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Abstract

In this paper, we extend the ElGamal cryptosystem to the third group
of units of the ring Zn, which we prove to be more secure than the previous
extensions. We describe the arithmetic needed in the new setting. We also
provide some numerical simulations that shows the security and efficiency
of our proposed cryptosystem.
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1 Introduction
ElGamal crptosystem was first introduced by T. ElGamal in [7]. Classically the
system was defined on the multiplicative group Z∗

p, the group of integers modulo
a prime p, which is a cyclic group generated by one of its elements, yet this
cryptosystem can work in the setting of any cyclic group G. The intractability
of the discrete logarithm problem in the group G is the basis for the security
of the generalized ElGamal cryptosystem. Moreover, this group G should be
carefully chosen so that the operations of G are relatively easy to apply for
efficiency. This cryptosystem has been generalized several times over different
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groups. For more information about these generalizations, we guide the reader
for the following ([9],[10],[11],[13],[14],[16]).

In 2006, El-Kassar and Chehade in [1] introduced a generalization of the group
of units of the ring Zn denoted by the kth group of units of Zn, Uk(Zn). For
more information about the kth group of units, see ([1],[6],[9]). The authors
in [1] determined all rings R = Zn having the 2nd group of units cyclic. These
groups were used as an extension of the ElGamal Cryptosystem given by Haraty
et al in [9]. They examined two cases of U2(Zn):

1. Both U(Zn) and U2(Zn) are cyclic.

2. U2(Zn) is cyclic, while U(Zn) is not cyclic.

Kadri and El-Kassar in [9] examined the third group of units of Zn and deter-
mined all rings Zn having U3(Zn) cyclic and proposed to extend the ElGamal
cryptosystem to these groups in the case when they are cyclic.

In this paper, we extend the ElGamal cryptosystem to the third group of units
of Zn in the case when they are cyclic. In other words, we modify the ElGamal
public key encryption scheme from its classical domain natural to the domain of
U3(Zn) by extending the arithmetic needed for the modifications in this domain.

In Section 2 we describe the construction of U3(Zn) and some theorems related
to this group. Section 3 provides the description of our proposed cryptosystem.
Finally, Section 4 shows a comparison between our work and some previous
results.

2 Preliminaries
In this section we give a brief presentation of the Classical ElGamal public key
cryptosystem, and the modified ElGamal cryptosystem in the setting of the
second group of units of the ring of integers modulo n.

The basic algorithms for the functioning of this cryptosystem are described in
the following three algorithms:

Algorithm 1 Key generation

1. Find a generator α of the Z∗
p.

2. Select a random integer a, 1 ≤ a ≤ p− 2, and compute aα mod p.

3. A’s public key is (p, α, αa); A’s private key is a.

The following algorithm shows how B can encrypt a message m to A.

Algorithm 2 Encryption

1. Obtain A’s authentic public key (p, α, αa).

2. Represent the message as an integer m in the range (0, 1, ..., p− 1).
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3. Select a random integer k, 1 ≤ k ≤ p− 2.

4. Compute γ = αk mod p and δ = m · (αa)k mod p.

5. Send the ciphertext c = (γ, δ) to A.

Here is the algorithm that A uses to recover the message m.

Algorithm 3 Decryption

1. Use the private key a to compute γp−1−a mod p = γ−a

2. Recover m by computing (γ−a) · δ mod p.

Now for the modified ElGamal cryptosystem over U2(Zn), as we mentioned
before, two cases were considered.
Case 1: U(Zn) and U2(Zn) are cyclic: The elements of U2(Zn) in this case have
the form U2(Zn) = {ri mod n : gcd(i, φ(n)) = 1}, where r is the generator of
U(Zn).

The extended ElGamal public key cryptosystem over U2(Zn) follows the next
four algorithms:

Algorithm 4 Generator of U2(Zn)

1. Find a generator θ1 of U(Zn).

2. Write the order of U2(Zn) as pα1
1 pα2

2 ...pαk

k .

3. Select a random integer s, 0 ≤ s ≤ φ(n)− 1, (s, φ(n)) = 1.

4. For j = 1 to i, do:

4.1. Compute θ
N/pj

1 mod n.

4.2. If θs(N/pj)
1 mod n ≡ θ1, then go to step 3.

5. Return s.

For the key generation, use this algorithm:

Algorithm 5 Key generation

1. Find a generator θ1 of U(Zn).

2. Find s using the previous algorithm.

3. Compute the order of U2(Zn) using φ2(n).

4. Select a random integer a, 2 ≤ a ≤ φ2(n) − 1, and compute f = sa(mod
φ(n)).

5. A’s public key is (n, θ1, s, f) and A’s private key is a.

For the encryption of a message m, the following algorithm is used:

Algorithm 6 Encryption
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1. B obtains A’s authentic public key (n, θ1, s, f).

2. Represent the message as an integer in U2(Zn).

3. Select a random integer k, 2 ≤ k ≤ φ2(n)− 1.

4. Compute q = sk(modφ(n)), r = fk(modφ(n)), γ = θk = θq1(modn) and
δ = mr(modn).

5. Send the cipher text c = (q, δ) to A.

Finally, to decrypt the message, use the next algorithm:

Algorithm 7 Decryption

1. Use the private key a to compute b = φ2(n)− a.

2. Recover the message by computing t = qb(modφ(n)) and δt(modn).

Case 2: U2(Zn) is cyclic, while U(Zn) is not cyclic: The extended ElGamal pub-
lic key cryptosystem over U2(Zn) follows the next four algorithms:

Algorithm 8 Generator of U2(Zn)

1. Find a generator θ1 of U(Zn).

2. Write the order of U2(Zn) as pα1
1 pα2

2 ...pαk

k .

3. Select a random integer s, 0 ≤ s ≤ φ(p)− 1, (s, φ(p)) = 1.

4. For j = 1 to i, do:

4.1. Compute θ
N/pj

1 mod p.

4.2. If θs(N/pj)
1 mod p ≡ θ1, then go to step 3.

5. Use the Chinese Remainder Theorem to find θ, and s by solving the system
of congruencies: x ≡ 2(mod3) and x ≡ θs1(modp).

6. return s.

Now, for the key generation, A uses the following algorithm:

Algorithm 9 Key generation

1. Find a generator θ1 of U(Zp).

2. Find s using the previous algorithm.

3. Compute the order of U2(Zp) using φ2(p).

4. Select a random integer a, 2 ≤ a ≤ φ2(p) − 1, and compute f = sa(mod
φ(p)).

5. A’s public key is (p, θ1, s, f) and A’s private key is a.

For B to encrypt a message m for A, he uses this algorithm:

Algorithm 10 Encryption
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1. B obtains A’s authentic public key (n, θ1, s, f).

2. Represent the message as an integer in U2(Zp).

3. Select a random integer k, 2 ≤ k ≤ φ2(p)− 1.

4. Compute q = sk(modφ(p)), r = fk(modφ(p)), γ = θk = θq1(modp) and
δ = mr(modp).

5. Send the cipher text c = (q, δ) to A.

Finally to decrypt the message m, A applies the next algorithm:

Algorithm 11 Decryption

1. Use the private key a to compute b = φ2(p)− a.

2. Recover the message by computing t = qb(modφ(p)) and δt(modp).

3 Construction Of U 3(Zn)

In this paper, in order to apply the ElGamal cryptosystem on U3(Zn), it must
be a cyclic group, so we are concerned about the values of n that makes U3(Zn)
cyclic.

Lemma 12 U(Z3α), U(Zφ(3α)), and U(Zφ(φ(3α))) are cyclic for all α > 0.

Lemma 13 U(Z2.3α), U(Zφ(2.3α)), and U(Zφ(φ(2.3α))) are cyclic for all α > 0.

Now, we define the operation that gives the group isomorphic to U3(Zn) as
follows:

Theorem 3.1 Let U(Zn), U(Zφ(n)), and U(Zφ(φ(n))) be cyclic groups. Then
f : U3(Zn) −→ Zφ(φ(φ(n))) given by

f(a) = logg3 logg2 logg1 a mod n

is an isomorphism, where g1, g2, and g3 are the generators of U(Zn), U(Zφ(n)),
and U(Zφ(φ(n))) respectively.

Proof. Let U(Zn), U(Zφ(n)), and U(Zφ(φ(n))) be cyclic groups. Let g1 be a
generator of U(Zn). Since U(Zn) is cyclic and finite of order φ(n), then U(Zn) ≈
Zφ(n) by a function h1 : U(Zn) −→ Zφ(n) defined by h1(a) = logg1a mod n.
Now since U2(Zn) is a subset of U(Zn), and U(Zφ(n)) is a subset of Zφ(n), then
h1 : U2(Zn) −→ U(Zφ(n)) is an isomorphism.

Let g2 be a generator of U(Zφ(n)). Since U(Zφ(n)) is cyclic and finite of order
φ(φ(n)), then U(Zφ(n)) ≈ Zφ(φ(n)) by a function h2 : U(Zφ(n)) −→ Zφ(φ(n))

defined by h2(b) = logg2 b mod φ(n) or h2 ◦ h1 : U2(Zn) −→ Zφ(φ(n)) defined by
h2 ◦h1(a) = logg2 logg1 a mod n. Now since U3(Zn) is a subgoup of U2(Zn) and
U(Zφ(φ(n))) is a subgroup of Zφ(φ(n)), then h2 ◦ h1 : U3(Zn) −→ U(Zφ(φ(n))) is
an isomorphism.
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Now let g3 be a generator of U(Zφ(φ(n))). Since U(Zφ(φ(n))) is cyclic and finite
of order φ(φ(φ(n))), then the function h3 : U(Zφ(φ(n))) −→ Zφ(φ(φ(n))) defined
by h3(c) = logg3 c mod φ(φ(n)) is an isomorphism.

This implies that h3 ◦ h2 ◦ h1(a) : U
3(Zn) −→ Zφ(φ(φ(n))) defined by h3 ◦ h2 ◦

h1(a) = logg3 logg2 logg1 a mod n is an isomorphism.

Now for the construction of U3(Zn), we use the following algorithm:

1. Find a generator g1 for the group U(Zn).

2. Write each element in U(Zn) as a power of g1.

U(Zn) = {gi1 mod n, 0 ≤ i ≤ φ(n)}.

3. Find a generator g2 for the group U(Zφ(n)).

4. Write each element in U(Zφ(n)) as a power of g2.

U(Zφ(n)) = {gi2 mod φ(n), 0 ≤ i ≤ φ(φ(n))}.

5. Find U3(Zn) = {gg
i
2 mod φ(n)

1 mod n, gcd(i, φ(φ(n))) = 1}.

The following example shows how to find U3(Z11), and the isomorphic element
corresponding to each of its elements in Z2

Example 14 A generator g1 of U(Z11) is 2.

We have U(Z11) = {1 = 20, 2 = 21, 3 = 28, 4 = 22, 5 = 24, 6 = 29; 7 = 27, 8 =
23, 9 = 26, 10 = 25} all mod11, and U(Zφ(11)) = U(Z10). A generator g2 of
U(Z10) is 3.

U(Z10) = {1 = 30, 3 = 31, 7 = 33, 9 = 32} all mod10.

U3(Z11) = {23i mod 11, gcd(i, 4) = 1}
= {231 mod 11, 23

3

mod 11}
= {23 mod 11, 27 mod 11}
= {8, 7}

U(Zφ(φ(11))) = U(Zφ(10)) = U(Z4) = {1, 3}.

Now to find the isomorphism group of U3(Z11), we find g3, the generator of
U(Z4), g3 = 3.

f(7) = log3 log3 log2 7 mod 11
= log3 log3 log2 2

7 mod 11
= log3 log3 7 mod 11
= log3 log3 3

3 mod 11
= log3 3 mod 11
= 1
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f(8) = log3 log3 log2 8 mod 11
= log3 log3 log2 2

3 mod 11
= log3 log3 3 mod 11
= log3 1 mod 11
= 0

Therefore, 7 in U3(Z11) is isomorphic to 1 and 8 in U3(Z11) is isomorphic to
0, and thus U3(Z11) = {7, 8} ≈ {0, 1} = Z2.

The following Theorem explains how to find a generator of U3(Zn).

Theorem 3.2 Let g be a generator of U3(Zn). Then g has the form g
g
g3
2 ( mod φ(n))

1 ( mod
n), where g1, g2, and g3 are the generators of U(Zn), U(Zφ(n)), and U(Zφ(φ(n)))
respectively.

Proof. We have from Theorem 3.1 that U3(Zn) ≈ Zφ(φ(φ(n))) by a function
f : U3(Zn) −→ Zφ(φ(φ(n))) defined by f(a) = logg3 logg2 logg1 a mod n, where
f is a group isomorphism under addition in Zφ(φ(φ(n))). Moreover, if U3(Zn) is
cyclic of generator g, then Zφ(φ(φ(n))) is cyclic of generator f(g).

However, (Zφ(φ(φ(n))),+) is cyclic of generator 1, then f(g) = 1. Therefore,

g = f−1(1)

= (logg3 logg2 logg1)
−1(1)

= log−1
g1 log−1

g2 (g
1
3)

= log−1
g1 (g

g3
2 )

= g
g
g3
2 ( mod φ(n))

1 (modn).

Definition 15 Let f be the function defined in Theorem 3.1. The operations
in (U3(Zn),⊕,⊗) are defined as follows:

1. x⊕ y = xlogr y mod n, where r is the generator of U(Zn).

2. x⊗ y = f−1(f(x) + f(y)).

3. xn = f−1(nf(x)).

4 ElGamal Cryptosystem over U 3(Zn)

The following three algorithms illustrate the ElGamal Cryptosystem over U3(Zn).

For key generation, entity A must do the following:

Algorithm 16 (key generation)

1. find a generator g of U3(Zn).

2. select a random integer b, 1 ≤ b ≤ φ3(n).
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3. compute B = gb.

4. A’s public key is (g,B) and A’s private key is b.

To encrypt a message m for A, entity B must use the following algorithm:

Algorithm 17 (Encryption)

1. obtain A’s public key (g,B).

2. represent the message as an integer m in U3(Zn).

3. select a random integer a, 1 ≤ a ≤ φ3(n).

4. compute s = Ba.

5. compute A = ga.

6. compute X = m⊗ s.

7. send the cipher text c = (A,X).

To recover the message m, entity A uses this algorithm:

Algorithm 18 (decryption)

1. use the private key to compute s = Ab.

2. compute s−1.

3. recover the message m by computing m = X ⊗ s−1.

Theorem 4.1 Given a generator g of U3(Zn). Define B = gb, A = ga, s =
Ba = Ab, and X = m⊗ s. If k ∈ U3(Zn) such that k = X ⊗ s−1, then k = m.

Proof. We have s = Ba = Ab = gab, and X = m ⊗ s = m ⊗ gab, then
k = X ⊗ s−1 = m⊗ gab ⊗ (gab)−1 = m.

The following example is an application of our cryptosystem.

Example 19 Let n = 34 = 81.
By applying Theorem 3.1, we get that U3(Z81) ≈ Z6, where

5 ≈ 4, 23 ≈ 3, 32 ≈ 0, 50 ≈ 1, 59 ≈ 2, 77 ≈ 5

Key Generation

1. g = 50 is a generator of U3(Z81)

2. select b = 4

3. compute

B = gb = 504 = f−1(4f(50)) = f−1(4) = 5

4. Public key is (50, 5) and private key is 4.
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Encryption

1. choose a = 2

2. compute

s = Ba = 52 = f−1(2f(5)) = f−1(2.4 mod 6) = f−1(2) = 59

3. compute

A = ga = 502 = f−1(2f(50)) = f−1(2) = 59

4. choose m = 77.

5. compute

X = m⊗ s = 77⊗ 59 = f−1(f(77) + f(59)) = f−1(5 + 2 mod 6) = f−1(1) = 50.

6. cipher text is (59, 50).

Decryption

1. compute

s = Ab = 594 = f−1(4f(59)) = f−1(4.2 mod 6) = f−1(2) = 59

2. compute

s−1 = f−1([f(59)]−1) = f−1(2−1) = f−1(4) = 5

3. compute

m = X ⊗ s−1 = 50⊗ 5 = f−1(f(50) + f(5)) = f−1(1 + 4 mod 6) = f−1(5) = 77.

5 Efficiency and security of the cyptosystem
In this section we present a comparative study between the efficiency and secu-
rity of our cryptosystem and that present in [9]. Since the Baby step- Giant step
attack algorithm depends basically on the operation gi, where g is the generator
of the selected group, it was enough for us to compare the compiling time of gi
for both groups. We generated our algorithms on Wolfram Mathematica 12. We
used two groups U2(Zn) and U3(Zm) of approximately equal orders (difference
between orders is 2), and after running both programs 50 times, on randomly
chosen elements from both groups, the results are presented in Figure 1. The
results prove that the timing for each iteration in U3(Zm) was around 30 times
that of U2(Zn), which indicates that the iterations are way more complex in our
new cryptosystem, and made it way harder to crack the system. Note that the
blue curve corresponds to timing of U3(Zm), and the orange curve corresponds
to that of U2(Zn).
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Figure 1: Time comparison between iterations done on algorithms of U2(Zn)
and U3(Zm)
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