
DecETT: Accurate App Fingerprinting Under Encrypted Tunnels
via Dual Decouple-based Semantic Enhancement
Zheyuan Gu

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

guzheyuan@iie.ac.cn

Chang Liu
∗

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

liuchang@iie.ac.cn

Xiyuan Zhang

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

zhangxiyuan@iie.ac.cn

Chen Yang

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

yangchen@iie.ac.cn

Gaopeng Gou

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

gougaopeng@iie.ac.cn

Gang Xiong

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

xionggang@iie.ac.cn

Zhen Li

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

School of Cyber Security, University

of Chinese Academy of Sciences

Beijing, China

lizhen@iie.ac.cn

Sijia Li

Zhongguancun Laboratory

Beijing, China

lisj@zgclab.edu.cn

Abstract
Due to the growing demand for privacy protection, encrypted tun-

nels have become increasingly popular among mobile app users,

which brings new challenges for app fingerprinting (AF)-based net-

work management. Existing methods primarily transfer traditional

AF methods to encrypted tunnels directly, ignoring the core ob-

fuscation and re-encapsulation mechanism of encrypted tunnels,

thus resulting in unsatisfactory performance. In this paper, we

propose DecETT, a dual decouple-based semantic enhancement

method for accurate AF under encrypted tunnels. Specifically, De-

cETT improves AF under encrypted tunnels from two perspectives:

app-specific feature enhancement and irrelevant tunnel feature

decoupling. Considering the obfuscated app-specific information

in encrypted tunnel traffic, DecETT introduces TLS traffic with

stronger app-specific information as a semantic anchor to guide

and enhance the fingerprint generation for tunnel traffic. Further-

more, to address the app-irrelevant tunnel feature introduced by

the re-encapsulation mechanism, DecETT is designed with a dual

decouple-based fingerprint enhancement module, which decouples

the tunnel feature and app semantic feature from tunnel traffic

separately, thereby minimizing the impact of tunnel features on

accurate app fingerprint extraction. Evaluation under five prevalent

∗
Corresponding author.

encrypted tunnels indicates that DecETT outperforms state-of-the-

art methods in accurate AF under encrypted tunnels, and further

demonstrates its superiority under tunnels with more complicated

obfuscation. Project page: https://github.com/DecETT/DecETT

Keywords
App Fingerprinting, Encrypted Tunnel, Encrypted Traffic Analysis,

Decouple-based Representation Learning

1 Introduction
Over the past few years, we have witnessed the widespread use of

encrypted tunnels in mobile network communications[10, 35, 42].

Serving as intermediaries that forward traffic between apps and

servers, encrypted tunnels conceal both the identities of the com-

municating parties and the transmitted traffic characteristics, thus

providing an effective way for privacy protection[3] and anony-

mous communication[25]. However, the prevalence of encrypted

tunnels also poses new challenges to network management, such as

Quality of Service (QoS)[43] and behavior auditing[1]. Traditional

network management strategies primarily rely on app fingerprint-

ing (AF) that identifies app usage activities by analyzing server

information[26, 34] (e.g., IP address or Server Name Indicator) or

TLS traffic characteristics[20, 31, 38]. However, encrypted tunnels

ar
X

iv
:2

50
4.

15
56

5v
1 

 [
cs

.C
R

] 
 2

2 
A

pr
 2

02
5

https://orcid.org/0009-0003-3344-9058
https://orcid.org/0000-0002-4798-0443
https://orcid.org/0009-0004-5465-0663
https://orcid.org/0000-0002-9296-0142
https://orcid.org/0000-0002-3533-4874
https://orcid.org/0000-0002-3190-6521
https://orcid.org/0000-0002-3892-4909
https://github.com/DecETT/DecETT


WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zheyuan Gu et al.

隧道通信架构图

 Variety of Encrypted Tunnels TLS Traffic

APPs Proxy Server

APPs Server

APP Fingerprinting × N

 Visible Communicating 
Server Information

 Inaccessible
Server Information

 Raw TLS Traffic

 Re-encapsulated By 
Tunnel-specific Protocol

Si
C

C

Si

C

Si
Traditional TLS

Encrypted 
Tunnel

 Standard TLS Protocol

Figure 1: Three main challenges in App Fingerprinting under
encrypted tunnels: (1) Diversity of encrypted tunnels, (2)
Server concealment, and (3) Traffic re-encapsulation.

obfuscate these two distinctive features, making accurate AF more

challenging than in the traditional TLS scenario.

While prior work has developed some AF methods under en-

crypted tunnels, most of them directly transfer traditional AF meth-

ods, ignoring the core impact caused by tunnel mechanism. As

illustrated in Figure 1, there exist three primary challenges in em-

ploying AF under encrypted tunnels compared with traditional

TLS scenarios. (1) Diversity of encrypted tunnels. Currently,

there are numerous kinds of encrypted tunnels that have been

widely used. Some studies design effective AF methods for spe-

cific encrypted tunnels[9, 14, 36], such as Shadowsocks and SSH.

However, since different encrypted tunnels employ varying for-

warding policies and encapsulation protocols for the original TLS

traffic, developing specific AF methods for each tunnel type is labor-

intensive and inefficient. (2) Lack of server information. In tra-

ditional TLS scenarios, server information, such as IP addresses,

TLS certificates, and high-level interaction patterns, can be directly

extracted from the original TLS traces to facilitate fingerprint con-

struction. However, in encrypted tunnels, all traffic is forwarded to

the tunnel server instead of the actual app servers, concealing any

server-related information. As a result, server information-based

methods, which perform excellently in TLS scenario[5, 26, 34], can-

not be applied under encrypted tunnels. (3) Weaker AF semantic
representations caused by re-encapsulation. Existing methods

attempt to extract discriminative features directly from the tunnel

traffic[17, 21, 24, 40, 44]. However, encrypted tunnels employ re-

encapsulation mechanism on the forwarded TLS traffic to ensure

the confidentiality of tunnel communication. This process not only

obfuscates the raw app-specific information, but also introduces

tunnel-related information that are irrelevant to apps into the tun-

nel traffic, resulting in unsatisfactory performance and making

accurate AF more challenging.

To address the aforementioned issues, in this paper, we propose

DecETT, a dual decouple-based semantic enhancement method

for accurate AF under encrypted tunnels. DecETT utilizes flow se-

quences as the representation form of traffic to avoid the limitations

of inaccessible server information. Specifically, DecETT consists

of three key steps as follows. Firstly, to mitigate the obfuscated

app-specific features caused by re-encapsulation, we introduce TLS

traffic as a stronger and more stable semantic anchor to guide and

enhance the fingerprint generation for tunnel traffic. Each tun-

nel flow is correlated with its corresponding original TLS flow for

further analysis. Secondly, to address the negative impact of tunnel-

related features within tunnel traffic, DecETT incorporates a dual

decouple-based fingerprint enhancement module, which adopts

a dual-branch Siamese network to tackle TLS and tunnel traffic

separately. By decoupling the disentangled protocol features and

app semantic features within the traffic, DecETT isolates protocol-

related features that are irrelevant to app fingerprints, therefore

reducing the impact of the re-encapsulation mechanism on cap-

turing distinguishable app-specific information. Finally, the app

semantic features extracted from tunnel traffic are input into the

classifier as the generated fingerprint for the final AF results. To

validate the effectiveness of DecETT, we conduct extensive experi-

ments under five widely used encrypted tunnels.

Contributions. Our contributions can be summarized as:

• We propose a dual decouple-based semantic enhancement

method, DecETT, which can achieve accurate app finger-

printing under various encrypted tunnels.

• Considering the obfuscation of app-specific information

caused by re-encapsulation, we introduce TLS traffic with

stronger and more stable app semantic information to guide

and enhance effective fingerprint generation.

• We design a dual decouple-based semantic enhancement

module to decouple tunnel-related features and app-specific

semantic features, which mitigates the negative impact of

re-encapsulation on accurate fingerprint extraction.

• Evaluated under five widely-used encrypted tunnels, De-

cETT outperforms state-of-the-art methods on multiple met-

rics, and shows superiority under tunnels with more compli-

cated obfuscation.

The remainder of this paper is organized as follows. Section

2 summarizes the prior research related to our work. Section 3

introduces the necessary foundational knowledge of this paper.

Section 4 highlights the overall design of DecETT, and Section 5

illustrates the experiments. Section 6 concludes the paper.

2 Related Work
From the task perspective, prior relevant works mainly focus on app

fingerprinting and encrypted tunnel traffic analysis, respectively.

In this section, we briefly review and discuss these works.

2.1 App Fingerprinting
App Fingerprinting (AF) refers to a side-channel network man-

agement technique that identifies app usage activities through

encrypted traffic analysis. Although the packet payloads are en-

crypted, certain traffic characteristics, such as server profiles, TLS

certificates, and flow sequences, still allow for successful AF under

encrypted traffic. Generally, prior works can be categorized into

two main groups, including server information analysis and flow

feature mining.

Server Information Analysis. Server information analysis-

based methods refer to using server-related features for accurate

AF. (author?) [34] and (author?) [26] explore temporal correlations



DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

among destination-related features of network traffic and use these

correlations to generate app fingerprints.

Flow Feature Mining. These methods focus on extracting fin-

gerprints from the transmitted traffic flows and can be further di-

vided into three parts. A typical approach is to utilize statistical fea-

tures that are independent of encryption, such as packet lengths[31]

and time-related features[4]. Another kind of approach[37, 39, 44]

extracts the raw bytes of packets and employs deep learning to iden-

tify distinguishable app features based on the pseudo-randomness

of encryption algorithms. For instance, ET-Bert[17] transforms

the packet payloads into word-like tokens and achieves satisfac-

tory performance based on the pre-training technique. Besides,

deep mining of flow sequences also provides effective AF strate-

gies. (author?) [18] utilize multi-layer end-to-end encoder-decoder

structure to mine the potential sequence characteristics. (author?)
[29] construct each flow sequence as a graph by burst division and

association, and transform AF to a graph classification task.

While these methods have demonstrated high accuracy in tradi-

tional TLS scenario, their performance diminishes under encrypted

tunnels since both server information and traffic characteristics are

obfuscated, making effective AF more challenging.

2.2 Encrypted Tunnel Traffic Analysis
Currently, works for encrypted tunnel traffic analysis mainly fo-

cus on detecting tunnel flows from a massive amount of traffic.

Several studies [16, 19, 22, 23] analyze and extract tunnel-specific

protocol features to achieve accurate identification. For instance,

(author?) [42] constructs OpenVPN traffic fingerprints from the

aspects of byte pattern, packet size, and server response to achieve

accurate OpenVPN traffic identification.(author?) [2] observe that
the length and entropy value of the first packet in a flow can be used

as specific features for Shadowsocks traffic detection, and combine

active probing to further improve the identification accuracy.

Some other methods [8, 13, 24] dive into AF under encrypted

tunnels for more fine-grained analysis. (author?) [41] convert each
tunnel flow into a graph and combine it with statistical features to

realize app classification. (author?) [36] add the sliding window

JS divergence feature based on the traditional packet length and

timestamp-related statistics to promote the accuracy and robustness

of AF under Shadowsocks.

In summary, existingAFmethods under encrypted tunnelsmainly

follow the technical roadmap of traditional TLS traffic classification

and lack targeted solutions for the tunnel mechanism. Therefore,

their performance is still limited by the weak app semantic fea-

tures in tunnel traffic. In this work, we aim to mitigate the negative

impact of tunnel obfuscation by both irrelevant tunnel feature de-

coupling and app semantic feature enhancement with the help of

TLS traffic, thereby achieving accurate AF under various tunnels.

3 Preliminaries
In this section, we first provide the threat model of app fingerprint-

ing, and then conduct a detailed analysis of the core principle of

the tunnel re-encapsulation mechanism and its impact on tunnel

flow sequences, to provide the necessary theoretical foundation.

Figure 2: Source code of re-encapsulation mechanism sum-
marized from Shadowsocks. Illustrations for the other 4 en-
crypted tunnels can be found in Appendix A.

3.1 Threat Model
In this paper, we refer to the threat model [26, 34] in previous app

fingerprinting studies, with the critical difference that we focus on

the more complex encrypted tunnel scenario. Specifically, an app

fingerprinting system is located at the network boundary, where it

can collect and analyze all traffic sent out from this network. The

primary goal of AF is to identify app usage activities concealed in

encrypted tunnels of specific mobile devices by analyzing the cor-

responding tunnel traffic. We assume that only one app is executed

at a time, i.e., composite app fingerprints are not considered[34].

3.2 Re-encapsulation Mechanism
Firstly, to reveal the principle of the re-encapsulation mechanism in-

tuitively, we summarize the source code of traffic re-encapsulation

and forwarding process in Shadowsocks[28], a widely used en-

crypted tunnel tool for mobile devices, as shown in Figure 2. Unnec-

essary functions and parameters are omitted, and annotations are

added for clarity. When a local app attempts to send data through

the tunnel, the tunnel client establishes a connection with the local

app via 𝑙𝑜𝑐𝑎𝑙_𝑠𝑜𝑐𝑘 and creates a corresponding 𝑟𝑒𝑚𝑜𝑡𝑒_𝑠𝑜𝑐𝑘 to the

tunnel server simultaneously. The tunnel client then receives and

encrypts the data from the local app according to the tunnel proto-

col, and forward it to the tunnel server. Similarly, upon receiving

responses from the tunnel server, the tunnel client decrypts the

data and sends it back to the local app, thereby achieving traffic

forwarding of encrypted tunnels.

In summary, the tunnel client maintains two TCP connections

and their correlation: one for communicating with the local app

called 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 and another for data transmission with the tun-

nel server called 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 . Both connections are implemented via

socket communication, so the process of data encryption and for-

warding does not vary based on the class of app data. Therefore,

tunnel protocol features and app semantic features can be viewed

as two independent variables for tunnel traffic generation, thereby

ensuring the feasibility of the feature decoupling.

3.3 Impact on Tunnel Flow Sequences
Based on the principle of the re-encapsulation mechanism above,

this section discusses its impact on tunnel flow sequences. We select

a TLS flow and its two corresponding tunnel flows forwarded by

V2Ray[32] for comparison.



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zheyuan Gu et al.

Cross App Decouple 
Loss (CAL)

Cross Protocol Decouple 
Loss (CPL)

Self Reconstruction Loss
(SRL)

Semantic Alignment Loss
(SAL)

Shared Parameters

Non-shared 
Parameters

Label Cross Entropy Loss
(SAL)

517 -1440 -1440 -1448 -1432 -430 31 -31

586 -1448 -1448 -1448 -1448 -477 74 -70110 -62 -65 -84

589 -1448 -1448 -1448 -1448 -481 82 -88-63 -24 -72 -15

……

……

……

……

Original TLS Flow 𝑅𝑅 Tunnel Flow A Tunnel Flow B

Figure 3: Flow sequence variation caused by tunnel re-
encapsulation mechanism.

As shown in Figure 3, the tunnel flow sequences differ from

the TLS flow sequence after being forwarded by the tunnel. This

variation can be attributed to the fact that tunnel flow sequences

are affected by both the original app and tunnel re-encapsulation.

Specifically, the impact of the latter on flow sequences mainly lies

in three aspects. (1) Packet length variation. Compared to the

original TLS traffic, the packet lengths in both flow𝐴 and 𝐵 increase

to varying degrees due to the additional byte overhead caused by

tunnel re-encapsulation. Furthermore, the same TLS packet may

correspond to packets of different lengths after re-encapsulation.

For example, a packet with a length of 517 in flow 𝑅 corresponds to

packets of 586 and 589 in flows 𝐴 and 𝐵, respectively. (2) Packet
fragmentation. Due to the extra byte overhead and the limitation

of the Maximum Transmission Unit (MTU), the payload data of a

single TLS packet may be split into two packets for transmission in

tunnel traffic. For instance, a packet with a payload of 1440 bytes

in flow 𝑅 is split into two packets of 1448 bytes and 62 bytes in

flow 𝐴. (3) Packet redundancy. Some packets, such as the first

packet in flow 𝐴 with a payload of 110 bytes, are not generated by

the upper-layer app and are more likely to serve as control packets

for tunnel communication.

These variations indicate that tunnel mechanism obfuscate the

app-specific information hidden in the flow sequences, resulting in

poor AF performance. Considering that TLS traffic remains unaf-

fected by the tunnel mechanism and shares the same app-specific

information with tunnel traffic, it can serve as a robust semantic

anchor for learning representative app semantic features in tunnel

traffic, thereby facilitating accurate AF under encrypted tunnels.

4 Design of DecETT
Based on the aforementioned analysis of tunnel mechanism, in this

section, we introduce our dual decouple-based semantic enhance-

ment app fingerprinting method, DecETT. As shown in Figure 4, the

architecture of DecETT could be divided into three main processes:

traffic preprocess and correlation, dual decouple-based fingerprint

enhancement, and generated AF classification.

4.1 Traffic Preprocess and Correlation
DecETT utilizes TLS traffic as a semantic anchor to mitigate app se-

mantics loss and enhance the representation learning of the tunnel

traffic. In this process, we construct parallel correlation flow pairs

from the obfuscated network traffic to facilitate subsequent work.

Firstly, we reassemble TLS and tunnel flows separately based on

5-tuple information of the packets, including source IP, source port

(𝑆𝑃𝑜𝑟𝑡 ), destination IP, destination port (𝐷𝑃𝑜𝑟𝑡 ), and protocol, and

then pad or truncate them to the unified flow sequence length 𝑛.

Next, the reassembled TLS and tunnel traffic flows are corre-

lated according to the mapping table 𝑇 maintained by the tunnel

client. As we mentioned in Section 3.2, the tunnel client maintains

a socket mapping relation (𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ∈ 𝑇 for each pair of

the forwarded traffic. The 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 keyword records the 𝑆𝑃𝑜𝑟𝑡 of the

TCP connection established with the app, while the 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 key-

word records the 𝐷𝑃𝑜𝑟𝑡 of the TCP connection established with the

tunnel server. Therefore, TLS flow that satisfies 𝑆𝑃𝑜𝑟𝑡 == 𝑖𝑛𝑏𝑜𝑢𝑛𝑑

and tunnel flow that satisfies 𝑆𝑃𝑜𝑟𝑡 == 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 share the same

app-specific information and are correlated as a parallel flow pair.

Moreover, in order to avoid the confusion caused by port reuse, we

restrict the time difference between the two flow start timestamps

𝑡𝐹𝑡𝑙𝑠 , 𝑡𝐹𝑡𝑢𝑛 of the correlated flows to be less than a certain thresh-

old 𝜀. In summary, the flow correlation process can be formally

described as the concatenation of 𝐹𝑡𝑙𝑠 and 𝐹𝑡𝑢𝑛 that satisfy:{
(𝑆𝑡𝑙𝑠𝑝𝑜𝑟𝑡 , 𝑆

𝑡𝑢𝑛
𝑝𝑜𝑟𝑡 ) == (𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ∈ 𝑀

|𝑡𝐹𝑡𝑙𝑠 − 𝑡𝐹𝑡𝑢𝑛 | ≤ 𝜀
(1)

By correlating each tunnel flow with its corresponding TLS flow

that shares the same app-specific information, an additional se-

mantic supervisory signal is provided for fingerprint learning of

the tunnel flow, thereby facilitating accurate AF under encrypted

tunnels.

Furthermore, in order to enrich the information retained in the

packets, each parallel flow pair 𝐹𝑡𝑙𝑠−𝑡𝑢𝑛 is mapped through a train-

able embedding layer 𝐸𝑚𝑏 (·). Formally, given a flow pair sequence

as 𝐹𝑡𝑙𝑠−𝑡𝑢𝑛 = {[𝑝
1,𝑡𝑙𝑠 , . . . , 𝑝𝑛,𝑡𝑙𝑠 ], [𝑝1,𝑡𝑢𝑛, . . . , 𝑝𝑛,𝑡𝑢𝑛]}, the embed-

ding layer 𝐸𝑚𝑏 (·) maps each packet 𝑝𝑖 to an embedding vector 𝑒𝑖
of dimension 𝑑 . Therefore, the raw flow pair is mapped to represen-

tation 𝑥𝑡𝑙𝑠−𝑡𝑢𝑛 = [[𝑒
1,𝑡𝑙𝑠 , . . . , 𝑒𝑛,𝑡𝑙𝑠 ], [𝑒1,𝑡𝑢𝑛, . . . , 𝑒𝑛,𝑡𝑢𝑛]] ∈ R2𝑛×𝑑

for further analysis.

4.2 Dual decouple-based Fingerprint
Enhancement

As we discussed in Section 3.2, the representation of encrypted

tunnel traffic is jointly influenced by both app semantic and tunnel

protocol features. Therefore, irrelevant protocol features inevitably

hinder the learning of accurate app semantic features and thus

bring negative impact to AF. In this process, we aim to decouple

the protocol and app semantic features entangled in the traffic, and

further enhance the semantic features with the help of TLS traffic

to reduce the negative impact of tunnel re-encapsulation.

Specifically, DecETT employs a partially parameter-shared Siamese

Network[7] with two branches to process TLS traffic and tunnel

traffic separately. Each branch comprises a protocol-view encoder

𝐸𝑛𝑐𝑃 , an AF-view encoder 𝐸𝑛𝑐𝐴 , a decoder 𝐷𝑒𝑐 , and a classifier

𝐶 . Each of the encoders and decoders utilizes a 2-layer stacked

Bi-GRU[6] as the backbone to model the contextual bidirectional

information of the flow sequences. The protocol-view encoder aims

at learning protocol features 𝑍𝑃 = 𝐸𝑛𝑐𝑃 (𝑥) that are independent
of the app, while the AF-view encoder focuses on extracting app

semantic features 𝑍𝐴 = 𝐸𝑛𝑐𝐴 (𝑥) from the raw traffic. In order to

facilitate the decoupling between these two representations and

enhance accurate fingerprint extraction, we propose two specific

sub-modules to train DecETT. In the following, we present each of

them in detail.



DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Traffic Preprocess
And Correlation Dual Decouple-based Fingerprint Enhancement

Generated Fingerprint
Classification

App-specific Semantic 
Alignment (ASA)

Cross-Protocol Semantic 
Decoupling (CPD)

Self Reconstruction 
Constraint (SRC)

Shared Parameters
AF-view Encoder And
Decoder

Non-shared Parameters
Protocol-view Encoder

Protocol-feature Semantic
Minimization (PSM)

Em
be

dd
in

g TLS-Branch

Tunnel-Branch

Cl
as

sif
ie

r

AF-view 
Encoder

“          ”

AF-view 
Encoder

P-view 
Encoder

Decoder

GRL

AF-view 
Encoder

P-view 
Encoder

GRL

Cl
as

sif
ie

r

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴

App Semantic Feature 
Classification (ASC)

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡′

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡′

TLS flow

Tunnel 
flow

Co
rr

el
at

io
n

Decoder

Figure 4: The overall architecture of DecETT.

4.2.1 Flow Representation Decoupling. In this sub-module, we force

the app semantic features to be decoupled with the tunnel proto-

col features to minimize the negative influence caused by tunnel

re-encapsulation.

Self Reconstruction Constraint (SRC). Since the original flow
representation is decoupled into two independent features 𝑍𝑃

and

𝑍𝐴
, it is essential to ensure that these two features retain as much of

the original flow information as possible. Therefore, we first intro-

duce self-reconstruction loss to ensure the fundamental correctness

of feature decoupling, which can be calculated as follows:

𝑥 ′
𝑖,𝑡𝑙𝑠

= 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑙𝑠

, 𝑍𝐴
𝑖,𝑡𝑙𝑠

) (2)

𝑥 ′𝑖,𝑡𝑢𝑛 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑢𝑛, 𝑍

𝐴
𝑖,𝑡𝑢𝑛) (3)

L𝑆𝑅𝐶 = − 1

𝑁

𝑁∑︁
𝑖=1

( | |𝑥 ′
𝑖,𝑡𝑙𝑠

− 𝑥𝑖,𝑡𝑙𝑠 | |2 + ||𝑥 ′𝑖,𝑡𝑢𝑛 − 𝑥𝑖,𝑡𝑢𝑛 | |2) (4)

where 𝑁 stands for the total number of flow pairs. By minimizing

the difference between the reconstructed and the original flow

representations, SR loss constrains the two decoupled features to

fully preserve essential characteristics of the original traffic flow,

ensuring that no critical information in the original flow is lost

during feature decoupling.

Protocol-feature Semantic Minimization (PSM). Based on

the assurance from SRC that app-specific information is preserved

by either 𝑍𝐴
or 𝑍𝑃

, minimizing the app-specific information in

𝑍𝑃
equals to maximizing the app-specific information captured by

𝑍𝐴 . To achieve this goal, we propose the Protocol-feature Seman-

tic Minimization cross-entropy loss for 𝑍𝑃
under the fingerprint

classification task. Suppose 𝑦𝑃
𝑖
is the predicted app label of 𝑍𝑃

𝑖
, the

PSM loss can be formulated as

L𝑃𝑆𝑀 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 (𝑙𝑜𝑔(𝑦𝑃𝑖,𝑡𝑙𝑠 ) + 𝑙𝑜𝑔(𝑦
𝑃
𝑖,𝑡𝑢𝑛)) (5)

During the training process, we apply Gradient Reversal Layer

(GRL) [11] to reverse the gradient during back-propagation to max-

imize L𝑃𝑆𝑀 , thereby minimizing the app-specific information

captured by 𝑍𝑃
. Under the dual constraints of both SRC and PSM,

DecETT encourages 𝑍𝐴
to capture more app-specific information,

thereby achieving effective feature decoupling and extraction.

Cross-Protocol Semantic Decoupling (CPD). To further facil-
itate the feature decoupling, we propose the cross-protocol seman-

tics decoupling that swaps the extracted app semantic features 𝑍𝐴

to reconstruct the original flow representations 𝑥𝑡𝑙𝑠 and 𝑥𝑡𝑢𝑛 to-

gether with𝑍𝑃
𝑡𝑙𝑠

and𝑍𝐴
𝑡𝑢𝑛 , respectively. Formally, the cross-protocol

reconstruction process can be described as follows:

𝑥𝑖,𝑡𝑙𝑠 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑙𝑠

, 𝑍𝐴
𝑖,𝑡𝑢𝑛) (6)

𝑥𝑖,𝑡𝑢𝑛 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑢𝑛, 𝑍

𝐴
𝑖,𝑡𝑙𝑠

) (7)

Thus the CPD loss can be calculated as:

L𝐶𝑃𝐷 = − 1

𝑁

𝑁∑︁
𝑖=1

( | |𝑥𝑖,𝑡𝑙𝑠 − 𝑥𝑖,𝑡𝑙𝑠 | |2 + ||𝑥𝑖,𝑡𝑢𝑛 − 𝑥𝑖,𝑡𝑢𝑛 | |2) (8)

By minimizing CPD loss, DecETT not only reduces the amount

of protocol information irrelevant to apps contained in 𝑍𝐴
, but

also implicitly aligns the app semantic features extracted from the

parallel flow pairs.

Therefore, the total loss of flow representation decoupling sub-

module L𝐹𝑅𝐷 can be summarized as:

L𝐹𝑅𝐷 = 𝜆1L𝑆𝑅𝐶 + 𝜆2L𝑃𝑆𝑀 + 𝜆3L𝐶𝑃𝐷 (9)



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zheyuan Gu et al.

4.2.2 App Semantic Feature Augmentation. In this sub-module, the

app semantic features decoupled from the tunnel traffic are further

augmented by aligning with two supervisory signals with strong

semantics.

App-specific Semantic Alignment (ASA). Based on the two

decoupled features, ASA explicitly aligns the app semantic features

𝑍𝐴
𝑡𝑙𝑠

and 𝑍𝐴
𝑡𝑢𝑛 decoupled from TLS traffic and tunnel traffic, respec-

tively. Specifically, DecETT achieves semantic alignment between

𝑍𝐴
𝑡𝑙𝑠

and 𝑍𝐴
𝑡𝑢𝑛 by minimizing their cosine similarity loss:

L𝐴𝑆𝐴 = − 1

𝑁

𝑁∑︁
𝑖=1

(1 −
𝑍𝐴
𝑖,𝑡𝑙𝑠

· 𝑍𝐴
𝑖,𝑡𝑢𝑛

| |𝑍𝐴
𝑖,𝑡𝑙𝑠

| | · | |𝑍𝐴
𝑖,𝑡𝑢𝑛

| |
) (10)

By increasing the similarity between 𝑍𝐴
𝑡𝑙𝑠

and 𝑍𝐴
𝑡𝑢𝑛 in the high-

dimensional semantic space, 𝑍𝐴
𝑡𝑙𝑠

serves as an additional class-level

supervisory signal that provides richer and more stable app-specific

information than the class label, thus facilitating more accurate

fingerprint generation under encrypted tunnels.

App Semantic Feature Classification (ASC). To ensure the
correct semantic mapping between the generated fingerprint 𝑍𝐴

and the corresponding app label, we calculate another classification

loss as follows:

L𝐴𝑆𝐶 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 (𝑙𝑜𝑔(𝑦𝐴𝑖,𝑡𝑙𝑠 ) + 𝑙𝑜𝑔(𝑦
𝐴
𝑖,𝑡𝑢𝑛)) (11)

Therefore, the loss of app semantic feature augmentation sub-

module L𝐴𝐹𝐴 is calculated as:

L𝐴𝐹𝐴 = 𝜆4L𝐴𝑆𝐴 + 𝜆5L𝐴𝑆𝐶 (12)

Combined with L𝐹𝑅𝐷 , the total loss of DecETT can be summa-

rized as follows:

L𝐷𝑒𝑐𝐸𝑇𝑇 = L𝐹𝑅𝐷 + L𝐴𝐹𝐴 (13)

4.3 Generated Fingerprint Classification
Once DecETT is well-trained, only 𝐸𝑚𝑏 (·), 𝐸𝑛𝑐𝐴𝑡𝑢𝑛 and the tun-

nel traffic flows 𝐹𝑡𝑢𝑛 instead of parallel flow pairs are needed to

generate corresponding fingerprints. This allows DecETT to be

employed in real network environments, since parallel flows are

inaccessible in real-world deployment. Formally, for a tunnel flow

𝐹𝑡𝑢𝑛 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, the corresponding fingerprint 𝐹𝑃𝐹𝑡𝑢𝑛 can

be generated as:

𝐹𝑃𝐹𝑡𝑢𝑛 = 𝐸𝑛𝑐𝐴𝑡𝑢𝑛 (𝐸𝑚𝑏 (𝐹𝑡𝑢𝑛)) (14)

Ultimately, the corresponding AF result can be calculated as:

𝑦𝑝𝑟𝑒𝑑 = 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝐹𝑃𝐹𝑡𝑢𝑛 ) (15)

5 Experiments
In this section, we perform empirical evaluations to demonstrate

the effectiveness of our proposed framework. We first provide the

dataset collection and composition, and then introduce the exper-

imental setup, including baselines, evaluation metrics and imple-

mentation details. Finally, we proceed to detail the experimental

results and their analysis.

Table 1: Details of 5 evaluation datasets. TLP refers to the
abbreviation of Transport Layer Protocol used by correspond-
ing tunnel protocol.

Dataset TLP #Apps #Flows #Payloads

Shadowsocks TCP 54 346,388 29.70G

ShadowsocksR TCP 54 346,418 22.78G

V2Ray TCP 54 339,667 23.28G

Trojan TCP 54 346,378 29.13G

OpenVPN UDP 54 346,296 28.14G

5.1 Dataset
DecETT utilizes parallel TLS and tunnel flow pairs to realize accu-

rate app fingerprinting. Although there have been previous related

studies, datasets that provide parallel flow pairs have not been estab-

lished yet. Consequently, we first select 5 representative encrypted

tunnels and 54 widely-used apps for our study, and invite several

volunteers to interact with these apps through the 5 tunnels sepa-

rately, thereby producing corresponding traffic flows. In order to

purify the collected traffic without noise flows generated by other

apps, we follow the traffic collection framework proposed in [15]

that uses iptables and NFLOG to mirror and capture pure TLS traffic

generated by specific app. The detailed information of 5 datasets is

described in Table 1, the configurations of 5 tunnels can be found

in Appendix B, and the full list of apps is shown in Appendix C.

5.2 Experimental Setup
Comparison Methods. We compare our proposed DecETT with

four categories of AF or encrypted tunnel traffic analysis methods,

including (1) Statistical-based method (AppScanner[31]), which

extracts time or packet-related statistical features for further classi-

fication; (2) Server information-related method (i.e. FlowPrint[34])

where the communicated server information is considered; (3)

Payload-based methods (ET-BERT[17], YaTC[44]) which directly

use the raw packet payload content to achieve AF, and (4) Sequence-

based methods, such as DF[30], FS-Net[18] and GraphDApp[29],

that dedicate to mining the flow sequences for accurate AF.

Evaluation Metrics. In this paper, we choose the four widely-

used metrics in multi-class classification tasks, i.e., Accuracy, Preci-

sion, Recall, and F1-score, to comprehensively evaluate the perfor-

mance of different methods on AF under encrypted tunnels.

Implementation Details. We conduct our evaluation on a

server with two Intel(R) Xeon(R) Gold 6240R CPU @2.40 GHz

processors, Ubuntu 20.04, 64GB RAM. An NVIDIA Tesla A800

GPU with 80GB VRAM is used to accelerate the computations.

Our method is implemented based on Python 3.8.16 and PyTorch

1.12.1+cu113. As for the hyper-parameters, we set the mini-batch

size as 256, the hidden size of GRU as 128, the embedding size as

3000, the flow sequence length as 200, and the five loss weights 𝜆𝑖
as 1. For all the baselines, we follow their official implementations.

5.3 Analysis of AF Results Under Single Tunnel
Firstly, we evaluate the performance of all the comparison methods

on accurate app fingerprinting under the specific single tunnel. The

corresponding results are reported in Table 2.



DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

5.3.1 Main Evaluation. From Table 2, we can draw the following

conclusions:

(1) In terms of the four comprehensive evaluation metrics, our ap-

proach DecETT outperforms all the other comparison methods by

significant margins. Specifically, DecETT achieves the best perfor-

mance of 94.2% Accuracy, Recall, and F1-score under ShadowsocksR.

The following method is FS-Net, which reaches the F1-score of 61%

under V2Ray and around 85% under the other tunnels. The perfor-

mance of FlowPrint is the worst among all the comparison methods,

with nearly all metrics lower than 10% under all five tunnels.

(2) DecETT shows more significant performance superiority

under tunnels with more complicated obfuscation. Results of var-

ious methods across 5 tunnels show that V2Ray employs more

obfuscated encapsulation to the raw TLS traffic. Under the other 4

tunnels, DecETT achieves a performance improvement of approxi-

mately 7% to 10% compared to the second best-performed method,

FS-Net, while under the V2Ray tunnel, the performance gap rises to

nearly 20%. By decoupling the app-irrelevant protocol features and

enhancing the fingerprint representations through semantic-shared

TLS traffic, DecETT minimizes the negative impact caused by the

re-encapsulation mechanism, thereby significantly improving AF

performance under complex tunnels.

(3) The performance of both statistical and server information-

based methods is not satisfactory enough. Specifically, AppScanner

achieves nearly 100% Precision, but fails in Recall value of only

around 30% to 60%, indicating its insufficient capability in fully

characterizing app-specific information from tunnel traffic. The

server information-based method FlowPrint is also ineffective, with

an average F1-score of only 1.4% across five tunnels. FlowPrint re-

lies on the flow interaction relationships with various app servers;

however, server information is no longer visible in tunnel traffic,

thus resulting in severe performance degradation. These results in-

dicate that statistical and server information-based features cannot

provide sufficient flow representation as flow sequences used in

DecETT for accurate AF under encrypted tunnels.

(4) As for the two payload-based methods, ET-BERT performs

poorly across five datasets, with the highest F1-score of only 25.6%.

YaTC achieves better performance than ET-BERT, but still has the

maximum performance gap of approximately 40% compared to

DecETT. These methods rely on specific plaintext fields in TLS

protocol or the pseudo-randomness of encryption algorithms to

construct app fingerprints. However, compared to flow sequences,

the impact of the re-encapsulation mechanism on these two fea-

tures is more pronounced and difficult to model, rendering these

methods insufficient for effectively modeling app fingerprints under

tunnels. These results further highlight the superiority of using flow

sequences as the form of tunnel traffic representation in DecETT.

(5) Sequence-basedmethods perform better than other approaches,

with FS-Net achieving the second-best performance across four tun-

nels. Reasons can be owing to that although the re-encapsulation

mechanism affects the packet lengths, changes in flow sequences

and packet transmitting directions stay relatively stable compared

to the packet payload. Based on utilizing flow sequence as the form

of traffic representations, DecETT introduces TLS traffic to provide

stronger app-specific information for fingerprint learning, and fur-

ther decouples the app semantic features hidden in the raw tunnel

traffic, thereby achieving accurate app fingerprinting.

0 50 100 150 200
Flow Length

0.0

0.5

1.0

A
cc

ur
ac

y

DecETT FS-Net

Figure 5: Comparison results of different flow lengths.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(a) FS-Net

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(b) DecETT

Figure 6: Visual distinction of generated fingerprints where
different colors stand for different classes.

5.3.2 Performance Analysis on Short Flows. To better illustrate the

superiority of DecETT, we analyze its AF performance on flows

of varying lengths. Figure 5 shows the Accuracy results of both

DecETT and FS-Net on V2Ray flows with lengths ranging from 0

to 200. As shown in Figure 5, DecETT demonstrates a remarkable

improvement in fingerprinting short flows with lengths below 100

compared to FS-Net. This improvement can be attributed to both

the introduction of TLS traffic as the semantic anchor and the

decoupling of tunnel information. By correlating each tunnel flow

with its corresponding semantic-shared TLS flow, DecETT provides

richer app-specific information than simple label-based approaches.

This information is particularly important for short flows, which

are easier to suffer from insufficient feature extraction due to their

limited lengths. Additionally, the decoupling of tunnel features

further mitigates the negative impact caused by tunnel mechanism.

Therefore, DecETT can be effectively utilized in AF scenarios that

are sensitive to short flows, such as gambling activity detection[12].

5.3.3 Visualization. In addition to the above quantitative evalua-

tions, we conduct a qualitative visualization to further discuss the

performance of DecETT. Figure 6 shows the t-SNE[33] visualization

of random 5 app fingerprints learned by FS-Net and DecETT under

V2Ray, respectively. It can be observed that DecETT enables a more

significant aggregation of fingerprints from the same app compared

to FS-Net while reducing the overlapping area of fingerprints from

different apps, thereby achieving better AF results.

5.4 Analysis of AF Results Under Mixed-Tunnel
Evaluation in the previous section is conducted under a specific

single tunnel. However, due to the diversity of encrypted tunnels,

it is not always feasible to know the exact type of tunnel traffic in

advance in real network environments. To address this issue, in



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zheyuan Gu et al.

Table 2: Performance comparison results w.r.t. Accuracy (Acc), Precision (P), Recall (R) and F1-score (F1) under 5 tunnels. Bold
represents the best and underline refers to the second.

Method Dataset Shadowsocks ShadowsocksR V2Ray Trojan OpenVPN

Metric Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1

Statistic AppScanner[31] 0.630 0.995 0.630 0.764 0.631 0.996 0.631 0.767 0.295 0.993 0.295 0.429 0.609 0.996 0.609 0.748 0.582 0.995 0.582 0.725

Server FlowPrint[34] 0.122 0.015 0.122 0.027 0.053 0.003 0.053 0.005 0.103 0.013 0.103 0.022 0.050 0.008 0.050 0.012 0.027 0.001 0.027 0.002

Payload

ET-BERT[17] 0.079 0.085 0.079 0.045 0.098 0.134 0.098 0.085 0.055 0.072 0.055 0.032 0.280 0.216 0.203 0.203 0.265 0.300 0.265 0.256

YaTC[44] 0.596 0.656 0.596 0.592 0.771 0.825 0.771 0.785 0.436 0.496 0.436 0.407 0.602 0.678 0.602 0.606 0.884 0.934 0.884 0.899

Sequence

DF[30] 0.739 0.746 0.739 0.738 0.762 0.764 0.762 0.760 0.656 0.659 0.656 0.651 0.726 0.730 0.726 0.724 0.816 0.818 0.816 0.816

FS-Net[18] 0.845 0.837 0.838 0.837 0.856 0.849 0.850 0.849 0.610 0.610 0.606 0.610 0.822 0.828 0.822 0.823 0.876 0.874 0.873 0.874

GraphDApp[29] 0.786 0.800 0.786 0.789 0.817 0.812 0.811 0.812 0.503 0.516 0.501 0.516 0.767 0.763 0.760 0.763 0.810 0.805 0.806 0.805

Ours DecETT 0.925 0.926 0.925 0.925 0.942 0.942 0.942 0.942 0.802 0.803 0.802 0.801 0.920 0.922 0.920 0.921 0.941 0.941 0.941 0.941

Table 3: Performance comparison results w.r.t. Accuracy, Pre-
cision, Recall and F1-score onmixed-tunnels. Bold represents
the best and underline refers to the second.

Method Accuracy Precision Recall F1-score

Statistic AppScanner[31] 0.542 0.996 0.542 0.694

Server FlowPrint[34] 0.075 0.015 0.075 0.023

Payload

ET-Bert[17] 0.102 0.126 0.107 0.099

YaTC[44] 0.601 0.652 0.601 0.603

Sequence

DF[30] 0.741 0.745 0.741 0.739

FS-Net[18] 0.785 0.790 0.785 0.786

GraphDApp[29] 0.656 0.661 0.656 0.650

Ours DecETT 0.842 0.844 0.842 0.842

this section, we further evaluate the AF performance of DecETT

and comparison methods under mixed tunnels.

To conduct this evaluation, we first mix the flows of five en-

crypted tunnels, where flows generated by the same app share the

same label, regardless of whether they are forwarded by the same

encrypted tunnel. Each method is required to extract unified app

fingerprints from the mixed tunnel traffic. Table 3 concludes the

performance of DecETT and other comparison methods. As can

be seen from the table, DecETT still outperforms all other base-

lines under mixed tunnels, achieving 84.2% on the four evaluation

metrics. GraphDApp, which relies on burst division, shows sig-

nificant performance degradation compared to the single-tunnel

scenario. This may be due to the fact that different tunnels may

employ different packet-sending strategies, thus leading to different

burst division results. DF and FS-Net demonstrate relatively better

stability, in which FS-Net achieves an F1-score of 78.6%. These re-

sults further highlight the superiority of DecETT. By decoupling

the app-irrelevant tunnel information from flow representations,

DecETT enables the model to focus on learning unified app-specific

representations across various tunnels, and further provides TLS

traffic as robust semantic anchor , thereby achieving more accurate

app fingerprinting in real and complex network environment.

5.5 Ablation Study
To validate the effectiveness of DecETT, we conduct an ablation

study by evaluating its variants, i.e., DecETT/SRC, DecETT/PSM,

DecETT/CPD, DecETT/ASA, and DecETT/ASC, to indicate its supe-

riority sufficiently. Figure 7 shows all results of the ablation study.

(1) After removing SRC, the performance of DecETT/SRC de-

clines by 1% to 4% across 5 tunnels, which can be owing to the lack

of constraints on decoupling features to fully retain the information

in original flow sequences.

(2) Compared to DecETT, both DecETT/PSM and DecETT/CPD

show performance decreases, with average F1-score losses of 3.56%

and 2.01%, respectively. These results further indicate that decou-

pling app-irrelevant tunnel features to lower their negative impact

on fingerprint generation is essential for accurate AF under tunnels.

(3) The removal of ASA has the most significant impact on De-

cETT compared with other components despite ASC, with a maxi-

mum F1-score drop of 9% under V2Ray. This result demonstrates

the importance of stronger app-specific information provided by

TLS traffic in accurate AF.

(4) After removing ASC, the performance of DecETT drops dras-

tically, with a maximum F1-score of only 0.5%, highlighting the

importance of label supervision in feature decoupling. Without app

labels as supervisory signals, DecETT/ASC fails to distinguish use-

ful semantic features for downstream fingerprinting task, resulting

in meaningless feature decoupling.

(5) Our model performance get worse by removing any key

components, which proves that each of them contributes to the

improvement in accurate AF under encrypted tunnels. Furthermore,

the performance gaps between DecETT and its variants are further

widened when confronting tunnels with more complex obfuscation,

such as V2Ray, highlighting its powerful AF capability against

tunnel mechanism.

5.6 Sensitivity Analysis
In this section, we perform sensitivity analysis on the critical hyper-

parameter in DecETT, the flow sequence length, which determines

the amount of flow sequence information DecETT can utilize for

fingerprint learning. In the experimental setup for this section,

only the flow sequence length is varied, while all other parameters

remain the same as previously described.

Figure 8 shows the results under five tunnels. From this figure, we

can observe that: (1) DecETT maintains stable performance across

different flow sequence lengths, consistently outperforming other

comparison methods shown in Table 2; (2) DecETT still achieves

remarkable performance even with relatively short flow sequence

length (e.g., length=20), highlighting its strong capability in accurate

fingerprint construction; (3) Excessively long flow sequences lead to

performance decline. This can be attributed to that the later stages



DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

0.90

0.93

0.96

A
cc

ur
ac

y

0.90

0.93

0.96

0.64

0.73

0.82

0.90

0.93

0.96

0.90

0.93

0.96

SS0.00

0.02

0.04

SSR0.00

0.02

0.04

Vmess0.00

0.01

0.02

Trojan0.00

0.02

0.04

OpenVPN0.00

0.02

0.04

DecETT/SRC DecETT/PSM DecETT/CPD DecETT/ASA DecETT/ASC DecETT F1-Score

Figure 7: Ablation study results of key components in DecETT w.r.t. Accuracy and F1-score on 5 tunnel datasets.

20 50 100 200 500
0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

20 50 100 200 500
0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

Shadowsocks ShadowsocksR V2Ray Trojan OpenVPN

Figure 8: Sensitivity analysis of DecETT with different flow
sequence lengths on 5 tunnel datasets.

of flow transmission mainly focus on transmitting large amounts of

data, resulting in packet length sequences with high similarity (e.g.,

numerous packets of MTU size). Overall, we thus conclude that

DecETT is relatively insensitive to different flow sequence lengths,

demonstrating its robustness to hyperparameter perturbations.

6 Conclusion
In this work, we propose DecETT, a dual decouple-based seman-

tic enhancement method to achieve accurate app fingerprinting

under encrypted tunnels. Considering the negative impact caused

by re-encapsulation mechanism of encrypted tunnels on accurate

fingerprint extraction, we first introduce TLS traffic as a relatively

stronger and robust semantic anchor to enhance fingerprint learn-

ing, and further decouple the protocol features and app semantic

features to reduce the impact of encrypted tunnels in fingerprint

generation. Finally, the decoupled app semantic features are utilized

for fingerprints generation and classification. Experiments under

five representative encrypted tunnels indicate that DecETT out-

performs state-of-the-art methods in accurate AF under encrypted

tunnels by significant margins, and further demonstrates its superi-

ority under tunnels with more complicated obfuscation.

References
[1] Abbas, H., Emmanuel, N., Amjad, M. F., Yaqoob, T., Atiqzzaman, M., Iqbal, Z.,

Shafqat, N., Shahid, W. B., Tanveer, A., and Ashfaq, U. Security assessment

and evaluation of vpns: a comprehensive survey. ACM Computing Surveys 55,
13s (2023), 1–47.

[2] Alice, Bob, Carol, Beznazwy, J., and Houmansadr, A. How china detects and

blocks shadowsocks. In Proceedings of the ACM Internet Measurement Conference
(2020), pp. 111–124.

[3] Alzighaibi, A. R. Detection of doh traffic tunnels using deep learning for

encrypted traffic classification. Computers 12, 3 (2023), 47.
[4] Anderson, B., and McGrew, D. Machine learning for encrypted malware traffic

classification: Accounting for noisy labels and non-stationarity. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2017), Association for Computing Machinery, p. 1723–1732.

[5] Anderson, B., and McGrew, D. Accurate tls fingerprinting using destination

context and knowledge bases. arXiv preprint arXiv:2009.01939 (2020).
[6] Cho, K. Learning phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078 (2014).
[7] Chopra, S., Hadsell, R., and LeCun, Y. Learning a similarity metric discrim-

inatively, with application to face verification. In 2005 IEEE computer society
conference on computer vision and pattern recognition (CVPR’05) (2005), vol. 1,
IEEE, pp. 539–546.

[8] Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I., and Ghorbani, A. A. Char-

acterization of encrypted and vpn traffic using time-related. In Proceedings of the
2nd international conference on information systems security and privacy (ICISSP)
(2016), pp. 407–414.

[9] Dusi, M., Este, A., Gringoli, F., and Salgarelli, L. Identifying the traffic of

ssh-encrypted applications.

[10] Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wag-

ner, D., Wichtlhuber, M., Tapiador, J., Vallina-Rodriguez, N., et al. The

lockdown effect: Implications of the covid-19 pandemic on internet traffic. In

Proceedings of the ACM internet measurement conference (2020), pp. 1–18.
[11] Ganin, Y., and Lempitsky, V. Unsupervised domain adaptation by backpropaga-

tion. In International conference on machine learning (2015), PMLR, pp. 1180–1189.

[12] Gu, Z., Gou, G., Liu, C., Yang, C., Zhang, X., Li, Z., and Xiong, G. Let gambling

hide nowhere: Detecting illegal mobile gambling apps via heterogeneous graph-

based encrypted traffic analysis. Computer Networks 243 (2024), 110278.
[13] Guo, L., Wu, Q., Liu, S., Duan, M., Li, H., and Sun, J. Deep learning-based

real-time vpn encrypted traffic identification methods. Journal of Real-Time
Image Processing 17, 1 (2020), 103–114.

[14] He, L., and Shi, Y. Identification of ssh applications based on convolutional

neural network. In Proceedings of the 2018 1st International Conference on Internet
and e-Business (2018), pp. 198–201.

[15] Jiang, M., Li, Z., Fu, P., Cai, W., Cui, M., Xiong, G., and Gou, G. Accurate mobile-

app fingerprinting using flow-level relationship with graph neural networks.

Computer Networks 217 (2022), 109309.

[16] Lambion, D., Josten,M., Olumofin, F., andDe Cock,M. Malicious dns tunneling

detection in real-traffic dns data. In 2020 IEEE International Conference on Big
Data (Big Data) (2020), IEEE, pp. 5736–5738.

[17] Lin, X., Xiong, G., Gou, G., Li, Z., Shi, J., and Yu, J. Et-bert: A contextualized

datagram representation with pre-training transformers for encrypted traffic

classification. In Proceedings of the ACMWeb Conference 2022 (2022), pp. 633–642.
[18] Liu, C., He, L., Xiong, G., Cao, Z., and Li, Z. Fs-net: A flow sequence network

for encrypted traffic classification. In IEEE INFOCOM 2019-IEEE Conference On
Computer Communications (2019), IEEE, pp. 1171–1179.

[19] Lv, S., Wang, C., Wang, Z., Wang, S., Wang, B., and Zhang, Y. Aae-dsvdd: A

one-class classification model for vpn traffic identification. Computer Networks
236 (2023), 109990.

[20] Marzani, F., Ghassemi, F., Sabahi-Kaviani, Z., Van Ede, T., and Van Steen, M.

Mobile app fingerprinting through automata learning and machine learning. In

2023 IFIP Networking Conference (IFIP Networking) (2023), IEEE, pp. 1–9.
[21] Meng, Y., Qin, T., Wang, H., and Chen, Z. Tpipd: A robust model for online vpn

traffic classification. In 2022 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom) (2022), IEEE, pp. 105–110.

[22] Mitsuhashi, R., Jin, Y., Iida, K., Shinagawa, T., and Takai, Y. Malicious dns

tunnel tool recognition using persistent doh traffic analysis. IEEE Transactions
on Network and Service Management 20, 2 (2022), 2086–2095.

[23] Mitsuhashi, R., Satoh, A., Jin, Y., Iida, K., Shinagawa, T., and Takai, Y. Iden-

tifying malicious dns tunnel tools from doh traffic using hierarchical machine

learning classification. In Information Security: 24th International Conference,
ISC 2021, Virtual Event, November 10–12, 2021, Proceedings 24 (2021), Springer,
pp. 238–256.



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zheyuan Gu et al.

[24] Oh, S., Lee, M., Lee, H., Bertino, E., and Kim, H. Appsniffer: Towards robust

mobile app fingerprinting against vpn. In Proceedings of the ACMWeb Conference
2023 (2023), pp. 2318–2328.

[25] Patil, A. P., and Hurali, L. C. M. Discerning the traffic in anonymous communi-

cation networks using machine learning: concepts, techniques and future trends.

International Journal of Information and Decision Sciences 15, 1 (2023), 94–115.
[26] Pham, T.-D., Ho, T.-L., Truong-Huu, T., Cao, T.-D., and Truong, H.-L. Mapp-

graph: Mobile-app classification on encrypted network traffic using deep graph

convolution neural networks. In Proceedings of the 37th Annual Computer Security
Applications Conference (2021), pp. 1025–1038.

[27] Qi, T., Fang, S., Wu, Y., Xie, H., Liu, J., Chen, L., He, Q., and Zhang, Y. Deadiff:

An efficient stylization diffusion model with disentangled representations. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2024), pp. 8693–8702.

[28] Shadowsocks. Shadowsocks | a fast tunnel proxy that helps you bypass firewalls.

https://shadowsocks.org/, 2024. Accessed: 2024-10-10.

[29] Shen, M., Zhang, J., Zhu, L., Xu, K., and Du, X. Accurate decentralized applica-

tion identification via encrypted traffic analysis using graph neural networks.

IEEE Transactions on Information Forensics and Security 16 (2021), 2367–2380.
[30] Sirinam, P., Imani, M., Juarez, M., and Wright, M. Deep fingerprinting: Under-

mining website fingerprinting defenses with deep learning. In Proceedings of the
2018 ACM SIGSAC conference on computer and communications security (2018),

pp. 1928–1943.

[31] Taylor, V. F., Spolaor, R., Conti, M., and Martinovic, I. Appscanner: Au-

tomatic fingerprinting of smartphone apps from encrypted network traffic. In

2016 IEEE European Symposium on Security and Privacy (EuroS&P) (2016), IEEE,
pp. 439–454.

[32] V, P. Project v·project v official. https://www.v2ray.com/en/index.html, 2020.

Accessed: 2024-10-10.

[33] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal of
machine learning research 9, 11 (2008).

[34] Van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois, D. J., Lindor-

fer, M., Choffnes, D., Van Steen, M., and Peter, A. Flowprint: Semi-supervised

mobile-app fingerprinting on encrypted network traffic. In Network and dis-
tributed system security symposium (NDSS) (2020), vol. 27.

[35] Wang, C., Yin, J., Li, Z., Xu, H., Zhang, Z., and Liu, Q. Identifying vpn servers

through graph-represented behaviors. In Proceedings of the ACM on Web Confer-
ence 2024 (2024), pp. 1790–1799.

[36] Wang, S., Yang, C., Guo, G., Chen, M., and Ma, J. Ssappidentify: a robust system

identifies application over shadowsocks’s traffic. Computer Networks 203 (2022),
108659.

[37] Wang, W., Zhu, M., Wang, J., Zeng, X., and Yang, Z. End-to-end encrypted

traffic classification with one-dimensional convolution neural networks. In 2017
IEEE international conference on intelligence and security informatics (ISI) (2017),
IEEE, pp. 43–48.

[38] Wang, X., Chen, S., and Su, J. App-net: A hybrid neural network for encrypted

mobile traffic classification. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) (2020), IEEE, pp. 424–429.

[39] Xiao, X., Xiao, W., Li, R., Luo, X., Zheng, H., and Xia, S. Ebsnn: Extended byte

segment neural network for network traffic classification. IEEE Transactions on
Dependable and Secure Computing 19, 5 (2022), 3521–3538.

[40] Xu, H., Li, S., Cheng, Z., Qin, R., Xie, J., and Sun, P. Vt-gat: A novel vpn

encrypted traffic classification model based on graph attention neural network.

In International Conference on Collaborative Computing: Networking, Applications
and Worksharing (2022), Springer, pp. 437–456.

[41] Xu, H., Li, S., Cheng, Z., Qin, R., Xie, J., and Sun, P. Vt-gat: A novel vpn

encrypted traffic classification model based on graph attention neural network. In

Collaborative Computing: Networking, Applications andWorksharing (Cham, 2022),

H. Gao, X. Wang, W. Wei, and T. Dagiuklas, Eds., Springer Nature Switzerland,

pp. 437–456.

[42] Xue, D., Ramesh, R., Jain, A., Kallitsis, M., Halderman, J. A., Crandall, J. R.,

and Ensafi, R. Openvpn is open to vpn fingerprinting. Communications of the
ACM (2022).

[43] Zhao, J., Jing, X., Yan, Z., and Pedrycz, W. Network traffic classification for

data fusion: A survey. Information Fusion 72 (2021), 22–47.
[44] Zhao, R., Zhan, M., Deng, X., Wang, Y., Wang, Y., Gui, G., and Xue, Z. Yet

another traffic classifier: A masked autoencoder based traffic transformer with

multi-level flow representation. In Proceedings of the AAAI Conference on Artificial
Intelligence (2023), vol. 37, pp. 5420–5427.

A RE-ENCAPSULATION MECHANISM
ILLUSTRATION OF ENCRYPTED TUNNELS

In section 3.2, we analyze the source code of the re-encapsulation

mechanism summarized from Shadowsocks to illustrate the in-

dependence of tunnel features and app semantic features. In this

section, we extend the discussion to the other four tunnels: Shad-

owsocksR, V2Ray, Trojan, and OpenVPN. Some of these tunnels are

implemented by different programming languages, such as Go, C

and C++, which are not as concise as Python used by Shadowsocks.

As a result, the source code pipeline can be too lengthy to be fully

presented in this paper. To this end, we provide a brief overview

of the other four re-encapsulation mechanisms together with the

corresponding source code link for interested readers.

In summary, the other four tunnels also forward data by main-

taining two socket communications and their correlation. The core

difference lies in the encryption algorithms and protocols used

for re-encapsulation: (1) ShadowsocksR
1
employs the same re-

encryption mechanism as Shadowsocks. (2) V2Ray
2
, on the other

hand, uses closures requestDone() and responseDone() operations
to implements the re-encapsulation mechanism, in which the en-

cryption algorithms and encapsulation details follows its private

protocol Vmess. (3) Trojan
3
conceals its traffic characteristics us-

ing the standard SSL protocol, and applies the SSL mechanism in

Boost.Asio for re-encapsulation of the forwarded data. (4) Open-

VPN
4
also implements its re-encapsulation mechanism based on

OpenSSL protocol, while further developing its private protocol,

OpenVPN, on top of OpenSSL.

Overall, the varied re-encapsulationmechanisms pose challenges

to accurate app fingerprinting under encrypted tunnels. However,

their reliance on socket communication underscores the gener-

alizability and correctness of decouple-based AF methods across

various encrypted tunnels.

B CONFIGURATIONS OF FIVE ENCRYPTED
TUNNELS

Table 4 provides detailed configurations of the five encrypted tun-

nels used in our experiments. In the following, we illustrate each

of the configuration in detail.

• Encrypted Algorithm(EA). Encrypted algorithm refers to

the algorithm during the re-encryption of the forwarded

traffic data. In our experiments, ShadowsocksR uses AES-

256-CFB as the encrypted algorithm, while the other four

tunnels use AES-256-GCM.

• Protocol. Protocol refers to the specific communication pro-

tocol used by the encrypted tunnel, which determines the

way of data re-encapsulation and transmission between tun-

nel client and tunnel server. Some encrypted tunnels use

their specific private protocols, such as Origin used by Shad-

owsocksR, Vmess used by V2Ray, and OpenVPN protocol

used by OpenVPN.

• Obfuscation(Obfs). Obfuscation refers to techniques used

to disguise the existence of the encrypted tunnel by modify-

ing the appearance of the traffic, making it harder to detect.

Obfuscation can be achieved by altering packet characteris-

tics or mimicking other types of traffic.

1
https://github.com/shadowsocksrr/shadowsocksr/(shadowsocks/tcprelay.py)

2
https://github.com/v2fly/v2ray-core/(proxy/vmess/outbound/oubound.go)

3
https://github.com/trojan-gfw/trojan(/src/session/clientsession.cpp)

4
https://github.com/OpenVPN/openvpn/(src/openvpn/ssl_openssl.c)

https://shadowsocks.org/
https://www.v2ray.com/en/index.html


DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

• Notes. OpenVPN provide two different tunneling modes,

TUN mode and TAP mode. TUN mode operates at the net-

work layer and is designed for routing IP packets, while

TAP mode operates at the data link layer, which emulates a

virtual Ethernet adapter. Since we focus on the application

fingerprinting, we choose TUNmode, which is more suitable

for this scenario, to implement OpenVPN.

Table 4: Detailed configurations of 5 encrypted tunnels in
our evaluation.

Tunnel EA Protocol Obfs Notes

Shadowsocks AES-256-GCM SOCKS - -

ShadowsocksR AES-256-CFB Origin tls1.2_ticket_auth -

V2Ray AES-128-GCM Vmess -

Trojan AES-128-GCM HTTPS - -

OpenVPN AES-128-GCM OpenVPN - TUN Mode

C FULL LIST OF MOBILE APPS
We provide a full list of 54 mobile apps selected in our experiments

(see Table 5).

Table 5: Full list of the mobile apps.

No. Package Name No. Package Name

1 air.tv.douyu.android 28 com.snapchat.android

2 cn.xdf.woxue.student 29 com.sohu.sohuvideo

3 com.amazon.mShop.android.shopping 30 com.ss.android.article.video

4 com.bilibili.app.in 31 com.ss.android.ugc.aweme

5 com.bilibili.comic 32 com.ss.android.ugc.trill

6 com.bittorrent.client 33 com.talk51.international

7 com.duowan.kiwi 34 com.taobao.idlefish

8 com.duowan.mobile 35 com.taobao.live

9 com.facebook.katana 36 com.taobao.taobao

10 com.google.android.youtube 37 com.tencent.androidqqmail

11 com.huajiao 38 com.tencent.mm

12 com.hunantv.imgo.activity 39 com.tencent.mobileqq

13 com.larksuite.suite 40 com.tencent.qqlive

14 com.meelive.ingkee 41 com.tencent.qqmusic

15 com.mogujie 42 com.tencent.weread

16 com.netease.cc 43 com.tmall.wireless

17 com.netease.edu.study 44 com.vipkid.ark.international.parent

18 com.nhn.android.nmap 45 com.xes.jazhanghui.activity

19 com.periscope.pscp 46 com.xiaomi.shop

20 com.pplive.androidphone 47 com.xingin.xhs

21 com.qihoo360.mobilesafe 48 com.xunlei.downloadprovider

22 com.qiyi.video 49 com.xunmeng.pinduoduo

23 com.sdu.didi.psnger 50 com.yandex.browser

24 com.shanbay.sentence 51 com.youku.phone

25 com.sina.weibo 52 com.zhihu.android

26 com.skype.raider 53 me.ele

27 com.smile.gifmaker 54 ru.ok.android


	Abstract
	1 Introduction
	2 Related Work
	2.1 App Fingerprinting
	2.2 Encrypted Tunnel Traffic Analysis

	3 Preliminaries
	3.1 Threat Model
	3.2 Re-encapsulation Mechanism
	3.3 Impact on Tunnel Flow Sequences

	4 Design of DecETT
	4.1 Traffic Preprocess and Correlation
	4.2 Dual decouple-based Fingerprint Enhancement
	4.3 Generated Fingerprint Classification

	5 Experiments
	5.1 Dataset
	5.2 Experimental Setup
	5.3 Analysis of AF Results Under Single Tunnel
	5.4 Analysis of AF Results Under Mixed-Tunnel
	5.5 Ablation Study
	5.6 Sensitivity Analysis

	6 Conclusion
	References
	A RE-ENCAPSULATION MECHANISM ILLUSTRATION OF ENCRYPTED TUNNELS
	B CONFIGURATIONS OF FIVE ENCRYPTED TUNNELS
	C FULL LIST OF MOBILE APPS

