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Abstract. This scholarly work presents an advanced cryptographic framework utilizing automorphism groups
as the foundational structure for encryption scheme implementation. The proposed methodology employs a three-
parameter group construction, distinguished by its application of logarithmic signatures positioned outside the
group's center—a significant departure from conventional approaches. A key innovation in this implementation
is utilizing the Hermitian function field as the underlying mathematical framework. This particular function field
provides enhanced structural properties that strengthen the cryptographic protocol when integrated with the three-
parameter group architecture. The encryption mechanism features phased key de-encapsulation from ciphertext,
representing a substantial advantage over alternative implementations. This sequential extraction process
introduces additional computational complexity for potential adversaries while maintaining efficient legitimate
decryption. A notable characteristic of this cryptosystem is the direct correlation between the underlying group's
mathematical strength and both the attack complexity and message size parameters. This relationship enables
precise security-efficiency calibration based on specific implementation requirements and threat models. The
application of automorphism groups with logarithmic signatures positioned outside the center represents a
significant advancement in non-traditional cryptographic designs, particularly relevant in the context of post-
quantum cryptographic resilience.
Keywords: MST cryptosystem, logarithmic signature, random cover, generalized Suzuki 2-groups.

INTRODUCTION

The imminent development of large-scale quantum computing technology
poses a substantial threat to contemporary public key cryptosystems. Specifically,
cryptographic protocols predicated on integer factorization complexity or discrete
logarithm problems, including widely deployed systems such as RSA and ECC,
would be rendered vulnerable. Over approximately two decades, researchers have
proposed several approaches utilizing non-commutative groups to construct
guantum-resistant cryptosystems [1-4].

The intractable word problem represents a particularly promising research
direction for cryptographic system development. Initially formulated by Wagner
and Magyarik [5], this approach functions within the domain of permutation
group applications. Magliveras [6] introduced logarithmic signatures —
specialized factorization structures applicable to finite groups, establishing the

foundation for subsequent cryptographic protocols. Refinements to the original



methodology were developed [7-9], culminating in the MST3 implementation [9]
based on Suzuki group properties.

In 2008, Magliveras et al. [10] identified limitations associated with
transitive  logarithmic signature utilization in  MST3 cryptosystems.
Subsequently, Svaba et al. [11] proposed an enhanced variant, designated
eMST3, featuring improved security through the integration of secret
homomorphic covers. Further advancement occurred in 2018 when T. van Trung
[12] developed an MST3 approach utilizing strong aperiodic logarithmic
signatures specifically for Abelian p-groups.

Y. Cong et al. [13] conducted comprehensive analysis of MST3
implementations, noting that the absence of published research demonstrating
quantum vulnerability positions these algorithms as viable candidates for post-
quantum cryptographic applications.

The original approach within MST3 cryptosystem construction is based on
the Suzuki group. There are several approaches for further improvements of
MST3 were considered [14-17]. One of the valuable ideas is to increase the
encryption efficiency by optimizing calculation overheads. It was done with
reduction of large size of the keys space. Authors shown that the approach to
apply for the LS computing outside of the group center. And it was done over
finite fields of small dimension using groups with large order. Suzuki groups are

isomorphic to the projective linear group pGL(3,F,), where q=2q;, q,=2" and has

order q¢*. Basically, cryptosystem security is defined by group order. In [16],

authors proposed three-parameter group of the automorphism for the first time. It

applies to construct MST3 cryptosystem with improved security. H(p,) of the

Herm‘qu has a greater ordH(P)=q*(q’-1) and greater than the order of

corresponding Suzuki group being considered at original papers. Our paper

presents a practical implementation of this new approach.



THREE-PARAMETER AUTOMORPHISM GROUP OF THE
HERMITIAN FUNCTION FIELD

The Herm‘qu in [14]. We use Aut(Herm)of the Herm‘qu that can be presented

Fz}
q

And it’s extremely large [14]. The properties were discussed in [14]. This

as follows H := Aut(Herm)={y : Herm i Herm|y: Of Herm

group has the order equal to ordA=gq°(¢* -1)(¢° +1). The decomposition group H(p,)

has got of all Aut(Herm) of Herm‘qu with the following properties

{w(z)‘/;(;“

where acF; =F,\{0}, pcF. and y*+y=p"".

ay+p
Z+aply+y,

=

It has order ordH (P,)=q°(q*-1).
Here we have structure for the group as follows
[, B @ B ] =| w4 B v + BB+ 7 |-
Thus, we have identity [10,0] and the inverse of [«,5,/] IS
[@By]" =[a?-aBa Py ].

H(P,)can be represented in simpler way by due to the off characteristic:

H (Pw){a, 5 ﬂ;“ ﬂ

The unique p-Sylow subgroup of H(p,) can be designated by H,(r,) within the

ae Fq*z,ﬁe qu, ;/q+7:0}.

following representation H,(P,)={w < H(P.)jw(y)=y+s for some beF,}.

In such a case we have an order equal to ¢° for the unique p-Sylow subgroup of

{ v(y)=y+8
v(z)=z+py+y,

where, geF., y*+y=p"" and its order equal to 9°as we mentioned above. The
structure for the group can be achieved by subgroup of PGL(3,k) presentation:

1 /4
H,=4/0 B\ reFu vy =p"
0

1

o P X



Group operation is defined as
(LB AL B 7:)=[L B+ Bori+ BiB+7: |
and
(8.7 ) (B ra)=[ B+ Bori+ B B+7 ] -

The factor group H(r,)/H,(P,) is cyclic of order q>-1. Moreover, it was
generated by the ceH(P,) With ¢(y)=az, ¢(z)=a"z.

Another automorphism ¢eH is given by ¢(y)=y/z, ¢(z2)=1/z.

The automorphism group H(p,)of the Hermitian function field Herm‘qu
acting on it as y(y).w(z) has a ordH(P,)=¢’(¢*-1) greater than the order Suzuki

group. The basic idea of MST cryptosystems is given in [9]. We have described

the idea in details in our previous work in details [14-17].

PROPOSED APPROACH
So, within this proposal we have the following steps of key generation,
encryption and decryption.

As a input we have a large group H(pr,). This group is based on the
automorphism y(y),w(z). The construction of group elementsH (r,) is determined
by solving the equation »°+, = g** with respect to . The difficulty of finding ¢

Is proportional to q. H(P,) of the Herm‘qu can be represented by

o [ont]

And it’s true for the odd characteristic. If 4is a generating element of the field,

aqu*z,[)’quz, yq—i-}/:O}.

then the equation ,*+y=0 has solutions y, = 2@ =g q-1. Computation
vectors using logarithmic signatures matrices and random covers are now easily
transcoded into the coordinates s, of the H(p,) subgroup.

The group operation is defined as

S(al!ﬂv%)'s(az'ﬁzv?/z):S(alazlazﬂl+ﬁ2!a§+171+a2ﬂ2qﬁ1+72)'



The inverse of
S (O!,ﬂ,y)’l =S (afl'_a—lﬁ,_a*(gﬂ)?/+a—(g+1)ﬁq+1) ]

Calculation of the inverse element s(«,5.7)" in this representation expands

q+1
2

the scope for }/1=’812+1+)/'1 and 5, =%, . This is a key idea in constructing a

logarithmic signature based on the H(r,) of the Herm‘qu . In another case, if ;

and ,', are solutions of equation ,*+y =0, the inverse element is strictly defined
through expression s(a.p.y)" =s(a".~a .o "y").
As an output we have a [w,y,f] as a open key with corresponding
[v.(7,.7,)] IS USed as a secret key.
KEY GENERATION
Step 1. Choose a 1%  tame logarithmic  signature

Ve = |:V1(1)""’VS(1)] = (Vi )y = s(l, Vieay - Vit /2) of type (rl(l),...,rs(l)), k=L1s@), n=14 , Vg €F. -

Step 2. Choose a 2™ tame logarithmic signature® = ViV 1= (v )y = S (10, Vo)

Wy =| Wiy Wogy [ = (Wi :S(Wn Wi, | Wiy q+1/2)
Step 3. Select a 1% random cover (VW Wy ] = (e o Yo (V.

of the same type as Yo, where Y € H(P.) W W, € MO

Step 4. Select a 2" random cover
q+1
W) = [W1<2>""'Ws<2)J = (W )(2) =3 (Wkn<2>1 1 Win(2), '(Wkn(Z)z) / 2+Wkn<2)3)

of the same as Y@ , where “r@: W SR MO R,

Step 5. Choose Toays Tagy oo Ty € H(P)NZ 0 :S(Tiun-fiu)z'(Tiu)z)qﬂ/z) to, €F° i=0,s(l)

1=12 Let’s %o =%,

Step 6. Construct a homomorphism * defined by

f, (S (Wl,WZ,W2q+1 / 2)) =S (1, W, , W,/ 2)

Step 7. Calculating Yo 2[91(1>*---'gs(1>}=(9kn )y = T fl((Wkn )(1))(an )y Ty , k=1s(1) o =11, ,



— q+1 q g+l
Where f, ((Wkn )(1,)(an )o = S(l, W, + Vi » ey, 7 2+ Wangay, Viny + Vi /2).

Step 8. Define a homomorphism f (S (v w7 12)) =5 (L0W,)

"=L1%e where f, ((Wkn )(z))V(bkn )y = S (1.0 Wea), +Viaz))

1=12

So, as an input for the encryption we have a text X<H(P.) x=S(4%) and the
pUbIIC key [fl’ fzv(ng|)] ’ | =]TZ .
ENCRYPTION

QeZ
Q=Q.Q), %!, 2<% should be chosen randomly. Then, we calculate the

following
Yy =w'(Q) x=w"(Q) w,"(Q)x
Y,=9'(Q)=9,'(Q) 9,(Q)= S(*’ Wy, (Q)+V (Q)+% Wy, (Qq)+ Ve (Qz)+*)'

for third coordinate to be added in the product of " (%)Y (@),

Calculating
Vo = (W '(Q)) =S (1w, (Q).*)

Vo=, (w,'(Q))=S(L0,w,, (Q,))

Output %Yz ¥::Y:) of the message .

So, in the next chapter we going to evaluate the main idea of our proposal.



COMPUTATIONAL VALIDATION OF THE PROPOSED APPROACH

Lets check the consistency of the proposed approach.
Fix the finite field Ff. , o=3 , g@=2+22+2 and

H (Pw):{a,ﬂ, ﬂ;“ +7/}

Product of two matrices is used for the group operation
S(a1'ﬂ1’71)'s(a21ﬂ217/2):S(a1a2|a2ﬂ1+ﬂ2!a§+171+a2ﬂ2qﬂ1+72)'
S(allbucl)‘s(az'brcz):S(a@z'azbl+bz’a;+1cl+a2b2qb1+cz)

aqu*z,ﬁe qu, ]/q+]/:0}.

where ylzﬂljw'l, yzzﬂiﬂw-z.
The inverse element is determined as
S(a.py) =S(a’ —aB.ay").
s(10,0) is a triple and it is an identity.
Step 1. Let's construct a tame logarithmic  signature
Vo =[V1(l) ..... Vs(l)]z(vkn)(l) =S(11Vim(1):Vi+é)/2) of type (rl(l) ..... rs(l)), k=1s@), n:m, Via € Fo
for coordinate g and v, =(v,), =S(10.v, o) OF type (ny...5y), k=1s(2), n=1r

i(2) 1

Vi € F, < F.. for coordinate .

The logarithmic signatures v, andv, in a group representations define v,
and v, coordinates. Types (r,....r,,) and logarithmic signature s v, and v, are
chosen independently. Let's LSs v, and v,, as an example, have a types
(hey by By ) =(32.3.3) , (5 B ) =(3°.3) Arrays v, consists of three subarrays and
v, Nave of two subarrays with a r. as a rows quantity. Any arrays fragmentation
can be selected with the condition 11:%r =3 for v,, and I, r =3 for v, ,

respectively. Each row vy, it's an r. field element. We construct arrays of
logarithmic signatures with the method shown in [18].
To fulfill and increase the security requirements of arrays v, we can use

different cryptographic transformations. As an obvious case, we can simply add
noise vectors, permute strings in subarrays v,, merge of arraysv, or use matrix

transformations. It helps to build two different logarithmic signatures
v, =[Vig Vo Vs | @NA v, =[V, Vo, ] - The arrays of logarithmic signatures

Y, =S (LY Vi /2) and v, =s(10y,,) in the group representation, define the
coordinates v,,,, and v, , respectively. In the string and the field representation
v, and v, has the following form (See Table 1).



Table 1- Field representation of v,and v,

ViZ | Vg S Vi= Vi@ S

Vi) | 000000 | 1,0,0 Vo) | 211000 1,0%%2, 0140
100000 | 1,a°,0% 202100 1,05%8 308
200000 | 1,0%%% %64 120200 1,0%%0 140
010000 | 1,0t,03% 120010 1,017°,02%0
110000 | 1,05,05% 201110 1,07% 308
210000 | 1,0%% g*® 111210 1,008 g2
020000 | 1,03%5,¢%% 011020 1,000
120000 | 1,05t o**® 202120 1,04 0308
220000 | 1,070, ¢%%? 202220 1,0%80 19
001000 | 1,0%,0*° | Vi | 220210 1,0%,0°
101000 | 1,a7°,03% 021001 1,0%72,a8
201000 | 1,02*3,0516 011022 1,05 o8

7 560 —

gﬂggg 1224;?’(1532 Va Vin() S (L 0,Vinz) )
211000 | 1,0%%2,0!° | Viy | 000000 1,0,0
021000 | 1,02%8 %6 100000 1,0,a°
121000 | 1,0%,0° 200000 1,0,0%%
221000 | 1,0% o/ 010000 1,00
002000 | 1,0:%%6,0420 110000 1,0,0f
102000 | 1,0507 o516 210000 1,0,0%%
202000 | 1,0%3,03% 020000 1,0,0%%
012000 | 1,082,076 120000 1,0,0%%!
112000 | 1,0%%%,a% 220000 1,0,0%70
212000 | 1,0%5,a7% | Vo) | 120000 1,0,0%%!
022000 | 1,0%%,0560 111000 1,0,047*
122000 | 1,048,140 022000 1,0,0%*
222000 | 1,010,05%

Step 2. Construct random covers w,, for the same type as v, and v,
+1
W(l) = |:Wl(l)’ . s(l)] Wkn (1) (Wkn(l)1 'Wkn(l)z '(Wkn(l)z )q / 2) 1

q+1
W) :[Wuzw s(z)] (W) @ = (Wkn(Z)uWkna)z'(Wkn<2)z) / 2+Wkn(2)3)*

Where w, ., W, €F.\{0}, Wy, € F\{0}cF., k=Ls,, n=Lr,, 1=12.

These covers " to be defined by three arrays (wi, W, Waq, ) With non-

zero entries.
Step 3. Let’s generate random COVErs w, =Wy, Wy Way |, Wy =[ W, Wy, |- IN

the field representation w, =S (W, W, Wew, ) AN W, =S (W) W), Wi, ) DAS the
following form (See Table 2). ry.z) 7y e HPINZ |, 70y =S (700, T, » (B, )7 12)
T, €F,i=0,5(1), 1=12 will be chosen randomly. Let’s 7, =7, .



Table 2- Field representation of wand w,

Wl WZ

Wi Wi W) Wi

o201 1% G508 | (24 75 (280 | (37 (86 (28 | (12 130 368
o505, 50 128257 (500 | (5T7 (578 392 | 5% 68 B
o8B0 137 (500 | 145 16 (364 | (A%2 (507 (0| d9h (438 2%
W72 %2 (B0 | (207 (578 (392 | 464 (346 (5EB | (77 3L 508
o275 1B (B8 | (5% 312 (364 | (184 (54 (420 | (674 (523 A4B
(5% (300 (280 | (523 (364 (364 | (267 (EEL (B6 | (A2L (I 672
o 01715’01 0578 108 (420 | 728 58 o616 | 368 (425 ;16
9,1 0 012 46 (476 | (B (608 (508 | (AT 136 532
BT 576 (476 | 889 721 (168 | (209 (275 (672 | (59 420 (76
o556 700 (560 | (358 (/494 364

%8 o887 o672 | o587 (28 (3% |\ Wao)
o5 P13 (B39 | B6L (50T (3 | (574 (672 (252 | (A00 (363 3%
(1677,(1584,(1700 a446’a407’a112 allg (1167 (1672 a422 a635 (1672
o037 (579560 o4 g% g2 | 505 512 140

Step 4. Let for the 1% logarithmic signature B, We have

o= ((1267 675 336) T 0(1) ((1461 140)
Ti(1)= ((1281 23’ 280) T 11(1) ((1447 106 420)
T2(1)= ((1 490 252) 12(1) ((1676 252)
T3~ ((1660 225 112) T 13(1) ((}. 657,(1560)

Step 5. Let for the 2" logarithmic S|gnature B, We have

T0@)= ((1660 225 112) T _10(2)_(0.68 657,(1560)
TiR)= (CL 475 560) T 1(2) (0.649 32 532)
0" (0.115 415 336) T 2(2) (0.613 664 28)

The arrays g, and g, to be calculated within the next step.
Step 6. So, we obtain g, =gy 9w |= () = o0 fl((wkn)(l))(vkn)(l) T
9 =[Gy 9 ] = (91 )y = T Fo (Wi )y ) (Vi )y T PY the: condition of the example.
Step 7. Construct a homomorphism f,, f, defined by
(S (W, w7 12)) = S (Lw, W™ 12) £, (S (W, wp, w7/ 2)) =S (L,0,w,).

In the field representation g, =S(9,q, . 9ew, Gow,) ANA 9, =S(Gue, G, Yo, )

has the following form (See Table 3)
Table 3- Field representation of g,and g,

g 9,

011) 011) 92(1) 91(2)
(114,(1549,(1692 (114,(1514,(1606 (1499,(1219,(1 (1147,(1149,(1208
(114,(1150,(1232 (114,(1173,(1101 (1499,(1492,(1308 (1147,(1149,(1455
(114,(1420,(1179 (114,(1158,(1194 (1499,(1599,(1500 (1147,(1149,(1477
(114,(1252,(1176 (114,(1468,(146 (1499,(1488,(1520 (1147,(1149,(1262
(114,(1215,(1467 (114,(1421,(1226 (1499,(1569,(1187 (1147,(1149,(1371
(114,(1613,(1678 (114,(1321,(1652 (1499,(1561,(1678 (1147,(1149,(155
(114,(1145,(1678 (114,(1342,(172 (1499,(148,(1653 (1147,(1149,(131
(114,(1646,(1241 (114,(1393,(1349 (1499,(1575,(1452 (1147,(1149,(1183
alA’GBZO’GZM (114,(143,(1522 (1499,(1522,(1659 (1147,(1149,(1328
(114,(137,(1676 (114,(1221,(1244

(114,(1573,(1636 (114,(1510,(1534 93 1) gz 2)
alA’GBSB’a?:Ol (114,(1498,(1250 aGOB (1714 (1474 036,0697 (1450
(114,(1414,(1202 (114,(1671,(1634 aGOB (124 (1632 (X ,(1697 (124
(114,(1614,(1515 (1608 (1149 alBO (X ,(1697 (1380




For example, let g =379. We obtain the following basis factorization for a
given type (r,.nu.he)=(333) in the form of Q =(Qg Q. Qu)=(151), Where
Q +Q,3 +Q,3° =379.

Step 8. Calculating g,
g, (379) = Oy (l) O20) (5) O30y (1) =S (a“,alSo , o ) S (a499 , a561, am)S (05608,0(24 , assz) =S (aa%,agl, a° )
Let r,=17. We obtain the Q, =(Q,.Q,,)=(81)=17 for a given type (r.r,,)=(3"3).

Step 9. Calculating g,

92 (17) = gl(z) (8) gz(z) (1) =S (a147,a149,a328)s (aae,a697,a24) =S (a183,a192,a433).

In this section we consider step-by-step encryption algorithm. We have a message
xeN(P.), Xx=5(X.%.%), x €F.\{0}, x,,x <F. and the public key [f,f,.w.qg)], 1=12
for the input.
Step 10. Let X:(al,az,aa): S(al,az,as) .
Q=(Q,Q,)=(379,17), Q ez‘ . Q eZy, to be chosen randomly.

Step 11. Calculating
Y = Wl(Q)' X=W, l(Ql)'Wz '(Qz)' X=3 (a145,a602,a329)
Y, = g'(Q): gl'(Ql).gz I(Qz): S(a576,a370,a226)

y, = fl(Wl'(Ql))=S(a°,a394,a383)

v, = f,(w, '(Qz)):S(a",O,aﬁgz).
Output a ciphertext (y,,y,.y.y,) of the message x.
Next, we consider step-by-step decryption algorithm. We have ciphertext
(%1 Y20 ¥sv.) @nd private Key [v,(zg.--7,))] @S @n inputs.
Step 12. The random numbers Q=(Q,.Q,) will be restored with the next steps to
decrypt a message «x:

D® (Q, Q) =744 yzfg(lz) = TonyS (0‘575 ™, a® )T;(lz) =S
D*(Q) _ y371D(1)(Q1'Q2) :S(ao,a30,al49)8(0{0,0(273,0{139):S((Zo,agz,a408).

We getv, (Q) =a™® =(202211).
Step 13. Recovery of ¢ was done earlier Q =(Q,. Q. Q) =(15.1).

202211 Q1=(**,1)
021/00[1 row 1 from Vzq)
202[21]1-021]00]1=211]21]0 Q:= (*,5,1)
111)21)0 row 5 from V)

211[21/0-111[21/0=100/00j0 Q1=(1,5,1)
Step 14. The components of the arrays w'(Q) and w'(Q) will be removed from
ciphertext (y,,y,) for further calculations:

1

ygl) =n I(Ql)_l . S(a3937a91,a0 )’ S(a576,a370,a226) _ S(algg,algz,a433).

Step 15. Repeat the calculations

2 _ @W_-1 _ 183 192 433\ _-1 0 589
D¥(Q,) =7y Y, Ts(z)—TO(Z)S(OZ ao,a )rs(,,z)—S(a ,0,a ),



D*(Q)=D® (Qz)yzx_l =S (O!O,O,CZSSQ)S(aO,O,aegZ )71 = S(aO,O,az).
Step 16. Restore Q, with v, (Q,)=«a? =(001000).
Step 17. Perform inverse calculations v, (q,)™*. We found the bit groups in v(Q) in

accordance with a type (r,....r,)=(3.3). Same computation to be used as in the

s(2)

example for W) Then, we achieve

00|1/000 Q2=(*,1)

11|1|000 row 1 from Va)
00[1/000—11|1/000=22/|0[000 Q,=(8,1)
Q, = (Q1<2> 'Qaz) ) =(81)=17

Step 18. Recover a message
= W'(Q)_l y, = [Wl '(Ql)'Wz .(Qz)]fl Y, = [S (0!391,0539,6(36)8 (a481’a527a637 ):|’1 S (0(145,0(602,0(329): S (al,az,a3)
Output: the message x=(a',a*.a*).

SECURITY ANALYSIS

Let’s consider and describe possible attacks.
First, the attack known as a brute force attack can be executed on ciphertext

by selecting ©0=@Q.Q) with attempt to decipher the text
y, =w'(Q)-x=w,"(Q)-w,'(Q,)-x. In this case, attack complexity is equal to ¢°.

Second, we can also have a brute force attack on Q=(qQ.qQ,) by selecting
such Q=(Q,Q,) to find y,=g'(Q)=0,(Q)-9,'(Q,) . In this case, attack complexity is
equal to o*.

The third one is to choose @, to match the value of w, (Q,) in the vector
ys = f,(w'(Q))=S(Lwy, (Q).#). Inthis case, attack complexity is equal to ¢*. Also, we
can try to choose q, to match the value of w,, (Q,) in the vector y,. In this case,
its less complex and equal to q. We consider using matrix transformation as a
possible protection mechanism. So, link @ and q, it would help with this.

Next, we can apply brute force attack onthe (z,,....z,, ) vectors. In this case,
attack complexity is equal to (¢?)’.

Also, there is an attack on the algorithm by itself. Extraction parameters of

v,» v, does not allow to calculate w,'(Q)-w,'(Q,) INy, =w'(Q)-w,'(Q,)-x. If we simply



try to find the parametersq,,q,, we need efforts equal to a brute force attack with

complexity 2. Since the H(p,) of Herm

F. isdefined overafield F, which is large

enough then this attack is just not feasible.

CONCLUSION

Construction of a logarithmic signature g with specific parameters is

required for the cryptosystem based on H(p,) of the Herm|F, . Here, the logarithmic

signature  v=[V;,..V,]=(va) =S (LVpVis) IS @  subgroup  of  the

H(Pw)z{S(a,ﬁ,y/)‘a,,b’equ,7q+;/=ﬂ} . It’s the same for a random cover

the array v and w is defined by the type (r....r,), and (r,...r,), for g,y inthe H(P,)

subgroups. Thus, they both have to be converted to the elements of the groups.
The solution to the problem is found for the case when the field has an odd
characteristic. It also requires being on the extension of the automorphism group.

The H(p,) of the Herm

F. has a simple representation for the odd

characteristic field. The vectors using logarithmic signature matrices and random

covers are now easily transcoded. And it gives us coordinates of the H(p,)

subgroup. This gives an advantage in the size of the message for the proposed

MST3 cryptosystem design.
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