
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXXX XXXX 1

Exploring the Role of Large Language Models in
Cybersecurity: A Systematic Survey

Shuang Tian, Tao Zhang, Member, IEEE, Jiqiang Liu, Senior Member, IEEE, Jiacheng Wang, Xuangou Wu,
Xiaoqiang Zhu, Member, IEEE, Ruichen Zhang, Member, IEEE, Weiting Zhang, Member, IEEE, Zhenhui

Yuan, Senior Member, IEEE, Shiwen Mao, Fellow, IEEE, Dong In Kim, Life Fellow, IEEE

Abstract—With the rapid development of technology and the
acceleration of digitalisation, the frequency and complexity of
cyber security threats are increasing. Traditional cybersecurity
approaches, often based on static rules and predefined scenarios,
are struggling to adapt to the rapidly evolving nature of modern
cyberattacks. There is an urgent need for more adaptive and
intelligent defence strategies. The emergence of Large Language
Model (LLM) provides an innovative solution to cope with the
increasingly severe cyber threats, and its potential in analysing
complex attack patterns, predicting threats and assisting real-
time response has attracted a lot of attention in the field of
cybersecurity, and exploring how to effectively use LLM to
defend against cyberattacks has become a hot topic in the current
research field. This survey examines the applications of LLM
from the perspective of the cyber attack lifecycle, focusing on the
three phases of defense reconnaissance, foothold establishment,
and lateral movement, and it analyzes the potential of LLMs in
Cyber Threat Intelligence (CTI) tasks. Meanwhile, we investigate
how LLM-based security solutions are deployed and applied in
different network scenarios. It also summarizes the internal and
external risk issues faced by LLM during its application. Finally,
this survey also points out the facing risk issues and possible
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future research directions in this domain.
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I. INTRODUCTION

AS the information age develops rapidly, cyberattacks are
taking on the characters of high frequency, diversity

and complexity [1]–[4]. Critical infrastructure and personal
sensitive data are facing a broad range of novel threats, in-
cluding malware, ransomware, and DDoS attacks [5]–[7]. The
evolution of threat methods and the growing intensity of these
threats is resulting in severe economic and property damage
[8]. In the United States, a ransomware attack on Colonial
Pipeline system completely shuttered their operations, leading
to a gasoline shortage across the country’s East Coast for
an entire week. In 2022, Sunwing Airlines were forced to
cancel 188 flights and leave passengers stranded at airports for
over three days, all due to a cyber attack on their supplier’s
systems. These are just a few of an ever-growing list of
cyberattacks that are altering different spheres of daily life,
making cybersecurity one of the core foundational issues of
modern global security concern [9].

As cyberattacks continue to evolve in their persistence,
stealth, and unpredictability, existing cybersecurity measures
struggle to keep pace in detecting, preventing and mitigating
threats to networks. Traditional network defence methods
based on fixed rules and scenarios have been exhausted in
the complex network environment [10]. Although advanced
AI-based cyber defence methods have developed rapidly in
recent years with the rise of neural networks and deep learning
technologies. However, these methods suffer from high false
positives and lack of interpretability when put into commercial
use [11], making it still a huge challenge to deal with rapidly
evolving forms of cyber-attacks. Additionally, cybersecurity
researchers are confronted with numerous challenges due
to the performance limitations of these systems, including
managing large volumes of sensitive data and dealing with
the complexities of cybersecurity tasks [3]. In response to
this situation, cybersecurity researchers recognise the need for
stronger, more adaptable and smarter solutions to deal with
the ever-increasing threat of attacks.
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The emergence of LLM has provided a new way of thinking
about network defence. In recent years, LLMs have achieved
significant breakthroughs in the field of natural language pro-
cessing and have also shown great potential in cybersecurity
defense. By leveraging extensive training datasets, LLMs can
identify latent attack patterns and vulnerabilities, assist in
analyzing attack behaviors, predict threats, and even provide
real-time defensive support. They are capable of identifying
cybersecurity risks based on historical attack data or contex-
tual attack information and can proactively generate response
strategies. LLM is used for a variety of cybersecurity tasks,
such as threat detection, analysis of cybersecurity reports and
the provision of defence recommendations.

In view of the substantial value of LLMs currently show
in cybersecurity, we would like to provide an overview of
present-day applications of LLMs in this domain, in order
to provide future researchers with an outlook and ideas. In
summary, the contributions made in this article are as follows:

• The feasibility and application prospects of LLMs in
cybersecurity are discussed in depth through a systematic
investigation of current benchmarking studies that assess
the performance of LLMs and specific technical means to
optimise the behaviour of LLMs in cybersecurity tasks.

• An innovative and comprehensive analysis of the defen-
sive role played by LLM from the attacker’s point of view
across the various lifecycles of a cyberattack. Addition-
ally, due to the important intelligence base role played
by CTI in defence operations, and as a complement, we
have also explored the defence role played by LLMs in
CTI work.

• We also analyze the deployment and application ap-
proaches of LLM-based security applications in different
network scenarios and the challenges they face

• This paper analyses the external and internal risks that
LLMs may face in the process of executing cybersecurity
tasks and provides risk warning and coping ideas for
related research and applications.

The organizational structure of this article is illustrated in
Fig. 1. Section II introduces the foundations of the LLM and
provides a concise survey of existing investigations into the
application of LLMs for cybersecurity, while also identifying
and analyzing current research gaps. Section III briefly reviews
research evaluating the performance of LLM in cybersecurity
and optimising LLM technology in this field. Section IV
introduces the network attack model employed. Sections V
explores the applications and limitations of LLMs in different
phases of a network attack lifecycle. Section VI explores
the applications of LLMs in CTI. Section VII explores the
deployment and application of LLM-based network security
solutions in different network scenarios. Section VIII summa-
rizes the internal and external risks associated with applying
LLMs in the network security domain. Section IX summarises
the current challenges encountered by LLMs in cybersecurity
tasks and future research directions in this domain. Section
X summarises our research. Table I lists and describes the
acronyms used throughout this paper.

TABLE I
LIST OF ACRONYMS USED THROUGHOUT THIS PAPER.

Acronym Definition

LLM Large Language Model
CTI Cyber Threat Intelligence
IDS Intrusion Detection Systems
NER Named Entity Recognition
ICS Industrial Control Systems
PEFT Parameter-Efficient Fine-Tuning
EDR Endpoint Detection and Response
MHA Multi-Head Attention
CoT Chain-of-Thought
PbE Programming by Example
EMAD Evidence-Based Multi-Agent Debate
GNN Graph Neural Network
RAG Retrieval-Augmented Generation
CEC Contract-External Function-Call
IoT Internet of Things
USE Unidirectional Semantic Extractor
BSE Bidirectional Semantic Extractor
ML machine learning
BS base station
NF network function
LEGD Large Language Model-Enhanced Graph Diffusion
DTN digital twins network
SAGIN satellite-aerial-ground integrated network
SLM Small Language Model

II. BACKGROUND AND RELATED WORK

In this section, we will briefly introduce the knowledge
about LLM that is required to read this paper, and then review
the relevant review literature on the current research on the
application of LLM in cybersecurity in order to present the
Research gap that currently exists.

A. Foundations of LLMs

As a cutting-edge technology in the field of artificial in-
telligence, LLM has been widely used in many fields and
has become one of the current research hotspots. Its core
technology is built on the ransformer architecture [3], which
can be divided into three typical structures based on decoding
strategies [12]:

• The encoder-only architecture is excellent at language
comprehension tasks, and is usually used for linguistic
feature extraction, and the BERT model is a representa-
tive model of this architecture.

• The encoder-Decoder architecture is widely used in
sequence-to-sequence tasks, and is widely used in text
translation and speech recognition.

• The decoder-only architecture is the current research hot
architecture, and the popular GPT series is based on this
architecture.

After pre-training with large-scale datasets, LLMs can acquire
language comprehension and logical reasoning abilities, and if
trained with domain-specific datasets during the pre-training
process, LLMs can even perform comparably to humans in
some domains. In addition, fine-tuning and prompt engineering
techniques are important complementary means to optimise
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Fig. 1. The overall organizational structure of this survey.

the model’s ability to perform domain-specific tasks in the
post-pretraining phase, and the use of these two techniques
can effectively expand the scope of application of pre-trained
models. However, it should be noted that there are still some
challenges that hinder the application scope and performance
of LLM, such as high quality domain training sets, high
training costs and inference delay issues.

B. Related Work

Current review studies on LLM in network security usually
focus on the application methods, usage scenarios, and per-
formance evaluation of LLM. In this subsection, we review
these studies and describe the contributions and insights they
provide.

1) Focused Analysis of LLMs in Specific Cybersecurity
Tasks: Some surveys have focused its research on the per-
formance of LLMs in specific cybersecurity tasks in order to
deeply analyse their capabilities and limitations in practical
applications. For instance, Ref. [12] systematically combs

through the research on LLM-based intrusion detection sys-
tems (IDSs) in different architectures and deployment envi-
ronments while demonstrating their practical utility through
real-world use cases. However, the article also points out that
LLM-based IDS systems still face many challenges, such as
training data privacy issues, network data heterogeneity, and
inherent security vulnerabilities in LLM architectures. Ref.
[13] investigates the current state of the application of LLMs in
vulnerability detection. The authors point out that the dominant
model architecture in the field is shifting from encoder-only to
decoder-only. In addition, existing research is overly reliant on
C/C++ language vulnerability datasets and lacks repository-
level data, which limits LLM’s ability to generalise across
languages and detect complex multi-file vulnerabilities. Ref.
[14] summarises the main types of LLMs and the main LLM
performance optimisation techniques in vulnerability detection
and repair. The article also points out that there is a lack of
class-level or repository-level training datasets in this area,
the reliability of existing datasets is poor, and the datasets
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TABLE II
COMPARISON OF LLM APPLICATION SURVEYS IN CYBERSECURITY. “●” AND “○” REPRESENT RXPLORED AND NOT RXPLORED, RESPECTIVELY.

Surveys Defense against
Reconnaissance
Attack

Defence against
Foothold
Establishment Attack

Defence against
Lateral
Movement Attack

Cyber Threat
Intelligence
Work

Application in
Different Network
Scenarios

LLM’s Own
Security
Risks

Kheddar [12] ○ ○ ● ○ ● ●

Sheng et al. [13] ○ ● ○ ○ ○ ○

Zhou et al. [14] ○ ● ○ ○ ● ○

Zhang et al. [15] ○ ● ● ● ○ ●

Hang et al. [16] ○ ● ● ● ○ ○

Motlagh et al. [17] ● ● ● ○ ○ ○

Chen et al. [3] ● ● ● ● ○ ○

Yao et al. [18] ○ ● ○ ○ ○ ●

Our survey ● ● ● ● ● ●

often lack test samples. Finally, the authors argue that much
of the current research does not emphasise integration with
developer workflows, and that there is a lack of mechanisms
for interaction between users and LLMs.

2) Broad Exploration of LLMs in Multi-Domain Cyber-
security Applications: Some surveys have taken a broader
perspective to deeply analyze the performance of LLMs across
multiple key tasks for cybersecurity. Both Ref. [15] and Ref.
[16] provide systematic summaries and organization of current
research on the application of LLMs in cybersecurity. While
the two surveys unanimously acknowledge that LLMs can
significantly improve the efficiency of cybersecurity tasks,
they also highlight persistent challenges, including external
attack threats and inherent limitations in model performance.
Within the the National Institute of Standards and Technology
Cybersecurity Framework, Ref. [17] studies LLM applications
in the identify, protect, detect, respond, and recover phases.
It notes that current research focuses on protect and detect
scenarios, but post-attack scenarios, including response and
recovery phases, remain understudied. Given their critical
roles, expanding LLM research in these areas is essential
for comprehensive cybersecurity. Ref. [3] examines LLM
applications in four key threat detection areas: CTI, textual
threat detection, malware detection, and intrusion discovery.
It reveals that LLMs surpass traditional methods primarily in
specific tasks like NER, Relation Extraction, and structured
information processing. However, for significantly more so-
phisticated threat detection scenarios, LLMs typically neces-
sitate integration with complementary technologies for optimal
performance. Ref. [18] examines the application of LLMs in
code security tasks, such as secure coding and vulnerability
detection. The survey reveals that LLM-based approaches
generally surpass traditional methods in this domain, although
they exhibit higher rates of both false negatives and false
positives. Furthermore, through an investigation of LLMs’ ap-
plication in data security tasks—encompassing data integrity,
confidentiality, and reliability—the research demonstrates that
LLMs not only minimize manual intervention but also achieve
superior performance in these areas. Both Ref. [15] and Ref.
[16] provide systematic summaries and organization of current
research on the application of LLMs in cybersecurity. While

the two surveys unanimously acknowledge that LLMs can
significantly improve the efficiency of cybersecurity tasks,
they also highlight persistent challenges, including external
attack threats and inherent limitations in model performance.
Within the the National Institute of Standards and Technology
Cybersecurity Framework, Ref. [17] studies LLM applications
across identify, protect, detect, and respond stages. While
current research predominantly focuses on Protect and De-
tect, post-attack scenarios, encompassing the Respond and
Recovery phases, remain significantly understudied. Given
their important role, expanding LLM research in these areas is
essential for comprehensive cybersecurity. Ref. [3] examines
LLM applications in four key threat detection areas: Cyber
Threat Intelligence (CTI), textual threat detection, malware
detection, and intrusion discovery. It reveals that LLMs surpass
traditional methods primarily in specific tasks like NER,
Relation Extraction, and structured information processing.
However, for significantly more sophisticated threat detec-
tion scenarios, LLMs typically necessitate integration with
complementary technologies for optimal performance. Ref.
[18] examines the application of LLMs in code security
tasks, such as secure coding and vulnerability detection. The
survey reveals that LLM-based approaches generally surpass
traditional methods in this domain, although they exhibit
higher rates of both false negatives and false positives. Further-
more, through an investigation of LLMs’ application in data
security tasks—encompassing data integrity, confidentiality,
and reliability—the research demonstrates that LLMs not
only minimize manual intervention but also achieve superior
performance in these areas.

C. The Research Gap

The research of the existing review papers in this section
focuses on evaluating the performance of LLMs in specific
tasks or application scenarios. However, for the systematic
defence role of LLM in the whole network attack and defence
process, there is still a certain research gap in current research.
This gap has resulted in an incomplete understanding of the
overall efficacy of LLMs in more holistic and dynamic cyber
defense contexts. In addition, as a key intelligence component
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in cybersecurity defence, current research on CTI usually
evaluates the performance of LLMs in isolated CTI tasks and
lacks the defence role that LLMs can play from the whole
CTI lifecycle. On the other hand, most studies nowadays have
also overlooked the deployment of LLM in applications, and
the lack of research here may create obstacles for future real-
world applications. The surveys covered in this section are
shown in Table II.

Consequently, this survey seeks to bridge this gap by adopt-
ing an innovative perspective rooted in the attacker lifecycle.
It systematically and comprehensively examines the defensive
role of LLMs at various stages of the cyber attack lifecycle.
Additionally, it evaluates their performance in different stages
of CTI tasks for effective integration with real-world defense
actions. Also investigating the way in which LLM-based
security solutions are deployed at the time of application. This
comprehensive analysis not only enhances the understanding
of the practical value of LLMs in real-world cyber defense
environments but also offers solid theoretical support for
further research and the execution of defense measures.

III. FEASIBILITY OF APPLYING LLMS IN THE FIELD OF
CYBERSECURITY

Although LLMs are widely used in many fields [19]–[21],
due to the highly professional and complex of cybersecurity
tasks, it is still questionable whether LLMs can perform these
tasks efficiently. To explore this issue, researchers evaluated
the performance of LLMs in cybersecurity tasks through
benchmarking and further explored techniques to optimise the
performance of LLMs in cybersecurity tasks.

Liu [22] introduced SecQA, a benchmarking tool designed
to evaluate LLM performance in computer security. Liu used
GPT-4 to generate two multiple-choice question sets, v1 and
v2, based on the content of a computer security book. v1
focused on LLM’s basic understanding and application of
cybersecurity knowledge, while v2 examined LLM’s more in-
depth and comprehensive understanding of advanced security
topics through the use of more complex and detailed questions.
Through experimental evaluation, the results show that GPT-
3.5-Turbo and GPT-4 maintain high accuracy rates on the v2
set. Tihanyi et al. [23] constructed the CyberMetric-80 dataset
to evaluate LLMs’ cybersecurity knowledge coverage, which
underwent rigorous expert validation to ensure answer accu-
racy. In a controlled evaluation, multiple LLMs and human
participants completed the CyberMetric-80 assessment. The
findings indicated that LLMs, especially GPT-4o and GPT-4-
turbo, exhibited expertise comparable to seasoned cybersecu-
rity professionals. The results of these two benchmark tests
suggest that LLMs have a strong foundation in cybersecurity
knowledge and can effectively comprehend and apply it.

Liu et al. [24] evaluated generative LLMs in cybersecurity
using a multi-task framework benchmarking with 10 datasets
corresponding to four representative security tasks: NER,
summarization, multiple choice, and text classification. Bhusal
et al. [25] proposed the SECURE benchmarking framework
that can be used to assess the capabilities of LLMs in industrial
control systems (ICS) security consulting within three key
abilities:

• Extraction: Evaluates the efficiency of information re-
trieval using datasets from MITRE ATT&CK and CWE.

• Understanding: Employs the Vulnerability Out-Of-
Distribution test set to determine whether models can
identify unanswerable questions in the absence of con-
textual information.

• Reasoning: Uses the Risk Evaluation Reasoning Task,
constructed from CISA ICS security reports, to assess
models’ reasoning abilities in risk evaluation.

Using the two previously mentioned benchmark frameworks,
multiple LLMs were assessed, with models like GPT-4 scoring
highly, indicating that LLMs still perform well on specific
security tasks.

Although several studies have demonstrated the potential of
LLMs for cybersecurity applications through benchmarking,
most LLMs are not specifically designed for this domain
task and may suffer from performance degradation due to
lack of domain knowledge.This issue can be addressed with
specialized techniques that can significantly improve their
performance. Fine-tuning, prompt engineering, and domain-
specific pre-training have been demonstrated to improve the
performance of LLMs in this domain [15]. For example, Zhang
et al. [26] developed tailored instructions and conversations
for cybersecurity fine-tuning and applied LoRA fine-tuning
to baseline LLMs, achieving a 10%–25% performance im-
provement. Similarly, Siracusano et al. [27] utilised specially
designed prompts to guide their structured CTI extraction
framework, aCTIon, thereby reducing the hallucinations when
dealing with complex CTI data. In another study, Liu et
al. [24] introduced CyberDirective, a generative LLM that is
fine-tuned on the CyberBench dataset using instruction tuning
and parameter-efficient fine-tuning (PEFT), and demonstrated
excellent in multiple cybersecurity tasks with excellent per-
formance. The studies mentioned above highlight the efficacy
of the specialized techniques in enhancing LLM’s domain-
specific capabilities, particularly in cybersecurity applications.

Although the specialized and complex character of cyberse-
curity tasks challenges the applicability of LLM, many studies
have shown that LLM already exists in a wide range of
applications in several cybersecurity sub-domains and exhibits
great potential for application. Meanwhile, the development of
techniques such as fine-tuning, domain-specific pre-training,
and prompt ngineering provides strong support for improving
the performance of LLM in cybersecurity tasks. Results from
various benchmark and performance tests also indicate that
LLMs are increasingly capable in terms of understanding,
reasoning, and knowledge coverage, gradually meeting the
practical demands of cybersecurity work. Thus, it can be
stated that the implementation of LLMs in cybersecurity is
progressing at a high pace and will be key role in improving
productivity, automating analysis, and facilitating decision
making in the future.

IV. NETWORK ATTACK MODEL

In order to easily describe the role played by LLM in
each phase of cyber defence, it is necessary first to build
a cyber attack model to describe the cyber attack process.
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Fig. 2. Network attack model.

In this paper, we divide the life cycle of an external cyber
attack into five phases: reconnaissance, foothold establishment,
lateral movement, data exfiltration, and post-exfiltration [28],
as shown in Fig. 2.

Reconnaissance refers to the process by which an attacker
gathers information about the target network at the beginning
of an attack. During this stage, attackers usually use covert pas-
sive reconnaissance methods [28]. At this stage, attackers may
collect information from public resources on the Internet, such
as WHOIS websites [29] and the Google Hacking Database
[30]. Attackers may also use social engineering techniques
to obtain information from users of the target network [31],
such as phishing attacks, enticing users of the target network
to insert physical media with viruses into their computers,
causing their computers to be infected with viruses [31],
and directly physically intruding such as tailgating attacks. In
addition, attackers may also use technical methods to interact
directly or indirectly with the target computer system to collect
information, such as TCP scanning, ARP scanning, UDP
scanning [32] to obtain information about the target system.

The foothold establishment phase signifies that the attacker
has successfully infiltrated the target network. Attackers often
create a “foothold” within the target network to maintain long-
term access to the target network system. Standard techniques
include exploiting known vulnerabilities or zero-day vulnera-
bilities in web applications [33], using spear-phishing attacks
to implant a backdoor on the target’s endpoint device [34],
or carrying out watering-hole attacks [35], where attackers
infect websites frequently visited by the target network’s users,
injecting malicious code into the victim’s devices.

The lateral movement phase aims to expand the attacker’s
access to the target network to support the attacker in obtaining
more sensitive data and control privileges of the target system.
In this phase, the attacker usually uses Privilege Escalation,
Credential Harvesting, and other means to expand the scope of
his activities in the target network. In this phase, the techniques
usually used are using the vulnerability of the target network
system to enhance the attacker’s privileges in the target system,
using credentials dumping [36], hash transfer attacks [37] and
session stealing techniques [38] to illegally obtain the user
credentials of the target network to obtain a broader range

of access privileges. Moreover, it has become challenging to
completely eliminate the attacker from the system at this phase
because the attacker has deep roots in the network and gained
persistent control.

In the data exfiltration phase, the attacker transmits the
stolen data to an external server under his control. In many
network systems, firewalls and other security measures often
focus on filtering incoming traffic, with little or no outbound
traffic monitoring. This design facilitates data transfer, al-
lowing attackers to easily pass sensitive information back.
Typically, attackers will divide the collected data into multiple
batches and send them to different servers in their organisation,
which greatly reduces the possibility of the transmission being
discovered by the defender.

The post-exfiltration phase is the action taken by the attacker
after completing the attack’s intended target. Typically, the
attacker has two choices: the first is to evacuate the target
network system and cover up the traces of the attack as much
as possible, deleting any evidence left in the system; the
second is to choose to continue to lurk in the target system
in order to carry out new attacks in the future. This type
of attacker usually hides their control privileges to maintain
access to the target network for a long time without being
detected.

There is a near linear flow relationship between the above
five phases, but sometimes the attacker may also continue the
previous phase of the task in parallel when proceeding to the
next phase for reasons such as lack of preparation for the
attack. For instance, the attacker may continue to carry out
reconnaissance work while establishing a foothold.

V. THE DEFENSIVE ROLE OF LLM IN THE CYBER ATTACK
LIFECYCLE

In this section, we will talk in detail about how LLM plays
a defensive role in the various lifecycles of a network attack.

A. The Defensive Role of LLM in the Reconnaissance Phase

Reconnaissance attacks are the beginning stage of cyberat-
tacks [39], in which the attacker’s reconnaissance behaviour is
usually highly dispersed and covert, which poses a challenge
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TABLE III
THEMATIC WORKS ABOUT LLMS ON DEFENSE AGAINST RECONNAISSANCE ATTACKS.

Task Detection Target Detection Approach Techniques Literature

System-based
Reconnaissance
Detection

Detect the advanced adver-
saries in Smart Satellite Net-
works.

Transform network data into contextually suit-
able inputs to capture contexts and long-range
relationships.

Transformer-based
MHA [40]

Detect the malicious user ac-
tivities.

Use three self-designed agents to detect attack
behaviors by detecting log files.

CoT reasoning,
PbE paradigm,
EMAD mechanism

[41]

Attack early detection, threat
intelligence gatherin, and anal-
ysis of attacker’s behavior.

Use LLM-based honeypot to simulate realistic
shell responses and manages sessions for every
attacker.

CoT prompting, Few-
shot learning,
Session management.

[42]

Human-based
Reconnaissance
Detection

Detect malicious web pages. Use the question-and-answer detection example
to guide the LLM.

K-means clustering,
Few-shot Prompting [43]

Detect phishing email. Translate email into LLM-readable format and
use CoT to guide the LLM.

Prompt Engineering,
CoT prompting [44]

Detect malicious behaviours
in the code.

Use prompt and Provide complete contextual
information. Prompt Engineering [45]

Detect and classify malware. Use few-shot and episodic training to enhance
LLM malware detection and classification.

Few-shot learning,
Episodic training [46]

to the defender’s detection and blocking efforts. The recon-
naissance attacks in this phase can be classified into three
types: third-party source-based reconnaissance, which obtains
attack information from third parties (e.g. third-party websites
and dark web), human-based reconnaissance, which obtains
attack information from the target network users, and system-
based reconnaissance, which obtains attack information from
the target computer system (hardware or software) [32]. LLM
can effectively detect human-based and system-based recon-
naissance attacks, helping network defenders better prevent the
leakage of their sensitive information. All related works in this
subsection are summarized in Table III.

1) LLM for System-based Reconnaissance Attack Detec-
tion: In reconnaissance attacks targeting information systems,
attackers frequently utilize remote scanning or sniffing to
extract sensitive data from targeted systems. While these
reconnaissance activities inevitably generate detectable traces
within the target system, conventional detection approaches re-
lying on rule-based or signature-based methodologies demon-
strate limited effectiveness against sophisticated attack pat-
terns. Conversely, LLMs, leveraging their advanced pattern
recognition capabilities, demonstrate substantial advantages
in both the precise identification and predictive analysis of
reconnaissance attack behaviors.

Hassanin et al. [40] proposed a pre-trained LLM, PLLM-
CS. The model initially generated sentences from the multi-
variate token series in the network traffic data. It then divided
these sentences into tokens to capture contexts and long-
range relationships within the traffic through the Transformer-
based Multi-Head Attention (MHA) mechanism, which helped
identify fragmented and frequent probing behaviors during
attack detection. Song et al. [41] proposed Audit-LLM, a
framework for detecting external attacks through log analysis,
which consists of three agents: a Decomposer, a Tool Builder,
and an Executor. The Decomposer uses Chain-of-Thought
(CoT) reasoning to decompose complex tasks into subtasks.

The Tool Generator generates Python tools using programming
by example (PbE) paradigms, ensuring reliability through
testing and refinement. The executor completes subtasks using
CoT reasoning and employs paired evidence-based multi-
agent debate (EMAD) mechanisms to reduce LLM illusions,
iteratively optimizing results until consensus is reached.

In addition, there is now some research into using LLMs
to create new types of honeypot systems. LLMs can use their
knowledge base and memory capabilities to create deceptive
system environments for different attackers to slow down the
detection of the attackers. Sladić et al. [42] proposed shelLM,
a shell-based honeypot software using LLM. This honeypot
uses the CoT prompting and few-shot learning and it can
generates responses that are consistent with a real Linux shell
based on the interaction history and the attacker’s commands.
Meanwhile, due to the non-deterministic nature of LLM,
shelLM can simulate multi-user environments and enhance
the realism of the honeypot system. Evaluations conducted by
volunteers show a true negativity rate of 0.9, indicating that
it can effectively mimic the responses of a real system and
deceive users in 90% of the cases.

2) LLM for Human-based Reconnaissance Attack Detec-
tion: Social engineering is a widely used technique in cy-
berattacks, often resulting in significant data breaches [31].
Attackers typically employ methods such as phishing and
watering-hole attacks to deceive users and extract sensitive
system information. Recent advancements in LLM technology
have shown promising results in detecting phishing attacks and
identifying malware, offering innovative technical solutions to
combat these social engineering threats.

Malicious web pages and phishing are two common means
of detecting attacks. Li et al. [43] introduced Prompt-URL,
a few-shot prompting approach for LLM-based malicious
webpage detection. The method reformulates the detection task
as a question-answering framework, where URL and website
content serve as the question, and the webpage’s malicious
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classification as the answer. Using Sentence-BERT, the model
extracts vector representations of questions, applies semantic
clustering to refine question-answer pairs, and utilizes them as
LLM prompts. Koide et al. [44] developed ChatSpamDetector,
an LLM-based system for phishing email detection. The
system preprocesses emails by reconstructing and simplifying
their content for LLM analysis. Through prompt engineering,
it assigns the LLM a spam detection role and employs CoT
prompting to break the analysis into sub-tasks, guiding the
LLM step-by-step through the analysis process while incorpo-
rating social engineering examples.

Malware is also a common way of reconnaissance at-
tacks. Malware will obtain sensitive information by running
malicious code on the user’s system [47]. Using LLM can
effectively identify malware and prevent the leakage of sen-
sitive user information. Fang et al. [45] investigated LLM
capabilities in defensive static analysis through a case study.
Using prompt engineering, they guided GPT-4 to analyze both
benign and malicious GitHub repositories, where it effectively
identified malicious behaviors by recognizing characteristic
patterns. Additionally, GPT-4 successfully detected malicious
behaviors in the decompiled code of an Android msg-stealer
virus within a comprehensive contextual framework. Stein
et al. [46] proposed an LLM-based framework for malware
detection and classification, utilizing a self-attentive mecha-
nism to capture contextual patterns in packet sequences for
distinguishing between benign and malicious traffic. Through
few-shot learning, the framework effectively recognized novel
malware with minimal labeled samples by generating class-
specific prototypes and employing episodic training.

LLM shines in identifying hidden reconnaissance attacks
due to its powerful data processing and pattern recognition
capabilities. It also performs well in phishing defence due to
its powerful knowledge base and logical reasoning capabilities.
In addition, we also noticed that some studies have pointed
out that LLM can also be used in network security education
[47]–[49], which is also an application of LLM in defending
against reconnaissance attacks.

B. The Defensive Role of LLM in the Foothold Establishment
Phase

Vulnerability attacks are the most dominant methods of
attack in the foothold phase, where an attacker will use
specific vulnerabilities to successfully hack into a system and
establish a foothold at the edge of the network to carry out
subsequent attacks [50]. Timely patching vulnerabilities in the
system to reduce the number of exploitable vulnerabilities
can significantly reduce the probability of successful intrusion
by attackers. With its robust knowledge base and analysis
capabilities, the LLM can efficiently complete vulnerability
detection, analysis and patching and other defensive work, thus
significantly increasing the speed of vulnerability remediation
and reducing the workload of network defenders. All related
works in this subsection are summarized in Table IV.

1) LLM for Vulnerability Detection: High-speed software
development technology has improved the efficiency of soft-
ware development, but at the same time, it has also led to a

significant increase in the number of vulnerabilities, which has
brought new challenges for vulnerability detection. Recently,
LLM has shown great potential in the field of vulnerability
detection and has provided new ideas and methods to solve
the vulnerability detection problem.

Lu et al. [51] proposed a new approach for vulnerability
detection using LLM, GRACE. The proposed method helped
LLM to capture more code structure information by generating
a code property graph of the detected code, and identifyed the
most relevant example code to the detected code from the
codebase by comparing the semantic, lexical, and syntactic
similarities to provide a better demonstration in the contextual
learning of LLM. Yang et al. [52] developed MSIVD, a
multitasking self-guided LLM model for vulnerability de-
tection.They used PEFT and QLoRA techniques, fine-tuned
by teacher-student dialogues, and integrated a graph neural
network (GNN) to analyze the code data flow through control
flow graphs. The GNN served as a lightweight adapter layer
and concatenated learned embeddings at each training iteration
with the hidden states of fine-tuned LLM along its last
dimension. The last hidden states of an LLM encapsulated the
information for all input elements before model prediction.

2) LLM for Vulnerability Analysis: LLM also demonstrates
great potential in analysis work. Its ability to quickly identify
and understand complex code structures provides defenders
with timely and effective patch suggestions. This greatly
shortens the cycle of vulnerability analysis and significantly
improves the security and reliability of software.

Zhang et al. [53] introduced VTT-LLM, a framework for
mapping vulnerabilities to tactics and techniques. To enhance
the LLM’s reasoning capability, the authors decomposed the
mapping process into four sequential steps: vulnerabilities,
weaknesses, attack patterns, and ATT&CK techniques, which
are integrated as chained data during fine-tuning. Yin et al.
[54] proposed a framework for predicting the exploitability of
vulnerabilities based on vulnerability description information.
This framework applies the BERT model through transfer
learning, converting tokenized wordpiece lists into embedding
vectors to capture the semantic information of the wordpieces
and support subsequent predictive analysis. During the fine-
tuning process, the model receives the segmented vulnerability
description text as input and generates token embeddings layer
by layer to capture multi-level semantic information. Luo et
al. [55] introduced FELLMVP, a framework for categorizing
smart contract vulnerabilities. They analyzed smart contract
files to generate contract-external function-call (CEC) files
that capture their semantic and structural content. These CEC
files were then used to divide the dataset into eight subsets,
each representing a different vulnerability type to ensure
diversity. Small-batch incremental fine-tuning is performed
using the LoRA method to obtain eight LLMs that specialize
in identifying different vulnerability types.

In addition to the above mentioned analysis tasks, LLM
has also been applied in many tasks such as penetration
testing [60], vulnerability description generation [61], and
vulnerability localization [62] and so on. We believe that LLM
has a broad application prospect in vulnerability analysis, and
more applications based on LLM will emerge in the future to
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TABLE IV
THEMATIC WORKS ABOUT LLMS ON DEFENSE AGAINST FOOTHOLD ESTABLISHMENT ATTACKS.

Tasks Approaches Targets Prompt Scenario Literature

Vulnerability
Detection

Code property graph,
Contextual learning

Detecting
software vulnerability

Identity, domain, in-context learning demonstra-
tions and graph structure information [51]

Multitask self-instructed fine-tune,
Situational dialogue

Detecting
security vulnerability Code snippets and basic task objectives [52]

Vulnerability
Analysis

Chain templates Building VTT mapping Analysis objectives and vulnerability
description [53]

BERT migration learning,
LSTM classification

Predicting exploitability of
vulnerabilities Analysis objectives description [54]

LLM-based parallel
vulnerability analysis framework Identifying vulnerabilities Analysis objectives description [55]

Vulnerability
Patching

Prompt engineering,
Static Analysis

Patching smart contract Vul-
nerability

Role-playing, task description, external struc-
tural information, Expected Output [56]

Leverage generative AI to create
guiding prompts

Patching microarchitectural
side-channel vulnerabilities

Identity and task information and prompts for
the type of vulnerability [57]

Prompt engineering,
Fine-tuning Porting hard fork patches patching objectives description [58]

In-context learning,
Prompt engineering Evaluating patches

Similar patches, bug descriptions, execution
traces, failing test cases, test coverage and test
patch

[59]

assist security personnel to complete the work of vulnerability
analysis.

3) LLM for Vulnerability patch: Vulnerability patching, as
a key aspect of network security, has long faced the challenges
of efficiency bottlenecks and resource constraints. LLM, with
its powerful code understanding and generation capabilities,
provides new technical ideas for automated vulnerability repair
work. Wang et al. [56] proposed a vulnerability remediation
method based on the CoT mechanism, which guided LLMs
to generate patches by decomposing the fixing task into a
series of sub-tasks. The method also integrates static analy-
sis techniques, including dependency analysis and program
slicing, to assist LLMs in accurately locating vulnerabili-
ties. Tol et al. [57] presented an automated framework for
patching microarchitectural side-channel vulnerabilities using
LLM. The framework integrated Microwalk [63] to locate the
vulnerability and determine the cause of the vulnerability, and
then utilized generative AI to craft prompts that guide LLM
to deal with vulnerability. Through an iterative improvement
process, LLM generated and modified patch code until the
vulnerability is effectively mitigated.

In addition to generating vulnerability patches, LLMs ex-
hibit significant potential for application in the domain of patch
porting. Pan et al. [58] proposed a solution for automatically
porting patches for hard forks using LLM, named PPatHF.
They tuned the model with example from the project commit
history suitable for training, and adapted the model to the
porting patch task by inputting the pre- and post-patch versions
of the source project in the hard fork, as well as a specific
prompts.

Patch validation is also an important task in the vulnerability
repair process, and this task has been facing the dual chal-
lenges of inefficiency and high cost for a long time, while the
emergence of LLM provides an efficient and low-cost solution

to this task. Zhou et al. [59] evaluated the patches generated
by automatic program repair using LLM without fine-tuning,
utilized in-context learning, and enhanced the model’s ability
to judge the correctness of the patches by giving the model
patch-related information.

LLM-based defence methods mainly prevent attackers from
establishing the foothold through vulnerability detection, anal-
ysis and repair. Fine-tuning [64], [65] and prompt engineering
[66], [67] are currently the mainstream technical methods. Al-
though LLM has shown good application results in these tasks,
when dealing with complex and large-scale vulnerabilities, its
performance is still significantly limited by the length of the
input window.

C. The Defensive Role of LLM in the Lateral Movement Phase

Lateral movement is one of the most critical phases in
network attack [68], enabling attackers to escalate privileges,
expand system access, exfiltrate sensitive data, or compro-
mise crucial components [69]. Nowadays, the major lateral
movement detection methods include IDS, anomaly detec-
tion systems, and endpoint detection and response (EDR),
which mainly identify potential lateral movement activities
by detecting abnormal behaviors, such as unauthorized access
attempts, credentials misuse, and abnormal network traffic
patterns. However, traditional detection methods rely on rules
or signatures, which are difficult to cope with new types
of attacks and have limitations in dealing with complex or
cross-host behaviors. In contrast, LLM is able to identify
anomalous behaviors in lateral movement more accurately
through its pattern recognition and inference capabilities, and
shows higher flexibility and adaptability, especially in the face
of unknown attacks. A comprehensive summary of related
works is presented in Table V.
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TABLE V
THEMATIC WORKS ABOUT LLMS ON DEFENSE AGAINST LATERAL MOVEMENT ATTACKS.

Detection
Task

Detection Data
Types Data Pre-processing methods Detection Data Analysis Methods Literature

Intrusion
Detection

Vehicle network
traffic data

Perform data extraction and preprocessing
according to the proposed framework.

Adopt the reasoning-followed-by-action
pipeline. [70]

IoT network
traffic data

Use semantic extraction (BSE and USE)
and input embedding.

Analyze using the pre-trained and fine-
tuned BERT model. [71]

Anomaly
Detection

Log data Encode log entries into vectors and capture
sequence information.

Input the log sequence into the trained
BERT model to detect anomalies. [72]

Log data Parsing logs by longest common
subsequence and FT-Tree using log parsers.

Use prompt tuning to enable PLM to cope
with different types of logging anomaly
detection.

[73]

EDR Endpoint data Converting endpoint data into a structured
narrative form endpoint story.

Use the LLM to generate embeddings for
each text window and detect attack behav-
ior.

[74]

IDS are commonly used to detect lateral movement. Re-
cently, LLMs have demonstrated the ability to perform in-
trusion detection across various environments, including com-
puter networks, the Internet of Things (IoT), critical infrastruc-
ture, and cloud systems, to identify potential lateral movement
behaviors [12]. Vehicle network as an emerging network is
facing huge cyber threats [75]. To address this issue, Fu et al.
[71] introduced IoV-BERT-IDS, a BERT-based hybrid IDS for
in- and extra-vehicle networks. The system preprocesses traffic
data into semantic data suitable for the BERT model through
two phases. In fine-tuning, the Unidirectional Semantic Ex-
tractor (USE) converts hexadecimal strings into byte sentences
by breaking packets into byte units. During pre-training,
the Bidirectional Semantic Extractor (BSE) pairs neighboring
packets using a sliding window, generating contextual byte
sentence pairs. Li et al. [70] developed an LLM-based IDS,
IDS-Agent, which employs a structured pipeline consisting
of inference, action generation, and observation updating to
achieve autonomous intrusion detection. It integrates eight
action spaces to simplify reasoning and improve decision
accuracy. In addition, IDS-Agent utilizes structured long-term
memory and external support files for inference.

Anomaly detection based on log files is one of the com-
monly used ways to detect lateral movement [76]. LLMs
leverages its advanced natural language processing capabilities
to parse log data and identify anomaly patterns and attack in-
dicators [77], thereby enabling effective lateral movement de-
tection. Huang et al. [72] introduced HilBERT, a hierarchical
transformer model tailored for system logs. The model utilizes
a transformer-based log encoder to vectorize log templates
and a transformer-based sequence encoder to integrate these
vectors into a unified log sequence representation. Attention
mechanisms are employed to capture contextual relationships
and derive comprehensive insights across the sequence. Zhang
et al. [73] proposed LogPrompt, a prompt-based learning
framework for log anomaly detection. It uses continuous tem-
plates with trainable vectors to adapt to diverse log structures,
and a focal loss function to mitigate class imbalance between
normal and anomalous logs by focusing on challenging logs.

EDR is another effective method for detecting lateral move-

ment [78]. Portnoy et al. [74] introduced a novel methodology
for incorporating LLMs into EDR systems to improve the
identification of Hands-on-Keyboard network attacks. The
researchers converted raw log data into structured “endpoint
story” formats and segmented it into smaller windows. A pre-
trained LLM was then employed to generate distinct embed-
dings for each window. These embeddings were subsequently
concatenated to create an embedding sequence, which was fed
into a training LLM to capture both the global context of the
sequence and the inter-window relationships.

LLM-based malicious lateral movement detection is mainly
achieved through the analysis of traffic data. Benefiting from
LLM’s powerful pattern recognition capabilities, LLM has
demonstrated excellent performance in security scenarios such
as IDS, anomaly detection, and EDR.

D. The Research Gaps in LLM for Post-intrusion Scenarios

Moreover, we note that the majority of current research on
LLM-based defense methods primarily addresses competing
and preventing network intrusion behaviors. However, a sig-
nificant research gap exists in the application of LLM-based
defense methods to post-intrusion scenarios, including lat-
eral movement, data exfiltration, and post-exfiltration phases.
Within the comprehensive defense lifecycle, we contend that
post-intrusion network defense is of equal importance. Con-
sequently, it is essential to expand and innovate research on
LLM-based defense methods specifically designed for these
scenarios, with the goal of fully leveraging the potential of
LLMs in tackling post-intrusion challenges.

VI. THE APPLICATION OF LLM IN CTI

CTI can be defined as “evidence-based knowledge, in-
cluding context, mechanisms, indicators, implications, and
actionable advice about an existing or emerging menace or
hazard to assets that can be used to inform decisions regarding
the subject’s response to that menace or hazard” [79]. It is an
important part of cyber defence, the intelligence foundation
of all cyber defence operations, and an important defence
operation to make a defender who is in a passive situation
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Fig. 3. Lifecycle of CTI.

in a cyber attack become proactive [80]. Due to its important
role in cyber defence, we also investigated the application
of LLM in this defensive action. Nova [81] divided the CTI
lifecycle into six phases: CTI requirements, CTI collection,
CTI processing, CTI analysis, CTI dissemination, and CTI
feedback, as shown as Fig. 3. LLM is mainly applied in
the CTI collection, processing, and analysis phases. In this
section, we will introduce the application of LLM in these
three phases in detail and all related works in this subsection
are summarized in Table VI.

A. LLM for CTI Collection and Processing

The main work in the CTI collection and processing phase is
to collect data from traffic logs and publicly available sources
and transform them into standardised data format for analysis
[81]. In this phase, there is much labour-intensive work, which
significantly consumes the energy of network defenders, while
LLM can efficiently complete the data collection and standard-
ised processing tasks, which not only effectively reduces the
human input but also significantly improves the efficiency of
network defence work.

Collecting high-quality original CTI data that meets specific
requirements often requires substantial time and effort from
security personnel. The advent of LLMs offers a promising
solution to mitigate this challenge. Clairoux-Trépanier et al.
[82] proposed system, using the GPT-3.5-turbo model to
extract CTIs from cybercrime forums. This system updates
data daily from cybercrime forums and provides it to the LLM,
then uses ten carefully designed prompts to guide the LLM in
extracting ten key variables from each forum conversation to
describe CTI.

After acquiring the raw data, it must be standardized to
facilitate subsequent analysis. However, the original datasets
are often unstructured, and traditional manual or rule-based
processing methods are not only inefficient but also prone to
errors. LLMs provide a novel approach to handle this task.
Mitra et al. [83] used LLM to create a modular retrieval-
augmented question-answering system, LOCALINTEL. This
system generates contextualized local CTI based on the Global
CTI Repository and the Local Organizational Database. The
system is modular in design, and both the Global CTI Repos-
itory and the Global CTI Repository can be replaced to
generate CTI that is more relevant to an organisation’s needs.
Fieblinger et al. [84] proposed a framework to extract CTI
from unstructured data sources using LLM automatically. They
employed the guidance framework and QLoRA fine-tuning
techniques to guide LLMs in extracting CTI triples from un-
structured data and subsequently organizing these triples into
the structured and queryable Knowledge Graphs. The team
found that the guidance framework performed better compared
to prompt engineering. Also, incorporating ontology structure
and a small number of examples into the prompts improved
the quality of the generated CTI triples. CTI View is a BERT-
based threat entity identifier that extracts threat entities from
cybersecurity report texts [85]. In the CSKG4APT platform
proposed by Ren et al. [86], CTI View is optimized to support
the processing of cybersecurity reports in English and Chinese.
The tool can automate the identification and extraction of
threat entity information such as attackers, software/tools,
industries, regions, and campaigns from text, providing data
support for subsequent CTI analysis.

B. LLM for CTI Analysing
The main task in the CTI analysis phase is identifying

patterns, trends, and anomalies from the CTI reports and
getting actionable defense recommendations [81]. LLM is
equipped with robust information retrieval and data extraction
capabilities, which can efficiently extract key information from
many reports to assist in the analysis work. At the same time,
LLM can use its large knowledge base to provide higher-
quality defense recommendations to help network defenders
make better defense decisions.

Jin et al. [87] presented Crimson, a system that helps LLMs
convert CVE descriptions and CTI information into structured
and actionable cyber defense recommendations. Crimson used
a Domain-specific Embedding Model to distill complex cyber
threat data into a visually and strategically insightful format
and Retrieval-Aware Training (RAT) and RAT-R to enable
LLMs to use contextually relevant and up-to-date cybersecu-
rity data in their reasoning process. Kucsván et al. [88] devel-
oped an automated system for analyzing CTI reports and in-
ferring threat recovery steps using LLMs. By extracting threat
behavior triplets from CTI reports, the researchers employed
prompt engineering to guide LLMs in deducing appropriate
recovery steps. Rahman et al. [89] proposed ChronoCTI, an
automated pipeline for mining temporal attack patterns from
CTI reports of past cyberattacks. The research team trained
Roberta, a fine-tuned version of an existing LLM, using self-
constructed sentences-attack techniques mapping dataset so
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TABLE VI
THEMATIC WORKS ABOUT LLMS ON CTI.

CTI Phase Task Objective Processing Data Format Approaches Literature

CTI Collection
and Processing

Extracting available CTIs from cyber-
crime forums Forum information Using prompts containing key CTI variables. [82]

Generating the organization-specific
threat intelligence.

Global threat databases and lo-
cal knowledge databases data

Using the modular retrieval-augmented
question-answering system. [83]

Extracting CTI triples from unstruc-
tured data with enhanced prompt
quality.

CTI reports Using guidance framework and QLoRA
fine-tuning technique. [84]

Extracting threat entities from cyber-
security reports.

Unstructured text report col-
lected from various sources

Text extraction and analysis of unstructured
cybersecurity reports using the BERT model. [86]

CTI Analysis

Converting CTI into structured and
actionable insights.

CVEs and CTIs from diverse
sources

Enhancing strategy inference in LLM using
RAT-r fine-tuning approach. [87]

Inferring Threat Recovery Steps from
CTI Reports. CTI reports Guiding the LLM using the prompt

engineering technique. [88]

Mining temporal attack patterns from
CTI reports. CTI reports

Training the Roberta model using
self-generated training sets for the task of
mining temporal patterns.

[89]

that it can automatically identify and extract attack techniques
from CTI reports.

Collecting, processing and analysing CTI was originally
a very labour-intensive task. The introduction of LLM has
revolutionised this area. The addition of LLM greatly increases
the degree of automation in collecting and processing raw
CTI data and also providing security personnel with effective
assistance when analysing CTI reports. The use of LLM-based
CTI technology effectively improves the efficiency of CTI
tasks.

VII. APPLICATIONS IN SPECIFIC NETWORK SCENARIOS

In this section, we focus our perspective on the applications
of LLM-based network security in different network scenarios,
and analyze their main deployment methods and application
directions from both traditional and future network perspec-
tives.

A. Traditional Network Scenarios
The traditional network is a static network, usually with

a centralized architecture, where the network has limited
flexibility and scalability but is widely used. In this net-
work scenario, LLM-based security applications are usually
deployed using a centralized deployment approach, and they
are generally deployed in the cloud or locally together with
other security applications [90]. Most of the current research
also adopts this deployment approach by default, for exam-
ple, the LLM-based detection systems proposed in literature
[71] and [72] are deployed on local servers. Although this
deployment method is less flexible, it can easily meet the
high computational resource requirements of LLM and is also
easy to manage. It is also worth noting that current research
has been very extensive in exploring the direction of security
applications of LLM in traditional network scenarios, covering
key aspects such as attack detection, threat analysis, and policy
generation, and LLM has demonstrated excellent performance
in a number of tasks in real-world tests.

B. Next-Generation Network Scenario

Along with the technological development and demand
enhancement, the concept of next-generation network has been
put forward. Many types of new networks, such as IoT [91],
6G [92], (Com)2Net [93] and Det(Com)2 [94], have emerged
successively. They are characterized by high dynamics and
heterogeneity, as well as multi-layered network structure
[95], which brings the convenience of high adaptability, high
throughput and low latency, but also brings higher network
security risks than traditional networks due to the complexity
of its network structure and the diversity of device access [96],
[97]. On the other hand, the multi-layered network structure
of next-generation network and the limited device resources
also bring certain challenges to the deployment and use of
traditional network security applications [98], and LLM-based
security applications are no exception. However, in recent
years, several scholars have conducted in-depth research on
this challenge and proposed various solutions.

1) Deployment: The high demand for resources character-
istic of LLM makes it difficult to be deployed on resource-
limited edge devices in next-generation networks, thus limiting
its usage scenarios and application performance [99]. How-
ever, techniques such as mixture of experts [100] and federated
learning [101] can optimize the model structure and com-
putation to achieve efficient deployment on resource-limited
devices. Zhang et al. [100] proposed a democratized generative
AI framework using compact model strategies, where tech-
niques such as fine-tuning, model pruning, and distillation are
used to help LLM deployment on resource-constrained mobile
and edge devices. Zhang et al. [102] explored the deployment
issues in LLM and machine learning (ML) model-driven next-
generation networks, and proposed a distributed deployment
strategy that deploys LLM and traditional ML models on
local or edge base stations (BSs), and each local BS owns a
LLM to enhance data privacy and network scalability. Chaoub
et al. [103] proposed a hybrid deployment strategy for 6G
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networks. They integrated lightweight LLM sub-components
into network functions (NFs) in the network for real-time
tasks, and deployed complex LLM sub-components outside the
NFs as standalone microservices to handle complex analysis
tasks. The two interact through service-based interfaces or fast
APIs. Xu et al. [104] proposed a split learning system for
6G networks, which realizes AI services by splitting LLMs
into mobile and edge agents. The mobile side runs tiny local
LLM, which is responsible for real-time sensing and local
interaction, while the edge side runs huge global LLM, which
performs complex reasoning and global planning. Both of
them collaborate in the network to handle tasks, the mobile
side can handle simple tasks independently, while the complex
tasks are offloaded to the edge side for processing and then
return the results for execution.

2) Application: The new network structure and environ-
ment of next-generation network also brings new challenges
for network security defense, and the complexity of the
network puts forward a new demand for intelligent network
management and protection, which LLM happens to have
the hope to meet. Li et al. [105] proposed an LLM-assisted
network operating system framework in which LLM manage-
ment layer is integrated into the network operating system for
strategy generation for service function chain deployment. In
this article, the proposed NSGA2-based multi-objective LLM
algorithm is innovatively used to find the optimal deployment
policy. It effectively improves the intelligence and security
of network management. Liu et al. [106] pointed out that
zero-trust architecture can be used to ensure the security of
NGN, the article organizes the zero-trust network through
micro-segmentation, and uses the Large Language Model-
Enhanced Graph Diffusion (LEGD) algorithm to generate the
optimal micro-segmentation, in which LLM is used to generate
the dynamic filters based on the information of the network
environment to reduce the algorithm search space to improve
the algorithm efficiency. The article also proposes a LEGD-
Adaptive Maintenance algorithm to respond to trustworthiness
updates and service upgrades in the network by fine-tuning the
LEGD model. Hong et al. [107] proposed a framework for
LLM-enabled digital twins networks (DTNs), in which LLMs
will be responsible for processing multimodal data in the net-
work. The framework utilizes LLM’s own characteristics to en-
hance data security without affecting the network efficiency, by
fine-tuning the way to load sensitive information into the LLM
in DTNs, eliminating the data decryption process and reducing
the possibility of data leakage, and at the same time, utilizing
LLM’s reversal curse characteristic [108] to defend against
external inference attacks. Satellite-aerial-ground integrated
network (SAGIN) is also an important network architecture in
NGN [109], due to its heterogeneous, self-organized and dy-
namic characteristics, which increases the difficulty of network
security protection and limits the effectiveness of traditional
security methods, and LLM provides a new way to ensure the
security of its network [102]. Tang et al. [110] pointed out
that LLM can significantly enhance the security of SAGIN
network through real-time threat detection, automated security
policy formulation and dynamic security configuration. Javaid
et al. [111] also proposed that in similar integrated satellite,

aerial, and terrestrial networks, LLMs can traffic monitoring,
malicious behavior identification, and generation of security
policies to secure the network, and emphasized that LLMs can
guarantee the effectiveness of LLM-enabled security measures
through continuous learning.

In traditional network scenarios, LLM-based network secu-
rity applications have been widely used and demonstrated ex-
cellent performance, but in next-generation network scenarios,
LLM-based network security applications still face challenges
in terms of resources and latency in deployment and use.
However, there are now studies that have begun to study
techniques such as quantization to optimize the operational
efficiency of LLM in new network architectures, explore net-
work security usage scenarios suitable for LLM, and provide
feasible solutions for intelligent security protection in next-
generation network environments.

VIII. THE SECURITY RISK OF LLM

While LLM protects the network security, it also receives
various kinds of network attacks, which may cause the weak-
ening of LLM network defense capability or even threaten the
network security of the system where it is located.

A. External Threats

LLM, as a segment of network protection, may also become
the target of cyber attackers, who may attack LLM itself
and paralyse the LLM-driven defence mechanism to achieve
the purpose of successfully hacking into the target system.
Currently, various cyber attack threats against LLMs have
started to emerge, but as an emerging technology, LLMs are
still under-researched in terms of their own defence. This
brings great risks to users who use LLM for network defence.

1) Prompt Injection: Among the various attacks, prompt
injection are one of the common threats to LLMs [112]. Such
attacks enable LLMs to generate undesirable or even mali-
cious output by embedding harmful instructions in the input
[113]. For instance, an attacker may conceal malicious prompt
content in logs or traffic files, directing LLMs, functioning as
IDSs or EDRs, to disregard prior instructions and refrain from
alerting users to the attacker’s malicious activities. In response
to prompt injection attacks, several researchers have proposed
mitigation strategies aimed at improving the robustness of
LLM against such threats. These strategies aim to ensure that
LLM processes input securely, executes only valid commands
and resists any potential for hidden malicious content.

Chen et al. [114] proposed a structured query approach
to defend injection attacks. They used a front-end system to
separate the prompt and data parts of the input, encapsulated
them into a special data format, and adjusted the structured
instructions to allow the LLM to accept inputs encoded in this
format, thus allowing the LLM to execute only the commands
in the prompt part and not the malicious commands present
in the data part. Piet et al. [115] propose a method that
uses fine-tuning to safeguard LLMs against prompt injection
attacks. The research team exploited the fact that LLMs can
only execute instructions effectively after specific instruction
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tuning. They used either real or self-generated datasets to fine-
tune a base LLM (non-instruction-tuned) to focus more on a
predefined task. This way, even if the LLM is subjected to
a prompt injection attack, it will not execute the malicious
instructions.

2) Data Poisoning: On the other hand, data poisoning
attacks are also a major threat to LLM. Data poisoning attacks
can occur in multiple phases of the LLM life cycle, and
attackers can maliciously implant or modify some of the data
in the pre-training, fine-tuning, or embedding phases of the
model. They implant backdoors and loopholes in the model,
which leads to a degradation of the model’s performance and
may even become the attacker’s attack anchors to hack into the
target system. In the face of the serious threat posed by data
poisoning attacks, researchers aim to enhance the robustness
of the model and mitigate the impact of poisoned data on
the performance of the model as much as possible through
different technical means. In the following, two defence strate-
gies against data poisoning are presented, which propose novel
solutions from different perspectives.

Li et al. [116] employed the Kullback-Leibler divergence to
measure the discrepancy between the probability distributions
of the entrusted LLM and a thoroughly cleansed small lan-
guage model (SLM). Their objective was to minimize the de-
viation between the output distribution of the integrated model
and that of the SLM, thereby achieving k-Near Access-Free.
This approach effectively mitigated the influence of poisoned
data in the LLM on the final results while maintaining its
standard performance. Mo et al. [117] proposed a method to
mitigate the impact of malicious backdoor attacks on LLMs
using a small number of examples. Before user inputs are
submitted to the LLM, the research team selects an example
from a pool of samples designed to appropriately respond
to user requirements. The selected example, which closely
matches the current input task, is inserted into the input to
guide the model in correctly interpreting the task instruction.

B. Inherent Risks

Currently, LLM still has certain shortcomings in terms
of performance. When responding to user needs, LLM may
generate biased or incorrect replies, which can negatively
impact the performance of applications integrating LLMs, and
even allows the current network security system to make
incorrect behaviours, which exposes the network system to
huge vulnerabilities. This phenomenon is called “misinforma-
tion” and constitutes a significant vulnerability when utilizing
LLMs as a part of network defense mechanisms. The core
reason for generating misinformation lies in the hallucina-
tion phenomenon of LLM. Hallucinations occur when LLMs,
without truly understanding the content of the training data,
use statistical patterns to fill in gaps within the training data,
leading to inaccurate or misleading information.

To address the issue of misinformation in LLMs, researchers
have proposed corresponding detection methods. Min et al.
[118] propose FACTSCORE, a framework for assessing the
truthfulness of LLM-generated information.The framework
subdivides LLM-generated information into atomic facts-units,

which are more basic than sentences, and then, utilising the
retrieval results from a knowledge source such as Wikipedia,
discerns the supportiveness of each atomic facts-units, and
ultimately calculates the percentage of supported atomic facts-
units as the assessment score.

The hallucination phenomenon may arise due to errors or
knowledge gaps in the training data used for the model [119].
To address this issue, higher-quality data can be selected
during the training phase to avoid inaccuracies in the dataset.
Additionally, external databases can be leveraged by modi-
fying model parameters, injecting up-to-date knowledge, or
employing RAG to provide LLM with more comprehensive
knowledge. Meanwhile, the inherent limitations of the archi-
tecture and training strategies used in LLM may also contribute
to the phenomenon of LLM hallucinations. However, the like-
lihood of LLM hallucinations can be reduced by optimising the
way LLMs are trained. Lee et al. [120] proposed a Factuality-
Enhanced Continued Training approach. In this approach,
TOPICPREFIX, representing the topic of each training sample,
is added as a prefix to improve the model’s understanding of
factual information. This prevents information fragmentation
caused by document chunking during training. Meanwhile,
the zero-masking technique is used for the front part of the
sentence, and the loss function is computed only for the latter
part of the sentence, which is more prone to errors, to reduce
the impact of the entity misassociation problem.

Misinformation may lead to more risky matters, such as
improper output handling or excessive agency issues. The im-
proper output handling issue occurs when an erroneous output
from an LLM is directly input to a downstream component or
system for execution without reasonable validation or process-
ing. In such cases, the defense system may execute incorrect
operations or mislead cyber defenders, thereby increasing the
likelihood of a successful attack. Conversely, the issue of
excessive agency warrants serious attention. Current LLMs can
invoke functions or interact with other systems via extensions.
Excessive agency privileges in LLMs may pose threats to the
security and integrity of network systems when errors occur.

For addressing such extended issues, on one hand, the
output of LLMs can undergo secondary validation to ensure
that the content is harmless to downstream components and
the current system. Alternatively, the output of LLM can
be restricted to allow only safe operations. For example, all
database operations executed by the LLM can be limited to
parameterized queries or prepared statements. On the other
hand, minimizing the agency privileges granted to LLM can
reduce the impact of errors on the security or integrity of
the current system. Adding a “mediator” component is also a
feasible solution. The LLM can only send operation requests
to the mediator, which determines whether to execute these
requests, effectively intercepting unsafe calls.

IX. OPEN PROBLEMS AND RESEARCH DIRECTIONS

Although LLM has been widely used in multiple types
of cybersecurity tasks and has achieved excellent results in
some of them, there are still many unresolved challenges.
Meanwhile, the exploration of LLM in the field of network
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security is still in its early stages, and there are still many
directions that can be explored. In this section, we provide a
brief overview of the open problems and research directions.

A. Open Problems

1) Scarcity of High-Quality Datasets: The current scarcity
of high-quality datasets constrains the performance optimi-
sation of LLM on some cybersecurity tasks. On the one
hand, due to the changeable forms of current attacks and the
emergence of new types of attacks, it leads to the difficulty of
data collection [121]. On the other hand, the present training
dataset suffers from low data accuracy and high repetitiveness,
which affects the training effect and further performance
optimisation of LLM [122], [123].

2) Input Length Limitation: The input length limitation
also affects the performance of LLM in cybersecurity tasks,
especially in the field of vulnerability detection and repair. In
the vulnerability detection, most of the existing solutions are
limited to function-level detection, and when facing complex
vulnerability detection scenarios involving cross-function or
cross-class vulnerabilities, LLM is unable to handle com-
plete code fragment information, resulting in a significant
degradation of its detection performance [124]. Similarly,
in vulnerability repair, the limited context window of LLM
cannot accommodate the complete semantic information of a
large codebase and the related project background information,
which makes it difficult to read enough repair help informa-
tion, resulting in poor repair results [123].

3) Targeted Attack Threats: LLM is vulnerable to targeted
attacks when performing detection and collection of external
threat information. For instance, during phishing email detec-
tion, the email may contain injection attacks [125]. Or during
CTI collection, LLM may be attacked by toxic data due to
the complexity of raw intelligence data sources, including
unreliable sources such as cybercrime forums and the dark
web.

4) Problem of Delayed Inference: In scenarios such as
honeypot systems and intrusion detection systems, which have
the requirements on system response speed, LLM currently
still has the problem of slow real-time response speed, and we
think that most of the researches are now mainly focusing on
the optimisation of the LLM-base honeypot deception effect
and the optimisation of the precision of attack detection, and
less consideration is given to the real-time response capability
of the LLM-based defence system [126].

5) Black-Box LLMs: Most current studies mostly use black-
box LLMs [127], such as the OpenAI GPT series. Although
these LLMs have excellent performance, the experimental test
samples may have been covered by the pre-training data due
to the opacity of the training data, leading to doubts about the
reproducibility and reliability of the high repair success rate
obtained from the experiments in real scenarios.

B. Research Directions

1) Development of Open-Source and Transparent Datasets:
The development of open-source and transparent high-quality
datasets can continue to alleviate the current problem of

dataset scarcity on the one hand, and on the other hand,
mitigate the risk of uncertainty in experimental results due
to black-box LLM.

2) Breaking Through the Input Length Limitation: The
input length of LLM limits its performance in vulnerability
detection and remediation, we think that with the development
of LLM technology, the enhancement of the LLM input
window capacity may alleviate this problem, on the other hand,
current techniques such as code property graph [51] or GNN
[52] can also be used to compress the information to alleviate
the impact of the input length limitation.

3) Designing Defence Mechanisms Against Pollution At-
tacks: LLMs frequently interact with unsafe external data in
cybersecurity tasks, which may contain pollution inputs such
as injection attacks. Such exposure risks degrading model per-
formance or even co-opting LLMs as attack vectors. We think
that developing data filtering or isolation techniques to shield
LLMs from adversarial contamination is both imperative and
a pivotal future research direction.

4) Semantic Data Transformation: As LLM is applied
to a wider range of cybersecurity tasks in the future, the
data that LLM needs to process will be more complex and
diverse, and may not be semantic data suitable for LLM
processing. We think that future research needs to allow LLM
to cope with more diverse data processing needs, which can be
accomplished through data preprocessing, prompt engineering,
or domain-specific data training. Future research also focuses
on constructing efficient data transformation mechanisms that
preserve the critical features and contextual relationships of
the original data while reformatting it into information-rich
semantic representations.

5) Enhancing Interpretability: Improving the interpretabil-
ity of LLM analysis results is also an important research
direction in the future. In most attack threat detection work,
improving interpretability can help security personnel under-
stand the detection results more intuitively, and improve the
transparency and trust of the system. It also helps subsequent
research to optimise the performance of LLM.

6) Expanding Application Coverage: With the concept of
next-generation network, a number of new network archi-
tectures have emerged to meet various new demands. While
improving network performance, these architectures also bring
more attack surfaces and higher security risks, while the
complex and changing network structure also increases the
difficulty of network protection. LLM with intelligent and
adaptive features provides a new solution idea for future
network defense. Expanding LLM-based network security
solutions from traditional network scenarios to next-generation
network scenarios, and studying the deployment and applica-
tion of network defense solutions in network scenarios such
as 6G, IoT, and SAGIN, etc. will be a mainstream research
direction in the future.

X. CONCLUSION

In this survey, we not only explore the defensive role of
LLM in the various life cycles of cyber attacks, but also
point out the obvious research gaps in the post-intrusion
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scenario. Through the analysis of relevant literature, we clearly
point out the huge application potential of LLM in network
security. Although there are already many studies using LLM
to accomplish cybersecurity tasks, it should be noted that there
are still many unresolved issues and challenges in LLM-based
applications. Based on the current status of LLM applications
in cybersecurity, we have also listed some possible future
research directions. We hope that through this survey, we can
provide a systematic thinking and reference framework for
future research on the application of LLM in cybersecurity.
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[49] H. İŞ, “Llm-driven sat impact on phishing defense: A cross-sectional
analysis,” in 2024 12th International Symposium on Digital Forensics
and Security (ISDFS), 2024, pp. 1–5.

[50] S. Wang, Q. Pei, Y. Xiao, F. Shao, S. Yuan, J. Chu, and R. Liao,
“Probabilistic models for evaluating network edge’s resistance against
scan and foothold attack,” IET Communications, vol. 18, no. 20, pp.
1983–1995, 2024.

[51] G. Lu, X. Ju, X. Chen, W. Pei, and Z. Cai, “Grace: Empowering
llm-based software vulnerability detection with graph structure and in-
context learning,” Journal of Systems and Software, vol. 212, p. 112031,
2024.

[52] A. Z. H. Yang, H. Tian, H. Ye, R. Martins, and C. L. Goues, “Security
vulnerability detection with multitask self-instructed fine-tuning of
large language models,” arXiv preprint arXiv:2406.05892, 2024.

[53] C. Zhang, L. Wang, D. Fan, J. Zhu, T. Zhou, L. Zeng, and Z. Li, “Vtt-
llm: Advancing vulnerability-to-tactic-and-technique mapping through
fine-tuning of large language model,” Mathematics, vol. 12, no. 9, p.
1286, 2024.

[54] J. Yin, M. Tang, J. Cao, and H. Wang, “Apply transfer learning to cy-
bersecurity: Predicting exploitability of vulnerabilities by description,”
Knowledge-Based Systems, vol. 210, p. 106529, 2020.

[55] Y. Luo, W. Xu, K. Andersson, M. S. Hossain, and D. Xu, “Fellmvp: An
ensemble llm framework for classifying smart contract vulnerabilities,”
in 2024 IEEE International Conference on Blockchain (Blockchain),
2024, pp. 89–96.

[56] C. Wang, J. Zhang, J. Gao, L. Xia, Z. Guan, and Z. Chen, “Con-
tracttinker: Llm-empowered vulnerability repair for real-world smart
contracts,” in Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 2350–2353.

[57] M. C. Tol and B. Sunar, “Zeroleak: Automated side-channel patching
in source code using llms,” in Computer Security – ESORICS 2024,
J. Garcia-Alfaro, R. Kozik, M. Choraś, and S. Katsikas, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 290–310.

[58] S. Pan, Y. Wang, Z. Liu, X. Hu, X. Xia, and S. Li, “Automating zero-
shot patch porting for hard forks,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2024. New York, NY, USA: Association for Computing
Machinery, 2024, p. 363–375.

[59] X. Zhou, B. Xu, K. Kim, D. Han, H. H. Nguyen, T. Le-Cong, J. He,
B. Le, and D. Lo, “Leveraging large language model for automatic
patch correctness assessment,” IEEE Transactions on Software Engi-
neering, vol. 50, no. 11, pp. 2865–2883, 2024.

[60] A. Happe and J. Cito, “Getting pwn’d by ai: Penetration testing
with large language models,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p.
2082–2086.

[61] X. Yin, C. Ni, and S. Wang, “Multitask-based evaluation of open-
source llm on software vulnerability,” IEEE Transactions on Software
Engineering, vol. 50, no. 11, pp. 3071–3087, 2024.

[62] J. Zhang, C. Wang, A. Li, W. Sun, C. Zhang, W. Ma, and Y. Liu,
“An empirical study of automated vulnerability localization with large
language models,” arXiv preprint arXiv:2404.00287, 2024.

[63] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “Microwalk:
A framework for finding side channels in binaries,” in Proceedings
of the 34th Annual Computer Security Applications Conference, ser.
ACSAC ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 161–173.

[64] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul:
A new vulnerable source code dataset for deep learning based vulner-
ability detection,” in Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, ser. RAID ’23.
New York, NY, USA: Association for Computing Machinery, 2023,
p. 654–668.

[65] Y. Guo, C. Patsakis, Q. Hu, Q. Tang, and F. Casino, “Outside the
comfort zone: Analysing llm capabilities in software vulnerability
detection,” in Computer Security – ESORICS 2024, J. Garcia-Alfaro,
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