
A Time Series Analysis of Malware Uploads to
Programming Language Ecosystems

Jukka Ruohonen[0000−0001−5147−3084] and Mubashrah Saddiqa
{juk, msad}@mmmi.sdu.dk

University of Southern Denmark, Sønderborg, Denmark

Abstract. Software ecosystems built around programming languages
have greatly facilitated software development. At the same time, their
security has increasingly been acknowledged as a problem. To this end,
the paper examines the previously overlooked longitudinal aspects of
software ecosystem security, focusing on malware uploaded to six popu-
lar programming language ecosystems. The dataset examined is based on
the new Open Source Vulnerabilities (OSV) database. According to the
results, records about detected malware uploads in the database have re-
cently surpassed those addressing vulnerabilities in packages distributed
in the ecosystems. In the early 2025 even up to 80% of all entries in
the OSV have been about malware. Regarding time series analysis of
malware frequencies and their shares to all database entries, good pre-
dictions are available already by relatively simple autoregressive models
using the numbers of ecosystems, security advisories, and media and
other articles as predictors. With these results and the accompanying
discussion, the paper improves and advances the understanding of the
thus far overlooked longitudinal aspects of ecosystems and malware.

Keywords: software ecosystems, malware, vulnerabilities, dependencies, secu-
rity risks, typo-squatting, security scanning, sweeps, autoregression, lags, CRA

1 Introduction

Software ecosystems—understood in the present context as programming lan-
guage specific repositories from which software packages can be downloaded and
updated—have greatly facilitated software development and the general soft-
ware design principles, among them particularly reusability [6]. This facilitation
has correlated with an enormous growth of the ecosystems, many of which con-
tain hundreds of thousands of software packages. However, over again, software
ecosystems have also been shown to be risky in terms of software security. In-
deed, the security aspects of practically all major software ecosystems have been
examined in recent years. The examples include, but are not limited to, PyPI
for Python [9, 11, 16, 21], CRAN for R [7], npm for JavaScript [21, 22], Maven
for Java [13], RubyGems for Ruby [7], and Packagist for PHP [17]. The overall

ar
X

iv
:2

50
4.

15
69

5v
1 

 [
cs

.C
R

] 
 2

2 
A

pr
 2

02
5



conclusion from this already vast but still growing literature branch is the gen-
eral insecurity of the software ecosystems for individual developers and software
development organizations, whether companies or open source software projects.

Among the primary reasons for the security risks is that many of the packages
distributed in the ecosystems are of poor quality, containing various unverified se-
curity issues or already identified vulnerabilities. The security risks also increase
due to a heavy use of dependencies in the ecosystems [7, 13, 22]. Both direct
and transitive dependencies contribute to the risks, which are also related to the
presence of many outdated, unmaintained, and abandoned packages distributed
in the ecosystems. Also the operational security of software developers using the
ecosystems has been seen as a risk factor [21, 22]. Furthermore, the problems are
made worse by the increasing presence of malware in some ecosystems [9, 11, 21].
The paper aligns with and contributes to the last mentioned genre of software
ecosystem research, the empirically motivated malware-specific research domain.

A traditional attack vector with the malware uploads has been so-called typo-
squatting; an attacker uploads a malware package with a name resembling an
existing, legitimate package, trying to fool people into downloading and installing
the malware-ridden package [2]. Such typo-squatting belongs to a broader class
of name confusion attacks [19]. For instance, it has recently been argued that
hallucinated package names by large language models might make the problem
worse in the nearby future [5]. Regardless, the problem is already intensified by
dependencies because it essentially may only take one misstep by one developer
somewhere in a dependency network to compromise the whole network [11]. For
this reason alone, it is important to gain better knowledge on the longitudinal
aspects of malware uploads to popular programming language ecosystems. With
this point in mind, the following three research questions (RQs) are examined:

RQ.1: How much detected malware uploads have popular programming lan-
guage ecosystems seen compared to traditional vulnerability reports?

RQ.2: Which ecosystems have been particularly prone to malware uploads?

RQ.3: Can time series analysis provide insights into malware uploading trends?

To the best of the authors’ knowledge, the RQs, or something analogous,
have not been asked and examined in previous research. The paper thus fills a
small but notable knowledge gap. The first RQ.1 also reflects a recently proposed
distinction between supply chain attacks and vulnerabilities; the former can be
seen to involve also an insertion of malware into an ecosystem, whereas the latter
is about vulnerabilities in third-party components propagating into a software
using the components [6]. Though, as was noted, also malware may propagate
through dependencies. If such a propagation reaches commercial software ven-
dors or important open source software projects, including distributors such as
Linux distributions, the consequences can be catastrophic in many ways. In any
case, before continuing to the means to answer to the three RQs, the paper’s
topic is further motivated from a new and different angle in the opening Sec-
tion 2. The subsequent Section 3 presents the materials and methods. Results
are presented in Section 4, and a conclusion follows in the final Section 5.



2 Motivation

The security risks involved are easy to demonstrate. Most—if not all—malware
recently discovered from the npm ecosystem come with the following warning:

“Any computer that has this package installed or running should be con-
sidered fully compromised. All secrets and keys stored on that computer
should be rotated immediately from a different computer. The package
should be removed, but as full control of the computer may have been
given to an outside entity, there is no guarantee that removing the pack-
age will remove all malicious software resulting from installing it.”1

This serious warning is not intensified only by the noted risk with depen-
dencies. Among other things, many malware-ridden packages in both the npm
and PyPI ecosystems have relied on installation-time infections made possible
by the execution of scripts during installation or even downloading [21]. Many of
the malware uploads recorded in the OSV are further referenced with CWE-506,
which refers to embedding of malicious code in the Common Weakness Enumer-
ation (CWE) framework. A similar warning is available from this framework.

The many security risks have been recognized also by policy-makers in recent
years. In terms of new regulations, particularly important to acknowledge is the
Cyber Resilience Act (CRA) recently enacted in the European Union (EU) [20].
This regulation is noteworthy for motivating also the present work. Among other
things, the CRA’s new essential cyber security requirements for most information
technology products with a network functionality contain an obligation to only
ship products without known vulnerabilities. This requirement applies also to
vulnerabilities in dependencies distributed in software ecosystems. Although the
CRA does not mention malware explicitly, its further essential requirements to
ensure confidentiality, integrity, and availability [15] can be seen to cover also
malware—as the above quotation also testifies. Accidentally embedding malware
to a product is thus likely to face also regulatory sanctions at least in severe cases.

The CRA is important to mention also from a perspective of not software
products and producers but also from a perspective of regulators. In particular,
the regulation’s Article 60 obliges European market surveillance authorities to
conduct coordinated sweeps of particular products for checking compliance and
detecting potential infringements. Regarding the paper’s time series analysis,
the note in the CRA’s recital 114 about justifying sweeping particularly when
“market trends, consumer complaints or other indications suggest that certain
categories of products with digital elements are often found to present cybersecu-
rity risks” (italics added). While the CRA is not meant to regulate all the world’s
software, sweeping software ecosystems, possibly together with other stakehold-
ers, might improve the cyber security for everyone. To this end, it could be also
argued that the new obligations placed upon regulators themselves might en-
hance and improve the existing tracking and monitoring infrastructures, among

1 https://osv.dev/vulnerability/MAL-2024-226

https://osv.dev/vulnerability/MAL-2024-226


them the OSV database. After all, in the context of cyber security, the concept
of a sweep, which originates from the EU’s product safety laws [4], is rather close
to security scanning, security audits, security monitoring, and related concepts
and techniques already used to improve also the security of software ecosystems.

3 Materials and Methods

3.1 Data

The dataset examined was assembled from a bulk snapshot obtained in April
2025 from the OSV database.2 Although OSV curates data from various publicly
available sources, the dataset assembling was restricted to CRAN, Go, Maven,
npm, PyPI, and RubyGems. Then, the following time series were constructed:

1. MalFreqt counts the number of malware entries reported for all of the six
ecosystems sampled at t. The identification of malware entries was done by
including those files whose names started with a MAL- character string. Even
though this simple identification technique is not perfect, searching for a
string malware from the other files indicates no major concerns.

2. MalSharet is a percentage share of malware entries to all entries in the
six ecosystems at a given t. If VulnFreqt would be a total count of soft-
ware vulnerabilities in the six ecosystems at the given t, an approximation
MalSharet ≃ MalFreqt / (MalFreqt +VulnFreqt)× 100 would hold.

3. Ecot is a count of the given ecosystems that contributed to MalFreqt at t. It
follows that max(Ecot) = 6 and min(Ecot) = 0 hold for all t.

4. Advt is a count of security advisories curated in the OSV at t for malware
entries in the six ecosystems. Given the OSV’s JavaScript Object Nota-
tion (JSON) schema, the parsing was done by searching and counting the
ADVISORY entries in the schema’s references field.

5. Artt is a count of media articles, blog posts, and related information sources
recorded in the OSV database at t for malware entries in the six ecosystems.
The parsing was analogous to Advt but by using the ARTICLE entries.

These five time series were operationalized into daily, weekly, and monthly
aggregates for which the lengths are T = 1195, T = 168, and T = 39, respec-
tively. The starting periods were restricted to the first day, first week, and first
month (January) of 2022. The reason for this restriction is that only a few mal-
ware entries have been recorded in the OSV database prior to 2022. Regarding
the daily aggregates, MalSharet was manually set to zero in case an amount of
all entries at a day t was zero. Given the date of the data collection, the end
periods are March 2025 and its last day and week.

2 https://osv.dev/

https://osv.dev/


3.2 Methods

The following autoregressive distributed lag (ARDL) model is used:

f(yt) = α+

p1∑
j=1

βjf(yt−j) +

p2∑
j=0

γjf(Ecot−j) (1)

+

p3∑
j=0

ϕjf(Advt−j) +

p4∑
j=0

ρjf(Artt−j) + εt,

where yt refers to either MalFreqt or MalSharet, t = 1, . . . , T , α is a constant, βj ,
γj , ϕj , and ρj are regression coefficients, and εt is a normally distributed residual
term with a zero mean and a variance σ2

ε . If yt is MalFreqt, f(x) = ln(x+ 1); for
MalSharet it is an identity function, f(x) = x. The immediate effects of a unit
change in Ecot, Advt, and Artt upon yt are given by γ0, ϕ0, and ρ0, respectively.
If the unit changes are sustained, the effects are given by so-called long-run
multipliers (LRMs). To use Ecot as an example, such a multiplier is given by

LRMEcot
=

∑p2

j=0 γj

1−
∑p1

j=1 βj
. (2)

The interpretation of these LRMs is similar to standard regression coeffi-
cients. If MalSharet and Ecot are considered as an example, a sustained increase
by one ecosystem in the Ecot series will increase MalSharet by LRMEcot per-
centage points, all other things being constant. In addition, dynamic multipliers
(DMs) are useful for evaluating the dynamics of a given effect [3, 12]. To again
use Ecot as an example, for some integer k > 1 the DMs for it are given by

(DMEcot,1, . . . ,DMEcot,k) =

(
∂yt

∂Ecot
, . . . ,

∂yt+k

∂Ecot

)
, t+ k ≤ T. (3)

For a sufficiently large k, it follows that

k∑
i=1

DMEcot,i ≃ LRMEcot
. (4)

Finally, there is the tricky problem of selecting the orders p1, p2, p3, and p4.
On one hand, selecting too short orders may lead to the omitted variable bias
because relevant information is excluded. Too short orders often lead to also
other problems, including remaining autocorrelation in the residual term εt. On
the other hand, selecting too long orders encounters the overfitting problem.

By inspecting automatic order selection algorithms in two different imple-
mentations [14, 18], it can be concluded that both implementations yield ex-
tremely long orders both with the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). Therefore, a manual but still systematic
three-step procedure was used. In the first step the orders were uniformly in-
creased, p1 = p2 = p3 = p4, until no notable autocorrelation was present in the



residual terms. In the second step p1, as obtained from the first step, was held
constant but the remaining orders, p2 = p3 = p4, were uniformly decreased until
either autocorrelation was present or any of the coefficients γp2 , ϕp3 , ρp4 were
statistically significant at the conventional 95% confidence level. In the third
and final step p4, p3, and p2, in the order of listing, were consecutively and
individually decreased by using the same stop criterion as in the second step.

4 Results

4.1 Descriptive Statistics

Th presentation of the results can be started by taking a look at the OSV’s
malware entries across the six ecosystems; a basic breakdown is shown in Table 1.
As can be seen, npm and PyPI have garnered the most entries—as well as the
most malware entries. In fact, as much as about 84% and 57% of all entries for
these two ecosystems have recently (from 2022 onward) been about malware.
Although it is impossible to say how many have fallen victim to these malware
uploads, the observation is still quite alarming in a sense that vetting of new
uploads seems to be either working poorly or absent altogether. Interestingly,
furthermore, RubyGems takes only the fifth place in terms of total entries but
the third place in terms of malware uploads. At the moment, CRAN, Go, and
Maven seem to have not been particular targets of malware uploads, or they
have countermeasures in place, but the situation may change in the future.

Table 1. Entries Across the Six Ecosystems

Frequency
Malware share

Ecosystem All entries Malware entries

CRAN 10 0 0.00
Go 4, 145 8 0.19
Maven 5, 461 1 0.02
npm 24, 837 20, 481 82.46
PyPI 15, 929 8, 966 56.29
RubyGems 1, 727 813 47.07

The weekly MalFreqt and MalSharet time series shown in Fig. 1 further in-
dicate the persistence of malware uploads to the three ecosystems. The former
series contain three large spikes, which are likely due to specific sweeps or more
general clean-up operations. Even when keeping these spikes in mind, the me-
dian is as high as 37 malware entries per week, which is again a rather striking
number on its own. Then, the MalSharet time series fluctuates a lot, partially
due to the spikes in MalFreqt but also otherwise. This observation reflects the
operationalization of the time series (see Subsection 3.1). The moving average



0

1000

2000

3000

4000

1−2022 1−2023 1−2024 1−2025

Fr
eq

ue
nc

y
Frequency Time series

8 week moving naverage

0

20

40

60

80

100

1−2022 1−2023 1−2024 1−2025

Sh
ar

e 
(%

)

Share Time series
8 week moving naverage

Fig. 1. The Two Malware Time Series (weekly aggregates)

0

3

6

1−2022 1−2023 1−2024 1−2025

Fr
eq

ue
nc

y

Number of ecosystems Time series
8 week moving naverage

0

1000

2000

3000

4000

1−2022 1−2023 1−2024 1−2025

Fr
eq

ue
nc

y

Number of advisories Time series
8 week moving naverage

0

1000

2000

3000

4000

1−2022 1−2023 1−2024 1−2025

Fr
eq

ue
nc

y

Number of articles Time series
8 week moving naverage

Fig. 2. The Three Explanatory Time Series (weekly aggregates)



shown was around 50% during 2023 and most of 2024, but in the early 2025 it
had increased even up to 80%. This amount is almost twice the median of 41%.

Regarding the three explanatory time series shown in Fig. 2, Ecot fluctuates
mainly between the values one and three, meaning that malware uploads into
npm, PyPI, and RubyGems have sometimes been reported individually in a
given week but some other times weekly malware reports have been made for
all three ecosystems. However, a human eye cannot see whether the fluctuations
in Ecot correspond with the fluctuations in MalFreqt and MalSharet. This point
justifies the formal ARDL modeling soon disseminated in Subsection 4.2.

With respect to the two other explanatory time series, the three notable
spikes in MalFreqt seem to correspond with one large spike in Advt and two visi-
ble spikes in Artt. Also this observation motivates the formal time series modeling
because it seems that to some extent publicity correlates with reported malware
uploads. When taking a peek at the sources behind the articles counted by Artt,
many of these have been either media articles and blogs about open source
software supply-chain security or malware discovery announcements from cyber
security companies and others scanning the programming language ecosystems.
Given the ARDL context, it can be hypothesized that publicity may not only
correlate simultaneously with the spikes but past publicity may influence a cur-
rent or a future discovery rate. If there is a lot of publicity, as has been the case
in the past three years, it may be that more and more companies, open source
software developers, cyber security professionals, and others pay attention to the
malware uploading problem. That is, it may be that Advt−1, . . . ,Advt−p3

and
Artt−1, . . . ,Artt−p4

, not necessarily Advt and Artt alone, influence MalFreqt and
MalSharet. A similar reasoning applies to Ecot. The rising trends inMalFreqt and
MalSharet from late 2024 onward, and the persistence of the [1, 3] range fluctua-
tions in Ecot, may—or should—motivate further security scans and sweeps—or,
alternatively, these should not at least motivate stopping existing efforts.

4.2 Regression Analysis

The ARDL model in (1) is estimated for both MalFreqt and MalSharet by using
the daily, weekly, and monthly aggregates. Thus, in total six models are esti-
mated. Before continuing, it can be noted that both series are stationary, as also
confirmed by formal Dickey-Fuller tests [8]. Another preliminary point is about
the manual order selection procedure described in Subsection 3.2. As can be
seen from Table 2, the procedure resulted relatively, but not substantially, large
orders for the daily aggregates, as could be expected. Somewhat unexpectedly,
however, rather short orders were suitable for the weekly aggregates. A mini-
mal model with p1 = 1 and p2 = p3 = p4 = 0 was suitable for the monthly
MalSharet series. Despite these points, the procedure worked well in ensuring
that no remaining autocorrelation is present. As can be seen from Fig. 3, all
autocorrelation functions (ACFs) remain below the 95% confidence intervals.

As is typical in applied problems, the normality assumptions about εt is
a small problem. For instance, the Jarque-Bera test [10], which is based on
skewness and kurtosis, rejects the null hypothesis of normality for all residual



0 5 10 15 20 25 30
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06

Lag

A
C

F

Daily: frequency

0 5 10 15 20 25 30
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06

Lag

A
C

F

Daily: share

0 5 10 15 20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Lag

A
C

F

Weekly: frequency

0 5 10 15 20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

Lag

A
C

F

Weekly: share

0 5 10 15

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

Lag

A
C

F

Monthly: frequency

0 5 10 15

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

Lag

A
C

F

Monthly: share

Fig. 3. Autocorrelation Functions of the Residual Terms from the Six ARDL Models
(95% confidence intervals; maximum lag lengths determined by ⌊10× log10(T )⌋)

−3 −2 −1 0 1 2 3

−1

0

1

2

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Daily: frequency

−3 −2 −1 0 1 2 3

−60
−40
−20

0
20
40
60

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Daily: share

−2 −1 0 1 2

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Weekly: frequency

−2 −1 0 1 2

−40

−20

0

20

40

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Weekly: share

−2 −1 0 1 2

−0.5

0.0

0.5

1.0

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Monthly: frequency

−2 −1 0 1 2

−30
−20
−10

0
10
20
30

S
am

pl
e

qu
an

til
es

Theoretical quantiles

Monthly: share

Fig. 4. Normal Quantile-Quantile Plots



Table 2. ARDL(p1, p2, p3, p4) Orders Selected

Daily Weekly Monthly

Frequency (27, 26, 22, 18) (3, 2, 2, 2) (3, 2, 3, 2)
Share (23, 21, 21, 20) (3, 0, 1, 0) (1, 0, 0, 0)

series except those coming from the weekly and monthly estimates forMalSharet.
When taking a visual look at Fig. 4, however, the situation is hardly as bad as the
formal test results would indicate. In other words, all residual series resemble the
normal distribution; some more, some less, but all still sufficiently for proceeding.

Heteroskedasticity is also a slight problem. As can be seen from Fig. 5, par-
ticularly the residuals from the two models for the daily aggregates indicate
non-random patterns. There is also a related problem: the plain ARDL model
is not optimal for MalSharet because max(MaxSharet) = 100, which is exceeded
by some of the estimated values. However, such exceedances are rather small:
the percentage shares of estimated values exceeding one hundred are only 1.7,
1.8, and 2.6 for the three models using the daily, weekly, and monthly aggregates
of MalSharet, respectively. All in all, it must be acknowledged that some diag-
nostic problems are present, as is often the case in applied time series regression
analysis, but none of the problems are severe enough to prevent proceeding into
the actual results. Against this backdrop, the LRMs are shown in Table 3.

−1 0 1 2

0

2

4

6

8

E
st

im
at

ed
va

lu
es

Residuals

Daily: frequency

−60 −40 −20 0 20 40 60

0

50

100

150

E
st

im
at

ed
va

lu
es

Residuals

Daily: share

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

2

4

6

8

E
st

im
at

ed
va

lu
es

Residuals

Weekly: frequency

−40 −20 0 20 40
0

20
40
60
80

100
120
140

E
st

im
at

ed
va

lu
es

Residuals

Weekly: share

−0.5 0.0 0.5 1.0

0

2

4

6

8

E
st

im
at

ed
va

lu
es

Residuals

Monthly: frequency

−30 −20 −10 0 10 20 30
0

20
40
60
80

100
120

E
st

im
at

ed
va

lu
es

Residuals

Monthly: share

Fig. 5. Estimated Values and Residuals



Table 3. Long-Run Multipliers1

Daily Weekly Monthly

Frequency Share Frequency Share Frequency Share

Ecot 0.812 46.501 0.437 19.413 0.160 13.060
Advt 0.840 0.113 0.886 0.027 0.963 0.033
Artt 0.519 0.061 0.344 0.041 0.169 0.015

1 Colored entries denote statistical significance at the conventional 95% level.

All three explanatory time series indicate long-run effects, irrespective whether
daily, weekly, or monthly aggregates are used. Furthermore, only three of the
LRMs are not statistically significant at the conventional 95% confidence level.
Having said that, the effects from Advt and Artt are much lower than those from
the ecosystem count time series, which indicate substantial long-run impacts.
All other things being constant, a unit increase in Ecot increases MalSharet by
46.5 percentage points daily, 19.4 percentage points weekly, and 13.1 percentage
points monthly. When keeping the maximum in mind, these long-run effects are
substantial but hardly surprising as such due to the concentration of malware
uploads to npm, PyPI, and RubyGems. The DMs shown in Fig. 6 further in-
dicate that the effects are not merely immediate shocks but persist relatively
long before eventually dampening. Though, a similar observation applies to the
other series as well. The Advt and Artt time series indicate particularly disturb-
ing dynamic shocks upon MalSharet in the model using the daily aggregates.
Although the corresponding effects, as seen from the y-axes in Fig. 6 and the
LRMs in Table 3, are still small in magnitude, these persistent but fluctuating
shocks could be interpreted to support a conclusion that the publicity theoriza-
tion is not entirely without a basis. As for the earlier speculation in the previous
Subsection 4.1 about the potential impact of the past values of the ecosystem
time series, it can be concluded that—and despite for the selection of p2 = 0
for two series (see Table 2)—the effects are not entirely simultaneous. Finally,
the empirical exposition can be ended by noting that the ARDL models yield
generally good statistical performance; the lowest and highest coefficients of de-
termination are 0.59 and 0.95. While forecasts can be left for further work, such
values hint that even simple time series model could be used also in practical
foresight about programming language ecosystem security in the nearby future.

5 Conclusion

The paper examined recent (from 2022 to early 2025) malware uploads to six
popular programming language ecosystems: CRAN, Go, Maven, npm, PyPI, and
RubyGems. Regarding the three research questions specified, the answer to RQ.1
is simple but alarming: malware uploads have surpassed the reporting of tradi-
tional software vulnerabilities in packages distributed in the ecosystems. With
respect to RQ.2, npm (over twenty thousand malware uploads), PyPI (nearly



5 10 15

0.0
0.2
0.4
0.6
0.8

k

D
M

Daily: frequency

Ecot

5 10 15

0.0

0.2

0.4

0.6

k

D
M

Daily: frequency

Advt

5 10 15

0.0
0.1
0.2
0.3
0.4

k

D
M

Daily: frequency

Artt

5 10 15

0

10

20

30

k

D
M

Daily: share

Ecot

5 10 15

0.000
0.005
0.010
0.015
0.020

k

D
M

Daily: share

Advt

5 10 15

−0.015

−0.005

0.005

0.015

k

D
M

Daily: share

Artt

5 10 15

0.0
0.1
0.2
0.3
0.4

k

D
M

Weekly: frequency

Ecot

5 10 15

0.0
0.2
0.4
0.6
0.8

k

D
M

Weekly: frequency

Advt

5 10 15

0.00

0.10

0.20

0.30

k

D
M

Weekly: frequency

Artt

5 10 15

0

2

4

6

k

D
M

Weekly: share

Ecot

5 10 15

0.000
0.005
0.010
0.015
0.020

k

D
M

Weekly: share

Advt

5 10 15

0.000

0.005

0.010

0.015

k

D
M

Weekly: share

Artt

5 10 15

−0.3

−0.1

0.1

0.3

k

D
M

Monthly: frequency

Ecot

5 10 15

0.0
0.2
0.4
0.6
0.8

k

D
M

Monthly: frequency

Advt

5 10 15

−0.1
0.0
0.1
0.2

k

D
M

Monthly: frequency

Artt

5 10 15

0
2
4
6
8

k

D
M

Monthly: share

Ecot

5 10 15

0.000
0.005
0.010
0.015
0.020

k

D
M

Monthly: share

Advt

5 10 15

0.000
0.002
0.004
0.006
0.008

k

D
M

Monthly: share

Artt

Fig. 6. Dynamic Multipliers



nine thousand malware uploads), and RubyGems (about eight hundred malware
uploads) have been particularly prone to malware uploads, whereas CRAN, Go,
and Maven have seen less than ten malware uploads in total. The answer to the
third and final RQ.3 is that time series analysis can reveal insights about mal-
ware uploads and their trends. The decent statistical performance obtained—the
average coefficient of determination is 0.79—indicates that forecasting could be
used also in practical foresight. Although such forecasts were left for further
work, it can be hypothesized that the increasing trend of malware uploads con-
tinues also in the nearby future. As could be expected, the number of ecosystems
provides particularly good predictive power; the more there are ecosystems, the
more malware uploads are also reported. Smaller but still visible effects are
present for security advisories and media and other articles; publicity seems to
also affect the malware upload trends. Rather analogously to recent arguments
about reported vulnerabilities in open source software projects [17], the expla-
nation might be that increasing publicity about malware uploads prompts more
companies and security professionals to scan and monitor the ecosystems.

The research on ecosystems and malware has often recommended improving
monitoring and detection capabilities [2, 9]. In addition to publicity and aware-
ness, it may be that this recommendation also implicitly and partially explains
the answer to RQ.2. In other words, it may be that detection and monitor-
ing capabilities might have already improved, such that more malware uploads
have been detected, removed, and reported—possibly irrespective whether mal-
ware uploads have actually increased per se. While improving the capabilities
further may improve the situation somewhat, a probability of bad apples slip-
ping through is also dependent on the sizes of the ecosystems. When there are
hundreds of thousands of packages, it is probable that some malware will slip
through even with highly accurate detection engines. Against this backdrop, it
is interesting to see whether the future will see curated lists for safe and secure
packages. A recommendation to improve code signing [6] aligns with such cu-
rated lists. Curating has also been what Linux distributions have always done,
but somewhere in recent history this quality gating function was forgotten or
overridden by the emergence of programming language software ecosystems.

The results have also implications for research. For instance, reflecting a lack
of data sharing and a lack of good benchmark datasets in malware research [1],
some studies have attempted to verify a true positiveness of a malware sample by
checking that the corresponding packages are absent in PyPI [11]. Clearly, such
a check is misleading or at least a poor choice due to the prevalence of malware
in PyPI too. Instead, a starting point for further research might be to evaluate
the performance of existing commercial malware detection engines in the pro-
gramming ecosystem context.3 It may well be that detection accuracy is not
as good as with other, more conventional malware variants usually distributed
as binaries. There is also room for more practice-oriented work regarding take-
down efficiency, which seems to be suboptimal according to existing research [2].
Though, takedowns and clean-ups reiterate also the point about curated lists
and signing—it is debatable to which areas future efforts should be allocated.

3 https://www.virustotal.com/

https://www.virustotal.com/


References

[1] Botacin, M., Ceschin, F., Sun, R., Oliveir, D., Grégio, A.: Challenges and Pitfalls
in Malware Research. Computers & Security 106, 102287 (2021)

[2] Cao, A., Dolan-Gavitt, B.: What the Fork? Finding and Analyzing Malware in
GitHub Forks. In: Proceedings of the Workshop on Measurements, Attacks, and
Defenses for the Web (MADWeb 2022). The Internet Society, San Diego (2022)

[3] Cheng, M., Liu, B.: Analysis on the Influence of China’s Energy Consumption on
Economic Growth. Sustainability 11, 3982 (2019)

[4] Chiara, P.G.: The Cyber Resilience Act: the EU Commission’s Proposal for a
Horizontal Regulation on Cybersecurity for Products with Digital Elements: An
Introduction. International Cybersecurity Law Review 3, 255–272 (2022)

[5] Claburn, T.: LLMs Can’t Stop Making Up Software Dependencies and Sabotaging
Everything: Hallucinated Package Names Fuel ‘Slopsquatting’ (2025), The Regis-
ter, available online in April 2025: https://www.theregister.com/2025/04/12/
ai_code_suggestions_sabotage_supply_chain/

[6] Cox, R.: Fifty Years of Open Source Software Supply Chain Security. ACM Queue
23(1), 84–107 (2025)

[7] Decan, A., Mens, T., Claes, M.: An Empirical Comparison of Dependency Issues
in OSS Packaging Ecosystems. In: Proceedings of the IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER 2017).
pp. 2–12. IEEE, Klagenfurt (2017)

[8] Dickey, D.A., Fuller, W.A.: Distribution of the Estimators for Autoregressive Time
Series With a Unit Root. Journal of the American Statistical Association 74(366),
427–431 (1979)

[9] Guo, W., Xu, Z., Liu, C., Huang, C., Fang, Y., Liu, Y.: An Empirical Study
of Malicious Code in PyPI Ecosystem. In: Proceedings of the 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2023). pp.
166–177. IEEE, Luxembourg (2023)

[10] Jarque, C.M., Bera, A.K.: Efficient Tests for Normality, Homoscedasticity and
Serial Independence of Regression Residuals. Economics Letters 6(3), 255–259
(1980)

[11] Mehedi, S.T., Islam, C., Ramachandran, G., Jurdak, R.: DySec: A Machine
Learning-Based Dynamic Analysis for Detecting Malicious Packages in PyPI
Ecosystem (2025), archived manuscript, available online: https://arxiv.org/

abs/2503.00324
[12] Menegaki, A.N.: The ARDL Method in the Energy-Growth Nexus Field; Best

Implementation Strategies. Economies 7, 105 (2019)
[13] Nachuma, C., Hossan, M.M., Turzo, A.K., Zibran, M.F.: Decoding Dependency

Risks: A Quantitative Study of Vulnerabilities in the Maven Ecosystem (2025),
archived manuscript, available online: https://arxiv.org/abs/2503.22134

[14] Natsiopoulos, K., Tzeremes, N.: ARDL: ARDL, ECM and Bounds-Test for
Cointegration (2023), R package version 0.2.4, available online in April 2025:
https://cran.r-project.org/web/packages/ARDL/index.html

[15] Ruohonen, J., Hjerppe, K., Kang, E.Y.: A Mapping Analysis of Requirements
Between the CRA and the GDPR (2025), archived manuscript, available online:
https://arxiv.org/abs/2503.01816

[16] Ruohonen, J., Hjerppe, K., Rindell, K.: A Large-Scale Security-Oriented Static
Analysis of Python Packages in PyPI. In: Proceedings of the 18th Annual Inter-
national Conference on Privacy, Security and Trust (PST 2021). pp. 1–10. IEEE,
Auckland (online) (2021)

https://www.theregister.com/2025/04/12/ai_code_suggestions_sabotage_supply_chain/
https://www.theregister.com/2025/04/12/ai_code_suggestions_sabotage_supply_chain/
https://arxiv.org/abs/2503.00324
https://arxiv.org/abs/2503.00324
https://arxiv.org/abs/2503.22134
https://cran.r-project.org/web/packages/ARDL/index.html
https://arxiv.org/abs/2503.01816


[17] Ruohonen, J., Ramadan, Q.: The Popularity Hypothesis in Software Security: A
Large-Scale Replication with PHP Packages (2025), archived manuscript, avail-
able online: https://arxiv.org/abs/2502.16670

[18] Seabold, S., Perktold, J.: statsmodels: Econometric and Statistical Modeling
with Python. In: Proceedings of the 9th Python in Science Conference (SciPy
2010). Austin (2010), Autoregressive Distributed Lag (ARDL) Models, statsmod-
els 0.15.0, available online in April 2025: https://www.statsmodels.org/devel/
examples/notebooks/generated/autoregressive_distributed_lag.html

[19] Snyk Limited: Name Confusion Attacks (2025), available online in April 2025:
https://learn.snyk.io/lesson/name-confusion-attacks/

[20] The European Union: Regulation (EU) 2024/2847 of the European Parliament
and of the Council of 23 October 2024 on Horizontal Cybersecurity Requirements
for Products With Digital Elements and Amending Regulations (EU) No 168/2013
and (EU) 2019/1020 and Directive (EU) 2020/1828 (Cyber Resilience Act) (Text
With EEA Relevance) (2024), available online in March 2025: https://eur-lex.
europa.eu/eli/reg/2024/2847/oj/eng

[21] Zhang, J., Huang, K., Huang, Y., Chen, B., Wang, R., Wang, C., Peng, X.: Killing
Two Birds With One Stone: Malicious Package Detection in NPM and PyPI Using
a Single Model of Malicious Behavior Sequence. ACM Transactions on Software
Engineering and Methodology (Published online in November), 1–27 (2024)

[22] Zimmermann, M., Staicu, C., Tenny, C., Pradel, M.: Small World with High Risks:
A Study of Security Threats in the npm Ecosystem. In: Proceedings of the 28th
USENIX Security Symposium. pp. 995–1010. USENIX, Santa Clara (2019)

https://arxiv.org/abs/2502.16670
https://www.statsmodels.org/devel/examples/notebooks/generated/autoregressive_distributed_lag.html
https://www.statsmodels.org/devel/examples/notebooks/generated/autoregressive_distributed_lag.html
https://learn.snyk.io/lesson/name-confusion-attacks/
https://eur-lex.europa.eu/eli/reg/2024/2847/oj/eng
https://eur-lex.europa.eu/eli/reg/2024/2847/oj/eng

	A Time Series Analysis of Malware Uploads to Programming Language Ecosystems

