arXiv:2504.15497v1 [cs.CR] 22 Apr 2025

SCALABLE APT MALWARE CLASSIFICATION VIA PARALLEL
FEATURE EXTRACTION AND GPU-ACCELERATED LEARNING

Noah Subedar
Master of Cybersecurity and Threat Intelligence
University of Guelph
HBSc, Computer Science Specialist
University of Toronto
nsubedar@uoguelph.ca

Taeui Kim Saathwick Venkataramalingam
Master of Cybersecurity and Threat Intelligence Master of Cybersecurity and Threat Intelligence
University of Guelph University of Guelph
BSc, Software Engineering Post-Graduate Certificate in Offensive Cyber Security
University of New Brunswick York University
taeui@uoguelph.ca venkatas@uoguelph.ca
ABSTRACT

This paper presents an underlying framework for both automating and accelerating malware classifi-
cation, more specifically, mapping malicious executables to known Advanced Persistent Threat (APT)
groups. The main feature of this analysis is the assembly-level instructions present in executables
which are also known as opcodes. The collection of such opcodes on many malicious samples is a
lengthy process; hence, open-source reverse engineering tools are used in tandem with scripts that
leverage parallel computing to analyze multiple files at once. Traditional and deep learning models are
applied to create models capable of classifying malware samples. One-gram and two-gram datasets
are constructed and used to train models such as SVM, KNN, and Decision Tree; however, they
struggle to provide adequate results without relying on metadata to support n-gram sequences. The
computational limitations of such models are overcome with convolutional neural networks (CNNs)
and heavily accelerated using graphical compute unit (GPU) resources.

Keywords Malware Classification - Automation - Parallel Processing - Machine Learning - Neural Network Models -
GPU-Accelerated Computing

1 Introduction

The rapid evolution of malware, particularly those associated with APT groups, present a significant challenge to
cybersecurity researchers and analysts [1}2]. Traditional signature-based detection techniques often fail to recognize
novel or obfuscated threats, necessitating more robust, data-driven approaches to malware classification. One promising
avenue involves the analysis of opcode sequences which represent low-level machine instructions extracted from
malicious binaries. These sequences capture behavioural patterns that are difficult to mask, even under obfuscation or
packing; however, extracting and analyzing large-scale opcode datasets remains computationally intensive and prone to
bottlenecks when conducted sequentially or with manual intervention [3,4].

To address these limitations, this study introduces a fully automated, parallelized pipeline for malware classification
based on opcode analysis, encompassing traditional machine learning and deep learning techniques. By leveraging
open-source tools like Ghidra in headless mode, combined with Python scripts, thousands of malicious executables
are efficiently decompiled and transformed into structured opcode datasets [5}/6]]. These are further processed into
n-gram representations and fed into models such as Support Vector Machines (SVM), K-Nearest Neighbors (KNN),

https://orcid.org/0009-0004-5437-2325
https://orcid.org/0009-0003-9772-6886
https://orcid.org/0009-0007-2025-826X

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

Decision Trees, and GPU-accelerated Convolutional Neural Networks (CNNs) [7]. This comprehensive approach not
only streamlines the data extraction and training process but also highlights the performance trade-offs across various
classifiers, metadata usage, and dataset configurations including one-to-one and one-to-many label mappings [8-10].

2 Scripts & Environment Setup

2.1 Container Environment

To facilitate ease of use and reproducibility, a Podman container comprising the scripts and tools discussed in this paper
has been published on Docker Hub. It is recommended to use Podman along with a NVIDIA GPU to run the container
with hardware acceleration. The following instructions demonstrate how to run the container on a Fedora Linux system
which includes Podman by default. They also outline the steps required to enable support for NVIDIA GPUs, assuming
the necessary drivers have been installed correctly.

2.1.1 Enabling NVIDIA GPU Support

To enable the container to interface with NVIDIA GPUs, the NVIDIA Container Toolkit must be installed, and a
Container Device Interface (CDI) specification file must be generated to expose the GPUs to the container environment
(L1

sudo dnf install nvidia-container -toolkit
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

Fedora Linux enables Security-Enhanced Linux (SELinux) by default which restricts containers from accessing host
devices for security reasons. To permit containers to use such devices, SELinux must be configured accordingly using
the following command [11]:

sudo setsebool -P container_use_devices true

2.1.2 Data Format

Before running the container, it is crucial that the data provided to it is formatted correctly. The scripts discussed in this
paper require a specific file structure and naming scheme. The organizational structure is outlined below: the left side
shows the required directory structure, and the right side presents an example of the data formatted correctly.

data data
|-- APT Group |-- GO0O1
| -- Software Name | | -- Software A
| -- Malicious Executable | | |-- GO001_Malwarel.exe
| | ‘-~ GO0001_Malware2.dll
| ‘-- Software B
| ‘-~ GO0001_Malware3.exe
| -- G0002
| |-- GO002_Malware4.exe
| ‘-- Software C
| ‘-- G0002_Malware5.exe
‘-~ GO003
f-- GO0OO3_Malwareb6.exe

2.1.3 Running the Container

To run the container, first pull it from Docker Hub and execute it in interactive mode with a bash shell. Within the
container, the shell script named run. sh can be run to automatically execute all methods outlined in the paper with
results saved to /app/results directory within the container. By default, all scripts are executed with the arguments
specified in the paper; however, these can be customized by modifying the environment variables, editing run. sh or
manually running the individual scripts. To provide malware samples to the container, mount a host directory containing
the structure defined above to the container’s /data directory.

Host
podman run --rm -it \
--device nvidia.com/gpu=all \

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

-v /path/to/host/directory:/data:z \
docker.io/noahsub/scalable -apt-malware-classification

Container
./run.sh

2.2 Scripts

Although the container offers an automated method for analyzing malware samples, the scripts are also available on the
paper’s associated GitHub page [12], specifically in the releases section, along with the collected malware samples. The
functionality and usage of each script are defined below.

2.2.1 Ghidra Manager

The ghidra_manager.py script is responsible for managing the extraction of opcodes from malicious executables
using Ghidra headless mode.

python3 ghidra_manager.py \
--GHIDRA <path_to_Ghidra_headless_analyzer> \
--DIRECTORY <path_to_malware_root_folder> \
--THREADS <number_of_threads> \
--SKIP <true|false> \
--TIMEQUT 1200

Table 1: Ghidra Manager Command Line Flags Description

Flag Description Required | Default Value
-GHIDRA The path to Ghidra’s headless analyzer. Yes N/A
-DIRECTORY | The path to the directory containing malware. Yes N/A
-THREADS The number of threads to use, i.e., how much malware to analyze at No 4
once.
-SKIP If a malicious executable already has had its opcodes extracted then No No
skip analyzing it.
-TIMEOUT The maximum amount of time given to analyze a single malicious No 1200
executable.

2.2.2 Preprocess

The preprocess.py script creates an optimized dataset suitable for machine learning models using opcodes extracted
from collected malware samples.

python3 preprocess.py \
--opcodes <path_to_directory_containing_opcodes> \
-n 2\
--percentiles <percentile_1>,<percentile_n>

Table 2: Preprocess Command Line Flags Description
Argument Usage Required Default Value

-opcodes Specifies the path to the Yes N/A
directory containing the
.opcode files.

-n Sets the maximum n-gram | Yes 2
size

-percentiles Accepts a Yes N/A
comma-separated list of
percentiles.

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

2.2.3 Classifier

The classifier.py script classifies malicious samples by using opcodes and metadata with three types of classifiers:
SVM, KNN, and Decision Tree.

python3 classifier.py --dataset <path_to_csv_or_pkl_dataset>

Table 3: Classifier Command Line Flags Description
Argument Usage Required

-dataset The dataset to use for training and Yes
performance evaluation. Can be in
.csv or .plk (serialized pandas
dataframe) format.

2.2.4 CNN Preprocess

The preprocess-cnn. py script intelligently removes samples from the dataset that cause one-to-many mappings.

python3 preprocess.py --dataset <dataset_name>

Table 4: CNN Preprocessing Command Line Flags Description

Argument | Usage
-dataset | The path to the dataset of opcodes.

2.2.5 CNN Model

The model. py script trains a CNN model to classify malware based on opcode sequences inspired by the paper Deep
Android Malware Detection [13]].

python3 model.py \
--directory <data_directory> \
--percentile <percentile_value> \
--k <k_value> \
--epochs <num_epochs> \
--batch_size <batch_size> \
--validation_split <validation_fraction>

Table 5: Model Script Arguments

Argument Usage Required Default Value

-directory The directory containing Yes N/A
the opcode files.

-percentile The percentile to determine | No 50
the maximum sequence
length.

-k The output dimension of No 8
the embedding layer.

-epochs The number of epochs to No 16
train the model.

-batch_size The batch size to train the No 32
model.

-validation_split | The validation split to use No 0.1
during training.

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

3 Methodology: Opcode Extraction

The extraction of machine-level instructions (opcodes) from malicious executables were automated using Ghidra’s
headless mode in conjunction with Python scripting. This approach optimizes the creation and management of Ghidra
projects while enabling concurrent opcode extraction through multiple processes, significantly enhancing efficiency in
malware analysis and reverse engineering.

3.1 Sample Collection

Malicious executable samples linked to various APT groups and their associated software were gathered from multiple
malware databases. The collected samples have been made available through the paper’s GitHub repository [[12]].

3.2 Engine Selection

Before extracting the opcodes from collected malicious executable samples, the engine to be used as the base for the
scripts had to be determined. Various options were explored including IDA Pro, Ghidra, and Binary Ninja. Each option
had its advantages and disadvantages. Both IDA Pro and Binary Ninja were relatively easy to work with with Binary
Ninja being heavily focused on scripting which made it ideal for the analysis of executable malware [14}/15[]. Ultimately,
Ghidra was selected due to its open-source nature and ability to operate in a headless environment [[16].

3.3 Automated Scripts

Ghidra’s headless analyzer allowed an executable and a Python2 script to be passed in as arguments. This enabled
Ghidra to automatically analyze the provided executable and then run the provided script [17]]. In this case, the script’s
purpose was to extract opcodes.

The automation framework was structured into two primary components:

* Opcode Extraction Component — Analyzed each binary, retrieved machine-level instructions, and extracted
the corresponding opcode sequences.

* Manager Component — Managed process spawning, file processing, and orchestrated Ghidra’s functionality,
ensuring seamless execution of the analysis workflow.

Given the large volume of malicious executables requiring analysis, efficiency was identified as a critical priority. To
address this, parallel computing was leveraged, enabling simultaneous extraction of opcodes from multiple samples.
This approach was essential, as the dataset comprised nearly ten gigabytes of executable malware—totaling 4,630
individual samples [[18}/19].

The automated opcode extraction process followed these structured steps:

1. Identification of Executables — Located all executable files within the specified directory containing malware
samples. This included malware in subdirectories of the specified directory.

2. Project Initialization — Created a separate Ghidra project for each binary to ensure an isolated and organized
analysis environment.

3. Binary Importation — Loaded the malware executable into its corresponding Ghidra project.

4. Opcode Extraction — Executed ocopcode_extractor. py within Ghidra’s headless mode to extract machine-
level opcodes.

5. Storage and Organization — Saved extracted opcode sequences in a designated output directory for further
analysis.

6. Performance Optimizations — Implemented safeguards such as timeout handling and file tracking to enhance
efficiency and prevent redundant processing.

7. Cleanup Operations — Removed unnecessary files to maintain a streamlined and organized workspace.

By automating opcode extraction using Ghidra and Python, this methodology improved scalability, reduced manual
intervention, and enhanced the overall efficiency of malware analysis workflows.

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

3.4 Hardware Utilized

To run the scripts, an isolated Linux machine was utilized with the following configuration:

Table 6: System Hardware Specifications Used for Opcode Extraction

Hardware Type | Model Specifications

CPU AMD Ryzen 7 3700X 8 cores / 16 threads, Base Clock: 3.6GHz, Boost Clock: up to
4.4GHz

GPU NVIDIA GeForce RTX 3060 | 12GB GDDR6 VRAM, 3584 CUDA cores, Boost Clock:
1.78GHz

Memory DDR4 Non-ECC 16GB, 3200MHz

Operating System | Pop!_OS Version 22.04 LTS (64-bit)

4 Methodology: N-Gram Dataset & Training

4.1 Preprocessing

To utilize the raw extracted opcodes, they first had to be preprocessed into a usable format. The preprocessing pipeline
begins by recursively discovering all .opcode files in the provided directory. This process stores the relative path from
the specified directory for each of the files which contains metadata such as the associated group and malware name;
the metadata was based on the diligent organization structure utilized during opcode extraction [20,21]]. To ensure
consistency in machine learning models, all opcodes were converted to uppercase, preventing variations in case from
being misinterpreted as distinct instructions. Before generating n-gram sequences, the extracted opcode lines had to be
adjusted to ensure their length was divisible by the selected n-gram size. This was achieved by padding the extracted
opcode lines with “PAD” tokens until they reached the required length.

4.2 N-Gram Sequence Generation
The opcodes were then grouped into n-gram sequences:

* 1-Gram (Unigram): Each opcode was treated individually capturing its frequency across the sample.

* 2-Gram (Bigram): Pairs of consecutive opcodes were generated capturing local context and instruction
transitions.

4.3 Vocabulary Generation

Although each opcode file contained a different set of instructions (unless they were the same malware), the datasets
used for training and testing must contain each unique opcode or n-gram opcode pair so that they can store their
frequencies across all files. To achieve this, all opcode files were iterated over the generated n-gram sequences which
were then converted to sets to remove duplicates. This effectively allowed the creation of headers (features) for the
dataset.

4.4 Dataset Construction
4.4.1 Extracting Metadata

In addition to opcode features stored in the dataset, relevant metadata was extracted to serve as labels. This metadata
included the associated APT group, the name of the malware, and the type of the executable. The metadata was extracted
from the relative path of the opcode file which contained such information. This step was carefully planned during the
opcode extraction phase to ensure that metadata was retained even after converting the malware into . opcode files. If
any given piece of metadata was missing for an opcode file, it was simply listed as unknown in the dataset.

4.4.2 Generating Feature Data

For each malware sample, a feature vector was created, where each feature represented the normalized frequency of a
unique n-gram. This was achieved by counting the occurrences of a specific opcode instruction in the opcode file and

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

then dividing this count by the total number of opcode instructions in the file. The acquired data was then inserted into
the dataset corresponding to the columns generated by the associated n-gram vocabulary.

4.5 Dataset Optimization

To improve the efficiency and computational performance of subsequent classification, the dataset was optimized by
removing features with low variance as determined by a threshold based on predefined percentiles. This step ensured
that only informative features, which provided meaningful distinctions, contributed to the model training process. The
optimized dataset was then stored in . csv and . pkl formats and was ready for use in machine learning models. This
optimization helped particularly with the 2-gram dataset, where the number of columns neared sixty thousand, which
would have made training take far longer. Below, a table showing the sizes of the original and optimized datasets is
provided. For the 1-gram dataset, the 10th percentile variance selection was used, while for the 2-gram dataset, the 80th
percentile variance selection was used.

Table 7: Comparison of Dataset Dimensions Before and After Optimization

Dataset | Original Size (Rows x Features) Optimized Size (Rows x Features)
1-Gram | 1930 x 3658 1687 x 3658
2-Gram | 59,276 x 3658 11,847 x 3685

4.6 Serialization

Serialization was extensively used to reduce computation time, trading off increased memory usage for faster perfor-
mance. When handling large datasets, even seemingly quick computations could accumulate significant overhead,
leading to inefficiencies. To avoid redundant recalculations, data was serialized using the pickle format, as it allowed
easy serialization and deserialization of Python objects including Pandas DataFrames [22].

4.7 Classification
4.7.1 Classification Algorithms

We utilized three types of classification algorithms on the optimized dataset:

* Support Vector Machine (SVM): SVM constructed an optimal hyperplane that maximized the margin
between classes. For non-linear separability, kernel functions (such as Radial Basis Function (RBF) or
polynomial kernels) were available to transform the feature space [23]].

* K-Nearest Neighbors (KNN): KNN classified a sample by analyzing the classes of its k-nearest neighbors
(using Euclidean distance). Although the provided configuration used k£ = 3, the methodology could be
adjusted based on empirical validation [24].

* Decision Tree: This classifier recursively partitioned the dataset based on feature thresholds, yielding an
interpretable tree structure that highlighted the most significant opcode features influencing the decision
process [25]].

4.7.2 Classification Modes

To evaluate the influence of opcode data and associated metadata, three modes were adopted:

* Single Mode: Classification was performed solely on opcode features to predict a target label with metadata
(such as APT group, malware name, and malware type) excluded.

* Multi Mode: The target label was predicted using opcode features supplemented by metadata from the
remaining labels.

* All Mode: All label metadata were incorporated into the classification process with the opcode filename
serving as the target.

For each mode, the classifiers were trained, and predictions were made on the same dataset so that performance metrics
could be computed and compared. Since multiple classification algorithms and modes were used, it was determined
that the most efficient approach was to create a specialized class to manage the results. The ClassifierResult

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

class encapsulated key performance metrics and stored essential details including the classifier type and classification
mode. To ensure both human readability and seamless reusability in Python, the results were serialized in JSON format
allowing for both human readability and further computer analysis.

The classification function trained and evaluated a machine learning model using a given dataset, classifier, mode, and
target label. It first processed the dataset based on the specified mode (single, multi, or all); for instance, it converted
label features to numerical values using ordinal encoding for modes that used metadata as features. Depending on the
chosen classifier (SVM, KNN, or Decision Tree), the function trained the model and then made predictions to evaluate
performance. The performance metrics included accuracy, recall, precision, F1-score, and confusion matrix. The results,
including the trained model and computed metrics, were returned as a ClassifierResult object.

Once the model had been trained and evaluated using the classification function, the results were then visualized in the
form of bar charts for accuracy, recall, precision, and F1-score. In terms of the confusion matrix, it was visualized using
a heatmap.

4.8 Hardware Utilized

Given the large volume of data involved, a high-performance CPU-based system was utilized to minimize computation
time.

Table 8: System Hardware Specifications Used for N-Gram Dataset and Training

Hardware Type | Model Specifications

CPU 1 Intel Xeon E5-2697 v3 14 cores / 28 threads, Base Clock: 2.6GHz, Turbo:
3.6GHz, 35MB Cache

CPU 2 Intel Xeon E5-2697 v3 14 cores / 28 threads, Base Clock: 2.6GHz, Turbo:
3.6GHz, 35MB Cache

Memory DDR4 RECC 256GB, 2133MHz

GPU 1 NVIDIA GeForce RTX 3060 12GB GDDR6 VRAM, 3584 CUDA cores, Boost
Clock: 1.78GHz

GPU 2 NVIDIA GeForce RTX 2080 Super | 8GB GDDR6 VRAM, 3072 CUDA cores, Boost Clock:
1.81GHz

Operating System | AlmaLinux Version 9 (64-bit)

5 Methodology: Convolutional Neural Network

5.1 Preprocessing

As seen in the results for training using n-grams below, the confusion matrices indicated that traditional machine
learning models struggle with one-to-many mapping, particularly when they lack metadata to rely on. In the context
of malware analysis, these one-to-many relationships occur when the same malicious executable was associated with
multiple APT groups. To examine how this impacted CNN performance, the opcode dataset was preprocessed to
remove such overlaps, creating a subset of the dataset with strictly one-to-one mappings to reduce confusion. This
filtering process resulted in a 63.75% reduction in opcode files from our dataset, though many of these were duplicates
as the data was organized by APT groups. The reasoning was that carefully curating the dataset to remove ambiguous
samples would lead to a more accurate model, even if it meant training on fewer files. Additionally, our initial dataset
contained over 3,500 opcode files; therefore, filtering still left a considerable amount of data to work with.

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

SOFTWARE B SOFTWARE C SOFTWARE A SOFTWARE D

Figure 1: One-to-Many Relationship Between Software and APT Groups

SOFTWARE A

SOFTWARE C SOFTWARE D

SOFTWARE B

Figure 2: One-to-One Relationship Between Software and APT Groups

More specifically, the preprocessing script worked by creating a copy of the original dataset and systematically
identifying and removing any duplicate opcode subdirectories pertaining to software belonging to one-to-many
relationships. This process ensured that only unique opcodes remained, resulting in a clean, well-structured opcode
database that respected a one-to-one mapping. Furthermore, opcode files were refined by stripping whitespace, removing
empty lines, and converting opcodes to uppercase to ensure consistency. These processed sequences were then used to
generate a structured dataset, where opcodes were grouped based on a selected target label (e.g., APT group, malware
name, or malware type).

5.2 Generating Vocabulary

Following the methodology used in the paper titled Deep Android Malware Detection, the opcodes were encoded as
one-hot vectors, where each opcode was represented by a binary vector with all values set to zero except for a single
one at the index corresponding to that opcode. This process initially involved identifying all unique opcodes in the
dataset and assigning each one an integer index to create a vocabulary. Additionally, labels had to be encoded to be
compatible with the model which was done automatically using the label encoding functionality of scikit-learn [[13]].

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

OPCODE A OPCODE B

@

Figure 3: Opcode Vocabulary Mapping

OPCODE N

0

The architecture was inspired by the model presented in the research paper Deep Android Malware Detection and was
adapted specifically for this case. Unlike the original model, which focused on binary malware detection (benign vs.
malicious), this implementation was tailored to classify malware according to specific target labels such as APT group,
malware name, or malware type [[13]].

5.3 Implementing the CNN Model

5.3.1 Embedding Layer

The embedding layer transformed encoded opcode sequences into dense vector representations making them suitable
for processing by convolutional layers.

5.3.2 Convolutional Layers

In this implementation, two convolutional layers were applied after the embedding layer enabling the model to
hierarchically learn and select important features. The first convolutional layer captured low-level patterns, while the
deeper layer extracted higher-level semantic features that were crucial for malware classification. This automated feature
extraction process enhanced the deep learning model’s ability to distinguish effectively between different malware
categories [20].

5.3.3 Pooling Layer

Pooling is a downsampling technique used in CNNs to reduce the spatial dimensions of feature maps while preserving
the most important information. In this implementation, MaxPooling1D was used after each convolutional layer. The
pool size of two reduced the sequence length by half, ensuring that only the most important features were retained while
minimizing redundancy.

5.3.4 Flatten Layer

In this implementation, an additional layer called a flatten layer was added. This served to take the multi-dimensional
data generated by the pooling layers and transform it back into one-dimensional data so that the fully connected layer
could process the data.

5.3.5 Fully Connected (MLP) Layer

These models worked by forming neurons or nodes throughout each layer. The fully connected layer was responsible
for creating connections between these layers combining all the learned features so they could be used to classify the
input according to the associated labels. The Dense layer enhanced feature representation by introducing non-linearity,
while the Dropout layer prevented overfitting by randomly deactivating neurons during training [27].

10

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

5.3.6 Softmax Classification Layer

The softmax classification layer was the final layer that converted the model’s output into probabilities for each of our

labels allowing for multi-class classification.
VOCABULARY EMBEDDING @
Figure 4: CNN Sequence

MAX POOLING @

5.4 Training the Model

In order to train the model, the inputs had to be padded such that their lengths were uniform. To do this, the length of the
sequences was selected based on a percentile, as simply choosing the length of the largest sequence would have created
much unnecessary padding which could have interfered with the performance of the model. Additionally, malware
labels were encoded into a categorical format. The CNN model was trained using the Adam optimizer which adjusted
learning rates for faster learning, and categorical cross-entropy loss which was suited for multi-class classification.
Together, they helped the model learn patterns in opcode sequences while reducing the chance of overfitting [28]]. The
model was trained using the following parameters:

Table 9: Parameters Used During CNN Training

Parameter Value
k 8
percentile 50
epochs 16
batch_size 32
validation_split 0.1

5.5 Hardware Utilized

Given the large volume of data to be processed and the model’s capability of leveraging GPU acceleration, the strongest
available GPU compute device was selected for use.

11

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

Table 10: System Hardware Specifications Used for CNN Training

Hardware Type | Model Specifications

CPU AMD Ryzen 9 5950X | 16 cores / 32 threads, Base Clock: 3.4GHz, Boost Clock: up to
4.9GHz

Memory DDR4 Non-ECC 128GB, 3600MHz

GPU NVIDIA RTX 4090 24GB GDDR6X VRAM, Boost Clock: up to 2.52GHz, 16384 CUDA
cores

Operating System | Fedora Version 41 (64-bit)

6 Results: Opcode Extraction

The script took a total of 18 hours to run was was set to analyze five items at a time. Without parallel processing, it was
estimated that this process would have taken at least 90 hours. It should be noted that the large amount of time required
was due to limitations in computer hardware as well as the number of malicious executables to be analyzed. Once the
script had terminated, a total of 3789 . opcode files organized in the same structure as the original malware dataset
remained. This number was lower than the total number of files because non-binary files such as Python scripts were
included in the dataset but could not be decompiled by Ghidra, as they are not technically executables but executed with
separate applications such as Python.

7 Results: N-Gram Dataset & Training

7.1 Performance Evaluation

To enhance understanding of the model’s performance both bar charts and heat maps were used. These included all
combinations of each mode against each classifier, analyzed for both 1-gram and 2-gram feature extraction techniques.
All visualizations can be found in the Appendix of the paper.

7.2 Preprocessing

Generating the large datasets from the . opcode files took ten minutes to complete.

7.3 Training

Training the models on large datasets was a time-intensive process even after optimizing the datasets. In total, training
all combinations of classifiers on the 1-gram dataset took 5.3 minutes, and on the 2-gram dataset it took 12.4 hours.

7.4 Metrics
Performance is quantitatively evaluated using:

* Accuracy: The proportion of correct predictions (both positive and negative) out of all predictions made [29].

* Recall: The ability of the model to correctly identify all positive instances while minimizing missed positives
[29].

* Precision: The ability of the model to only predict positives when they are truly positive while minimizing
false positives [29].

* F-Measure: The harmonic mean of precision and recall balancing the trade-off between them for overall
performance [29].

* Confusion Matrix: A summary table showing the counts of true positives, true negatives, false positives, and
false negatives revealing the types of errors made by the model [29].

This portion of the paper evaluates the performance of three machine learning (ML) classifiers—Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree—for the classification of malware based on opcode
sequences extracted from executables associated with APT groups. The classifiers are systematically assessed on their

12

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

ability to predict three primary targets: malware name, malware type, and APT group attribution, utilizing both 1-gram
and 2-gram opcode feature representations to capture the sequential patterns of instruction codes.

7.5 Classifier Comparison
7.5.1 Decision Tree

The Decision Tree classifier consistently outperformed the other classifier models across both 1-gram and 2-gram
datasets demonstrating the highest scores in accuracy, precision, recall, and F-Measure. Notably, the Decision Tree
achieved remarkable performance in malware type and malware name classification attaining an accuracy of 99.69%
with an F-Measure of 0.85 for malware type and 97.37% accuracy with an F-Measure of 0.88 for malware name on
the 2-gram dataset using the multi-mode approach. Even when challenged by APT group attribution, it fell only to a
moderate F-Measure of around 0.63 still outperforming other models.

7.5.2 KNN

KNN demonstrated moderate classification performance, producing acceptable results in both malware name and
type classification task; however, it consistently lagged behind the Decision Tree classifier in terms of accuracy and
F-Measure.

753 SVM

The SVM classifier demonstrated limited effectiveness across all classification tasks particularly in APT group attribution.
The F-Measure for SVM consistently remained below 0.20, suggesting that SVM was not well-suited for capturing the
subtle patterns in the opcode data making it less reliable for this task.

7.6 Mode Impact
7.6.1 Single Mode (Opcode Features Only)

When only opcode-derived features were used, all classifiers struggled to some extent, particularly for APT group
attribution. The limited performance in this mode implied that opcode frequencies alone did not provide sufficient
context to differentiate between groups especially for threat actors with overlapping characteristics.

7.6.2 Multi Mode (Opcode Features & Metadata)

Incorporating additional metadata significantly improved the classifiers’ performance. This mode showed that adding
contextual information such as the malware name and type, could compensate for the limitations of the opcode features.
The Decision Tree, in particular, showed remarkable gains, indicating that the combination of opcode data and metadata
provided a more complete feature set for accurate classification.

7.6.3 All Mode (All Labels for File Name Prediction)

In this mode, where all metadata was included and the file name served as the target, SVM and Decision Tree achieved
similar performance (70% accuracy). This suggested that when more contextual labels were available, even a weaker
classifier like SVM could catch up to a more robust model in terms of overall accuracy; however, KNN remained
significantly behind highlighting its vulnerability to the complexity introduced by multiple label dependencies.

7.7 Raw Performance Data

7.7.1 1-Gram Performance Evaluation Table

A colour-coded table displaying the performance results of the 1-gram models is shown below:

13

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

Table 11: 1-Gram Classifier Performance

Classifier Mode Target Accuracy Recall Precision F-Measure
SVM Single Group 0.2797 0.0741 0.0728 0.0587
SVM Single Name 0.5295 0.0661 0.1039 0.0686
SVM Single Type 0.7438 0.1377 0.2419 0.143
KNN Single Group 0.4248 0.4789 0.5098 0.4028
KNN Single Name 0.8576 0.3693 0.3885 0.3612
KNN Single Type 0.9584 0.6202 0.6376 0.6164
Decision Tree | Single Group 0.5197 0.6482 0.7194 0.5972
Decision Tree | Single Name 0.9535 0.8925 0.8258 0.8415
Decision Tree | Single Type 0.9896 0.9022 0.8318 0.8563
SVM Multi Group 0.3751 0.1405 0.0964 0.1099
SVM Multi Name 0.6107 0.0716 0.0631 0.0614
SVM Multi Type 0.6996 0.1007 0.2092 0.0936
KNN Multi Group 0.5082 0.508 0.5611 0.4458
KNN Multi Name 0.8666 0.4002 0.4072 0.3918
KNN Multi Type 0.9751 0.6852 0.7537 0.6977
Decision Tree | Multi Group 0.5287 0.6925 0.761 0.6359
Decision Tree | Multi Name 0.9738 0.9435 0.8718 0.8898
Decision Tree | Multi Type 0.997 0.9066 0.833 0.8592
SVM All File Name 0.7094 0.7094 0.6603 0.6728
KNN All File Name 0.2586 0.2586 0.1208 0.1525
Decision Tree | All File Name 0.7094 0.7094 0.6603 0.6728
7.7.2 2-Gram Performance Evaluation Table
A colour-coded table displaying the performance results of the 2-gram models is shown below:
Table 12: 2-Gram Classifier Performance

Classifier Mode Target Accuracy Recall Precision F-Measure
SVM Single Group 0.2914 0.0807 0.1599 0.0684
SVM Single Name 0.573 0.0757 0.1217 0.0791
SVM Single Type 0.7963 0.1686 0.3353 0.1907
KNN Single Group 0.4276 0.4755 0.5415 0.4118
KNN Single Name 0.8609 0.4023 0.4084 0.3907
KNN Single Type 0.962 0.6353 0.6675 0.639
Decision Tree | Single Group 0.5197 0.6482 0.7194 0.5972
Decision Tree | Single Name 0.9535 0.8925 0.8258 0.8415
Decision Tree | Single Type 0.9896 0.9022 0.8318 0.8563
SVM Multi Group 0.3751 0.1405 0.0964 0.1099
SVM Multi Name 0.611 0.0716 0.0633 0.0615
SVM Multi Type 0.6996 0.1007 0.2092 0.0936
KNN Multi Group 0.5085 0.5059 0.5399 0.436
KNN Multi Name 0.8723 0.4281 0.4399 0.4192
KNN Multi Type 0.974 0.6956 0.7441 0.6939
Decision Tree | Multi Group 0.5287 0.6925 0.761 0.6359
Decision Tree | Multi Name 0.9738 0.9435 0.8718 0.8898
Decision Tree | Multi Type 0.997 0.9066 0.833 0.8592
SVM All File Name 0.7094 0.7094 0.6603 0.6728
KNN All File Name 0.2542 0.2542 0.118 0.1492
Decision Tree | All File Name 0.7094 0.7094 0.6603 0.6728

14

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

7.8 Performance Summary

From this, it was understood that Decision Trees excelled in opcode-based malware classification especially when
enriched with metadata, while SVM underperformed and KNN showed moderate results. Nevertheless, accurately
attributing APT groups remained challenging, indicating that additional contextual data was needed.

8 Results: Convolutional Neural Network

Experiments evaluated the CNN model on two distinct datasets: one with a one-to-one mapping (cleaned opcode
sequences) and one with a one-to-many mapping (raw opcode sequences). For each dataset, the model was assessed on
three target labels—APT group, malware name, and malware type—using standard performance metrics (accuracy,
precision, recall, and F1-score).

Compared to traditional classifiers, the implementation of a deep learning model significantly accelerated the process of
feature extraction and training by eliminating the need for manual feature selection. By leveraging GPU acceleration,
training time was orders of magnitude faster enabling efficient model construction and optimization [27].

8.1 Preprocessing

Cleaning the dataset to create a one-to-one mapping took the system 1.53 minutes. This step drastically reduced
confusion in the data particularly for the APT group target.

8.2 Training

The training process was highly resource-intensive with the workstation drawing approximately 600W of power, fully
utilizing the GPU’s 24GB of VRAM, and consuming 50GB of system memory. The substantial resource demand
enabled the model to complete training in 3.65 minutes on all targets. This performance significantly outperformed
the training times reported in Deep Android Malware Detection, highlighting the advantages of modern hardware in
efficiently training complex models.

8.3 Dataset Comparison

As expected, the one-to-one dataset significantly outperformed the one-to-many dataset in results for the group target,
with the one-to-many relationship achieving only 35% accuracy, while the one-to-one relationship achieved 92%
accuracy. This improvement was attributed to the removal of ambiguity in the data allowing the CNN to accurately
categorize samples into APT groups. Meanwhile, name and type classification showed relatively stable performance
across both datasets achieving 84.64% and 89.80% in the one-to-one dataset compared to 85.69% and 96.50% in the
one-to-many dataset. These labels typically did not involve overlapping mappings and were therefore less susceptible to
the confusion that affected the group target.

8.3.1 One-To-Many Dataset

Table 13: CNN Performance With One-to-Many Dataset

Classifier Mode Target Accuracy Recall Precision F-Measure
CNN Single Group 0.35 0.2428 0.35 0.2335
CNN Single Name 0.8569 0.7985 0.8569 0.8177
CNN Single Type 0.965 0.9536 0.965 0.9588

15

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

1.0
Metrics
I Accuracy
@ Precision
0.8 4 mmm Recall
Il Fl-Score

0.6 1

Value

0.4

0.2

0.0 -
Group Name Type

Figure 5: Metric Comparison With One-To-Many Dataset

8.3.2 One-To-One Dataset

Table 14: CNN Performance With One-to-One Dataset

Classifier Mode Target Accuracy Recall Precision F-Measure
CNN Single Group
CNN Single Name
CNN Single Type
1.0

Metrics
Accuracy
Precision
Recall
Fl-Score

|
|
0.8 ~ -
|

0.6

Value

0.4

0.2

0.0 -

Group Name Type

Figure 6: Metric Comparison With One-To-One Dataset

16

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

9 Discussion: Opcode Extraction

This paper utilized open-source decompiler technologies and leveraged parallel computing to efficiently and effectively
extract opcodes from malicious executables. The results demonstrated that, if scripts are designed to utilize and
effectively manage hardware resources then opcode extraction of large datasets is achievable within a reasonable time
frame. This opcode extraction provides a strong foundation for further malware analysis using classification algorithms
and advanced machine learning techniques.

10 Discussion: N-Gram Dataset & Training

The results from the experiment demonstrated that the Decision Tree classifier consistently outperformed both SVM and
KNN for malware classification using opcode features. In particular, when using 2-gram features along with metadata
in a specified target (multi-mode) approach, the Decision Tree model achieved exceptional accuracy (up to 99.69% for
malware type and 97.37% for malware name) and strong F-measures. While KNN produced moderate results, SVM
struggled across all tasks with F-Measure values below 0.20 especially for APT group attribution.

Integrating metadata with opcode features significantly improved classifier performance compared to using opcode
features alone; however, classifying APT groups remained a challenge, indicating that opcode patterns alone may
not fully capture the nuances required for accurate threat actor identification. This difficulty stemmed primarily from
the fact that multiple APT groups often used the same software which was included in the dataset to ensure realism.
Consequently, it was expected that the models would struggle to accurately predict the specific APT group, as there was
not a one-to-one mapping; several APT groups could be associated with the same set of malware. This was further
demonstrated by inspecting the confusion matrix heatmaps in the Appendix associated with the group target label.

11 Discussion: Convolutional Neutral Networks

The results of the experiment showed that the CNN drastically outperformed traditional machine learning classifiers
such as SVM, KNN, and Decision Tree when considering pure opcode analysis without the use of metadata.

11.1 Metric Comparison

When attempting to classify malware using traditional methods solely based on pure opcodes without the help of
metadata, these models struggled considerably. This is not to say that the models themselves are flawed; rather, they
were provided with lower-quality data compared to the CNN. First, the data fed to such models was not cleaned to the
extent that the CNN datasets were, and numerous one-to-many relationships were present. In addition, the datasets
were limited to 1-gram and 2-gram structures restricting each model’s view to very short opcode windows. Extending
n-grams beyond 2-gram was not feasible due to the immense resource overhead it would require, especially since
moving from 1-gram to 2-gram alone already increased the feature space into the tens of thousands of features [26].

Regarding CNN performance, it vastly outperformed the traditional models across multiple targets. For APT group
classification specifically, the CNN achieved a 77.65% higher accuracy compared to the best Decision Tree on uncleaned
datasets (from 52% to 92%). In terms of precision and recall, the CNN consistently scored above 0.90 on one-to-one
data for this target, whereas Decision Tree scores ranged between 0.64 and 0.72. For other labels such as name and
type, the CNN similarly maintained a higher F1-score, in some cases surpassing 0.95, while the best traditional models
hovered around the mid-0.80 range. These improvements highlight the importance of extended sequence analysis for
malware detection, as CNNs are not limited to small, rigid n-gram windows.

In real-world scenarios, metadata such as file origin or known associations may not be accessible. Traditional models
have shown that without metadata, their accuracy can drop to near chance levels for complex tasks like APT group
attribution. By contrast, the CNN was able to learn from purely sequential opcode data showcasing its robustness
and adaptability. This underscores the significance of leveraging models capable of capturing deeper, long-range
dependencies—particularly in scenarios where additional context or metadata is unavailable [30].

11.2 Computational Comparison

Leveraging GPU acceleration for training the CNN models resulted in a substantial reduction in computational time
compared to traditional classifiers. As detailed in the results section, the CNN completed training in mere minutes,
although it consumed significant amounts of power, while the traditional models required a total of 12.4 hours to train.
This contrast in training times was simply incomparable, especially considering that the CNN demonstrated superior

17

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

performance in pure opcode analysis further emphasizing the efficiency and effectiveness of deep learning approaches
over conventional methods.

11.3 Concluding Remarks

This paper, along with the broader scope of the project, demonstrated that real-world malware collected from the internet
could be effectively classified using only raw opcodes. The implementation of such machine learning methods holds
significant potential for practical application in malware detection systems; however, training these models remains
computationally demanding often limiting their accessibility to researchers and large organizations. Continued research
is therefore essential to develop more efficient algorithms, and reduce the computational cost of training and deploying
models in real-world environments.

Future work will explore other deep learning architectures particularly recurrent neural networks (RNNs) and trans-
formers. While RNNs (such as LSTMs or GRUs) can learn sequence patterns with fewer resources, transformers
excel at capturing long-range dependencies in a highly parallelizable manner. Moreover, future efforts will focus
on incorporating multi-label classification techniques such as using a sigmoid output layer with threshold tuning or
leveraging classifier chains to better address real-world scenarios where malware may overlap across multiple threat
actor categories. By experimenting with these architectures and broader labeling strategies, the goal is to refine the
balance between accuracy and computational overhead paving the way for broader deployment of advanced malware
detection solutions.

18

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

References

[1] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and K.-K. R. Choo, “An energy-efficient sdn controller
architecture for iot networks with blockchain-based security,” IEEE Transactions on Services Computing, vol. 13,
no. 4, pp. 625-638, 2020.

[2] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, and M. Aledhari, “Enabling drones
in the internet of things with decentralized blockchain-based security,” IEEE Internet of Things Journal, vol. 8,
no. 8, pp. 6406-6415, 2020.

[3] J. Sakhnini, H. Karimipour, A. Dehghantanha, A. Yazdinejad, T. R. Gadekallu, N. Victor, and A. Islam, “A
generalizable deep neural network method for detecting attacks in industrial cyber-physical systems,” IEEE
Systems Journal, vol. 17, no. 4, pp. 5152-5160, 2023.

[4] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-K. R. Choo, “P4-to-blockchain: A secure blockchain-
enabled packet parser for software defined networking,” Computers & Security, vol. 88, p. 101629, 2020.

[5] D. Namakshenas, A. Yazdinejad, A. Dehghantanha, and G. Srivastava, “Federated quantum-based privacy-
preserving threat detection model for consumer internet of things,” IEEE Transactions on Consumer Electronics,
2024.

[6] A. Yazdinejad, A. Dehghantanha, R. M. Parizi, G. Srivastava, and H. Karimipour, “Secure intelligent fuzzy
blockchain framework: Effective threat detection in iot networks,” Computers in Industry, vol. 144, p. 103801,
2023.

[7] A. Yazdinejad, A. Dehghantanha, R. M. Parizi, and G. Epiphaniou, “An optimized fuzzy deep learning model for
data classification based on nsga-ii,” Neurocomputing, vol. 522, pp. 116-128, 2023.

[8] B. Zolfaghari, A. Yazdinejad, A. Dehghantanha, J. Krzciok, and K. Bibak, “The dichotomy of cloud and iot:
Cloud-assisted iot from a security perspective,” arXiv preprint arXiv:2207.01590, 2022.

[9] A. Yazdinejad, A. Dehghantanha, R. M. Parizi, M. Hammoudeh, H. Karimipour, and G. Srivastava, “Block hunter:
Federated learning for cyber threat hunting in blockchain-based iiot networks,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 11, pp. 8356-8366, 2022.

[10] A. Yazdinejad, A. Bohlooli, and K. Jamshidi, “Efficient design and hardware implementation of the openflow v1.
3 switch on the virtex-6 fpga ml605,” The Journal of Supercomputing, vol. 74, pp. 1299-1320, 2018.

[11] Podman Desktop Contributors, “GPU Container Access - Podman Desktop,” https://podman-desktop.io/docs/
podman/gpu, 2024, accessed: 2025-04-16.

[12] N. Subedar, T. Kim, and S. Venkataramalingam, “Scalable apt malware classification via parallel feature
extraction and gpu-accelerated learning,” 2025. [Online]. Available: https://github.com/chrkis7/cis6530-project

[13] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao,
A. Doupé, and G. Joon Ahn, “Deep android malware detection,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, ser. CODASPY *17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 301-308. [Online]. Available: https://doi.org/10.1145/3029806.3029823

[14] A. Yazdinejad, R. M. Parizi, A. Bohlooli, A. Dehghantanha, and K.-K. R. Choo, “A high-performance framework
for a network programmable packet processor using p4 and fpga,” Journal of Network and Computer Applications,
vol. 156, p. 102564, 2020.

[15] A. Yazdinejad, E. Rabieinejad, A. Dehghantanha, R. M. Parizi, and G. Srivastava, “A machine learning-based sdn
controller framework for drone management,” in 2021 IEEE Globecom Workshops (GC Wkshps). 1EEE, 2021,
pp- 1-6.

[16] R. Rohleder, “Hands-on ghidra - a tutorial about the software reverse engineering framework,” in
Proceedings of the 3rd ACM Workshop on Software Protection, 2019, pp. 77-78. [Online]. Available:
https://doi.org/10.1145/3338503.3357725

[17] H. Markarian, “Function identification threats in embedded systems,” 2023.

[18] A. Yazdinejad, A. Dehghantanha, and G. Srivastava, “Ap2fl: Auditable privacy-preserving federated learning
framework for electronics in healthcare,” IEEE Transactions on Consumer Electronics, 2023.

[19] A. Yazdinejad, A. Dehghantanha, G. Srivastava, H. Karimipour, and R. M. Parizi, “Hybrid privacy preserving
federated learning against irregular users in next-generation internet of things,” Journal of Systems Architecture,
vol. 148, p. 103088, 2024.

19

https://podman-desktop.io/docs/podman/gpu
https://podman-desktop.io/docs/podman/gpu
https://github.com/chrkis7/cis6530-project
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3338503.3357725

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

[20] A. Yazdinejad, A. Dehghantanha, H. Karimipour, G. Srivastava, and R. M. Parizi, “A robust privacy-preserving
federated learning model against model poisoning attacks,” IEEE Transactions on Information Forensics and
Security, 2024.

[21] A. Yazdinejad, “Secure and private ml-based cybersecurity framework for industrial internet of things (iiot),” Ph.D.
dissertation, University of Guelph, 2024.

[22] H. Temiz, “Recording performances of some file types for pandas data,” Avrupa Bilim ve Teknoloji Dergisi, no. 36,
pp. 55-60, 2022.

[23] S. Suthaharan and S. Suthaharan, “Support vector machine,” Machine learning models and algorithms for big
data classification: thinking with examples for effective learning, pp. 207-235, 2016.

[24] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[25] B. De Ville, “Decision trees,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 5, no. 6, pp. 448-455,
2013.

[26] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification of malware:
Research developments, trends and challenges,” Journal of Network and Computer Applications, vol. 122, pp.
1-21, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1084804519303868

[27] X.Li et al., “An efficient convolutional neural network with transfer learning for malware classification,” Security
and Communication Networks, vol. 2022, 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1155/
2022/4841741

[28] S. Venkatraman et al., “An opcode-based malware detection model using supervised learning algorithms,”
International Journal of Information Security Research, vol. 12, no. 1, pp. 1-12, 2022. [Online]. Available:
https://www.igi-global.com/gateway/article/289818

[29] S. Swaminathan and B. R. Tantri, “Confusion matrix-based performance evaluation metrics,” African Journal of
Biomedical Research, vol. 27, pp. 4023-4031, 11 2024.

[30] J. Li et al., “Data augmentation for opcode sequence based malware detection,” https://pureadmin.qub.ac.uk/ws/
portalfiles/portal/302309338/CRCI_2022_paper_17.pdf, 2022, conference on Recent Advances in Cybersecurity
and Informatics (CRCI).

20

https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://onlinelibrary.wiley.com/doi/10.1155/2022/4841741
https://onlinelibrary.wiley.com/doi/10.1155/2022/4841741
https://www.igi-global.com/gateway/article/289818
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/302309338/CRCI_2022_paper_17.pdf
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/302309338/CRCI_2022_paper_17.pdf

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

A Appendix: 1-Gram Performance Visualizations

Classifier Performance Visualizations

SVM Metrics Using Single Target

10
Metrics
mm Accuracy
mmm Recall
0.8+ mmm Precision
mmm F-Measure
0.6
]
2
0.4
0.2
0.0
Group Name Type
Figure 7: SVM - Single Target
DECISION_TREE Metrics Using Single Target
1.0

Metrics.
mmm Accuracy
mm Recall
0.8 1 mmm Precision
Emm F-Measure

0.6
]
0.4
0.2
00
Group Name Type
Figure 9: Decision Tree — Single Target
o KNN Metrics Using Multiple Labels.
’ Metrics
= Accuracy
= Recall
0.8 1 mmm Precision
= F-Measure
0.6
é

0.4

0.2+

004

Group Name Type

Figure 11: KNN — Multi-Label

21

KNN Metrics Using Single Target

1.0

Value

Metrics
mm Accuracy
e Recall
mmm Precision
= F-Measure

Figure 8: KNN — Single Target

SVM Metrics Using Multiple Labels

1.0

0.8 1

0.6 q

Value

0.4 4

0.2 1

0.0 -

Metrics
mmm Accuracy
mmm Recall
mmm Precision
mmm F-Measure

Group Name Type

Figure 10: SVM — Multi-Label

DECISION_TREE Metrics Using Multiple Labels

1.0

0.8 1

0.6 q

Value

0.4

0.2+

004

Metrics
Accuracy
Recall

Precision

F-Measure

Group Name Type

Figure 12: Decision Tree — Multi-Label

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

o SVM Metrics Using All Labels o KNN Metrics Using All Labels
0.8 4 0.8 4
0.6 4 0.6 4
E] E]
0.4 044
024 024
0.0 0.04
Accuracy Recall Precision F-Measure Accuracy Recall Precision F-Measure
Figure 13: SVM - All Labels Figure 14: KNN — All Labels

Confusion Matrices

SVM Confusion Matrix Using Single Target "group"
0

Figure 16: SVM — Group

Value

DECISION_TREE Metrics Using All Labels

1.0

0.8

0.6 1

0.4 4

0.21

0.0
Accuracy Recall Precision F-Measure

Figure 15: Decision Tree — All Labels

SVM Confusion Matrix Using Single Target "type"
0

SVM Confusion Matrix Using Single Target "name"
o

Figure 17: SVM — Name Figure 18: SVM — Type

22

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

KNN Confusion Matrix Using Single Target "group” KNN Confusion Matrix Using Single Target "name" KNN Confusion Matrix Using Single Target "type"

Figure 19: KNN — Group Figure 20: KNN — Name Figure 21: KNN - Type

DECIS\DN |_TREE Confusion Matrix Using Single Target "group" DECIS\DN |_TREE Confusion Matrix Using Single Target "name" DECISION_TREE Confusion Matrix Using Single Target "type"

Figure 22: Decision Tree — Group Figure 23: Decision Tree — Name Figure 24: Decision Tree — Type

KNN Confusion Matrix Using Multiple Labels With Target "group” KNN Confusion Matrix Using Multiple Labels With Target "name” KNN Confusion Matrix Using Multiple Labels With Target "type"

Figure 25: KNN — Group Figure 26: KNN — Name Figure 27: KNN — Type

DECISION TREE Confusion Matrix Using Multiple Labels With Target "group" DECISION TREE Confusion Matrix Using Multiple Labels With Target "name" DECISION_TREE Confusion Matrix Using Multiple Labels With Target "type"

Figure 28: Decision Tree — Group Figure 29: Decision Tree — Name Figure 30: Decision Tree — Type

23

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

B Appendix: 1-Gram Performance Visualizations

Classifier Performance Visualizations

SVM Metrics Using Single Target

10
Metrics

mm Accuracy
e Recall

0.8 1 mmm Precision

m F-Measure

Value

Group Name Type

Figure 31: SVM - Single Target

DECISION_TREE Metrics Using Single Target

1.0

Metrics.
mmm Accuracy
mm Recall
0.8 1 mmm Precision
Emm F-Measure

0.6 q

Value

0.4 4

0.2 1

0.0 -
Group Name Type

Figure 33: Decision Tree — Single Target

KNN Metrics Using Multiple Labels.

1.0
Metrics
= Accuracy

s Recall
08 mmm Precision
mmm F-Measure

0.6 q

Value

0.4

0.2+

004

Group Name Type

Figure 35: KNN — Multi-Label

24

1.0

Value

Value

Value

KNN Metrics Using Single Target

Metrics
mm Accuracy
e Recall
mmm Precision
= F-Measure

Figure 32: KNN - Single Target

SVM Metrics Using Multiple Labels

1.0

0.8 1

0.6 q

0.4 4

0.2 1

0.0 -

Metrics
Accuracy
Recall
Precision
F-Measure

Group Name Type

Figure 34: SVM — Multi-Label

DECISION_TREE Metrics Using Multiple Labels

1.0

0.8 1

0.6 q

0.4

0.2+

004

Metrics
Accuracy
Recall
Precision
F-Measure

Group Name Type

Figure 36: Decision Tree — Multi-Label

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

o SVM Metrics Using All Labels o KNN Metrics Using All Labels
0.8 4 0.8 4
0.6 4 0.6 4
E] E]
0.4 044
024 024
0.0 0.04
Accuracy Recall Precision F-Measure Accuracy Recall Precision F-Measure
Figure 37: SVM — All Labels Figure 38: KNN — All Labels

Confusion Matrices

SVM Confusion Matrix Using Single Target "group"
0

Figure 40: SVM - Group

Value

DECISION_TREE Metrics Using All Labels

1.0

0.8

0.6 1

0.4 4

0.21

0.0
Accuracy Recall Precision F-Measure

Figure 39: Decision Tree — All Labels

SVM Confusion Matrix Using Single Target "type"
0

SVM Confusion Matrix Using Single Target "name"
o

Figure 41: SVM — Name Figure 42: SVM — Type

25

Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning

KNN Confusion Matrix Using Single Target "group” KNN Confusion Matrix Using Single Target "name" KNN Confusion Matrix Using Single Target "type"

Figure 43: KNN — Group Figure 44: KNN — Name Figure 45: KNN — Type

DECIS\DN |_TREE Confusion Matrix Using Single Target "group" DECIS\DN |_TREE Confusion Matrix Using Single Target "name" DECISION_TREE Confusion Matrix Using Single Target "type"

Figure 46: Decision Tree — Group Figure 47: Decision Tree — Name Figure 48: Decision Tree — Type

KNN Confusion Matrix Using Multiple Labels With Target "group” KNN Confusion Matrix Using Multiple Labels With Target "name” KNN Confusion Matrix Using Multiple Labels With Target "type"

Figure 49: KNN — Group Figure 50: KNN — Name Figure 51: KNN - Type

DECISION TREE Confusion Matrix Using Multiple Labels With Target "group" DECISION TREE Confusion Matrix Using Multiple Labels With Target "name" DECISION_TREE Confusion Matrix Using Multiple Labels With Target "type"

Figure 52: Decision Tree — Group Figure 53: Decision Tree — Name Figure 54: Decision Tree — Type

26

	Introduction
	Scripts & Environment Setup
	Container Environment
	Enabling NVIDIA GPU Support
	Data Format
	Running the Container

	Scripts
	Ghidra Manager
	Preprocess
	Classifier
	CNN Preprocess
	CNN Model

	Methodology: Opcode Extraction
	Sample Collection
	Engine Selection
	Automated Scripts
	Hardware Utilized

	Methodology: N-Gram Dataset & Training
	Preprocessing
	N-Gram Sequence Generation
	Vocabulary Generation
	Dataset Construction
	Extracting Metadata
	Generating Feature Data

	Dataset Optimization
	Serialization
	Classification
	Classification Algorithms
	Classification Modes

	Hardware Utilized

	Methodology: Convolutional Neural Network
	Preprocessing
	Generating Vocabulary
	Implementing the CNN Model
	Embedding Layer
	Convolutional Layers
	Pooling Layer
	Flatten Layer
	Fully Connected (MLP) Layer
	Softmax Classification Layer

	Training the Model
	Hardware Utilized

	Results: Opcode Extraction
	Results: N-Gram Dataset & Training
	Performance Evaluation
	Preprocessing
	Training
	Metrics
	Classifier Comparison
	Decision Tree
	KNN
	SVM

	Mode Impact
	Single Mode (Opcode Features Only)
	Multi Mode (Opcode Features & Metadata)
	All Mode (All Labels for File Name Prediction)

	Raw Performance Data
	1-Gram Performance Evaluation Table
	2-Gram Performance Evaluation Table

	Performance Summary

	Results: Convolutional Neural Network
	Preprocessing
	Training
	Dataset Comparison
	One-To-Many Dataset
	One-To-One Dataset

	Discussion: Opcode Extraction
	Discussion: N-Gram Dataset & Training
	Discussion: Convolutional Neutral Networks
	Metric Comparison
	Computational Comparison
	Concluding Remarks

	Appendix: 1-Gram Performance Visualizations
	Appendix: 1-Gram Performance Visualizations

