, and agreed-upon transactions are securely recorded
in an immutable, append-only transaction history.

We use smart contracts to technically realize the Program
Registry, e.g., those based on Ethereum Virtual Machine [18]
or WebAssembly [19]. Each organization is assumed to have
its own blockchain account represented through a public-
private key pair. As transactions are by default authenticated
with the organization’s account keys, transactions can be
associated with the organization’s blockchain account. While
this hides the organization’s identity behind the account rep-
resentation, it allows to associate TCUs if the mapping of the
account keys and the organization’s identity are known.

As blockchains suffer from storage limitations, we propose
keeping large artifacts off-chain, in particular P , in distributed
file storage like IPFS [20] and only storing a hash-based
reference on the blockchain to preserve the artifacts’ integrity
and transparent validation. Such off-chain storage patterns are
well-known and, for example, described in [21].

V. EVALUATION

In this section, we evaluate TCU by assessing trustwor-
thines, technical and performance concerns in the context of
a FL scenario, and discuss open security-related issues.

A. Experiment-driven Evaluation

To technically evaluate the TCU framework, we implement
the TCU’s VCC using Risc02 as a zkVM, and AWS Nitro
Enclave3 as a VM-based TEE, and the PR in EVM-based [18]
for smart contracts execution. The AC is a light web server
API on Flask4 containerized on a Dockerfile5, and the IS is
managed with AWS Nitro Hypervisor. The experiments were
executed in an AWS EC2 instance of type c5.4xlarge, with 16
vCPUs and 32 GB of memory.

We evaluate the TCU in a federated learning (FL) scenario
as introduced in Section II. In FL, the TCU helps to mitigate
trustworthiness concerns derived from aggregation attacks and
model poisoning [22] through intervened proofs of computa-
tional integrity [9], [10].

For the local learning node, we implement a simple neural
network with two hidden layers, using stochastic gradient
descent as the optimization method, as the P logic of a
TCU, while doing dataset authentication with a signature from
the node and verifying that the base global model to use
comes from a TCU aggregator. In the case of aggregation,
we implement federated averaging [23] inside the TCU which
takes the average of local model updates of the worker nodes
and additionally verifies that the local models come from a
TCU. Without compromising the generality of our approach,
the FL scenario allows us to address the previous concerns
about trustworthiness, while evaluating performance in the
following experiments E1-E46:
E1 We set up and deploy TCUs with different VCCs, TEE

and zkVM-based, for a worker and aggregator node and
measure execution times and transaction costs.

E2 We run the same compute job, i.e., learning and aggre-
gation, in a TEE and a zkVM-based VCC and alternate
TCU i−1 to verify proofs from TEEs or zkVMs.

E3 We increase the dataset volume, in the range of 20 to
10240 rows, to measure how it affects the authentication
of the dataset and learning phase.

E4 We increase the number of learners, in the range of 2
to 800, to measure how the proof verification time grow
inside of the aggregator VCC.

For E1 to E4 we switch between a zkVM-based and TEE-
based aggregator and learners respectively.

Results and Evaluation: The practical implementation
of the TCU, which addresses the trustworthiness concerns.
By chaining proofs of computational integrity together, such
guarantees extend across multiple heterogeneous service ex-
ecutions along the workflow (R3, R4, R5), IIn can not be

2https://dev.risczero.com/api/zkvm
3https://aws.amazon.com/de/ec2/nitro/
4https://flask.palletsprojects.com/en/stable/
5https://docs.docker.com/reference/dockerfile/
6Repository for experiments: https://github.com/ferjcast/TCU

tampered unnoticeably either as Data for the Local Model or
the Weighting Scheme, nor EIn as a Local or Global Model.
At the same time the TCU information is maintained on the
blockchain-based PR alongside the storage of EIn on each
organization’s side (R2).

The TCU protects against input tampering attacks, while
guaranteeing input confidentiality, (R1, R2) inherently by
using verifiable computation and against formal incorrectness
by storing commitments to TCU’s P in the PR, so the P
reference to V K can be created on the verifier side.

Cheating organizations can be held accountable if irregu-
larities in shared data are detected, e.g., through plausibility
checks. The integrity of IIn, EIn, and TCU program P can
then be verified by inspecting P using the PR. This helps in
dispute cases or audits to solve conflicts ex-post.

TABLE I
CONTAINER IMAGE SIZE FOR EACH SCENARIO.

Node Task V CCi(Computing) EIni−1 Verified Image Size
Learner zkVM TEE ∼6.4 GB
Learner zkVM zkVM ∼6.4 GB
Learner TEE TEE ∼1.8 GB
Learner TEE zkVM ∼6.4 GB
Aggregator zkVM TEE ∼6.4 GB
Aggregator zkVM zkVM ∼6.4 GB
Aggregator TEE TEE ∼1.8 GB
Aggregator TEE zkVM ∼6.4 GB

Across all scenarios, on-chain PR deployment consumes
about 979k gas, and registering a TCU costs roughly 265k gas,
regardless of dataset or model sizes. Off-chain TEE attestation
remains negligible at ∼ 0.01 s. However, Table I indicates
container image size is inflated by the requirement of the Risc0
framework library to be included in the image (for proving or
verifying with the zkVM), reflecting the difference between
bundling the specific binaries for a computation versus adding
the specific cryptographic runtime.

For local training on n data samples, Figure 3 shows TEE
verification can exceed the training cost for smaller n (up to
∼ 2400), while zkVM overhead escalates faster beyond n =
320. Model aggregation scales linearly with the number of
local models (Figure 4), each requiring a single verification
plus an averaging step. For both types of nodes, TEEs run
the same compiled instructions as regular binaries, whereas
zero-knowledge systems must encode logic into cryptographic
operations—leading to multiple orders of magnitude difference
of execution time.

B. Discussion

Complementing the previous performance evaluation, we
now revisit key aspects of TCU’s for its real world appliaction.

A significant finding for both scenarios, learning and aggre-
gation, is that the verification of a TCU from a previous TCU is
more efficient when both the learner TCU and the aggregation
TCU share the same technology type. These results can help
organizations manage resource allocation more effectively as
workflows expand. For example, load distribution strategies
can be optimized throughout the workflow, given that TEEs

102 103 104

Dataset Size (Number of Samples)

101

102

103

104

105

106

107

108

109

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TEE verifies TEE
TEE verifies zkVM

zkVM verifies TEE
zkVM verifies zkVM

Fig. 3. Impact of data volume (IIni size) in Local Training scenarios. VCCi-
type verifies EIni−1-type.

101 102 103

Number of Models Aggregated

101

102

103
104

105

106
107

108

109

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TEE verifies TEE
TEE verifies zkVM

zkVM verifies TEE
zkVM verifies zkVM

Fig. 4. Impact of total number of models (EIni set size) in Aggregation
scenarios. VCCi-type verifies EIni−1-type.

generally exhibit better performance compared to zkVMs. Un-
derstanding these factors and developing tailored strategies to
address specific use case constraints will significantly enhance
the practical implementation of TCU. In practice, whether a
TCU-based service can tolerate higher proof-generation over-
head or deferred execution depends on its operational require-
ments. For instance, model training may only occur weekly
or monthly, making it acceptable to use a more computation-
intensive verifiable environment if the update cadence is low.
By contrast, inference services demand quicker turnaround.
This flexibility allows each organization to pick the most
suitable verifiable technology in line with the service’s real-
time or batch-processing needs, without compromising the
overall trust guarantees. This initial experimentation can guide
organizations in efficiently deploying TCUs across heteroge-
neous VCCs.

VI. RELATED WORK

In this section, we review the related work to TCUs. We in-
clude data provenance models, blockchain-based approaches,
and existing cooperative services.

Models for provenance [24] and the PROV7 specification
from W3C have been designed with only a focus on data,
not on the computations and processes producing the data.
Hence, systems in support of data provenance [25]–[27] exist,
but all only consider the data and not the computations. Some
approaches leverage the blockchains to enhance the trust in

7https://www.w3.org/TR/prov-overview/

data provenance [28], or also provide service composition
information as part of the data provenance record [29], [30].
Additionally, some recent efforts like ZkTLS [31] focus on
applying zero-knowledge to the TLS session, allowing clients
to verify certain properties of the session without revealing
sensitive details. However, these approaches do not have
verifiability for the computations generating the data. Hence,
approaches like the TCU would add and enhance data prove-
nance.

Similar approaches for verifiable workflows already exist,
for instance, some using only TEEs [32], [33]. Authors in
[34], also use commitment in the blockchain of a hashed proof,
represented as EIn in the TCU, and leveraging ZKP-based
computational correctness guarantees, but their approach has
higher gas costs and only uses zkSNARKS. Hence, existing
approaches do not consider the adaptability to other types of
VCCs, and thus, do not enable organizations to choose be-
tween the trade-offs of each verifiable computing technology,
unlike TCUs. Other noteworthy ZKP-based workflow systems
do not focus on the confidentiality aspect, for example, using
blockchains as the verification layer [35] or store public proofs
on-chain, thus introducing loss of confidentiality [11], [36].

Lastly, some approaches also tackle the reproducibility
problem without naı̈ve re-execution using secure network
provenance, both without and with the requirement of trusted
hardware components [37]–[39].

While these approaches offer valuable insights into various
aspects of secure and verifiable cooperative services, they often
focus on only one of those specific elements such as confiden-
tiality, verifiability, or traceability. Unlike previous approaches,
that are technology dependent, TCU is a flexible framework
that can operate technology agnostic with its abstraction of the
TCU with the possibility of chaining verifiable computations.

VII. CONCLUSION

We introduced the TCU, a framework for a verifiable
service workflow system for trustworthy cross-organizational
data sharing. Using TCUs allows organizations to verify and
demonstrate the computational correctness of a service work-
flow. The containerized design of TCUs integrates seamlessly
with existing services and orchestration pipelines, facilitating
ephemeral deployments that are reproducible and auditable.

Our experiments confirm the TCU’s interoperability and
composability across TEEs and zkVMs, offering flexible trust
solutions for cross-organizational workflows. Thus, the TCU
emerges as a pioneering approach to next-generation verifiable
off-chain computations. Future research will broaden TCU’s
scope to incorporate additional TEE variants (e.g., Intel TDX)
and other zkVMs (e.g., Nexus), as well as alternative verifiable
computation paradigms such as Fully Homomorphic Encryp-
tion and Secure Multi-Party Computation, further reinforcing
TCU’s vision of an agnostic, privacy-preserving architecture
for diverse organizational contexts.

ACKNOWLEDGEMENTS

Funded by the European Union (TEADAL, 101070186).
Views and opinions expressed are, however, those of the

author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting
authority can be held responsible for them.

REFERENCES

[1] J. Laux, S. Wachter, and B. Mittelstadt, “Three pathways for standardis-
ation and ethical disclosure by default under the european union artificial
intelligence act,” Computer Law & Security Review, vol. 53, p. 105957,
2024.

[2] C. Liu, Q. Zeng, L. Cheng, H. Duan, M. Zhou, and J. Cheng, “Privacy-
preserving behavioral correctness verification of cross-organizational
workflow with task synchronization patterns,” IEEE Transactions on
Automation Science and Engineering, vol. 18, no. 3, pp. 1037–1048,
2020.

[3] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng, “Towards com-
prehensive support for privacy preservation cross-organization business
process mining,” IEEE Transactions on Services Computing, vol. 12,
no. 4, pp. 639–653, 2016.

[4] X. Yu, Z. Yan, and A. V. Vasilakos, “A survey of verifiable computation,”
Mobile Networks and Applications, vol. 22, pp. 438–453, 2017.

[5] N. Smart, “Computing on encrypted data,” IEEE Security & Privacy,
vol. 21, no. 4, pp. 94–98, 2023.

[6] T. Bontekoe, D. Karastoyanova, and F. Turkmen, “Verifiable privacy-
preserving computing,” arXiv preprint arXiv:2309.08248, 2023.

[7] M. Russinovich, C. Fournet, G. Zaverucha, J. Benaloh, B. Murdoch,
and M. Costa, “Confidential computing proofs: An alternative to cryp-
tographic zero-knowledge,” Queue, vol. 22, no. 4, pp. 73–100, 2024.

[8] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

[9] J. Heiss, E. Grünewald, S. Tai, N. Haimerl, and S. Schulte, “Advanc-
ing blockchain-based federated learning through verifiable off-chain
computations,” in 2022 IEEE International Conference on Blockchain
(Blockchain). IEEE, 2022, pp. 194–201.

[10] C. Lee, J. Heiss, S. Tai, and J. W.-K. Hong, “End-to-end verifiable de-
centralized federated learning,” in 2024 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2024, pp. 434–442.

[11] J. Heiss, A. Busse, and S. Tai, “Trustworthy pre-processing of sensor
data in data on-chaining workflows for blockchain-based iot applica-
tions,” in Service-Oriented Computing: 19th International Conference,
ICSOC 2021, Virtual Event, November 22–25, 2021, Proceedings 19.
Springer, 2021, pp. 133–149.

[12] C. Lamb and S. Zacchiroli, “Reproducible builds: Increasing the in-
tegrity of software supply chains,” IEEE Software, vol. 39, no. 2, pp.
62–70, 2021.

[13] A. Muñoz, R. Rios, R. Román, and J. López, “A survey on the (in)
security of trusted execution environments,” Computers & Security, vol.
129, p. 103180, 2023.

[14] C. C. Consortium et al., “Common terminol-
ogy for confidential computing,” Online],(December
2022).(Available from: https://confidentialcomputing. io/wp-
content/uploads/sites/10/2023/03/Common-Terminology-for-
Confidential-Computing. pdf), 2022.

[15] M. Brossard, G. Bryant, B. El Gaabouri, X. Fan, A. Ferreira, E. G.
Evans, C. Haster, E. Johnson, D. Miller, F. Mo et al., “Private delegated
computations using strong isolation,” IEEE Transactions on Emerging
Topics in Computing, vol. 12, no. 1, pp. 386–398, 2023.

[16] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable zero
knowledge with no trusted setup,” in Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part III 39. Springer, 2019,
pp. 701–732.

[17] J. Bruestle and P. Gafni, “Risc zero zkvm: scalable, transparent argu-
ments of risc-v integrity,” Draft. July, vol. 29, 2023.

[18] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[19] A. Tara, K. Ivkushkin, A. Butean, and H. Turesson, “The evolution
of blockchain virtual machine architecture towards an enterprise usage
perspective,” in Software Engineering Methods in Intelligent Algorithms:
Proceedings of 8th Computer Science On-line Conference 2019, Vol. 1
8. Springer, 2019, pp. 370–379.

[20] J. Benet, “IPFS - content addressed, versioned, P2P file system,” CoRR,
2014.

[21] J. Eberhardt and J. Heiss, “Off-chaining models and approaches to off-
chain computations,” in Proceedings of the 2nd Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers, 2018, pp. 7–12.

[22] G. Xia, J. Chen, C. Yu, and J. Ma, “Poisoning attacks in federated
learning: A survey,” IEEE Access, vol. 11, pp. 10 708–10 722, 2023.

[23] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-
formance evaluation of federated learning algorithms,” in Proceedings
of the second workshop on distributed infrastructures for deep learning,
2018, pp. 1–8.

[24] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance
model core specification (v1. 1),” Future generation computer systems,
vol. 27, no. 6, pp. 743–756, 2011.

[25] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in
distributed environments,” in ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing.
Springer, 2012, pp. 101–120.

[26] N. Baracaldo, L. A. D. Bathen, R. O. Ozugha, R. Engel, S. Tata,
and H. Ludwig, “Securing data provenance in internet of things (iot)
systems,” in Service-Oriented Computing–ICSOC 2016 Workshops:
ASOCA, ISyCC, BSCI, and Satellite Events, Banff, AB, Canada, October
10–13, 2016, Revised Selected Papers 14. Springer, 2017, pp. 92–98.

[27] S. Malik, S. S. Kanhere, and R. Jurdak, “Productchain: Scalable
blockchain framework to support provenance in supply chains,” in
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE, 2018, pp. 1–10.

[28] D. Mertens, J. Kim, J. Xu, E. Kim, and C. Lee, “Smart flow: a
provenance-supported smart contract workflow architecture,” Cluster
Computing, pp. 1–15, 2024.

[29] C. A. Ardagna, M. Anisetti, B. Carminati, E. Damiani, E. Ferrari, and
C. Rondanini, “A blockchain-based trustworthy certification process for
composite services,” in 2020 IEEE International Conference on Services
Computing (SCC). IEEE, 2020, pp. 422–429.

[30] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi
et al., “Chorchain: A model-driven framework for choreography-based
systems using blockchain.” in ITBPM@ BPM, 2021, pp. 26–32.

[31] M. Kalka and M. Kirejczyk, “A comprehensive review of tlsnotary
protocol,” arXiv preprint arXiv:2409.17670, 2024.

[32] A. Delignat-Lavaud, C. Fournet, K. Vaswani, S. Clebsch, M. Riechert,
M. Costa, and M. Russinovich, “Why should i trust your code? con-
fidential computing enables users to authenticate code running in tees,
but users also need evidence this code is trustworthy.” Queue, vol. 21,
no. 4, pp. 94–122, 2023.

[33] H. Howard, F. Alder, E. Ashton, A. Chamayou, S. Clebsch, M. Costa,
A. Delignat-Lavaud, C. Fournet, A. Jeffery, M. Kerner et al.,
“Confidential consortium framework: Secure multiparty applications
with confidentiality, integrity, and high availability,” arXiv preprint
arXiv:2310.11559, 2023.

[34] B. Á. Toldi and I. Kocsis, “Blockchain-based, confidentiality-
preserving orchestration of collaborative workflows,” arXiv preprint
arXiv:2303.10500, 2023.

[35] G. Ramezan and E. Meamari, “zk-iot: Securing the internet of things
with zero-knowledge proofs on blockchain platforms,” arXiv preprint
arXiv:2402.08322, 2024.

[36] J. Heiss, T. Oegel, M. Shakeri, and S. Tai, “Verifiable carbon accounting
in supply chains,” IEEE Transactions on Services Computing, 2023.

[37] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in Proceedings of the twenty-third ACM
symposium on operating systems principles, 2011, pp. 295–310.

[38] X. Zhou, A. Nehme, V. Jesus, Y. Wang, M. Josephs, K. Mahbub, and
A. Abdallah, “Audiwflow: Confidential, collusion-resistant auditing of
distributed workflows,” Blockchain: Research and Applications, vol. 3,
no. 3, p. 100073, 2022.

[39] M. M. B. Taha, S. Chaisiri, and R. K. Ko, “Trusted tamper-evident data
provenance,” in 2015 IEEE Trustcom/bigdatase/ispa, vol. 1. IEEE,
2015, pp. 646–653.

