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Abstract. This scholarly work presents an advanced cryptographic framework utilizing automorphism groups 

as the foundational structure for encryption scheme implementation. The proposed methodology employs a three-

parameter group construction, distinguished by its application of logarithmic signatures positioned outside the 

group's center—a significant departure from conventional approaches. A key innovation in this implementation 

is utilizing the Hermitian function field as the underlying mathematical framework. This particular function field 

provides enhanced structural properties that strengthen the cryptographic protocol when integrated with the three-

parameter group architecture. The encryption mechanism features phased key de-encapsulation from ciphertext, 

representing a substantial advantage over alternative implementations. This sequential extraction process 
introduces additional computational complexity for potential adversaries while maintaining efficient legitimate 

decryption. A notable characteristic of this cryptosystem is the direct correlation between the underlying group's 

mathematical strength and both the attack complexity and message size parameters. This relationship enables 

precise security-efficiency calibration based on specific implementation requirements and threat models. The 

application of automorphism groups with logarithmic signatures positioned outside the center represents a 

significant advancement in non-traditional cryptographic designs, particularly relevant in the context of post-

quantum cryptographic resilience. 
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INTRODUCTION 

The imminent development of large-scale quantum computing technology 

poses a substantial threat to contemporary public key cryptosystems. Specifically, 

cryptographic protocols predicated on integer factorization complexity or discrete 

logarithm problems, including widely deployed systems such as RSA and ECC, 

would be rendered vulnerable. Over approximately two decades, researchers have 

proposed several approaches utilizing non-commutative groups to construct 

quantum-resistant cryptosystems [1-4]. 

The intractable word problem represents a particularly promising research 

direction for cryptographic system development. Initially formulated by Wagner 

and Magyarik [5], this approach functions within the domain of permutation 

group applications. Magliveras [6] introduced logarithmic signatures —

specialized factorization structures applicable to finite groups, establishing the 

foundation for subsequent cryptographic protocols. Refinements to the original 



methodology were developed [7-9], culminating in the MST3 implementation [9] 

based on Suzuki group properties. 

In 2008, Magliveras et al. [10] identified limitations associated with 

transitive logarithmic signature utilization in MST3 cryptosystems. 

Subsequently, Svaba et al. [11] proposed an enhanced variant, designated 

eMST3, featuring improved security through the integration of secret 

homomorphic covers. Further advancement occurred in 2018 when T. van Trung 

[12] developed an MST3 approach utilizing strong aperiodic logarithmic 

signatures specifically for Abelian p-groups. 

Y. Cong et al. [13] conducted comprehensive analysis of MST3 

implementations, noting that the absence of published research demonstrating 

quantum vulnerability positions these algorithms as viable candidates for post-

quantum cryptographic applications. 

The original approach within MST3 cryptosystem construction is based on 

the Suzuki group. There are several approaches for further improvements of 

MST3 were considered [14–17]. One of the valuable ideas is to increase the 

encryption efficiency by optimizing calculation overheads. It was done with 

reduction of large size of the keys space. Authors shown that the approach to 

apply for the LS computing outside of the group center. And it was done over 

finite fields of small dimension using groups with large order. Suzuki groups are 

isomorphic to the projective linear group ( )3, qPGL F , where 2

02q q= , 0 2nq =  and has 

order 2q . Basically, cryptosystem security is defined by group order. In [16], 

authors proposed three-parameter group of the automorphism for the first time. It 

applies to construct MST3 cryptosystem with improved security. ( )H P  of the  

2q
Herm F  has a greater ( ) ( )3 2 1ordH P q q = −  and greater than the order of 

corresponding Suzuki group being considered at original papers.  Our paper 

presents a practical implementation of this new approach. 

 



THREE-PARAMETER AUTOMORPHISM GROUP OF THE 

HERMITIAN FUNCTION FIELD 

The 2q
Herm F in [14]. We use ( )Aut Herm of the 2q

Herm F that can be presented 

as follows ( ) : :H Aut Herm Herm Herm = =  of 2q
Herm F  

And it’s extremely large [14]. The properties were discussed in [14]. This 

group has the order equal to ( )( )3 2 31 1ordA q q q= − + . The decomposition group ( )H P  

has got of all ( )Aut Herm  of 2q
Herm F with the following properties 

( )

( ) 1 ,q q

y y

z z y

  

   +

 = +


= + +
 

where  2 2: \ 0
q q

F F  = , 2q
F   and 1q q   ++ = . 

It has order ( ) ( )3 2 1ordH P q q = − . 

Here we have structure for the group as follows 

    1

1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2, , , , , , .q q                +  = + + +   

Thus, we have identity  1,0,0  and the inverse of  , ,    is 

 
1 1 1 ( 1)q q, , , ,       
− − − − + = −  . 

( )H P can be represented in simpler way by due to the off characteristic: 

( ) 2 2

1

, , , , 0
2

q
q

q q
H P F F


      

+




   
+   + =  

   
. 

The unique p-Sylow subgroup of ( )H P  can be designated by ( )1H P  within the 

following representation ( ) ( ) ( )1H P H P y y   =  = +  for some 2q
b F . 

In such a case we have an order equal to 3q   for the  unique p-Sylow subgroup of  

( )

( ) ,q

y y

z z y

 

  

 = +


= + +
 

where, 2q
F  , 1q q   ++ =  and its order equal to 

3q as we mentioned above.  The 

structure for the group can be achieved by subgroup of ( )3,PGL k  presentation: 

2

1

1

1

: 0 1 , ,

0 0 1

q q q

q
H F

 

     +

  
  

=  + =  
  
  

 



Group operation is defined as 

   1 1 2 2 1 2 1 2 1 21, , 1, , 1, , q           = + + +   

 and 

   1 1 2 2 1 2 1 2 1 2, , , q           = + + +  . 

The factor group ( ) ( )1/H P H P 
 is cyclic of order 2 1q − . Moreover, it was 

generated by the ( )H P   with ( ) ( ) 1, qy z z z    += = . 

Another automorphism H   is given by ( ) ( )/ , 1/y y z z z = = . 

The automorphism group ( )H P of the Hermitian function field 2q
Herm F

acting on it as ( ) ( ),y z   has a ( ) ( )3 2 1ordH P q q = −  greater than the order Suzuki 

group.  The basic idea of MST cryptosystems is given in  [9]. We have described 

the idea in details in our previous work in details [14-17]. 

 

PROPOSED APPROACH 

So, within this proposal we have the following steps of key generation, 

encryption and decryption.  

As a input we have a large group ( )H P . This group is based on the 

automorphism ( ) ( ),y z  . The construction of group elements ( )H P  is determined 

by solving the equation 1q q   ++ =  with respect to  . The difficulty of finding c  

is proportional to q . ( )H P  of the 2q
Herm F  can be represented by 

( ) 2 2

1

, , , , 0
2

q
q

q q
H P F F


      

+




   
= +   + =  
   

. 

And it’s true for the odd characteristic. If  is a generating element of the field, 

then the equation 0q + =  has solutions ( 1)/2 ( 1)q k q

i  + + += , 0, 1k q= − . Computation 

vectors using logarithmic signatures matrices and random covers are now easily 

transcoded into the coordinates ,   of the ( )H P  subgroup. 

The group operation is defined as  

( ) ( ) ( )1

1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2, , , , , , .q qS S S                + = + + +  



The inverse of  

( ) ( )
1 1 1 ( 1) ( 1) 1g g qS , , S , ,         
− − − − + − + += − − + . 

Calculation of the inverse element ( )
1

S , ,  
−  in this representation expands 

the scope for 
1

1

1 1'
2

q
 

+

= +  and 
1

2

2 2'
2

q
 

+

= + . This is a key idea in constructing a 

logarithmic signature based on the ( )H P  of the 2q
Herm F . In another case, if 

1'  

and 
2'  are solutions of equation 0q + = , the inverse element is strictly defined 

through expression ( ) ( )
1 1 1 ( 1)q qS , , S , ,       
− − − − += − . 

As an output we have a  , ,w f  as a open key with corresponding 

( )0, ,..., s      is used as a secret key.  

KEY GENERATION 

Step 1. Choose a 1st tame logarithmic signature

( ) ( )1

(1) 1(1) (1) (1) (1)(1)
,..., 1, , / 2q

s kn kn knV V v S v v + = = =   of type ( )1(1) (1),..., sr r , 1, (1)k s= , (1)1, in r= , 2(1)kn q
v F .  

Step 2. Choose a 2nd  tame logarithmic signature
( ) ( )(2) 1(1) (2) (2)(2)

,..., 1,0,s kn knV V v S v  = = =   

of type ( )1(2) s(2),...,r r
, 1, (2)k s= , (2)1, in r= , 

2(2)kn q q
v F F 

.  

Step 3. Select a 1st random cover 
( ) ( )( )1 2 2

1

(1) 1(1) (1) (1) (1) (1)(1)
,..., , , / 2

q

s kn kn kn knw W W w S w w w
+

 = = =   

of the same type as (1)v
, where ( )knw H P , 

 2
1 2(1) (1), \ 0kn kn q

w w F
. 

Step 4. Select a 2nd random cover  

( ) ( )( )1 2 2 3

1

(2) 1(2) (2) (2) (2) (2) (2)(2)
,..., , , / 2

q

s kn kn kn kn knw W W w S w w w w
+

 = = = +   

of the same as (2)v
, where 

  2
2 3(2) (2), \ 0kn kn q q

w w F F 
. 

Step 5. Choose 0( ) 1( ) ( ), ,..., ( ) \l l s l H P Z   
, ( )

1 2 2

1

( ) ( ) ( ) ( ), , ( ) / 2q

i l i l i l i lS    +=
, ( )ki lt F 

, 0, ( )i s l= , 

1, 2l = . Let’s s(1) 0(2) = . 

Step 6. Construct a homomorphism 1f  defined by  

( )( ) ( )1 1

1 1 2 2 2 2, , / 2 1, , / 2q qf S w w w S w w+ +=
 

Step 7. Calculating 
( ) ( )( )( )1

(1) 1(1) (1) ( 1)(1) 1 (1)(1) (1) (1)
,..., s kn k kn kn kg g g g f w v −

−
 = = =  , 1, (1)k s= , (1)1, in r= , 



Where  ( )( )( ) ( )
2 2 2

1 1

1 (1) (1) (1) (1) (1) (1)(1) (1)
1, , / 2 / 2 .q q q

kn kn kn kn kn kn kn knf w v S w v w w v v+ += + + +  

Step 8. Define a homomorphism
( )( ) ( )1

2 1 2 2 2, , / 2 1,0,qf S w w w S w+ =
.  

Step 9. Calculating ( ) ( )( )( )1

(2) 1(2) (2) ( 1)(2) 2 (2)(2) (2) (2)
,..., ,s kn k kn kn kg g g g f w v −

−
 = = =   1, (2)k s= ,

(2)1, in r= , where 
( )( ) ( ) ( )

22 (2) (2)(2) (2)
1,0,kn kn kn knf w v b S w v= +

. 

An open key equals to  1 2, , ( , )l lf f w g , and a secret key equals to 
( )( ) ( ) ( ), ,...,l 0 l s lv   

  , 

1, 2l = . 

So, as an input for the encryption we have a text ( )x H P , ( )1 2 3, ,x S x x x=  and the 

public key  1 2, , ( , )l lf f w g , 1, 2l = .  

ENCRYPTION 

1 2( , )Q Q Q= , 2
1

q
F

Q Z

, 2Q Z
 should be chosen randomly. Then, we calculate the 

following 

( ) ( ) ( )1 1 1 2 2' ' ' ,y w Q x w Q w Q x=  =    

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1 22 1 1 2 2 (1) 1 (1) 1 (2) 2 (2) 2' ' ' , , .y g Q g Q g Q S w Q v Q w Q v Q= =  =  + + + +  

Cross-calculations of ( ) ( ),...,0 l s l 
 is used to defined ( )  components. And its used 

for third coordinate to be added in the product of 
( ) ( )

1(1) 1 (1) 1w Q v Q+
.  

Calculating  

( )( ) ( )( )
23 1 1 1 (1) 1' 1, ,y f w Q S w Q= = 

, 

( )( ) ( )( )
24 2 2 2 (2) 2' 1,0,y f w Q S w Q= =

. 

Output ( )1 2 3 4, , ,y y y y  of the message x . 

So, in the next chapter we going to evaluate the main idea of our proposal. 

 

 

 

 

 



COMPUTATIONAL VALIDATION OF THE PROPOSED APPROACH 

Lets check the consistency of the proposed approach.  

Fix the finite field 2q
F , 2 63q = , 6( ) 2 2g z z z= + +  and  

( ) 2 2

1

, , , , 0
2

q
q

q q
H P F F


      

+




   
= +   + =  
   

. 

Product of two matrices is used for the group operation  

( ) ( ) ( )1

1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2, , , , , , .q qS S S                + = + + +  

( ) ( ) ( )1

1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2, , , , , , q qS a b c S a b c S a a a b b a c a b b c+ = + + +
, 

where 
1

1

1 1'
2

q
 

+

= + , 
1

2

2 2'
2

q
 

+

= + . 

 

The inverse element is determined as  

( ) ( )
1 1 1 ( 1)q qS , , S , ,       
− − − − += − . 

( )1,0,0S  is a triple and it is an identity. 

Step 1. Let`s construct a tame logarithmic signature 

( ) ( )1

(1) 1(1) (1) (1) (1)(1)
,..., 1, , / 2

kn kn

q

s kn iV V v S v v + = = =   of type ( )1(1) (1),..., sr r , 1, (1)k s= , (1)1, in r= , 2(1)kn q
v F  

for coordinate   and ( ) ( )(2) (2)(2)
1,0,

knkn iv S v = =  of type ( )1(2) s(2),...,r r , 1, (2)k s= , (2)1, in r= , 

2(2)kn q q
v F F   for coordinate  .  

The logarithmic signatures 
1v  and

2v  in a group representations define (1)knv  

and (2)knv coordinates. Types ( )1( ) ( ),...,l s lr r and logarithmic signature s 
1v  and 

2v  are 

chosen independently. Let`s LSs 
1v  and 

2v , as an example, have a types 

( ) ( )3 2

1(1) 2(1) 3(1), , 3 ,3 ,3r r r = , ( ) ( )2

1(2) 2(2), 3 ,3r r =  Arrays (1)knv  consists of three subarrays and 

(2)knv  have of two subarrays with a 
ir  as a rows quantity. Any arrays fragmentation 

can be selected with the condition (1) 6

1 3s

i ir= =  for (1)knv  and 3

1 3s

i ir= =  for (2)knv , 

respectively. Each row 
knv  it`s an 2q

F  field element. We construct arrays of 

logarithmic signatures with the method shown in [18].  

To fulfill and increase the security requirements of arrays 
lv  we can use 

different cryptographic transformations. As an obvious case, we can simply add 

noise vectors, permute strings in subarrays 
iV , merge of arrays

iV or use matrix 

transformations. It helps to build two different logarithmic signatures 

1 1(1) 2(1) 3(1), ,v V V V =    and 2 1(2) 2(2),v V V =   . The arrays of logarithmic signatures 

( )1

1 (1) (1)1, , / 2q

kn knv S v v +=  and ( )( )2 2
1,0,

kn
v S v=  in the group representation, define the 

coordinates (1)knv  and (2)knv , respectively. In the string and the field representation 

1v  and 
2v  has the following form (See Table 1). 

 

 

 

 



Table 1- Field representation of 
1v and 

2v  
v1= 

(1)knv
 

S  v1= 
(1)knv

 
S  

V1(1) 000000 1,0,0 V2(1) 211000 1,α512,α140 

 100000 1,α0,α364  202100 1,α518,α308 

 200000 1,α364,α364  120200 1,α330,α140 

 010000 1,α1,α392  120010 1,α179,α280 

 110000 1,α6,α532  201110 1,α700,α308 

 210000 1,α237,α448  111210 1,α203,α224 

 020000 1,α365,α392  011020 1,α715,α0 

 120000 1,α601,α448  202120 1,α414,α308 

 220000 1,α370,α532  202220 1,α280,α196 

 001000 1,α2,α420 V3(1) 220210 1,α39,α0 

 101000 1,α79,α392  021001 1,α172,α84 

 201000 1,α243,α616  011022 1,α354,α84 

      

 011000 1,α7,α560 v2= 
(2)knv

 ( )(2)1,0, knS v
  111000 1,α474,α532 

 211000 1,α512,α140 V1(2) 000000 1,0,0 

 021000 1,α238,α476  100000 1,0,α0 

 121000 1,α12,α700  200000 1,0,α364 

 221000 1,α688,α700  010000 1,0,α1 

 002000 1,α366,α420  110000 1,0,α6 

 102000 1,α607,α616  210000 1,0,α237 

 202000 1,α443,α392  020000 1,0,α365 

 012000 1,α602,α476  120000 1,0,α601 

 112000 1,α324,α700  220000 1,0,α370 

 212000 1,α376,α700 V2(2) 120000 1,0,α601 

 022000 1,α371,α560  111000 1,0,α474 

 122000 1,α148,α140  022000 1,0,α371 

 222000 1,α110,α532    

 

Step 2. Construct random covers 
lw , for the same type as 

1v  and 
2v  

( ) ( )( )1 2 2

1

(1) 1(1) (1) (1) (1) (1)(1)
,..., , , / 2

q

s kn kn kn knw W W w S w w w
+

 = = =  , 

( ) ( )( )1 2 2 3

1

(2) 1(2) (2) (2) (2) (2) (2)(2)
,..., , , / 2 ,

q

s kn kn kn kn knw W W w S w w w w
+

 = = = +   

where  2
1 2(1) (1), \ 0kn kn q

w w F ,   2
3(2) \ 0kn q q

w F F  , ( )1, lk s= , ( )1, k ln r= , 1, 2l = .  

These covers lw  to be defined by three arrays ( )
1 2 3( ) ( ) ( ), ,kn l kn l kn lw w w  with non-

zero entries.  

Step 3. Let’s generate random covers  1 1(1) 2(1) 3(1), ,w W W W =   , 2 1(2) 2(2),w W W =   . In 

the field representation ( )
1 2 31 (1) (1) (1), ,kn kn knw S w w w=  and ( )

1 2 32 (2) (2) (2), ,kn kn knw S w w w=  has the 

following form (See Table 2). 0( ) 1( ) ( ), ,..., ( ) \l l s l H P Z    , ( )
1 2 2

1

( ) ( ) ( ) ( ), , ( ) / 2q

i l i l i l i lS    += ,

( )ki l F  , 0, ( )i s l= , 1, 2l =  will be chosen randomly. Let’s s(1) 0(2) = . 

 

 

 

 

 

 



Table 2- Field representation of 
1w and 

2w  

1w
 2w

 
W1(1) W1(1) W2(1) W1(2) 

α261,α135,α504 α24,α75,α280 α371,α66,α28 α12,α130,α364 

α5,α85,α560 α126,α267,α560 α577,α573,α392 α536,α68,α84 

α689,α137,α560 α145,α416,α364 α432,α507,α0 α494,α438,α252 

α712,α492,α308 α217,α573,α392 α464,α346,α588 α77,α31,α504 

α275,α138,α588 α595,α312,α364 α194,α54,α420 α674,α523,α448 

α540,α309,α280 α523,α364,α364 α267,α561,α56 α421,α11,α672 

α459,α715,α0 α578,α106,α420 α723,α9,α616 α363,α425,α616 

α60,α195,α0 α192,α446,α476 α148,α603,α504 α47,α136,α532 

α517,α576,α476 α689,α721,α168 α209,α271,α672 α59,α420,α476 

α586,α709,α560 α358,α494,α364   

α328,α687,α672 α587,α287,α392 W3(1) W2(2) 

α687,α313,α392 α661,α597,α336 α574,α672,α252 α400,α363,α336 

α677,α584,α700 α446,α407,α112 α119,α167,α672 α422,α635,α672 

α347,α579,α560  α466,α95,α112 α505,α512,α140 

Step 4. Let for the 1st logarithmic signature 
1  we have 

τ0(1)=(α267,α675,α336) 

τ1(1)=(α281,α23,α280) 

τ2(1)=(α52,α490,α252) 

τ3(1)=(α660,α225,α112) 

τ -1
0(1)=(α461,α44,α140) 

τ -1
1(1)=(α447,α106,α420) 

τ -1
2(1)=(α676,α74,α252) 

τ -1
3(1)=(α68,α657,α560) 

Step 5. Let for the 2nd logarithmic signature 
2  we have 

τ0(2)=(α660,α225,α112) 

τ1(2)=(α79,α475,α560) 

τ2(2)=(α115,α415,α336) 

τ -1
0(2)=(α68,α657,α560) 

τ -1
1(2)=(α649,α32,α532) 

τ -1
2(2)=(α613,α664,α28) 

The arrays 
1g  and 

2g  to be calculated within the next step.  

Step 6. So, we obtain ( ) ( )( )( )1

(1) 1(1) (1) ( 1)(1) 1 (1)(1) (1) (1)
,..., s kn k kn kn kg g g g f w v −

−
 = = =  ,

( ) ( )( )( )1

(2) 1(2) (2) ( 1)(2) 2 (2)(2) (2) (2)
,..., .s kn k kn kn kg g g g f w v −

−
 = = =  by the condition of the example.  

Step 7. Construct a homomorphism 
1f , 

2f  defined by  

( )( ) ( )1 1

1 1 2 2 2 2, , / 2 1, , / 2q qf S w w w S w w+ += , ( )( ) ( )1

2 1 2 2 2, , / 2 1,0,qf S w w w S w+ = . 

In the field representation 
1 2 31 (1) (1) (1)( , , )kn kn kng S g g g=  and 

1 2 32 (2) (2) (2)( , , )kn kn kng S g g g=  

has the following form (See Table 3) 

Table 3- Field representation of 
1g and 

2g  

1g
 2g

 
g1(1) g1(1) g2(1) g1(2) 

α14,α549,α692 α14,α514,α606 α499,α219,α35 α147,α149,α208 

α14,α150,α232 α14,α173,α101 α499,α492,α308 α147,α149,α455 

α14,α420,α179 α14,α158,α194 α499,α599,α500 α147,α149,α477 

α14,α252,α176 α14,α468,α46 α499,α488,α520 α147,α149,α262 

α14,α215,α467 α14,α421,α226 α499,α569,α187 α147,α149,α371 

α14,α613,α678 α14,α321,α652 α499,α561,α678 α147,α149,α55 

α14,α145,α678 α14,α342,α72 α499,α48,α653 α147,α149,α31 

α14,α646,α241 α14,α393,α349 α499,α575,α452 α147,α149,α183 

α14,α620,α264 α14,α43,α522 α499,α522,α659 α147,α149,α328 

α14,α37,α676 α14,α221,α244   

α14,α573,α636 α14,α510,α534 g3(1) g2(2) 

α14,α638,α301 α14,α498,α250 α608,α714,α474 α36,α697,α450 

α14,α414,α202 α14,α671,α634 α608,α24,α632 α36,α697,α24 

α14,α614,α515  α608,α149,α180 α36,α697,α380 



For example, let 
1 379Q = . We obtain the following basis factorization for a 

given type ( ) ( )3 2

1(1) 2(1) 3(1), , 3 ,3 ,3r r r =  in the form of ( ) ( )1 1(1) 2(1) 3(1), , 1,5,1Q Q Q Q= = , where 
3 5

1 2 33 3 379Q Q Q+ + = .  

Step 8. Calculating 
1g  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )14 150 232 499 561 67

1 1(1) 2(1)

46

3(

8 08 2 6 3

1

32 39 1

)

9 0, , , , , , , , .379 1 5 1g g g g S S S S           = = =  

Let 
2 17R = . We obtain the ( ) ( )2 1(2) 2(2), 8,1 17Q Q Q= = =  for a given type ( ) ( )2

1(2) 2(2), 3 ,3r r = .  

Step 9. Calculating 
2g  

( ) ( ) ( ) ( ) ( ) ( )147 149 328 36 697 24 1

2 1(2) 2(2)

83 192 433, , , , , , .17 8 1g g g S S S        = = =  

In this section we consider step-by-step encryption algorithm. We have a message 

( )x N P , ( )1 2 3, ,x S x x x= ,  21 \ 0
q

x F , 22 3,
q

x x F  and the public key  1 2, , ( , )l lf f w g , 1, 2l =  

for the input. 

Step 10. Let ( ) ( )1 2 3 1 2 3, , , ,x S     = = .  

2( , ) (379,17)1Q Q Q= = , 
2q

1
F

Q  , 
2

qF
Q   to be chosen randomly.  

Step 11. Calculating 
( ) ( ) ( ) ( )9

1 1 1 2 2

145 602 32,' ' ' ,y w Q x w Q x SQ w   =  =   =
, 

( ) ( ) ( ) ( )6

2 1 1 2 2

576 370 22,' ' ' ,y g Q g Q g SQ   = =  =
, 

( )( ) ( )394 3830

3 1 1 1' , ,y f w Q S   = =
, 

( )( ) ( )0 692

4 2 2 2' ,0,y f w Q S  = =
. 

Output a ciphertext ( )1 2 3 4, , ,y y y y  of the message x . 

Next, we consider step-by-step decryption algorithm. We have ciphertext 

( )1 2 3 4, , ,y y y y  and private key ( )( ) ( ), ,...,l 0 l s lv   
 

 as an inputs. 

Step 12. The random numbers 
2( , )1Q Q Q=  will be restored with the next steps to 

decrypt a message x : 

( ) ( )(

5(1) 1 1

1 2 0(1) 2 2

76 370 226 0

(

2 3

) 0 1) (2)

7 139, , , , ,( , ) s sD Q SQ y S       − −= = =  

( ) ( ) ( )21 (1)

3 1 2

0 30 149 0 73 139 0 32 408, , , , , , .( ) ( , )D SQ y D Q Q S S         −= = =  

We get ( ) 32

1 1 (202 )211v Q = = . 

Step 13. Recovery of 
1Q  was done earlier ( ) ( )1 1(1) 2(1) 3(1), , 1,5,1Q Q Q Q= = . 

202|21|1   Q1=(*,*,1) 

021|00|1   row 1 from V3(1) 

202|21|1−021|00|1=211|21|0 Q1= (*,5,1) 

111|21|0   row 5 from V2(1) 

211|21|0−111|21|0=100|00|0 Q1=(1,5,1) 

Step 14. The components of the arrays ( )1 1'w Q  and ( )1 1'w Q  will be removed from 

ciphertext ( )1 2,y y  for further calculations:  

( ) ( ) ( ) ( )
1

393 91 0 576 370 226 183 192 4331(1)

2 1 1 2 , , , , , .' ,y y S SQ S        
− −

= ==  

Step 15. Repeat the calculations  

( ) ( )(2) (1) 1 14

2 0(2) 2 (2

1

) 0(2

83 192 33 0 58

) ( /2

9

), , ,0, ,( ) s s lS SD Q y       − −= = =  



( ) ( ) ( )0(2) 1 692 2
1

0 58

2

0

4

9,0, ,0, .( , ,) ( ) 0D y SQ D Q S S     
−

 − == =  

Step 16. Restore 
2Q  with ( ) ( )2

2 2 001000v Q = = .  

Step 17. Perform inverse calculations ( )
1

2 2v Q
− . We found the bit groups in ( )v Q  in 

accordance with a type ( ) ( )2

1(2) (2),..., 3 ,3sr r = . Same computation to be used as in the 

example for ( )
1

1 1v Q
−

. Then, we achieve   
00|1|000   Q2=(*,1) 

11|1|000   row 1 from V2(2) 

00|1|000−11|1|000=22|0|000 Q2=(8,1) 

( ) ( )2 1(2) 2(2), 8,1 17Q Q Q= = =
 

Step 18. Recover a message 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

391 39 36 481 52 637 1 311

1 1 2

45 602 329 1

2 1

2

1 , , , , , , ,' ,' ' S S Sx w Q y w Q w Q y S           
− −−

= =   =  =
 

 
  

Output: the message ( )1 2 3, ,x   = . 

 

SECURITY ANALYSIS 

Let’s consider and describe possible attacks.  

First, the attack known as a brute force attack can be executed on ciphertext 

by selecting 
1 2( , )Q Q Q=  with attempt to decipher the text 

( ) ( ) ( )1 1 1 2 2' ' 'y w Q x w Q w Q x=  =   . In this case, attack complexity is equal to 3q . 

Second, we can also have a brute force attack  on 
1 2( , )Q Q Q=  by selecting 

such 
1 2( , )Q Q Q=  to find ( ) ( ) ( )2 1 1 2 2' ' 'y g Q g Q g Q= =  . In this case, attack complexity is 

equal to 3q . 

The third one is to choose 
1Q  to match the value of ( )

2(1) 1w Q  in the vector 

( )( ) ( )( )
23 1 1 1 (1) 1' 1, ,y f w Q S w Q= =  . In this case, attack complexity is equal to 2q . Also, we 

can try to choose 
2Q  to match the value of ( )

2(2) 2w Q  in the vector 
4y . In this case, 

its less complex and equal to q . We consider using matrix transformation as a 

possible protection mechanism. So, link 
1Q  and 

2Q  it would help with this. 

Next, we can apply brute force attack  on the ( )( ) ( ),...,0 l s l  vectors. In this case, 

attack complexity is equal to ( )
2

2q .  

Also, there is an attack on the algorithm by itself. Extraction parameters of 

3y , 
4y  does not allow to calculate ( ) ( )1 1 2 2' 'w Q w Q  in ( ) ( )1 1 1 2 2' 'y w Q w Q x=   . If we simply 



try to find the parameters
1 2,Q Q , we need efforts equal to a brute force attack with 

complexity 2q . Since the ( )H P  of 2q
Herm F  is defined over a field 2q

F  which is large 

enough then this attack is just not feasible.  

 

CONCLUSION 

Construction of a logarithmic signature   with specific parameters is 

required for the cryptosystem based on ( )H P  of the 2q
Herm F . Here, the logarithmic 

signature   ( ) ( ) ( )( )1 2 3
,..., 1,s kn kn kn

v V V v S v v
 

= = =  Is a subgroup of the 

( )  2( ) , q

q
H P S , , , F        =  + = . It’s the same for a random cover 

  ( ) ( )1 (1) (2) (3),..., , ,s kn kn kn knw W W w S w w w= = = . It has the same type as v . In fact, the size of 

the array v  and w  is defined by the type ( )1 2
,..., sr r  and ( )1 3

,..., sr r  for ,   in the ( )H P

subgroups. Thus, they both have to be converted to the elements of the groups. 

The solution to the problem is found for the case when the field has an odd 

characteristic. It also requires being on the extension of the automorphism group.  

The ( )H P  of the 2q
Herm F has a simple representation for the odd 

characteristic field. The vectors using logarithmic signature matrices and random 

covers are now easily transcoded. And it gives us coordinates of the ( )H P  

subgroup. This gives an advantage in the size of the message for the proposed 

MST3 cryptosystem design. 
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