
FLARE: Feature-based Lightweight Aggregation
for Robust Evaluation of IoT Intrusion Detection

Bradley Boswell1[0009−0001−1506−2533], Seth Barrett1[0009−0007−6272−6842],
Swarnamugi Rajaganapathy2[0000−0003−4239−3677], Gokila

Dorai1[0000−0001−5825−7034], and Meikang Qiu1[0000−0002−1004−0140]

1 Augusta University, Augusta, GA 30912, USA
{brboswell,sebarrett,gdorai,mqiu}@augusta.edu

https://www.augusta.edu
2 Digital Forensics & Artificial Intelligence Research Lab, Augusta, GA 30912, USA

swarnamugi@dfairlab.com

https://dfairlab.com

Abstract. The proliferation of Internet of Things (IoT) devices has
expanded the attack surface, necessitating efficient intrusion detection
systems (IDSs) for network protection. This paper presents FLARE, a
feature-based lightweight aggregation for robust evaluation of IoT intru-
sion detection to address the challenges of securing IoT environments
through feature aggregation techniques. FLARE utilizes a multilayered
processing approach, incorporating session, flow, and time-based sliding-
window data aggregation to analyze network behavior and capture vital
features from IoT network traffic data. We perform extensive evalua-
tions on IoT data generated from our laboratory experimental setup to
assess the effectiveness of the proposed aggregation technique. To clas-
sify attacks in IoT IDS, we employ four supervised learning models and
two deep learning models. We validate the performance of these models
in terms of accuracy, precision, recall, and F1-score. Our results reveal
that incorporating the FLARE aggregation technique as a foundational
step in feature engineering, helps lay a structured representation, and
enhances the performance of complex end-to-end models, making it a
crucial step in IoT IDS pipeline. Our findings highlight the potential
of FLARE as a valuable technique to improve performance and reduce
computational costs of end-to-end IDS implementations, thereby foster-
ing more robust IoT intrusion detection systems.

Keywords: IoT intrusion detection systems · Feature engineering · Lightweight
security solutions

1 Introduction

The IoT introduces numerous security challenges due to the vast number of
interconnected devices. This poses significant risk that can compromise com-
munication systems, disrupt critical functionalities, and exploit access control
and sensitive data. According to recent guidelines published by NIST [22], there

ar
X

iv
:2

50
4.

15
37

5v
1 

 [
cs

.C
R

] 
 2

1 
A

pr
 2

02
5

https://www.augusta.edu
https://dfairlab.com


2 B. Boswell et al.

is a critical need for developing robust IoT security systems to address the in-
herent vulnerabilities in IoT devices and protect the IoT ecosystem. An IoT
Intrusion Detection System (IoT IDS) is a security mechanism designed to mon-
itor, analyze, detect, and classify malicious activities within an IoT ecosystem.
Traditional IDS systems often use signature-based detection techniques, and
their advantage is that they result in high detection rates and low false alarm
rates for known attacks. However, signature-based techniques are ill-suited to
the dynamic and ever-changing nature of IoT threats [6]. Modern IoT IDSs use
anomaly-based detection techniques to learn normal and anomalous behaviors by
analyzing network traffic and detect known and unknown attacks, making them
well-suited for the ever-evolving and dynamic nature of IoT environments [6].
However, the performance of anomaly-based IDS is highly dependent on fea-
ture engineering tasks and requires designing a rich feature set that effectively
characterizes network traffic patterns. Feature aggregation, as the first step in
feature engineering, plays a vital role in enhancing feature selection, extrac-
tion and model performance [33]. This can greatly optimize subsequent pro-
cesses of the machine learning pipeline and contribute to higher model accuracy.
In recent years, IoT IDS research has focused mainly on the feature selection
and extraction process, while feature aggregation remains an active area of re-
search [18]. In IoT environments, attacks often unfold over time rather than
being an isolated event. The temporal context plays a vital role in these envi-
ronments in detecting patterns and capturing network behaviors. While recent
works have focused on addressing temporal context using deep learning models,
there remains a research gap in addressing insufficient integration of meaningful
time-aware features like burstiness, or flow inter-arrival patterns before model
training. Temporal feature aggregation at the feature engineering stage remains
a less explored area. To address aforementioned challenges, we propose FLARE,
which captures session-level, flow-level and temporal network characteristics at
feature engineering stage. This approach offers advantages in capturing patterns
of short, sudden attack bursts effectively rather than using complex end-to-end-
models that are designed to learn sequential dependencies over long time frames.
Moreover, applying FLARE aggregation in feature engineering will provide a
strong interpretable foundation for subsequent end-to-end learning approaches.
By incorporating time-based sliding windows in our proposed feature aggrega-
tion approach, we gain deeper insights into model decision-making compared to
end-to-end models, which often act as black boxes and typically require explain-
able AI (XAI) techniques to improve model interpretability.

Threat modeling plays a critical role in the development and evaluation
of IoT intrusion detection systems, as it systematically identifies vulnerabili-
ties, anticipates attack vectors, and formulates mitigation strategies [39]. In this
study, threat modeling is achieved by leveraging a lightweight feature aggrega-
tion methodology (FLARE) that captures session-level, flow-level and temporal
network characteristics from heterogeneous IoT devices. To capture temporal
patterns in the data over time, we employ a time-based sliding window [45]
to capture flow-level statistics. By aggregating flow-level data and applying di-



FLARE 3

mensionality reduction techniques such as PCA, the methodology highlights key
features contributing to the detection of various attack types, including Denial-
of-Service (DoS) and Distributed Denial-of-Service (DDoS). Through supervised
learning models, this approach effectively classifies binary and multi-class at-
tacks, demonstrating the importance of capturing fine-grained temporal dynam-
ics and flow-based attributes in addressing IoT network intrusions.

The remainder of this paper is organized as follows: Section 2 describes the
relevant background literature. Section 3 presents our proposed methodology,
including feature aggregation techniques and supervised classifiers for attack
classification. Section 4 details the results and findings from our experimental
evaluation. Section 5 outlines the conclusions drawn from this study are pre-
sented. Finally, Section 6 discusses potential avenues for future exploration and
enhancement.

2 Related Work

In this section, we review the primary factors that support the proposal of this
paper. The proliferation of IoT devices in medium to large IoT ecosystems, such
as home control systems and industrial IoT systems, has made these devices
targets for various threats including short bursts of attacks, data theft, privacy
breaches, man-in-the-middle attacks, botnet attacks, and ransomware attacks
[20]. The sudden burst of attacks that is common in IoT system are referred to
as a burst traffic attack, a subtype of DoS or DDoS attacks. These attacks target
the inherent vulnerabilities of IoT devices, such as limited computational power
and network capacity, by overwhelming them with short but intense surges of
traffic or requests [1].

A wide range of techniques and approaches have been proposed in the liter-
ature to mitigate these sudden burst of attacks in the IoT IDS. One promising
approach is the integration of machine learning (ML) techniques within IoT
IDS, which can enhance detection accuracy by learning from both normal and
attack traffic patterns [21]. In [30], the authors proposed the hybridization of
the deep learning technique and the multi-objective optimization method for
the detection of DDoS attacks in the IoT networks. Lightweight IoT networks
are the easiest targets for attackers to introduce sudden burst of attacks. In [15],
authors highlighted a data pre-processing strategy with an ensemble feature se-
lection algorithm to select the features by analyzing the lightweight IoT traffic
patterns to detect DoS attacks. H. Qiu and M. Qiu et al. [24,42] proposed a new
approach with machine learning [41, 44] to prevent adversarial attacks against
network intrusion detection in IoT and cloud systems [19,25,26]. In [37], the au-
thors proposed contrastive learning for detecting attacks in water mark, image
processing [27], and digital twin applications [10,11] in IoT systems.

Current research highlights the feature aggregation process as a critical step
whereby diverse low-level representations of network traffic are consolidated into
richer, high-level representations. One of the primary approaches involves the ag-
gregation of flow-based features. For instance, Adhao et.al [2] emphasized that



4 B. Boswell et al.

flow-based aggregation not only involves the selection of informative features
but also the fusion of different types of features into a unified representation.
This fusion is vital for reducing noise and redundancy while emphasizing the
most salient aspects of network behavior. In [36], Wu et. al. proposed that flow
aggregation is achieved by grouping network packets into flows based on com-
mon characteristics such as source and destination addresses, port numbers,
and temporal proximity. This aggregation results in composite flow records that
encapsulate essential network behavior over defined time periods, thereby cre-
ating a more comprehensive dataset for analysis. Following flow aggregation,
the authors apply latent semantic analysis, a technique developed to reveal hid-
den topics within textual data, to extract and quantify the underlying semantic
structure present in flow records. Biyyapu et.al, [4], proposed a feature aggre-
gation with hybrid sampling algorithm composed of ADASYN and repeated
edited nearest neighbors (RENN) for sample processing to address class im-
balance problem in IDS. In their article, an enhanced reptile search algorithm
(IRSA) is proposed, which uses a sine cosine algorithm and Levy flight to op-
timally select the weight of their proposed model. Pektaş et.al [23], proposed
that grouping sequential flow records extracted from raw network traffic into
two-dimensional allows deep learning architectures, specifically those combining
convolutional neural networks (CNNs) with long short-term memory (LSTM)
networks, to automatically learn spatial-temporal representations.

While machine learning and deep learning models can efficiently classify IoT
IDS attacks, their performance depends on well-designed feature representation
and aggregation techniques. Modern intrusion detection systems designed using
end-to-end models [7,8,16,28,32,35,43], specifically for temporal feature analy-
sis, learn feature representations dynamically from raw sequences. This increases
computational complexity and requires high-end hardware like GPUs and TPUs
for training. Table 1 summarizes the study of IDS designed using end-to-end
models to process temporal features. Compared to the works outlined in this
table, our work addresses these limitations by employing statistical techniques,
grouping packets into flows to provide a more structured representation, aggre-
gating network flow and temporal features before model training to reduce noise,
improving interpretability by providing insights into attack patterns, and reduc-
ing computational complexities by using shallow models such as random forest,
SVM, XGBoost and feedforward networks. Also, we observe from Table 1 that
these studies have extensively focused primarily on either feature selection or fea-
ture extraction. However, they do not address incorporating feature aggregation
and the potential benefits of leveraging these techniques to better detect anoma-
lous network traffic. In our work, we demonstrate that our proposed FLARE
aggregation technique serves as a foundational step in feature engineering, pro-
viding a structured representation that enhances the performance of complex
end-to-end models. This makes feature aggregation a crucial component in the
IoT IDS pipeline.



FLARE 5

Table 1. Summary of IDS Using End-to-End Models

Author Objectives -
Algorithms
Used

Feature
engineering

Dataset Advantages Limitations

Saikam
et.
al.(2024)
[32]

Class Imbalance
technique -
Difficult set
sampling &
DCGAN, Model
Building:
Classification -
Enhanced
Elman Spike
NN

Feature
extraction - Self
Attention-based
Transformer for
temporal
feature learning

BOT-
IOT,
TON-
IoT,

CICIDS
2019

Addressed class
imbalance,
Generalization
across three
datasets, Self
attention
mechanism helps
model adapt to
sudden bursts of
attacks

High
computational
cost and
resource
intensive,
Real-time
deployment
challenges for
low power IoT
devices

Wanjau
et.
al.(2024)
[35]

Model Building:
Feature
extraction -
bi-directional
long short term
memory for
temporal
feature learning

Feature
selection -
Random forest
approach,
Dimensionality
reduction -
PCA

CICIDS
2017,
NSL-
KDD

Proposed a
hierarchical NIDS
model structure
that extracts
discriminative and
temporal
characteristics from
normal and
malicious network
traffic

Time
consuming in
the training
phase, Increased
computation
cost to fuse two
types of
features,
Difficult to
process
real-time data

Lei et.
al.(2021)
[16]

Model building:
CNN -
convolutional
layers are
utilized to
capture spatial
correlations
among different
features, LSTM
- to model
sequential
dependencies
and temporal
dynamics

Contribution-
based feature
selection

UNSW-
NB15,
AWID,
CICIDS
2017,

CICIDS
2018

Incorporates
multi-feature
correlation,
Integrates spatial
and temporal
analysis

Increased
computational
complexity from
hybrid
architecture.
Demands
substantial
computational
resources

Kanna
et.
al(.2021)
[28]

Model building:
Unified model
of Optimized
CNN (OCNN)
and
Hierarchical
Multi-scale
LSTM
(HMLSTM)

LSTM for
temporal
feature
extraction

NSL-
KDD,
ISCX-
IDS,

UNSW-
NB15

Hyper parameter
tuning using meta
heuristic approach
to increase the
learning late

Computational
overhead
associated with
training a
unified deep
learning model
integrating
CNN and
temporal
components.

Derhab
et.
al.(2020)
[8]

TCNN deep
learning
architecture -
Convolutional
Neural Network
(CNN) with
causal
convolution

Feature space
reduction and
transformation
using log
transformation

Bot-IoT Integrated TCNN
with SMOTE-NC to
handle class
imbalance

Causal
convolution
with larger
receptive fields
and additional
padding require
more
computational
resources for
every forward
pass



6 B. Boswell et al.

3 Methodology

Fig. 1. FLARE - IoT Intrusion Detection System

This section outlines the primary steps for detecting and classifying attacks
in our IoT intrusion detection system. We begin with data preprocessing to pre-
pare data for the machine learning pipeline. Data collected from 10 IoT devices
undergoes quality checks, cleaning, and encoding. We use unique identifiers such
as timestamps to align and merge data from different systems, ensuring consis-
tency for applying our lightweight FLARE feature aggregation technique. This
aggregation produces a new dataset with highly granular temporal features, pro-
viding a fine-grained view of temporal patterns and capturing short-lived events.
To extract only the most essential information, we apply Principal Component
Analysis (PCA). The PCA-transformed data is then used to train supervised
models for binary and multiclass attack classification. Figure 1 presents a block
diagram depicting our proposed methodology for robust IoT IDS evaluation.

3.1 Dataset Creation

To generate a robust dataset of IoT traffic for our experiment, we set up an
isolated network environment that contained a range of IoT devices. The core of
the network was a TP-Link TL-WR541N router powered by OpenWrt software.
Table 2 lists the IoT devices chosen at this stage of the study. These devices



FLARE 7

Table 2. IoT devices and corresponding interaction methods

Device Name Interaction Methods

Amazon Echo Dot, 5th Gen. Smartphone App & Voice Interaction
Kasa Smart Wi-Fi Plug Mini Smartphone App & Physical Button
LongPlus X07 Baby Monitor Smartphone App

Ring Video Doorbell, 2nd Gen. Smartphone App & Device Controller
Google Nest Mini Smartphone App & Voice Interaction
Google Home Cam Smartphone App
NiteBird Smart Bulb Smartphone App
OKP K2 Robotic Vacuum Smartphone App
Roborock K2 vacuum Smartphone App & Physical Button
Philips Hue Hub Smartphone App

were selected to serve as examples of several operating areas, such as entertain-
ment, security, and smart home automation. Using a Samsung Galaxy A71 5G
smartphone and the corresponding companion software, each device was config-
ured according to the manufacturer’s instructions. Additionally, each device was
assigned a static IP address in order to guarantee reliable packet capture that
was free from issues brought on by dynamic IP changes.

Using Wireshark, we recorded benign network traffic when the IoT devices
were operating normally. The specific parameters of this data collection are ex-
plained further in [3, 5]. These captures established a baseline for the typical
communication patterns of the IoT devices. For each device in the dataset, we
recorded eight-hour traffic sessions. Throughout each session, we implemented
four attack methods: TCP SYN Flood, XMAS Tree Flood, UDP Flood, and
HTTP Flood [3,5]. Each attack was executed three times per device during the
eight-hour capture period, generating a comprehensive dataset with substantial
malicious traffic for analysis. All data collection sessions were conducted sequen-
tially using Wireshark.

3.2 Feature-based Lightweight Aggregation

We propose a novel feature-based lightweight aggregation technique to effectively
detect and classify sudden bursts of attacks in IoT intrusion detection systems.
Our approach captures the highly temporal granular properties of these attack
bursts by initially aggregating features for all packets within a session. This ag-
gregation groups features based on unique network flows, which are identified
by five key elements: source ip, destination ip, source port, destination port, and
protocol. This aggregation allows us to summarize and consolidate traffic charac-
teristics for each unique flow rather than each individual packet. By aggregating
features for each unique session in this way, we capture both general flow-level
attributes and specific direction-based attributes of forward and backward flows,
such as packet length statistics, byte length statistics and the inter-arrival time
between two successive packets in a flow. In order to capture the temporal dy-



8 B. Boswell et al.

Algorithm 1 Sliding Window Aggregation

Input: data - the network data with indexed timestamps, window size - the time
range of the data included in the window, step size - the stride by which the
window moves forward

Output: window list - a data frame with aggregated features
1: Initialize window list

2: Set start times using pd.date range with step size

3: for each start time in start times do
4: end time ← start time + window size

5: Extract window with timestamps between start time and end time

6: if window is empty then
7: continue to next start time

8: end if
9: Calculate flow rate features

10: Calculate directional ratio features

11: Calculate entropy features

12: Calculate packet level features

13: Create aggregate dictionary with start time, end time, computed features
14: Append aggregate to window list

15: end for
16: return window list

namics of sudden bursts of attacks, we apply a sliding window to analyze packets
over a specific time period, continuously sliding the time window forward in time.
This allows us to collect the packets within the current window for analysis and
then recalculate as new packets enter and old packets exit the window. This
sliding window approach generates a series of aggregated features for each time
interval, capturing characteristics such as flow rate, directional ratios, entropy
metrics, and packet-level statistics. Algorithm 1 shows the steps in the sliding
window aggregation. We calculate shannon entropy [34] for source ip and des-
tination ip to measure randomness in the ip addresses within the window. The
calculation of directional ratio features within the current window measures the
forward-to-backward ratio of packets and bytes. This helps to monitor the traffic
directions and identify unusual traffic behavior. Additionally, we calculate flow
features within the current window to capture packet and byte transmission
speed in seconds.

Now, having both session and sliding window aggregation, we merge these
two on the overlapping time interval start time. For highly temporal-granularity
attacks such as DoS or DDoS, aggregated features from overlapping windows
share data with the previous window, providing a rolling perspective that helps
detect sudden bursts of network activity. This approach offers a smoother, con-
tinuous view of network behavior, avoiding data gaps and enabling detection of
attacks occurring in shorter intervals. In Figure 2, we illustrate the attribute
packet count window over time with sudden bursts highlighted. For our experi-
mental analysis, we set the step size smaller than the window size to ensure that
this increases the temporal granularity and that no data are skipped.



FLARE 9

Fig. 2. Packet count window

It is evident from our original dataset creation process that the network flows
from the 10 IoT devices are originated at different time frames, and to create a
unified dataset, a common attribute such as time interval is required to create
an aggregated dataset from session and sliding window data that enables merg-
ing the closest matching values. In this case, we use start time as a common
attribute, and the merge operation is performed to match start time in sliding
window aggregation with the closest start time in session aggregation. By merg-
ing session and sliding window aggregations in this manner, a new aggregated
dataset is produced. Algorithm 2 shows the step in merging the sliding window
and session data aggregations. This newly generated dataset is further adapted
to include labels by comparing with the original dataset identified by features
such as source ip, destination ip, source port, destination port and protocol.

3.3 Feature Extraction

The proposed feature-based lightweight aggregation summarizes the raw network
packet into high-level features that capture key patterns and behaviors within
the IoT network by combining insights from session, flow and time-based window
into a set of aggregated features. We observe that some features in the aggre-
gated data are highly correlated, and there is a necessity to minimize the feature
space for robust detection and classification of attacks using supervised mod-
els. We apply dimensionality reduction through feature engineering techniques
such as PCA and t-SNE. The selection of the optimal dimensionality reduction
technique is determined by evaluating cluster separation quality. This is done
by applying the k-means clustering algorithm [9] to both PCA-transformed and
t-SNE-transformed data, then measuring the silhouette score to assess cluster
separation. We observed that PCA outperforms t-SNE in our evaluation, with



10 B. Boswell et al.

Algorithm 2 Sliding Window and Session Data Aggregation

Input: Sliding window data frame - aggregated data features based on a sliding
time window, session data frame - session-based aggregated data features

Output: Merged aggregated dataset with enriched features
1: Sort sliding window data by start time

2: Sort session data by start time

3: Initialize aggregated data as an empty list
4: for each record in sliding window data do
5: Extract start time from current record
6: if session data.start time ≤ record.start time then
7: Merge record with corresponding session data
8: end if
9: Append merged record to aggregated data

10: end for
11: return aggregated data

the K-means clustering on PCA-reduced data achieving a silhouette score of
0.97, compared to only 0.34 for K-means on t-SNE transformed data. At this
stage, we analyze the PCA transformed data to understand the importance of
every feature and its significant contribution to capture the underlying patterns
and variations in the network traffic of IoT devices. We analyze the cumulative
variance, revealing that the total variance retained by the 29 components is 99.84
percent. In particular, the first three PCA components alone contribute to 50
percent of the total variance, highlighting the significant contribution to capture
the underlying patterns in the data. We analyze the magnitude of feature load-
ings for the first three principal components to identify how features contribute
to the variance across the entire dataset. These results are shown in Tables 3 and
4. Our analysis revealed that in PC1 loading the features total bytes forward,
subflow fwd byts, total forward packets and fwd pkt len std have the highest
positive loadings, and it suggests that PC1 influences the size and volume of for-
ward traffic in terms of bytes and packets. In PC2, features like flow duration,
fwd iat mean, bwd iat max have highest positive loadings, and this dominance
reveals that time-related features play a significant role in capturing the under-
lying patterns. In PC3, features such as fwd pkt len mean, packet size mean,
fwd pkt len min are dominant with positive loadings influenced by variations in
packet size, particularly in the forward direction.

From the PCA loadings, we identify the top ten features contributing to
the prediction of all classes. These feature loadings are shown in Table 5. Our
findings reveal that the features captured using the light weight aggregation
technique, such as time-based forward and backward features, play a dominant
role in capturing patterns and predicting our target classes.

3.4 Supervised Models for Attack Classification

Here, the objective is to train the PCA transformed data on supervised models
to classify binary and multiclass attacks. After reviewing multiple studies in the



FLARE 11

Table 3. Feature loadings for the first three principal components across the data

Feature PC1 PC2 PC3

total fwd pkts window 0.009817 -0.008985 -0.005808
total bwd pkts window 0.047945 -0.054023 0.001519
total fwd bytes window 0.005998 -0.003896 0.005353
total bwd bytes window 0.046971 -0.052817 0.002683
avg pkt size fwd window 0.006943 0.024710 0.298061
avg pkt size bwd window 0.021155 0.009534 0.024938
flow duration window 0.010665 0.000667 0.049162
packet count window -0.005254 -0.022718 -0.284901
mean iat fwd window 0.011845 0.019140 0.190369
stddev iat fwd window 0.008918 0.009225 0.190411

Table 4. Feature loadings for the first three principal components across the data
(cont.)

Feature PC1 PC2 PC3

mean pkt length bwd 0.091830 0.042699 0.091271
packet size mean 0.078544 0.032143 0.318384
flow iat mean 0.161773 0.253869 -0.052210
down up ratio 0.198521 -0.163967 -0.002485
subflow fwd pkts 0.254615 -0.001846 -0.039997
subflow bwd pkts 0.204008 -0.210578 0.007468
subflow fwd byts 0.255975 -0.013833 -0.032561
subflow bwd byts 0.201297 -0.214931 0.008767
fwd pkt len mean 0.036900 0.046597 0.347167
fwd pkt len max 0.177650 0.219840 0.090805

Table 5. Top Features Contributing to Prediction of Classes

Feature Total Contribution

fwd pkt len max 0.488295
flow duration 0.475808
fwd iat tot 0.475710
bwd iat tot 0.475588
bwd iat mean 0.472913
fwd iat mean 0.470734
flow iat mean 0.467851
bwd pkt len std 0.461786
bwd iat max 0.433369
mean packet length forward 0.430664



12 B. Boswell et al.

literature [12–14] and considering the characteristics of our data, our specific
analysis requirements, and our focus on short-lived attack events, we identified
four supervised models suitable for our classification task: Random Forest classi-
fier, Support Vector classifier (SVC), XGBoost, and feedforward neural network.
These models were selected for their ability to handle imbalanced datasets with
high-dimensional features, particularly the temporal and flow-based features
present in our data. The random forest classifier is best at detecting network
patterns [40] in aggregated flows and can also capture non-linear relationships
that remain intact after PCA transformation. With temporal granularity, SVC
is prominent in identifying fine-grained boundaries between benign and attack
packets, particularly when features such as inter-packet arrival times and ses-
sion duration have clear thresholds [38]. XGboost is suitable for handling sparse,
noisy data and excels at capturing temporal trends such as identifying time gaps
in flows, identifying irregular bursts associated with attacks [17]. Similarly, the
feedforward neural network is good at learning intricate patterns [31] associ-
ated with flow-based and temporal dynamics effectively, making it suitable for
identifying short-lived attacks. For the binary classification task, each model
is trained using binary data, where each sample is labeled as either Attack or
Benign, and a separate instance of each model is trained for multi-class classi-
fication task, where each sample is labeled as one of 5 attack types existing in
our dataset. From the sklearn Python package, we use RandomForestClassifier
and SuportVectorClassifier. The RandomForestClassifier is initialized with the
default parameters. For the SVC model, we use the poly kernel parameter and
enabled probability estimates. For the last two inference models, XGBoost and
a feed-forward neural network, we use the xgboost and tensorflow Python pack-
ages, respectively. The feed forward neural network consists of 3 dense layers, 2
dropout layers, and uses softmax for the activation function.

Table 6. MSE for Flow and Temporal Features – 5s and 10s Windows

Flow Features 5s 10s

flow pkts s 4437.59 4436.67
flow byts s 16629624.32 16626596.42
flow duration 595660604305487.6 595688959677055.6
tot fwd pkts 22363.83 22364.99
tot bwd pkts 2747.70 2747.84
fwd iat tot 576276543071106.2 576303491447727.5
bwd iat tot 97139922598019.84 97138447746919.75
fwd pkts b avg 0.03317 0.0331801
bwd byts b avg 2373.65 2373.77



FLARE 13

4 Experimental Evaluation

4.1 Experiment 1: Determining Window Size

For time-based sliding window aggregation, the influence of window size and step
size parameters plays a vital role in capturing the temporal dynamics of the ag-
gregated data. Proper tuning of window and step size parameters are important
to determine the temporal dynamics, identify patterns, and thereby enable clas-
sifiers to classify the attacks. To determine the optimal granularity for temporal
data analysis on the aggregated data, we tested four different window sizes: 5
seconds, 10 seconds, 20 seconds, and 30 seconds. To determine the optimal win-
dow size in seconds, we evaluated MSE [29] for flow-based features and temporal
features. MSE provides a quantitative measure for the variance of these features
within a window. By comparing the MSE values across different window sizes,
we assess how well the chosen window size captures patterns in the data. A
low MSE indicates that the features are stable within the window, suggesting
a good representation of the underlying data pattern. Tables 6 and 7 present
the MSE obtained for flow and temporal features. We selected these features
for window size determination because they directly relate to packet rates, byte
rates, and interarrival times, which are key indicators of bursty behavior that
help detect sudden attack bursts. We observed that features like flow pkts s,
flow byts s, bwd iat tot, yield minimum MSE for window size 30s, suggesting
that it these features are suitable for detecting sustained anomalies. Features
like flow duration, tot fwd pkts, tot bwd pkts, fwd iat tot and fwd pkts b avg,
yield minimum MSE for window size 5s, and this suggests that these features
help detect sudden bursts of attacks when set window size as 5s.

Table 7. MSE for Flow and Temporal Features – 20s and 30s Windows

Flow Features 20s 30s

flow pkts s 4436.27 4436.11
flow byts s 16625298.65 16624779.52
flow duration 595701112884449.9 595705974319509.6
tot fwd pkts 22365.49 22365.69
tot bwd pkts 2747.90 2747.93
fwd iat tot 576315041612366.9 576319661822777.4
bwd iat tot 97137815620789.67 97137562762426.36
fwd pkts b avg 0.0331808 0.0331811
bwd byts b avg 2373.82 2373.84

4.2 Experiment 2: FLARE Performance on Supervised Models

In this section, we evaluate the performance of FLARE to classify binary and
multiclass attacks in the detection of IoT IDS. Here, we have employed four



14 B. Boswell et al.

supervised models to classify the attacks within the system. To ensure robust-
ness and to evaluate generalizability of each model, we performed 10-fold cross-
validation, and applied Synthetic Minority Oversampling Technique (SMOTE)
on the aggregated dataset. The performance of the learning model is evaluated
using metrics such as detection accuracy, precision, recall, and F1-score. For both
binary and multi-classification of attacks using the supervised models, we apply
window size as 5s as shown in 4.1, and we set step size smaller than the window
size to ensure that this increases the temporal granularity and that no data are
skipped. The experimental evaluation is conducted in Google Colaboratory, and
we trained the four supervised models on the aggregated data with window size
5s and step size as 1s and 3s respectively. The results of the experiment are
discussed separately for the binary classification and multiclass classification.

Table 8. Binary classification results of Random Forest and Support Vector classifiers
when window size=5s and step size=1s

Random Forest Support Vector

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
Attack 0.99 1.00 1.00 0.98 1.00 0.99

Table 9. Binary classification results of XGBoost and Feed Forward Neural Network
when window size=5s and step size=1s

XGBoost Feed Forward NN

Precision Recall F1 Precision Recall F1

Benign 1.00 0.99 1.00 1.00 1.00 1.00
Attack 0.86 1.00 0.92 0.99 1.00 1.00

Binary Classification In Table 8, we show the binary classification perfor-
mance when window size=5s and step size=1s for Random Forest and Support
Vector. In Table 9, we show the binary classification performance where win-
dow size=5s and step size=1s for XGBoost and Feed Forward NN. The larger
window size captures the long-term patterns and the smaller step size creates
overlapping windows, increasing the number of segments for analysis. This helps
us to capture short-term burst as the attack’s effect will appear in multiple win-
dows and stand out against normal traffic patterns. Therefore, with this combi-
nation, the system generated an aggregated dataset comprising a total of 23986
instances with a computational cost of nearly 23 minutes. We observe the class



FLARE 15

balance of training set as 17353 for benign and 636 for attacks. To overcome this
imbalance issue and to avoid overfitting, we apply SMOTE to the training set to
bring classes equal to 17353. In the test set, the number of true instances for the
benign class is 5803, and for the attack class it is 194 instances. In the test set,
the four trained models were able to correctly classify benign instances with an
accuracy, precision, recall, and F1-score equal to 1. With respect to attack class,
the random forest classifier and feed forward neural network shows effective de-
tection of attack instance with minimal false positives and false negatives. For
the other models, a small drop in precision suggests that it misclassified small
instances of benign class as attacks. From this analysis, it is evident that each
model performed well, without any overfitting. Indicating effective handling of
class imbalances, and model generalizability on unseen data.

Table 10. Binary classification results of Random Forest and Support Vector classifiers
when window size=5s and step size=3s

Random Forest Support Vector

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
Attack 0.99 1.00 0.99 0.99 1.00 0.99

Table 11. Binary classification results of XGBoost and Feed Forward Neural Network
when window size=5s and step size=3s

XGBoost Feed Forward NN

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
Attack 0.91 0.99 0.95 0.99 1.00 0.99

Table 10 shows the binary classification performance when window size=5s
and step size=3s for Random Forest and Support Vector. In Table 11, we show
the binary classification performance where window size=5s and step size=3s
for XGBoost and Feed Forward NN. In this experiment, we increased the step
size by 2 compared to the previous step size 1 to analyze how this introduces
changes in the overlapping windows and how it is reflected in the aggregated
data instances. It is observed that it leads to less temporal representation, and
reduction in the aggregated data instances as 9595, when compared to 23986
with window size=5s and step size=1s. It is also observed that it takes less com-
putational cost around 8 minutes. In the test set, the number of true instances
for the benign class is 2302, and for the attack class it is 97 instances. In the test



16 B. Boswell et al.

set, all four models are able to correctly classify benign instances. With respect
to the attack class, all models show a slight drop in precision and F1, and this
suggests that they misclassified a small subset of the benign class as attacks.
Also, the drop in precision for XGBoost, 0.91 suggests that it misclassified a
small subset of instances of benign class as attacks. When comparing these re-
sults with our findings in Tables 8 and 9, it is evident that it missed sudden
bursts of attacks that occur within smaller time frames.

Table 12. Results of Random Forest and Support Vector classifiers for multi-class
classification when window size=5s and step size=1s

Random Forest Support Vector

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
HTTP Flood 0.97 0.93 0.95 0.90 0.95 0.93
TCP SYN Flood 0.95 0.98 0.97 0.96 0.93 0.95
UDP Flood 1.00 1.00 1.00 1.00 0.98 0.99
XMas Tree Flood 0.97 1.00 0.98 1.00 1.00 1.00

Table 13. Results of XGBoost and Feed Forward Neural Network for multi-class clas-
sification when window size=5s and step size=1s

XGBoost Feed Forward NN

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
HTTP Flood 1.00 0.81 0.89 0.99 1.00 0.99
TCP SYN Flood 0.90 1.00 0.95 1.00 0.99 0.99
UDP Flood 1.00 1.00 1.00 1.00 1.00 1.00
XMas Tree Flood 1.00 1.00 1.00 1.00 1.00 1.00

Multi-level Classification For the multi-level classification evaluation, we
conduct experiment using the same set of window size and step size parameters
and evaluate the performance on our candidate models and, we apply SMOTE
to our dataset. Tables 12 and 13 show the performance of the multiclass classifi-
cation using random forest, support vector, XGBoost and feed forward NN when
window size=5s and step size=1s. Our results indicate that, on the test set, each
supervised model performed well with classes such as benign, UDP Flood and
XMas tree Flood. For the class HTTP Flood, the random forest, SVC, and XG-
Boost retain lower recall values indicating that the models missed to correctly



FLARE 17

classify this type of attack. Similarly, for the TCP SYN Flood class, the random
forest model show lower precision with 0.95. This means that a small number
of instances classified as TCP Flood are false positives. This misclassification
occurs because attack patterns overlap between classes, making it challenging
for models to distinguish them accurately. The overlapping is attributed to the
larger window size, which aggregates more instances within a single window and
combines different patterns. Overall, the feed forward neural network classifier
demonstrates reasonable performance across all classes with the set temporal
parameters compared to other models.

Table 14. Results of Random Forest and Support Vector classifiers for multi-class
classification when window size=5s and step size=3s

Random Forest Support Vector

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
HTTP Flood 0.67 0.42 0.51 0.53 0.38 0.44
TCP SYN Flood 0.68 0.86 0.76 0.64 0.77 0.70
UDP Flood 1.00 1.00 1.00 1.00 0.92 0.96
XMas Tree Flood 0.92 1.00 0.96 1.00 0.92 0.96

Table 15. Results of XGBoost and Feed Forward Neural Network for multi-class clas-
sification when window size=5s and step size=3s

XGBoost Feed Forward NN

Precision Recall F1 Precision Recall F1

Benign 1.00 1.00 1.00 1.00 1.00 1.00
HTTP Flood 0.96 0.98 0.98 0.99 0.98 0.98
TCP SYN Flood 0.98 0.96 0.98 0.98 0.99 0.98
UDP Flood 1.00 1.00 1.00 1.00 1.00 1.00
XMas Tree Flood 1.00 1.00 1.00 1.00 1.00 1.00

Tables 14 and 15, show the performance of the multi-level classifiers random
forest, support vector, XGBoost, and feed forward NN when window size=5s
and step size=3s. We observe from these results that all supervised model pro-
duce less precision, recall and F1-score for the class HTTP Flood and TCP SYN
Flood. This is because setting step size to 3s reduces the number of overlap-
ping windows, resulting in fewer windows capturing the attack class that are
short bursts. As there are minimal classes of HTTP Flood and TCP SYN Flood
present, the classifiers perform well for the other classes. Overall, XGBoost and
Feed forward NN yield better results for all the classes.



18 B. Boswell et al.

Table 16. Binary Classification Results Using End-to-End Models

Model Class Precision Recall F1 Acc. Train Time CPU Usage (%)

LSTM w\o FLARE
Benign 0.99 0.98 0.98

0.97 1449.76 s
Before: 34.8

Attack 0.79 0.85 0.82 After: 65.4

LSTM with FLARE
Benign 1.00 1.00 1.00

0.99 59.33 s
Before: 33.5

Attack 0.99 1.00 1.00 After: 48.9

BI-LSTM w\o FLARE
Benign 0.99 0.98 0.98

0.97 1603.38 s
Before: 38.7

Attack 0.78 0.87 0.83 After: 74.4

BI-LSTM with FLARE
Benign 1.00 1.00 1.00

0.99 59.27 s
Before: 14.7

Attack 0.99 1.00 1.00 After: 42.8

Table 17. Multi-Classification Results of LSTM with and without FLARE

LSTM w\o FLARE LSTM with FLARE

Classes Precision Recall F1 Precision Recall F1

Benign 0.98 0.98 0.98 1.00 1.00 1.00
HTTP Flood 0.52 0.40 0.45 0.98 0.98 1.00
TCP SYN Flood 0.57 0.67 0.62 1.00 1.00 1.00
UDP Flood 0.77 0.77 0.77 1.00 1.00 1.00
XMas Tree Flood 0.93 0.97 0.95 1.00 1.00 1.00

Table 18. Multi-Classification Results of BI-LSTM with and without FLARE

BI-LSTM w\o FLARE BI-LSTM with FLARE

Classes Precision Recall F1 Precision Recall F1

Benign 0.98 0.98 0.98 1.00 1.00 1.00
HTTP Flood 0.57 0.28 0.37 1.00 0.99 0.99
TCP SYN Flood 0.54 0.76 0.63 0.99 1.00 0.99
UDP Flood 0.74 0.82 0.78 1.00 1.00 1.00
XMas Tree Flood 0.94 0.97 0.95 1.00 1.00 1.00

Table 19. End-to-End Models: Computational resource utilization for multi-class clas-
sification.

End-to-End Model Acc. Train Time (s) CPU Usage (%)

LSTM w\o FLARE 0.9597 866.23
Before: 15.7
After: 65.8

LSTM with FLARE 0.9992 77.44
Before: 28.2
After: 21.4

Bi-LSTM w\o FLARE 0.9588 686.63
Before: 42.5
After: 65.6

Bi-LSTM with FLARE 0.9969 102.12
Before: 26.0
After: 67.3



FLARE 19

4.3 Experiment 3: FLARE Performance on End-to-End Models

We conducted an experiment to demonstrate how our proposed FLARE aggre-
gation technique improves model performance. This experiment compared algo-
rithms from related work, such as LSTM and BI-LSTM, both with and without
the FLARE aggregation technique. The results support our claim that apply-
ing FLARE as an initial step in the feature engineering process, before feature
selection and extraction, creates a more structured data representation and en-
hances the performance of complex end-to-end models. For binary classification,
we designed an LSTM and bidirectional LSTM model with 64 units as layer one
to capture temporal dependencies, and second layer with 32 units to process
the sequential data. We set the dropout as 0.2 to reduce overfitting, dense layer
16 units with RELU activation, followed by a softmax output layer for binary
classification. In Table 16, LSTM and Bi-LSTM without FLARE takes a prepro-
cessed input instance of 125899 to perform binary classification. In LSTM and
Bi-LSTM with FLARE, we incorporated the proposed aggregation as an initial
feature engineering step, thus aggregated the instances to 23986 by setting win-
dow size to 5s and step size as 1s, and used SMOTE for balancing the classes.
Our findings show that both algorithms, when augmented by our FLARE aggre-
gation technique, yielded better performance and also used less computational
resources compared to LSTM and BiLSTM without the FLARE aggregation
technique.

For multi-classification, we designed the LSTM and BI-LSTM architectures
with a first layer of 128 units to process the input sequence and learn temporal
patterns. A dense layer with 64 units functions as a fully connected layer with
ReLU activation for feature learning. Two dropout layers, each set to 0.3, are
used to reduce overfitting and enhance generalization. The network concludes
with a dense layer using softmax activation for multi-class classification. The
performance analysis of LSTM and BI-LSTM for multi-classification is shown
in Tables 17 and 18, respectively. It is observed that the performance of end-
to-end models with FLARE aggregation produced higher accuracy, and a rela-
tively low amount of false positives or false negatives compared to end-to-end
models without FLARE aggregation. Additionally, we analyzed the computa-
tional utilization of both end-to-end models. The results of this analysis are
shown in Table 19. These results indicate that the training time for models with
FLARE are significantly reduced when compared to models that operated with-
out FLARE aggregation. This observation underscores a critical advantage in
adopting FLARE as an aggregation technique in the context of IoT IDS.

5 Conclusion

The growing prevalence of IoT devices has significantly increased the risk of
security attacks, particularly sudden bursts of attacks like DoS, necessitating
efficient and timely intrusion detection systems. While the literature has intro-
duced and analyzed numerous feature engineering approaches, including feature
selection and extraction techniques, limited attention has been given to feature



20 B. Boswell et al.

aggregation as a potential method to enhance anomaly detection in IoT systems.
In this work, we proposed FLARE, a novel feature aggregation technique that
captures vital features from the session, flow, and temporal dynamics of IoT in-
trusion detection datasets. To determine the optimal window size for time-based
sliding windows, we analyzed and evaluated MSE for flow and temporal features
and applied PCA for feature extraction. We addressed class imbalance by using
SMOTE on the training set. We trained four supervised models and two deep
learning models to perform both binary attack detection and multi-class at-
tack classification. Our experimental evaluation revealed that a step size smaller
than the window size, particularly window size=5s and step size=1s, increased
the temporal granularity and enhanced the robustness of FLARE. Our analysis
demonstrated that end-to-end models incorporating FLARE aggregation showed
better performance and reduced computational complexity compared to models
operating without FLARE.

6 Future Enhancement

While our research has demonstrated the importance of feature aggregation tech-
niques in preserving vital features for classifying sudden bursts of attacks in
IoT intrusion detection systems, several avenues remain for future exploration
and enhancement. First, to further improve the effectiveness of the aggregated
dataset and model performance, advanced aggregation and class balancing tech-
niques could be explored. These include class-preserving aggregation methods
such as stratified or adaptive window-based aggregation to ensure all classes,
especially minority ones, are well-represented. Second, post-aggregation balanc-
ing techniques like synthetic sampling or resampling methods could address any
residual imbalance. There is also opportunity to explore replacing fixed param-
eters with methods that dynamically set temporal parameter values suitable for
more dynamic IoT networks. Lastly, this work opens possibilities for incorporat-
ing additional machine learning and deep learning models that can enhance the
system’s ability to detect and classify attacks effectively.

References

1. A. Lohachab, B.K.: Critical analysis of ddos—an emerging security threat over iot
networks. Journal of Communications and Information Networks 3, 57–78 (2018).
https://doi.org/10.1007/s41650-018-0022-5

2. Adhao, R.B., Pachghare, V.K.: Feature Engineering for Flow-
Based IDS, chap. 5, pp. 69–90. John Wiley & Sons, Ltd (2022).
https://doi.org/10.1002/9781119777465.ch5

3. Barrett, S., Boswell, B., Dorai, G.: Exploring the vulnerabilities of iot de-
vices: A comprehensive analysis of mirai and bashlite attack vectors. In: 2023
10th International Conference on Internet of Things: Systems, Management
and Security (IOTSMS). pp. 125–132. IEEE, San Antonio, TX, USA (2023).
https://doi.org/10.1109/IOTSMS59855.2023.10325725

https://doi.org/10.1007/s41650-018-0022-5
https://doi.org/10.1002/9781119777465.ch5
https://doi.org/10.1109/IOTSMS59855.2023.10325725


FLARE 21

4. Biyyapu, N., Veerapaneni, E.J., Surapaneni, P.P., Vellela, S.S., Vatambeti, R.: De-
signing a modified feature aggregation model with hybrid sampling techniques for
network intrusion detection. Journal of Cluster Computing 27, 5913–5931 (2024).
https://doi.org/10.1007/s10586-024-04270-4

5. Boswell, B., Barrett, S., Dorai, G.: Unraveling iot traffic patterns: Lever-
aging principal component analysis for network anomaly detection and op-
timization. In: 2024 12th International Symposium on Digital Forensics
and Security (ISDFS). pp. 1–6. IEEE, San Antonio, TX, USA (2024).
https://doi.org/10.1109/ISDFS60797.2024.10527310

6. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.:
Network intrusion detection for iot security based on learning tech-
niques. IEEE Communications Surveys & Tutorials 21(3), 2671–2701 (2019).
https://doi.org/10.1109/COMST.2019.2896380

7. Cheng, P., Han, M., Li, A., Zhang, F.: Stc-ids: Spatial–temporal correlation fea-
ture analyzing based intrusion detection system for intelligent connected vehi-
cles. International Journal of Intelligent Systems 37(11), 9532–9561 (Aug 2022).
https://doi.org/10.1002/int.23012

8. Derhab, A., Aldweesh, A., Emam, A.Z., Khan, F.A.: Intrusion detection system
for internet of things based on temporal convolution neural network and efficient
feature engineering. Wireless Communications and Mobile Computing 2020(1),
6689134 (2020). https://doi.org/10.1155/2020/6689134

9. Ding, C., He, X.: K-means clustering via principal component analysis. In: Pro-
ceedings of the Twenty-First International Conference on Machine Learning. p. 29.
ICML ’04, Association for Computing Machinery, New York, NY, USA (2004).
https://doi.org/10.1145/1015330.1015408

10. Gai, K., Xiao, Q., Qiu, M., Zhang, G., Chen, J., Wei, Y., Zhang, Y.: Digital twin-
enabled ai enhancement in smart critical infrastructures for 5g. ACM Trans. Sen.
Netw. 18(3) (Sep 2022). https://doi.org/10.1145/3526195

11. Gai, K., Zhang, Y., Qiu, M., Thuraisingham, B.: Blockchain-enabled service opti-
mizations in supply chain digital twin. IEEE Transactions on Services Computing
16(3), 1673–1685 (2023). https://doi.org/10.1109/TSC.2022.3192166

12. Ioannou, C., Vassiliou, V.: Classifying security attacks in iot networks us-
ing supervised learning. In: 2019 15th International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS). pp. 652–658 (2019).
https://doi.org/10.1109/DCOSS.2019.00118

13. Kadri, M.R., Abdelli, A., Ben Othman, J., Mokdad, L.: Survey and classification
of dos and ddos attack detection and validation approaches for iot environments.
Internet of Things 25, 101021 (2024). https://doi.org/10.1016/j.iot.2023.101021

14. Kayode Saheed, Y., Idris Abiodun, A., Misra, S., Kristiansen Holone, M., Colomo-
Palacios, R.: A machine learning-based intrusion detection for detecting internet of
things network attacks. Alexandria Engineering Journal 61(12), 9395–9409 (2022).
https://doi.org/10.1016/j.aej.2022.02.063

15. Khanday, S.A., Fatima, H., Rakesh, N.: Implementation of intrusion detection
model for ddos attacks in lightweight iot networks. Expert Systems with Applica-
tions 215, 119330 (2023). https://doi.org/10.1016/j.eswa.2022.119330

16. Lei, S., Xia, C., Li, Z., Li, X., Wang, T.: Hnn: A novel model to study the in-
trusion detection based on multi-feature correlation and temporal-spatial analysis.
IEEE Transactions on Network Science and Engineering 8(4), 3257–3274 (2021).
https://doi.org/10.1109/TNSE.2021.3109644

https://doi.org/10.1007/s10586-024-04270-4
https://doi.org/10.1109/ISDFS60797.2024.10527310
https://doi.org/10.1109/COMST.2019.2896380
https://doi.org/10.1002/int.23012
https://doi.org/10.1155/2020/6689134
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1145/3526195
https://doi.org/10.1109/TSC.2022.3192166
https://doi.org/10.1109/DCOSS.2019.00118
https://doi.org/10.1016/j.iot.2023.101021
https://doi.org/10.1016/j.aej.2022.02.063
https://doi.org/10.1016/j.eswa.2022.119330
https://doi.org/10.1109/TNSE.2021.3109644


22 B. Boswell et al.

17. Lei, X., Liu, J., Ye, X.: Research on network traffic anomaly detection technol-
ogy based on XGBoost. In: Hu, L., Loskot, P. (eds.) International Conference
on Algorithms, High Performance Computing, and Artificial Intelligence (AHP-
CAI 2024). vol. 13403, p. 1340328. International Society for Optics and Photonics,
SPIE (2024). https://doi.org/10.1117/12.3051635

18. Li, J., Othman, M.S., Chen, H., Yusuf, L.M.: Optimizing iot intrusion detection
system: feature selection versus feature extraction in machine learning. Journal of
Big Data 11 (2024). https://doi.org/10.1186/s40537-024-00892-y

19. Lu, H., Wang, X., Fei, Z., Qiu, M.: The effects of using chaotic map on improving
the performance of multiobjective evolutionary algorithms. Mathematical Prob-
lems in Engineering 2014(1), 924652 (2014). https://doi.org/10.1155/2014/924652

20. Mann, P., Tyagi, N., Gautam, S., Rana, A.: Classification of various types of at-
tacks in iot environment. In: 2020 12th International Conference on Computational
Intelligence and Communication Networks (CICN). pp. 346–350. IEEE, Bhimtal,
India (2020). https://doi.org/10.1109/CICN49253.2020.9242592

21. Mohammed, B.H., Sallehudin, H., Satar, N.S.M., Murhg, H.D., Mohamed, S.A.,
Alaba, F.A., Rocha, A., Bianchi, I.: Anomaly Detection of Distributed Denial of
Service (DDoS) in IoT Network Using Machine Learning, pp. 41–64. Springer Na-
ture Switzerland, Cham (2025). https://doi.org/10.1007/978-3-031-78412-5 3

22. National Institute of Standards and Technology: The nist cybersecurity frame-
work (csf) 2.0. NIST Cybersecurity White Paper (CSWP) NIST CSWP 29,
National Institute of Standards and Technology, Gaithersburg, MD (2024).
https://doi.org/10.6028/NIST.CSWP.29

23. Pektaş, A., Acarman, T.: A deep learning method to detect network intru-
sion through flow-based features. Int. J. Netw. Manag. 29(3) (May 2019).
https://doi.org/10.1002/nem.2050

24. Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., Qiu, M.: Adversarial attacks
against network intrusion detection in iot systems. IEEE Internet of Things Journal
8(13), 10327–10335 (2021). https://doi.org/10.1109/JIOT.2020.3048038

25. Qiu, M., Dai, W., Vasilakos, A.: Loop parallelism maximization for multimedia
data processing in mobile vehicular clouds. IEEE T. on Cloud Computing 7(1),
250–258 (2016). https://doi.org/10.1109/TCC.2016.2607708

26. Qiu, M., Zhang, K., Huang, M.: Usability in mobile interface browsing. Web Intel-
ligence and Agent Systems 4(1), 43–59 (2006)

27. Qiu, M., Qiu, H.: Review on image processing based adversarial example de-
fenses in computer vision. In: 2020 IEEE 6th Intl Conference on Big Data Se-
curity on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data
and Security (IDS). pp. 94–99 (2020). https://doi.org/10.1109/BigDataSecurity-
HPSC-IDS49724.2020.00027

28. Rajesh Kanna, P., Santhi, P.: Unified deep learning approach for efficient intru-
sion detection system using integrated spatial–temporal features. Knowledge-Based
Systems 226, 107132 (2021). https://doi.org/10.1016/j.knosys.2021.107132

29. ur Rehman Baig, S., Iqbal, W., Berral, J.L., Carrera, D.: Adaptive
sliding windows for improved estimation of data center resource uti-
lization. Future Generation Computer Systems 104, 212–224 (2020).
https://doi.org/10.1016/j.future.2019.10.026, https://www.sciencedirect.

com/science/article/pii/S0167739X19309203

30. Roopak, M., Tian, G.Y., Chambers, J.: An intrusion detection system
against ddos attacks in iot networks. In: 2020 10th Annual Computing and

https://doi.org/10.1117/12.3051635
https://doi.org/10.1186/s40537-024-00892-y
https://doi.org/10.1155/2014/924652
https://doi.org/10.1109/CICN49253.2020.9242592
https://doi.org/10.1007/978-3-031-78412-5_3
https://doi.org/10.6028/NIST.CSWP.29
https://doi.org/10.1002/nem.2050
https://doi.org/10.1109/JIOT.2020.3048038
https://doi.org/10.1109/TCC.2016.2607708
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00027
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00027
https://doi.org/10.1016/j.knosys.2021.107132
https://doi.org/10.1016/j.future.2019.10.026
https://www.sciencedirect.com/science/article/pii/S0167739X19309203
https://www.sciencedirect.com/science/article/pii/S0167739X19309203


FLARE 23

Communication Workshop and Conference (CCWC). pp. 0562–0567 (2020).
https://doi.org/10.1109/CCWC47524.2020.9031206

31. Rosay, A., Carlier, F., Leroux, P.: Feed-forward neural network for net-
work intrusion detection. In: 2020 IEEE 91st Vehicular Technology Con-
ference (VTC2020-Spring). pp. 1–6 (2020). https://doi.org/10.1109/VTC2020-
Spring48590.2020.9129472

32. Saikam, J., Ch, K.: Eesnn: Hybrid deep learning empowered spatial–temporal fea-
tures for network intrusion detection system. IEEE Access 12, 15930–15945 (2024).
https://doi.org/10.1109/ACCESS.2024.3350197

33. Salman, R., Alzaatreh, A., Sulieman, H.: The stability of different aggrega-
tion techniques in ensemble feature selection. Journal of Big Data 9(51) (2022).
https://doi.org/10.1186/s40537-022-00607-1

34. Shukla, A.S., Maurya, R.: Entropy-based anomaly detection in a network. Wireless
Pers Commun 99 (2018). https://doi.org/10.1007/s11277-018-5288-2

35. Wanjau, S.K., Wambugu, G.M., Oirere, A.M., Muketha, G.M.: Discriminative
spatial-temporal feature learning for modeling network intrusion detection systems.
Journal of Computer Security 32(1), 1–30 (2024). https://doi.org/10.3233/JCS-
220031

36. Wu, J., Wang, W., Huang, L., Zhang, F.: Intrusion detection technique based
on flow aggregation and latent semantic analysis. Applied Soft Computing
127, 109375 (2022). https://doi.org/10.1016/j.asoc.2022.109375, https://www.

sciencedirect.com/science/article/pii/S1568494622005257
37. Wu, Y., Qiu, H., Zhang, T., L, J., Qiu, M.: Watermarking pre-trained encoders

in contrastive learning. In: 2022 4th International Conference on Data Intelligence
and Security (ICDIS) (2022). https://doi.org/10.48550/arXiv.2201.08217, https:
//arxiv.org/abs/2201.08217

38. Xi Chen, Yani Liu, J.Z.: Traffic prediction for internet of things through support
vector regression model. Internet Technology Letters, Wiley online Library (2021).
https://doi.org/10.1002/itl2.336

39. Xiong, W., Lagerström, R.: Threat modeling – a systematic literature review. Com-
puters & Security 84, 53–69 (2019). https://doi.org/10.1016/j.cose.2019.03.010

40. Yao, D., Yin, M., Luo, J., Zhang, S.: Network anomaly detection using ran-
dom forests and entropy of traffic features. In: 2012 Fourth International Con-
ference on Multimedia Information Networking and Security. pp. 926–929 (2012).
https://doi.org/10.1109/MINES.2012.146

41. Yu, D., Gong, X., Li, Y., Qiu, M., Zhao, L.: Self-consistent deep geometric learning
for heterogeneous multi-source spatial point data prediction. In: KDD 2024. pp.
4001–4011 (2024). https://doi.org/10.1145/3637528.3671737

42. Zeng, Y., Qiu, M., Zhu, D., Xue, Z., Xiong, J., Liu, M.: Deepvcm: A deep learning
based intrusion detection method in vanet. In: IEEE 5th Intl Conf. BigDataSecurity
(2019). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00060

43. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., Zhang, R.: Model of the intrusion
detection system based on the integration of spatial-temporal features. Computers
& Security 89, 101681 (2020). https://doi.org/10.1016/j.cose.2019.101681

44. Zhang, Y., Qiu, M., Gao, H.: Communication-efficient stochastic gradient de-
scent ascent with momentum algorithms. In: IJCAI 2023. pp. 4602–4610 (2023).
https://doi.org/10.24963/ijcai.2023/512

45. Zoppi, T., Ceccarellli, A., Bondavalli, A.: An initial investigation on slid-
ing windows for anomaly-based intrusion detection. In: 2019 IEEE World
Congress on Services (SERVICES). vol. 2642-939X, pp. 99–104 (2019).
https://doi.org/10.1109/SERVICES.2019.00031

https://doi.org/10.1109/CCWC47524.2020.9031206
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129472
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129472
https://doi.org/10.1109/ACCESS.2024.3350197
https://doi.org/10.1186/s40537-022-00607-1
https://doi.org/10.1007/s11277-018-5288-2
https://doi.org/10.3233/JCS-220031
https://doi.org/10.3233/JCS-220031
https://doi.org/10.1016/j.asoc.2022.109375
https://www.sciencedirect.com/science/article/pii/S1568494622005257
https://www.sciencedirect.com/science/article/pii/S1568494622005257
https://doi.org/10.48550/arXiv.2201.08217
https://arxiv.org/abs/2201.08217
https://arxiv.org/abs/2201.08217
https://doi.org/10.1002/itl2.336
https://doi.org/10.1016/j.cose.2019.03.010
https://doi.org/10.1109/MINES.2012.146
https://doi.org/10.1145/3637528.3671737
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00060
https://doi.org/10.1016/j.cose.2019.101681
https://doi.org/10.24963/ijcai.2023/512
https://doi.org/10.1109/SERVICES.2019.00031

	FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection

