Mining Characteristics of Vulnerable
Smart Contracts Across Lifecycle Stages

Hongli Peng!, Xiaoqi Li!*, and Wenkai Li'
!'School of Cyberspace Security, Hainan University
Haikou, Hainan 570228 China
[e-mail: csxqli@ieee.org]

Abstract

Smart contracts are the cornerstone of decentralized applications and financial protocols,
which extend the application of digital currency transactions. The applications and
financial protocols introduce significant security challenges, resulting in substantial
economic losses. Existing solutions predominantly focus on code vulnerabilities within
smart contracts, accounting for only 50% of security incidents. Therefore, a more
comprehensive study of security issues related to smart contracts is imperative. The
existing empirical research realizes the static analysis of smart contracts from the
perspective of the lifecycle and gives the corresponding measures for each stage. However,
they lack the characteristic analysis of vulnerabilities in each stage and the distinction
between the vulnerabilities. In this paper, we present the first empirical study on the
security of smart contracts throughout their lifecycle, including deployment and execution,
upgrade, and destruction stages. It delves into the security issues at each stage and
provides at least seven feature descriptions. Finally, utilizing these seven features, five
machine-learning classification models are used to identify vulnerabilities at different
stages. The classification results reveal that wvulnerable contracts exhibit distinct
transaction features and ego network properties at various stages.

Keywords: Blockchain, Smart contract, Lifecycle, Ethereum, Transaction.

1. Introduction

Since the proposal of Bitcoin in 2008, blockchain technology has garnered significant

attention for its diverse applications [1]. Blockchain operates as a decentralized and public
ledger, eliminating the necessity for trusted third parties in financial systems by ensuring
transparent and tamper-resistant data records. The advent of smart contracts ushered in the
Blockchain 2.0 era, extending blockchain’s applications beyond digital currency
transactions to complex decentralized applications (DApps) and decentralized finance
(DeFi) protocols. Today, smart contract-based blockchain technology is widely adopted
across various industries, including healthcare [2—4], the Internet of Things (IoT) [5-8],
and finance [9, 10]. This study specifically focuses on the Ethereum platform.

Despite their significant value and widespread adoption, smart contracts continue to
face numerous security threats [11-16]. Research indicates that while some attacks directly
target the code and can be mitigated through rigorous security checks before deployment
and execution [17-25], many occur during other lifecycle stages [11, 26-31], such as
upgrade and destruction. These stages pose unique challenges, including state transitions

and governance oversight, often overlooked by traditional security methods. This lack of
research highlights the insufficiency of ensuring comprehensive security across the smart
contract lifecycle. Addressing these dynamic changes, particularly in the complex upgrade
and destruction stages, is crucial for enhancing security.

To address these challenges, this paper presents an empirical study identifying 840
smart contracts with vulnerabilities across different lifecycle stages, using the
SmartBugsV2 detection tool [32]. A comprehensive dataset of all related transactions is
compiled via the Ethereum browser Etherscan [33]. Based on this dataset, we exhaustively
examine security issues across the entire lifecycle, analyzing dynamic transactions and ego
network characteristics during deployment and execution, upgrade, and destruction stages.
Our analysis reveals distinct features of these vulnerable contracts, expanding the scope of
smart contract security. Moreover, features associated with lifecycle stages are effectively
distinguished from normal contracts using various machine learning models.

The main contributions of this paper are as follows:

(1) To the best of our knowledge, we present the first empirical study on the security
of smart contracts throughout their lifecycle, including deployment and execution, upgrade,
and destruction stages. By introducing feature descriptions of each stage and analyzing
them from dynamic and ego network perspectives, we enhance our understanding of
security challenges and facilitate the development of targeted mitigation strategies.

(2) The lifecycle of smart contracts is divided into three stages: deployment and
execution, upgrade, and destruction. A systematic analysis examines security issues at
each stage, providing a comprehensive perspective to explore vulnerabilities unique to
each phase.

(3) We create a dataset comprising over 1.54 million transactions involving more than
700 vulnerable smart contracts, categorized based on their lifecycle stages. Related codes
and experimental data have been open-sourced at
http://doi.org/10.6084/m9.figshare.24792717.

2. Background
2.1 Smart Contract Transactions

Smart contract transactions are the core operations that execute predefined code on the
blockchain, enabling DApps and DeFi protocols. Each transaction is recorded on the
blockchain, ensuring transparency and immutability. These transactions can include
deploying contracts, interacting with existing contracts, or transferring assets. While
enabling trustless automation, they are also vulnerable to risks if the contract code contains
bugs or vulnerabilities.

2.2 Critical Opcodes in Smart Contract

DELEGATECALL and SELFDESTRUCT are critical opcodes in smart contracts.
DELEGATECALL, a specialized message invocation in Solidity, allows code at a target
address to execute within the context of the calling contract, retaining the original
contract’s storage, ‘msg.sender’ and ‘msg.value’ [34]. This opcode is pivotal during
upgrades, enabling execution delegation to an updated contract without altering the
original contract’s state. It is also versatile, supporting modular architectures with dynamic
interactions. In contrast, SELFDESTRUCT removes a contract from the blockchain and
transfers its remaining balance to a designated address, crucial for controlled termination
when contracts are obsolete or pose security risks. However, improper use of

http://doi.org/10.6084/m9.figshare.24792717

SELFDESTRUCT can result in premature termination, leading to potential unintended
consequences.

2.3 The Ego Network

The ego network refers to a subgraph within a larger network that includes a specific node,
the Ego, and all nodes directly connected to it, known as Alters. The edges represent
interactions between the ego and its first-order neighbors, as shown in Fig. 1. Ego network
analysis is applied across various domains [35, 36], enabling researchers to explore
individual interactions, information flow, and sub-group structures. This analysis provides
insights into the roles and relationships of individuals, enhancing the understanding of
characteristics inherent to each individual.

Fig. 1. An Example of Ego Network

3. Common Vulnerabilities in Various Lifecycle Stages

The entire lifecycle of smart contracts consists of three stages: deployment and execution,
upgrade, and destruction. Initially, the contract is deployed to the blockchain, becoming
operational and executing its encoded rules. Over time, upgrades may be needed to
enhance functionality or address issues, often involving proxy contracts or opcodes like
DELEGATECALL. The lifecycle concludes with the contract’s destruction using the
SELFDESTRUCT opcode, removing it from the blockchain once its purpose is fulfilled or
termination is required.

Identifying the stages of a smart contract’s lifecycle is challenging. DELEGATECALL
indicates the upgrade stage, signaling vulnerabilities in the old contract and the need for a
new version with similar functionality. SELFDESTRUCT marks the destruction stage,
highlighting either vulnerabilities or task completion, prompting contract termination and
asset transfer. Other vulnerabilities typically emerge during the deployment and
operational stages.

Therefore, attention should be focused on DELEGATECALL-related vulnerabilities
during the upgrade stage and SELFDESTRUCT-related vulnerabilities during the
destruction stage. The remaining vulnerabilities primarily arise during the deployment and
execution stages.

3.1 Common Vulnerabilities in Deployment and Execution Stage

Based on existing research [37], the common security vulnerabilities with high impact in
smart contracts, excluding those related to DELEGATECALL and SELFDESTRUCT.

3.1.1 Integer Overflow and Underflow

h

The integer overflow or underflow vulnerability occurs when operations exceed the finite
numerical range of integer types, causing the computer to truncate the result to fit the data
type’s limits. Attackers exploit this vulnerability for unauthorized actions, such as
bypassing authentication or tampering with data [38]. Using validated secure mathematical
libraries for arithmetic operations ensures proper handling of boundary cases, mitigating
the risk of overflow and underflow.

3.1.2 Reentrancy

The reentrancy vulnerability, highlighted during the DAO attack [39], occurs when one
smart contract invokes another without adequate controls, potentially leading to a reentrant
loop. An attacker can repeatedly call functions during execution until a specified condition
or computational resources are exhausted. To address this vulnerability, internal state
changes should be completed before call execution, following the
Checks-Effects-Interactions pattern. Reentrancy locks, such as ReentrancyGuard in the
OpenZeppelin, can prevent recursive calls during external contract invocation and enhance
protection.

3.1.3 Authorization through Tx.origin

The authorization through tx.origin vulnerability in Solidity arises from using the global
variable tx.origin for smart contract authorization, exposing the transaction initiator’s
address and posing a security threat. To mitigate this risk, developers should avoid using
tx.origin for authorization and instead use ‘msg.sender’, which accurately represents the
immediate caller and is unaffected by external calls.

3.1.4 Timestamp Dependence

This vulnerability arises from smart contracts relying on timestamps, where attackers can
manipulate transaction timestamps to extend or shorten time windows, bypassing
restrictions and executing illicit operations [40]. To mitigate this, developers should
minimize reliance on timestamps and use more reliable methods for contracts with
time-related functionalities and constraints.

3.1.5 Unchecked Return Value

The unchecked return value vulnerability in smart contracts arises from the lack of checks
on message call return values. If an exception is thrown by the called contract, execution
continues without interruption, leading to potential unexpected behavior in subsequent
operations [41]. Therefore, it is essential to carefully examine return values to address
potential call failures.

3.1.6 Unprotected Ether Withdrawal

The unchecked return value vulnerability arises from a lack of checks on the return value
of message calls in a smart contract, which may also cause unexpected behaviors in
subsequent program execution [42]. Therefore, it is imperative to handle the potential for
call failures by diligently examining the return values.

3.1.7 Assert Violation

The assert violation vulnerability arises from misusing the assert() function, which is
intended for asserting invariants. Assertions should not fail under normal circumstances,
and their failure may indicate a contract error or improper use, such as for input validation.
To mitigate this, require() should be used for conditions essential to contract execution,
while assert() should be reserved for checking conditions that should never be false in a
properly functioning contract.

3.1.8 DoS with Failed Call

The DoS with failed call vulnerability occurs when an external call fails, potentially
causing a DoS state. To mitigate this vulnerability, combining multiple calls in a single
transaction should be avoided, particularly within loops.

3.2 Common Vulnerabilities in Upgrade Stage

3.2.1 DELEGATECALL to Untrusted Callee

The DELEGATECALL to untrusted callee vulnerability arises when a smart contract
invokes another potentially untrusted contract using DELEGATECALL. This allows code
execution at the target address within the current contract’s context, preserving
‘msg.sender’ and ‘msg.value’. Consequently, the caller is at risk of the invoked contract
altering storage values and gaining control over the caller’s balance. The use of
DELEGATECALL requires careful consideration of associated risks, as untrusted
contracts can exploit this functionality, jeopardizing the integrity of the state and financial
holdings of the calling contract.

The code sample in Fig. 2 demonstrates a vulnerability where the forward function can
invoke any contract, including untrusted ones, without validating the address. This exposes
the caller to potential manipulation of storage values and balance control by a malicious
contract through DELEGATECALL.

To mitigate this risk, caution is advised when using DELEGATECALL, ensuring that
untrusted contracts are not invoked. When the target address comes from user input, it is

crucial to compare it against a trusted contract whitelist for enhanced security.
1 contract Proxy {
2 address owner;

3 y
4 mapping (address => bool) trustedContracts; whitelist
5 constructor () public {
6 owner = msg.sender;
7T}
8 function addTrustedContract(address _contract) public {
9 require(msg.sender == owner);

10 trustedContracts [_contract] = true;

e ik

12 function forward(address callee, bytes _data) public {
13 o) r , : i
14 require(trustedContracts [callee]) ;

15 require(callee.delegatecall (_data));
16 3
17}

Fig. 2. Example Code of The DELEGATECALL to Untrusted Callee Vulnerability

3.2.2 Payable Functions Using DELEGATECALL Inside A Loop

The payable functions using DELEGATECALL inside a loop vulnerability represents a
security flaw in smart contracts, involving the utilization of DELEGATECALL within a
loop structure in payable functions. This susceptibility may result in the repetitive

accumulation of the same ‘msg.value’ amount within the loop, leading to inaccurate
balance calculations.

The example code in Fig. 3 demonstrates a vulnerability where the bad function uses
looped DELEGATECALL to pass addresses from the receiver array to the addBalance
function. As addBalance is payable and utilizes ‘msg.value’ to increase address balances, a
problem arises. The repeated passing of the same ‘msg.value’ within the loop leads to
multiple increments of the address’s balance, resulting in inaccurate calculations.

To address this, ensure that the called function avoids using ‘msg.value’ to prevent
incorrect balance calculations caused by multiple invocations of the same ‘msg.value’

during delegatecall loops.
1 contract DelegatecallInLoop {
2 mapping (address => uint256) balances;

3 function bad(address[] memory receivers) public payable {
4 for (uint256 i = 0; i < receivers.length; i++) {
5 3) : 1 a I t :
6 address (this).delegatecall (abi,encodeWithSignature ("addBalance (
address)", receivers[i]));
7 ¥
8 7
9 function addBalance (address a) public payable {
10 : : t
11 balances[a] += msg.value;
12 ’
13 }
Fig. 3. Example Code of The Payable Functions Using DELEGATECALL Inside A Loop
Vulnerability

3.3 Common Vulnerability in Destruction Stage

The vulnerability known as unprotected SELFDESTRUCT refers to inadequately secured
invocations within a smart contract that can trigger the contract’s self-destruct
functionality. The SELFDESTRUCT operation could be exploited maliciously, leading to
the unauthorized destruction of the contract and, consequently, posing potential risks and
losses.

The sample code is illustrated in. Fig. 4. In this example, the function kill is a public
function that directly invokes SELFDESTRUCT to terminate the contract and transfers the
balance to the caller’s address (i.e., ‘msg.sender’).

To mitigate this vulnerability, stringent permission controls can be implemented for
sensitive functions, allowing only authorized addresses to invoke operations that may lead
to self-destruction. Furthermore, Solidity’s modifiers can be utilized to ensure that
SELFDESTRUCT operation occurs only under specific conditions.

1 contract Suicidal {
2 function kill () public {

3 selfdestruct (msg.sender) ;
4 : e

5 ¥

6}

Fig. 4. Example Code of The Unprotected SELFDESTRUCT Vulnerability
4. Methodology

4.1 Problem Description

Current approaches to smart contract security primarily focus on static analysis, examining
contracts at specific points in time or targeting particular vulnerabilities. This narrow focus
often overlooks the dynamic evolution of vulnerabilities throughout the contract’s

lifecycle, especially during transaction processes. There is a clear need for deeper
exploration of how vulnerabilities manifest and evolve during different lifecycle stages,
particularly those involving complex operations like DELEGATECALL and
SELFDESTRUCT. This study aims to address this gap by analyzing the dynamic
characteristics and developmental trends of vulnerable smart contracts, providing insights
for more effective security measures and risk mitigation in the evolving Ethereum
ecosystem.

4.2 Data Collection

Initially, our experiment needs efficient and accurate vulnerability detection tools along
with a set of vulnerable smart contracts. Starting with the SmartBugs wild dataset [43],
which contains code and addresses for over 47,000 smart contracts. Based on the
vulnerability detection and lifecycle stage identification proposed in Section 3, we conduct
a preliminary vulnerability assessment on 500 randomly selected smart contracts using an
integrated tool incorporating exploit code from SmartBugs2 for detection. Results show
that four tools, namely Mythril [44], Confuzzius [45], Slither [46], and Sfuzz [47], exhibit
higher detection rates across multiple vulnerability types with increased accuracy,
particularly during deployment and destruction stages. Hence, these tools are selected for
smart contract vulnerability detection. To enhance confidence in our findings, if two or
more tools identify the same vulnerability in a given smart contract, we assert the presence
of a genuine vulnerability in that contract [43]. Finally, we employ these tools to identify
800 smart contracts with distinct-stage vulnerabilities in a random subset of 5,000
contracts.

Subsequently, gathering a diverse array of relevant transactional information is crucial.
To retrieve all transactions associated with identified vulnerable contracts (both internal
and external), a web crawler is developed to obtain their complete transaction history from
the Etherscan website [33]. Additionally, to construct the ego network, we collect the
entire transaction history of contracts interacting with the identified vulnerable contracts.
This dataset encompasses over 1.54 million transaction records, offering a holistic view of
interactions among these contracts. The fields and their meanings are detailed in Table 1.
From this dataset, comprehensive transaction-related information, including transaction
counts, amounts, and transaction neighbors within specific time intervals, is available.

Table 1. Primary Fields of Ethereum Transaction Data

Field Description

Contract Address | The contract address

Method The function you can call to perform specific tasks
Date The date and time when the transaction occurred

Transaction Hash | The unique identifier for a transaction on the blockchain

Block The block number

From The address of the transaction initiator (20-byte string)
To The address of the transaction recipient (20-byte string)
Value (ETH) The transaction amount in Ether (ETH)

4.3 Data Processing and Network Construction

In our study, vulnerable smart contracts are treated as nodes, with addresses directly
involved in transactions designated as first-order transaction neighbors. To improve the

h

relevance and accuracy, we remove irrelevant records, such as self-loop transactions,
where a smart contract interacts with itself, and failed transactions from the dataset.

We model each vulnerable smart contract as a node, denoted by = (,), where
includes the smart contract EGO and its neighboring ALTERs involved in transactions.
Transaction records consist of marked smart contract transactions and their first-order
transaction neighbors. Edges, represented as = (,), f designates from, representing
the address of the transaction initiator, while t designates to, representing the address of
the transaction recipient. The symbol e signifies asset transfers from one address to
another, thereby establishing a directed multigraph for each transaction ego network.

5. Features of Smart Contracts

In this section, we focus on and systematically examine various types of features
associated with smart contracts, collecting statistical data for analysis.

5.1 Transaction Features

Transaction attributes can most directly reflect the behavioral characteristics of Ethereum
accounts. For instance, the lifecycle length of a smart contract refers to the lifespan from
its creation to termination, offering insights into the contract’s stability and long-term
availability. The number of neighbors for a smart contract indicates the number of other
Contract Accounts or Externally Owned Accounts (EOAs) interacting with it, reflecting
the degree of association and interoperability.

5.1.1 Lifespan of Contracts

We retrieve data from the Etherscan website, specifically documenting the monthly count
of smart contracts created [33]. In the Ethereum system, thousands of new accounts are
created daily, exhibiting significant variation in transaction frequency. The rapid growth in
smart contracts is accompanied by an increase in security issues, highlighting the need for
more effective methods to analyze critical security concerns and the developmental
patterns of smart contracts.

We define the lifespan of a contract as the time interval between its first and last
transactions (until the data was collected). For each contract type, we compute the average,
median, and standard deviation of its lifespan, as shown in Table 2, and depict the
distribution in Fig. 5. Contracts with vulnerabilities during both the deployment and
execution stages are categorized as having other vulnerabilities.

Table 2. Statistics for The Lifespan of Each Stage (Days)

Label Others Delegatecall Selfdestruct
Mean 340.48 226.84 77.83
Median 33.85 3.60 0.84
Std. 569.31 401.87 234.10

Smart contracts with different vulnerabilities exhibit diverse lifespan distributions. As
shown in Table 2 and Fig. 5, over 90% of smart contracts with selfdestruct vulnerabilities
have a lifespan of 100 days or less. About 60% of contracts with other vulnerabilities also
last within 100 days, though approximately 10% persist beyond 1400 days. For contracts
with delegatecall vulnerabilities, around 70% last within 100 days, and all remain within
the 1400-day range, indicating a more uniform distribution compared to other
vulnerabilities.

=
(=]
(=]

| other

A -=- delegatecall
i —e+— selfdestruct
o0 i

60|

90

50 i
a| §§
| i
30 g
20 ;
10| |
| ’l s

Bt
LA e e e e A e b @

Percentage of contracts in each category (%)

& 82, s Ly Py by o b Cn o Yo Ty D
0,700, ¢, 2,3, (2,58, 6, 2,8, 8,70, T,

Duration range (days)

Fig. 5. Contract Lifespan Duration Distribution

The variation in lifespan distribution can be attributed to the distinct nature of
vulnerabilities. Specifically, the median lifespan of smart contracts with other
vulnerabilities is only 33.85 days, but they exhibit the highest standard deviation,
indicating some contracts with exceptionally long lifespans. Notably, only contracts with
vulnerabilities during the deployment and execution stages exceed 1400 days. To further
investigate these long-lifespan contracts, we examine the top eight vulnerabilities with the
proportion of contracts with extended lifespans, as shown in Fig. 5. As seen in Fig. 6, 88%
of vulnerabilities pose minimal risk, requiring only functional enhancements to the smart
contracts. Only Assert violation, Shadowing abstract, and Integer overflow/underflow
vulnerabilities present high risks [46]. This analysis reveals that even high-risk
vulnerabilities are seldom exploited over extended periods [48], while low-risk
vulnerabilities are generally disregarded, allowing these contracts to persist on the
blockchain and remain operational for prolonged durations.

1%
3% 1%

8%

H External function

28%
11% Naming convention
Constable states
Incorrect solidity version
Shadowing abstract
H Integer overflow/underflow
H Block values as a proxy for time
20% H Assert violation

28%
Fig. 6. Top Eight Vulnerabilities in Smart Contracts Which Have Lifespans Exceeding 1400 Days

To comprehend the transactional characteristics of smart contracts with vulnerabilities
at different periods of lifespan, we employ a variable-length time window. Distinguished
from prior studies [35, 49], our approach divides the lifespan, from the first transaction to
the last, of each contract into five distinct periods (P1~P5) for analysis. This partitioning
yields a clear chronological perspective, aligning more closely with the objectives of our
study.

Finding 1: Smart contracts with selfdestruct vulnerabilities exhibit a lifespan primarily
within 100 days, displaying a remarkably uniform distribution. In contrast, smart contracts
with other vulnerabilities have lifespans over 1400 days.

Finding 2: Despite the heightened risks inherent in some smart contracts, it is not
necessarily the case that these vulnerabilities will be maliciously exploited. As a result,
these smart contracts have a significant lifespan.

5.1.2 Changes in The Number of Transactions

We assess transaction volume as an indicator of smart contract activity throughout its
lifespan. To account for the uneven distribution of contract types, we present the
proportional representation of transaction volumes across periods in Fig. 7, which
indicates that, collectively, smart contracts with vulnerabilities (excluding selfdestruct
vulnerabilities) contribute around 80% of the total transaction volume initially, followed
by a gradual decline. In contrast, contracts with delegatecall vulnerabilities exhibit
fluctuating transaction volumes, characterized by phases of decrease, increase, and
subsequent decrease.

These smart contracts initially exhibit a higher number of transactions due to extensive
user interactions following deployment. We conduct an in-depth analysis of smart
contracts with delegatecall vulnerabilities, which show fluctuating transaction volumes.
Our findings indicate that these contracts are primarily involved in processes like voting
through proxy calls and decentralized lending. In contrast, transactions for smart contracts
with selfdestruct vulnerabilities and those with other vulnerabilities in p3, p4, and p5 are
nearly negligible.

80 o— other
70 \ —e- delegatecall
selfdestruct

Ratio (%)

w B~ W
o o
»

4 SN
20 S g E— .-
~ -~ e ——
~ ¢ -
10 N ><
\\’,
0
pl p2 p3 p4 p5
Period

Fig .7. Ratio of Transactions for Each Type of Smart Contract per Period

It is noteworthy that transactions between smart contracts are directional, involving
both incoming and outgoing transfers. In the former case, contracts receive Ether, while in
the latter, Ether is sent to others. To analyze these changes, we introduce an indicator
calculated as the ratio of incoming to outgoing transactions, considering only non-zero
amounts. The variations in are shown in Table 3. When exceeds 1, it indicates a
higher frequency of incoming transactions, while less than 1 suggests more outgoing
transactions. An value of 0 signifies no incoming or outgoing transactions.

Table 3. Changes in Metric
Period P1 P2 P3 P4 P5
Other 0.72 0.314 2.38 1 0.63 | 1.191
Delegatecall 0.00 2.00 2.00 2.00 | 0671}

Selfdestruct 1.77 1.92% 0351 0.63 ¢ 0.34

The performance of varies across different categories of smart contracts. Contracts
with delegatecall vulnerabilities involve transactions with zero values, a result of
DELEGATECALL’s nature, where the initiating contract delegates execution without
transferring funds. This is common in proxy contracts, where users invoke functions in the
target contract, preserving the caller’s context, including ‘msg.sender’ and ‘msg.value’.
This allows attackers to exploit the caller’s context or affect the calling contract’s storage
[50].

Smart contracts with selfdestruct vulnerabilities show a significantly higher number of
outgoing transactions in their final lifespan period compared to incoming transactions. A
manual inspection of outgoing transactions in P5 revealed that 58.5% of these contracts
self-destructed after transferring assets, as confirmed by reviewing their transaction history
on Etherscan.

Finding 3: Smart contracts with delegatecall vulnerabilities exhibit notable fluctuation
in transaction numbers throughout their entire lifespan, while those with other
vulnerabilities and selfdestruct vulnerabilities both display a gradual decrease in the
transaction numbers.

Finding 4: In P5 phase, the majority of contracts containing selfdestruct vulnerabilities
selfdestructed after transferring assets.

5.1.3 Changes in the Amount of Transactions

Unlike social networks, edges between nodes in the Ethereum transaction network carry
monetary information, offering deeper insights into smart contract activities. Fig. 8
illustrates the transaction amounts for various smart contracts across different time
intervals.

Fig. 8 demonstrates that smart contracts with other vulnerabilities, as well as those with
selfdestruct vulnerabilities, experience incoming transaction amounts exceeding outgoing
transactions during the initial phase of their lifespan. In contrast, smart contracts with
delegatecall vulnerabilities exhibit consistently low transaction amounts. Smart contracts
with other vulnerabilities and selfdestruct vulnerabilities demonstrate substantially lower
transaction amounts in the P3, P4, and P5 phases compared to the P1 phase.

1e5 others delegatecall 1ed selfdestruct

=15 i In s In P 2.0 In
T~ out T4 out T out
o |t =15
w L 3 1%
7%° 2 3
[a2 o 1.0
205 = =
m (1] m
> 81 T05

0.0 , , : s 0 s : : 0.0 , v ;

1) 3 4 5 1 2 3 4 5 1 2 3 4 5
Period Period Period

Fig. 8. Changes of The Transaction Amount per Period

Finding 5: Smart contracts with selfdestruct and other vulnerabilities demonstrate a
notable decline in transaction amounts during the P3, P4, and P5 phases.

Finding 6: Smart contracts with delegatecall vulnerabilities typically manifest in
transactions with notably low amounts, in contrast to those with selfdestruct and other
vulnerabilities, which tend to involve higher transaction amounts.

Finding 7: Smart contracts with other vulnerabilities have transaction amounts in the
first phase that account for approximately 90% of the entire lifespan.

5.1.4 Changes in the Number of Neighbors

In the Ethereum ecosystem, individuals typically remain anonymous to each other.
Nevertheless, insights into the social nature of Ethereum contracts can be gleaned by
comparing the number of transaction partners between different Ethereum contracts. A
contract can engage in multiple transactions with another contract, termed as transaction
neighbors. Fig. 9 and Fig. 10 illustrate the variations in the number of incoming and
outgoing transaction neighbors. Moreover, the trans_in represents incoming neighbors,
and the trans_out represents outgoing neighbors.

165 others 15 le2 delegatecall 1e3 Selfdestruct
! trans_in ' trans_in 2.01 trans_in
4 trans_out trans_out trans_out
2 g
= £ g 10
3 305 =
Z 14 = Z 0.5
04, : : ° ' 0.0 - 3 : : 0.01, ‘ > ;
pL p2 p3 p4d P> PL p2 p3 p4 pS5 Pl p2 p3 pé
Period Period Period

Fig. 9. Change in Incoming and Outgoing Neighbors per Period (Transaction Value Can Be 0)

led others delegatecall 1e3 selfdestruct
- trans_in trans_in 0 trans_in
ih 2 W trans_out 3 4 trans_out i trans_out
| - | - -
3 3 3
1.04
E 1 E 2 E
3 3 =
= = =Z 0.54
04, = : - : 0L . - . . 0.01, i - . .
pl p2 p3 pd4d p5 pl p2 p3 p4 p5 pl p2 p3 p4d p5
Period Period Period

Fig. 10. Change in Incoming and Outgoing Neighbors per Period (Transaction Value Can Not Be 0)

From these two figures, we gain unique insights into the transactional neighbors. Contracts
with delegatecall vulnerabilities and those with other vulnerabilities often transact with
zero amounts among their neighbors. Delegatecall contracts primarily involve zero-value
transactions, consistent with their role as invoked contracts focused on data storage or
function calls, supporting the findings in sections 5.1.2 and 5.1.3. In contrast, smart
contracts with selfdestruct vulnerabilities show nearly equal incoming and outgoing
neighbors, with most transactions involving non-zero amounts. Excluding delegatecall
contracts, both types of contracts exhibit a gradual reduction in incoming and outgoing
neighbors.

Finding 8: If the transaction amounts can be zero, contracts with delegatecall
vulnerabilities demonstrate a consistent number of outgoing neighbors.

Finding 9: Regardless of whether transaction amounts can be zero, contracts with
selfdestruct vulnerabilities exhibit an equivalent quantity of incoming and outgoing
neighbors.

5.1.5 Changes in the Number of Old and New Neighbors

Fixed interaction partners significantly characterize an Ethereum contract. In each contract
lifespan, the first appearance of neighboring contracts is termed new neighbors, while
previously encountered ones are labeled old neighbors. Fig. 11 and Fig. 12 illustrate the
proportions of new and old neighbors among transaction partners, providing insights into

h
h

contract transaction tendencies. Each bar in the figure is divided into non-overlapping blue
and yellow segments, representing quantities of new and old neighbors in each stage.

1e5 others 1e2 delegatecall 1le3 selfdestruct
4 new neighbors new neighbors 2.0 old neighbors
3 old neighbors old neighbors new neighbors
b 1 | - f - 4
g g 1.0 8 1.5
2 : £ 10
= =05 =
1l 0.5
01— - ‘ ‘ ‘ 0.01— . . - - 0.01— - ‘ ‘ :
Pl p2 p3 p4 PS5 pL p2 p3 p4 p5 plp2 p3 p4 PS5
Period Period Period

Fig. 11 Changes in New and Old Neighbors per Period(Transaction Value Can Be Zero)

1e4 others delegatecall 1e3 selfdestruct
new neighbors 41 new neighbors 2.0 old neighbors
34 old neighbors old neighbors new neighbors
- — = 1.54
] L 31 4]
o o Q
E?2 £ £1.0
Z z z
1 1 0.5
] T T 7 T g 0 T T T T T 0.0 T T T T T
pl p2 p3 p4 p5 pl p2 p3 p4 p5 pl p2 p3 p4 p5
Period Period Period

Fig. 12 Changes in New and Old Neighbors per Period(Transaction Value Can Not Be Zero)

Analyzing the graph, we observe that over 90% of smart contracts with selfdestruct
vulnerabilities interact with new neighbors. This aligns with our earlier analysis, where
new neighbors quickly initiate outgoing transactions after incoming ones in the current
phase. Notably, in the third phase of contracts with selfdestruct vulnerabilities, there is no
fund transfer, but in the final phase, new neighbors engage in minimal fund transfers. This
reaffirms our earlier finding that, despite the prevalence of vulnerabilities, the malicious
exploitation rate remains low, consistent with Perez et al. [48]. In contrast, smart contracts
with delegatecall vulnerabilities exhibit the highest ratio of old neighbors, while contracts
with other vulnerabilities consistently engage with a portion of old neighbors, regardless
of whether transaction amounts are zero.

Finding 10: Regardless of whether transaction amounts can be zero, smart contracts
with delegatecall vulnerabilities have the highest ratio of old neighbors.

Finding 11: Over 90% of smart contracts with selfdestruct and other vulnerabilities
interact with new neighbors, and these neighbors promptly initiate outgoing transactions
after incoming transactions during the current phase.

5.2 Properties of Transaction Ego Network

In addition to transaction features, the structural attributes of Ethereum contracts are
crucial for observing transaction patterns. By exploring network properties such as
network density and local clustering coefficient, we can better understand the
neighborhood complexity of flagged contracts. Given the minimal impact of multiple
edges on detecting network characteristics, we analyze the simple directed graph version
of ego networks in this section.

5.2.1 Temporal Variation of Network Density

The variation in network density not only signifies the sustained trends within the network
but also implies the degree of connectivity among all nodes in the network. For an ego
network, its density can be defined as:

N
“TT=D 1] @

Here, represents the number of directed edges, denotes the number of nodes in the
ego network graph, and | | denotes the operation for computing set size.

Consequently, we calculate the average network density for each type of smart contract
at different periods. As shown in Fig. 13, the average ego network density for all smart
contracts is consistently below 0.5. However, apart from smart contracts with other
vulnerabilities, the manifestations of the remaining two categories do not align entirely
with those reported by Zhao et al. [51]. It is evident that, with the evolution of Ethereum,
an increasing number of nodes appear in the transaction network of smart contracts. Yet,
since most nodes do not engage in transactions with each other, it leads to network sparsity.
Therefore, the ego network density of smart contracts with other vulnerabilities aligns with
the regularity observed in network development.

0.50
other
=s= delegatecall
0.45{ === selfdestruct
20.404
@ ——
[@ —.
QO 0.35 —— et
0.30 1
0.25 +— T T . :
pl p2 p3 p4 p5

Period
Fig. 13. The Density of Ego Network per Period

We aim to comprehend the reasons behind the discrepancy in ego network density and
blockchain network development patterns observed in the other two categories of smart
contracts. The smart contract with the highest network density is the one containing the
selfdestruct vulnerability, and its density notably differs from that of smart contracts with
other vulnerabilities. As detailed in Sections 5.1.4 and 5.1.5, smart contracts with the
selfdestruct vulnerability exhibit fewer neighbors, with almost no addition of new
neighbors in the last three phases. This contributes to the increase in ego network density
in the final phase. Similarly, smart contracts with the delegatecall vulnerability also
demonstrate a higher ego network density than those with other vulnerabilities. As
evidenced in Section 5.1.5, this type of contract has the highest ratio of old neighbors and
the lowest number of neighbors overall. Therefore, we deduce that the number of
neighbors (i.e., node counts) is a crucial factor influencing network density, aligning with
the findings of Wu et al. [20].

Finding 12: We consider that the node count within the subnet is a key factor
influencing network density.

5.2.2 Local Clustering Coefficient

The local clustering coefficient is a commonly used metric to evaluate tight relationships
among neighbors within a cluster, offering insights into the inherent sparsity of
Ethereum’s local structure. It is calculated by dividing the number of connections between

h
h
h

nodes in a node’s neighborhood by the potential number of connections among them. Thus,
in an ego network, the local clustering coefficient is defined as:

i -, , H
[d —1D

Here, and represent distinct non-central neighbor nodes in the ego network.

signifies the directed transaction edge from node to node within the ego network.
represents the first-order neighbors of the ego network, and | | denotes the operation

for computing set size. Furthermore, we calculate the average local clustering coefficient

2

The results in Table 4 highlight that smart contracts with selfdestruct vulnerabilities
exhibit the highest clustering coefficient of 0.015 among all account types, implying a
1.5% probability of transactions between these contracts, indicating their closer
interconnectedness. Fig. 14 supports this, suggesting higher network density due to the
relatively fewer neighbors of these contracts. Upon closer inspection, these contracts
primarily facilitate functions such as asset storage, retrieval, auctions, and gaming.

Table 4. The Average Clustering Coefficient of Various Types of Smart Contracts
Label Others Delegatecall Selfdestruct

0.007 0.001 0.015

Smart contracts with delegatecall vulnerabilities exhibit the smallest coefficient,
suggesting weaker relationships among them. However, in contrast to the preceding figure,
a non-negligible network density is observed. This implies that network density is not
solely influenced by the clustering degree. The increased density in these networks is
attributed to fewer neighbors and a higher ratio of old neighbors. Thus, network size,
clustering degree, and the proportion of old neighbors collectively determine overall
network density.

Finding 13: Smart contracts with selfdestruct vulnerabilities exhibit the highest
clustering coefficient, and both the clustering coefficient and the proportion of old
neighbors are additional factors determining network density.

6. Detection Experiment

Through the preceding analysis in Section 5, we have identified distinct dynamic
transaction behaviors and transaction neighborhood characteristics among different smart
contracts. Consequently, by utilizing machine learning classification models on the
contract features we designed, we can ascertain the alignment of our findings with general
characteristics and determine the extent to which these smart contracts can be distinctly
differentiated.

6.1 Experiment Settings

We utilize the seven foundational features analyzed in Section 5. Five widely employed
machine learning models: Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), Decision Tree (DR), and K-Nearest Neighbors (KNN) are selected for
blockchain contracts classification. Default parameters from the sklearn library are used
for each model. The sample set is split into 60% training, 30% testing, and 10% validation
subsets. Evaluation includes metrics like accuracy, precision, recall, and F1 score, with
validation utilizing cross-validation.

h
h

6.2 Experiment Results

Table 5 shows that KNN classification is notably effective, achieving a precision of 0.715
and a recall of 0.726. Fig. 14 presents the Receiver Operating Characteristic (ROC) curve
generated from the KNN model’s predictions, illustrating the trade-off between the true
positive rate (sensitivity) and the false positive rate (1-specificity) across different
thresholds. The area under the curve (AUC) is 0.7222, reflecting the model’s ability to
discriminate between classes. We also present confusion matrices for the five
classification models.

Table 5. Experiment Results With Different Classification Models

Model | Accuracy | Precision | Recall | F1 score
LR 0.589 0.612 0.589 | 0.594
SVM 0.560 0.560 | 0.560 | 0.561
DR 0.305 0.331 0.305 | 0.268
RF 0.344 0.597 0.344 | 0.196
KNN 0.726 0.715 0.726 | 0.713
Receiver Operating Characteristic
1.0
//,,
w 0.8 22
I 2
o o
9 0.6 &
S ra
8- 0.4 -
Q /’
2 -~
= e
0.2 el
Nl —— ROC curve (area = 0.7222)
0.0+ : . : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Fig. 14. ROC Curve for KNN Model Predicting Result

A confusion matrix is a tabular representation for evaluating classification performance,
with percentages indicating the proportions of each class in the dataset. Shading in the
matrix provides a quick visual of the model’s accuracy, where darker shades denote higher
values. The confusion matrix in Fig. 15, based on the KNN model, highlights distinctions
among smart contracts but also reveals misclassifications of contracts with other
vulnerabilities as different types. This may stem from the diverse vulnerabilities within
these contracts, where some share features with selfdestruct and delegatecall
vulnerabilities.

Finding 14: Significant distinctions indeed exist among smart contracts that contain
vulnerabilities at different lifespan stages. And the features we designed can effectively
differentiate these smart contracts.

LR SVM DR

6.85% 37.30%

other
other
other

23 23 2%
T 9 ® & © g
=2 g =2 = 2
5 37.48% 11.65% =5 = &
s 9 39 =]
] £3]
& = g ©°]
- & =
g g g
2 g g
@ @? il
F} 20.57% 0.00% 8 4
2 =2 2
o] @
H 3‘]’ w
other delegatecall selfdestruct other delegatecall selfdestruct other delegatecall selfdestruct
100
RF KNN
@ o 80
£ £ 25.60% 14.72%
o o
" = 3]
T = = 60
r 28 g
s g m 3 o
® S =5 3
3 g g -] o
g3 g8 40 g
T <
k] o}
2 B
E
2 g
P 2 20
] &
other delegatecall selfdestruct other delegatecall selfdestruct 0

Fig. 15. Confusion Matrix of The Five Model Predictions

Discussion

Our study addresses a gap in smart contract vulnerability research by conducting a
comprehensive lifecycle analysis of vulnerable contracts, unlike prior work focused
mainly on static analyses or specific vulnerability types. By examining transaction
dynamics and ego network features, we provide deeper insights into the characteristics of
vulnerable contracts. Notably, most vulnerable contracts have lifecycles under 100 days,
with selfdestruct vulnerabilities being particularly short-lived. In contrast, over 95% of
transactions involving contracts with delegatecall vulnerabilities lack asset transfers,
reflecting their role in state or function calls.

Our findings reveal distinct characteristics among various vulnerability types, leading
to the development of two feature categories: fundamental and dynamic differentiating
features. The KNN model achieved superior classification performance, though some
confusion between vulnerabilities arose, likely due to overlapping feature manifestations.
Despite limitations, including dataset specificity and sample size, our results provide
valuable insights into Ethereum smart contract development and trends.

8. Related Work

8.1 Ethereum Analysis

The current analysis of Ethereum can be categorized into two approaches: comprehensive

analysis of the entire Ethereum network and focused analysis of specific aspects [52].
Comprehensive analyses of the Ethereum network have increasingly focused on

transaction networks. Lee et al. [53] conducted an extensive study using network analysis

methods to explore interactions between users and smart contracts across four Ethereum
networks and three token sub-networks. Their findings revealed that while Ethereum
networks differ from social networks due to low transitivity and the absence of community
structures, they still exhibit small-world properties and strong connectivity. Building on
this, Lin et al. [54] introduced the temporal weighted multidigraph model, incorporating
temporal and monetary attributes to improve transaction analysis accuracy.

Guo et al. [55], Li et al. [56], and Lin et al. [57] have focused on analyzing transaction
relationships. Guo et al. [55] employed a framework based on network science, identifying
a heavy-tailed distribution in Ethereum transaction characteristics, which aligns with
power-law functions. This analysis also showed that popular nodes often connect with
numerous ordinary users, challenging the existence of a rich club phenomenon. Building
on this, Li et al. [56] proposed TTAGN, a method for detecting phishing fraud using
temporal relationships in transaction data. Their approach, integrating graph neural
networks and transaction statistics, improves fraud detection on Ethereum. Lin et al. [57]
explored Ethereum’s transaction relationship evolution, constructing a micro-level network

model that uncovered a star-shaped structure and highlighted the role of transaction
frequency in network evolution, introducing a link prediction method to forecast future
relationships.

Furthermore, the current analysis of Ethereum extends to various aspects. Yaish et al.
[58] analyzed Ethereum's consensus mechanism, focusing on an attack method called

Uncle Maker within the proof-of-work (PoW) consensus. Their findings revealed that
Ethereum’s second-largest mining pool executed this attack for over two years. Bai et al.
[59] examined transaction pattern evolution on Ethereum using temporal graph analysis.
They constructed User-to-User (UUG), Contract-to-Contract (CCG), and User-to-Contract
(UCGQG) graphs, validating transaction fairness and wealth distribution while highlighting
the growing importance of smart contracts. Their study also explored spatiotemporal
dynamics, uncovering a correlation between transaction patterns and Ether price
fluctuations.

8.2 Smart Contract Analysis

Current smart contract analyses mainly target vulnerability detection [40, 60-62], with
various approaches developed to improve accuracy and efficiency. Ethainter, introduced
by Brent et al. [40] detects composite attacks by analyzing information flow and data
sanitization within smart contracts, achieving a precision of 82.5%. Zhang et al. [60]
proposed MODNN, a scalable neural network model capable of detecting multiple
vulnerabilities simultaneously, with an average F1 score of 94.8%. Sendner et al. [61]
developed ESCORT, a deep learning-based tool using transfer learning to detect new
vulnerability types with an average F1 score of 96%. Wu et al. [62] introduced Peculiar, a
model leveraging pre-training on crucial data flow graphs, achieving 91.8% precision and
92.4% recall in reentrancy vulnerability detection, outperforming existing methods.

What’s more, current analyses of smart contracts increasingly focus on gas
consumption. Chen et al. [63] introduced GasChecker, a tool using symbolic execution
and MapReduce to identify gas-inefficient programming patterns. They summarized ten
such patterns and proposed the FBLB strategy to improve resource efficiency. Similarly,
Albert et al. [64] developed Gasol, which provides cost models for analyzing and
optimizing gas usage in Ethereum smart contracts, assisting in detecting resource-oriented
attacks.

In contrast, Hu et al. [65] focused on detecting fraudulent activities in smart contracts
through SCSGuard, a deep learning-based framework. This tool leverages bytecode

features and an attention mechanism based on GRU networks to identify fraud. From a
broader perspective, Oliva et al. [66] analyzed smart contract activity, categorization, and
code complexity on Ethereum, revealing a concentration of activity in a small subset of
contracts. Despite the interest in blockchain applications, the primary use of smart
contracts remains in token management, particularly for ICOs and crowdfunding.

9. Conclusion and Future Perspectives

Our study offers a comprehensive analysis of smart contract vulnerabilities by categorizing
them into three distinct lifecycle stages: deployment and execution, upgrade, and
destruction. By identifying features associated with vulnerabilities at each stage, we
enhance detection capabilities and deepen the understanding of security personnel. These
features are also effectively applied in machine learning-based approaches for
vulnerability detection, demonstrating their utility throughout a smart contract’s lifecycle.
Furthermore, we highlight the challenge of distinguishing between contracts with different
vulnerabilities, particularly those with selfdestruct or delegatecall issues.

However, there are misclassifications among various contracts. To address these
misclassifications, future research should focus on examining whether the confusion arises
from internal or external transaction factors. Additionally, expanding the dataset to include
a larger and more current collection of smart contracts will be crucial for refining
classification models and ensuring the generalizability of our findings.

References

[1] Nakamoto S. “Bitcoin: A peer-to-peer electronic cash system.” Decentralized business review,
pp. 1-9, 2008.

[2] Kuo T-T, Pham A. “Quorum-based model learning on a blockchain hierarchical clinical
research network using smart contracts.” International journal of medical informatics, vol. 169,
pp. 104924-104933, 2023. https://doi.org/10.1016/j.ijmedinf.2022.104924

[3] Subramanian H, Subramanian S. “Improving diagnosis through digital pathology:
Proof-of-concept implementation using smart contracts and decentralized file storage.”
Journal of medical Internet research, vol. 24, no. 3, pp. 34207-34224, 2022.
https://doi.org/10.2196/34207

[4] Qi P, Chiaro D, Giampaolo F, Piccialli F. “A blockchain-based secure internet of medical things
framework for stress detection.” Information Sciences, vol. 628, pp. 377-390, 2023.
https://doi.org/10.1016/j.ins.2023.01.123

[5] Jamil F, Ibrahim M, Ullah I, Kim S, Kahng HK, Kim D-H. “Optimal smart contract for
autonomous greenhouse environment based on IoT blockchain network in agriculture.”
Computers and Electronics in Agriculture, vol. 192, pp. 106573-106591, 2022.
https://doi.org/10.1016/j.compag.2021.106573 https://doi.org/10.1016/j.compag.2021.106573

[6] Su H, Guo B, Shen Y, Suo X. “Embedding smart contract in blockchain transactions to improve
flexibility for the 1oT.” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 19073-19085,
2022. https://doi.org/10.1016/j.compag.2021.106573

[7] Zhang C, al. et. “Toward secure data sharing for the iot devices with limited resources: A smart
contract-based quality-driven incentive mechanism.” IEEFE Internet of Things Journal, vol. 10,
pp. 12012-12024, 2022. https://doi.org/10.1109/J10T.2022.3142786

[8] Li X, Yu L, Luo X. “On discovering vulnerabilities in android applications.” Mobile security
and privacy, pp. 155-166, 2017.

[9] Natanelov V, Cao S, Foth M, Dulleck U. “Blockchain smart contracts for supply chain finance:
Mapping the innovation potential in australia-china beef supply chains.” Journal of Industrial

https://doi.org/10.1016/j.ijmedinf.2022.104924
https://doi.org/10.2196/34207
https://doi.org/10.1016/j.ins.2023.01.123
https://doi.org/10.1016/j.compag.2021.106573
https://doi.org/10.1016/j.compag.2021.106573
https://doi.org/10.1016/j.compag.2021.106573
https://doi.org/10.1109/JIOT.2022.3142786

Information Integration, vol. 30, pp- 100389-100403, 2022.
https://doi.org/10.1016/j.jii.2022.100389

[10] Wang X, Xu F. “The value of smart contract in trade finance.” Manufacturing & Service
Operations Management, vol. 25, no. 6, pp- 20562073, 2022.
https://doi.org/10.1287/msom.2022.1126

[11] Huynh-The T, Gadekallu TR, Wang W, Yenduri G, Ranaweera P, Pham Q-V, Costa DB da,
Liyanage M. “Blockchain for the metaverse: A review.” Future Generation Computer Systems,
vol. 143, pp. 401-419, 2023.

[12] Atzei N, Bartoletti M, Cimoli T. “A survey of attacks on ethereum smart contracts (sok).”
Proceedings of the principles of security and trust (POST), pp. 164—186, 2017.

[13] Kong D, Li X, Li W. “Characterizing the solana NFT ecosystem.” Companion proceedings of
the ACM web conference 2024, pp. 766769, 2024.

[14] Liu Z, Li X, Peng H, Li W. “GasTrace: Detecting sandwich attack malicious accounts in
ethereum.” 2024 IEEE international conference on web services (ICWS), pp. 1409-1411,
2024.

[15] Li Z, Li X, Li W, Wang X. “SCALM: Detecting bad practices in smart contracts through
LLMSs.” arXiv preprint arXiv:2502.04347, 2025.

[16] BulJ, Li W, Li Z, Zhang Z, Li X. “Enhancing smart contract vulnerability detection in DApps
leveraging fine-tuned LLM.” arXiv preprint arXiv:2504.05006, 2025.

[17] Jeon S, Lee G, Kim H, Woo SS. “Design and evaluation of highly accurate smart contract code
vulnerability detection framework.” Data Mining and Knowledge Discovery, vol. 38, no. 3, pp.
888-912, 2024. https://doi.org/10.1007/s10618-023-00981-1

[18] Chen J, Xia X, Lo D, Grundy J, Luo X, Chen T. “Defectchecker: Automated smart contract
defect detection by analyzing evm bytecode.” IEEE Transactions on Software Engineering,
vol. 48, no. 7, pp. 2189-2207, 2021. https://doi.org/10.1109/TSE.2021.3054928

[19] He D, Wu R, Li X, Chan S, Guizani M. “Detection of vulnerabilities of blockchain smart
contracts.” [EEE Internet of Things Journal, vol. 10, no. 14, pp. 12178-12185, 2023.
https://doi.org/10.1109/JI0T.2023.3241544

[20] Li W, Li X, Li Z, Zhang Y. “Cobra: Interaction-aware bytecode-level vulnerability detector for
smart contracts.” Proceedings of the 39th IEEE/ACM international conference on automated
software engineering, pp. 13581369, 2024.

[21] Liu Z, Li X. “SoK: Security analysis of blockchain-based cryptocurrency.’
arXiv:2503.22156, 2025.

[22]1BuJ, Li W, Li Z, Zhang Z, Li X. “SmartBugBert: BERT-enhanced vulnerability detection for
smart contract bytecode.” arXiv preprint arXiv:2504.05002, 2025.

[23]1 Li Z, Li W, Li X, Zhang Y. “StateGuard: Detecting state derailment defects in decentralized
exchange smart contract.” Companion proceedings of the ACM web conference 2024, pp.
810-813, 2024.

[24] Li X, Mao Y, Lu Z, Li W, Li Z. “SCLA: Automated smart contract summarization via LLMs
and control flow prompt.” arXiv e-prints, pp. arXiv—2402, 2024.

[25]1Li Z, Li W, Li X, Zhang Y. “Guardians of the ledger: Protecting decentralized exchanges from
state derailment defects.” IEEE Transactions on Reliability, 2024.

[26] Chu H, Zhang P, Dong H, Xiao Y, Ji S, Li W. “A survey on smart contract vulnerabilities:
Data sources, detection and repair.” Information and Software Technology, vol. 159, pp.
107221-107238, 2023. https://doi.org/10.1109/J10T.2023.3241544

[27] Mustafa I, McGibney A, Rea S. “Smart contract life-cycle management: An engineering
framework for the generation of robust and verifiable smart contracts.” Frontiers Blockchain,
vol. 6, pp. 2624-7852, 2023. https://doi.org/10.3389/fbloc.2023.1276233

[28] Niu Y, Li X, Peng H, Li W. “Unveiling wash trading in popular NFT markets.” Companion
proceedings of the ACM web conference 2024, pp. 730-733, 2024.

[29] Li W, Li X, Zhang Y, Li Z. “DeFiTail: DeFi protocol inspection through cross-contract
execution analysis.” Companion proceedings of the ACM web conference 2024, pp. 786—789,
2024.

bl

arXiv preprint

https://doi.org/10.1016/j.jii.2022.100389
https://doi.org/10.1287/msom.2022.1126
https://doi.org/10.1007/s10618-023-00981-1
https://doi.org/10.1109/TSE.2021.3054928
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.3389/fbloc.2023.1276233

[30] Wang Y, Li X, Ye S, Xie L, Xing J. “Smart contracts in the real world: A statistical
exploration of external data dependencies.” arXiv preprint arXiv:2406.13253, 2024.

[31]1 Li W, Liu Z, Li X, Nie S. “Detecting malicious accounts in Web3 through transaction graph.”
Proceedings of the 39th IEEE/ACM international conference on automated software
engineering, pp. 2482-2483, 2024.

[32] Angelo M di, Durieux T, Ferreira JF, Salzer G. “SmartBugs 2.0: An execution framework for
weakness detection in Ethereum smart contracts.” Proceedings of the 38th IEEE/ACM
international conference on automated software engineering (ASE), pp. 2102-2105, 2023.
https://doi.org/10.1109/ASE56229.2023.00060

[33] Etherscan. “Etherscan.”. [Online]. Available: https://etherscan.io/

[34] Chen H, Pendleton M, Njilla L, Xu S. “A survey on ethereum systems security: Vulnerabilities,
attacks, and defenses.” ACM Computing Surveys, vol. 53, no. 3, pp. 1-43, 2020.
https://doi.org/10.1145/3391195

[35] Wu J, Huang B, Liu J, Li Q, Zheng Z. “Understanding the dynamic and microscopic traits of
typical ethereum accounts.” Information Processing & Management, vol. 60, no. 4, pp.
103384-103400, 2023. https://doi.org/10.1016/j.ipm.2023.103384

[36] Liu Z, He X, Deng Y. “Network-based evidential three-way theoretic model for large-scale
group decision analysis.” [Information Sciences, vol. 547, pp. 689-709, 202I.
https://doi.org/10.1016/j.ins.2020.08.042

[37] Zheng Z, Su J, Chen J, Lo D, Zhong Z, Ye M. “Dappscan: Building large-scale datasets for
smart contract weaknesses in dapp projects.” IEEE Transactions on Sofiware Engineering, vol.
50, pp. 1360-1373, 2024. https://doi.org/10.1109/TSE.2024.3383422

[38] Sun J, Huang S, Zheng C, Wang T, Zong C, Hui Z. “Mutation testing for integer overflow in
ethereum smart contracts.” Tsinghua Science and Technology, vol. 27, no. 1, pp. 27-40, 2021.
https://doi.org/10.26599/TST.2020.9010036

[39] Khatri A “DeFi protocol DForce suffers reentrancy attack, $3.6 million lost”. [Online]
Available:
https://zyberglobal.com/f/defi-protocol-dforce-suffers-reentrancy-attack-36-million-lost?bloge
ategory=News

[40] Zhang L, Wang J, Wang W, Jin Z, Su Y, Chen H. “Smart contract vulnerability detection
combined with multi-objective detection.” Computer Networks, vol. 217, pp. 109289-109302,
2022. https://doi.org/10.1016/j.comnet.2022.109289

[41] Zhang M, Zhang X, Zhang Y, Lin Z. “TXSPECTOR: Uncovering attacks in ethereum from
transactions.” Proceedings of the 29th USENIX security symposium (USENIX security), pp.
2775-2792, 2020.

[42] Ivanov N, Yan Q, Kompalli A. “TxT : Real-time transaction encapsulation for ethereum smart
contracts.” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 1141-1155,
2023. https://doi.org/10.1109/TIFS.2023.3234895

[43] Durieux T, Ferreira JF, Abreu R, Cruz P. “Empirical review of automated analysis tools on
47,587 ethereum smart contracts.” Proceedings of the ACM/IEEE 42nd international
conference on software engineering (ICSE), pp. 530-541, 2020.
https://doi.org/10.1145/3377811.3380364

[44] Sharma N, Sharma S. “A survey of mythril, a smart contract security analysis tool for EVM
bytecode.” Indian J Natural Sci, vol. 13, pp. 75-83, 2022.

[45] Torres CF, lannillo AK, Gervais A, State R. “Confuzzius: A data dependency-aware hybrid
fuzzer for smart contracts.” Proceedings of the IEEE european symposium on security and
privacy, pp. 103-119, 2021. https://doi.org/10.1109/EuroSP51992.2021.00018

[46] Feist J, Grieco G, Groce A. “Slither: A static analysis framework for smart contracts.”
Proceedings of the 2019 IEEE/ACM 2nd international workshop on emerging trends in
software engineering for blockchain, pp- 8-15, 2019.
https://doi.org/10.1109/WETSEB.2019.00008

[47] Nguyen TD, Pham LH, Sun J, Lin Y, Minh QT. “Sfuzz: An efficient adaptive fuzzer for
solidity smart contracts.” Proceedings of the ACM/IEEE 42nd international conference on
software engineering, pp. 778-788, 2020. https://doi.org/10.1145/3377811.3380334

https://doi.org/10.1109/ASE56229.2023.00060
https://etherscan.io/
https://doi.org/10.1145/3391195
https://doi.org/10.1016/j.ipm.2023.103384
https://doi.org/10.1016/j.ins.2020.08.042
https://doi.org/10.1109/TSE.2024.3383422
https://doi.org/10.26599/TST.2020.9010036
https://zyberglobal.com/f/defi-protocol-dforce-suffers-reentrancy-attack-36-million-lost?blogcategory=News
https://zyberglobal.com/f/defi-protocol-dforce-suffers-reentrancy-attack-36-million-lost?blogcategory=News
https://doi.org/10.1016/j.comnet.2022.109289
https://doi.org/10.1109/TIFS.2023.3234895
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3377811.3380334

[48] Perez D, Livshits B. “Smart contract vulnerabilities: Vulnerable does not imply exploited.”
Proceedings of the 30th USENIX security symposium (USENIX security), pp. 1325-1341,
2021.

[49] Huang B, Liu J, Wu J, Li Q, Lin H. “Temporal analysis of transaction ego networks with
different labels on ethereum.” Proceedings of the IEEE international symposium on circuits
and systems, pp. 3517-3521, 2022. https://doi.org/10.1109/ISCAS48785.2022.9937257

[50] Zhang Z, Lin Z, Morales M, Zhang X, Zhang K. “Your exploit is mine: Instantly synthesizing
counterattack smart contract.” Proceeding of the 32nd USENIX security symposium (USENIX
security), pp. 1757-1774, 2023.

[51] Zhao L, Sen Gupta S, Khan A, Luo R. “Temporal analysis of the entire ethereum blockchain
network.” Proceedings of the web conference, pp. 2258-2269, 2021.
https://doi.org/10.1145/3442381.3449916

[52] Li X, et al. “Hybrid analysis of smart contracts and malicious behaviors in ethereum.” Hong
Kong Polytechnic University, 2021.

[53] Lee XT, Khan A, Sen Gupta S, Ong YH, Liu X. “Measurements, analyses, and insights on the
entire ethereum blockchain network.” Proceedings of the web conference 2020, pp. 155-166,
2020. https://doi.org/10.1145/3366423.3380103

[54] Lin D, Wu J, Yuan Q, Zheng Z. “Modeling and understanding ethereum transaction records
via a complex network approach.” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 67, no. 11, pp. 2737-2741, 2020. https://doi.org/10.1109/TCSI1.2020.2968376

[55] Guo D, Dong J, Wang K. “Graph structure and statistical properties of ethereum transaction
relationships.” Information Sciences, vol. 492, pp. 58-71, 2019.
https://doi.org/10.1016/j.ins.2019.04.013

[56] Li S, Gou G, Liu C, al. et. “TTAGN: Temporal transaction aggregation graph network for
ethereum phishing scams detection.” Proceedings of the ACM web conference, pp. 661-669,
2022. https://doi.org/10.1145/3485447.3512226

[57] Lin D, Chen J, Wu J, Zheng Z. “Evolution of ethereum transaction relationships: Toward
understanding global driving factors from microscopic patterns.” IEEE Transactions on
Computational ~ Social ~ Systems, vol. 9, no. 2, pp. 559-570, 2021.
https://doi.org/10.1109/TCSS.2021.3093384

[58] Yaish A, Stern G, Zohar A. “Uncle maker:(time) stamping out the competition in ethereum.”
Proceedings of the ACM SIGSAC conference on computer and communications security, pp.
135-149, 2023. https://doi.org/10.1145/3576915.3616674

[59] Bai Q, Zhang C, Liu N, Chen X, Xu Y, Wang X. “Evolution of transaction pattern in ethereum:
A temporal graph perspective.” IEEE Transactions on Computational Social Systems, vol. 9,
no. 3, pp. 851-866, 2021. https://doi.org/10.1109/TCSS.2021.3108788

[60] Brent L, Grech N, Lagouvardos S, Scholz B, Smaragdakis Y. “Ethainter: A smart contract
security analyzer for composite vulnerabilities.” Proceedings of the 41st ACM SIGPLAN
conference on programming language design and implementation, pp. 454-469, 2020.
https://doi.org/10.5281/zenodo.3760403

[61] Sendner C, Chen H, Fereidooni H, Petzi L, Konig J, Stang J, Dmitrienko A, Sadeghi A-R,
Koushanfar F. “Smarter contracts: Detecting vulnerabilities in smart contracts with deep
transfer learning.” NDSS, pp. 1-18, 2023. https://dx.doi.org/10.14722/ndss.2023.23263

[62] Wu H, Zhang Z, Wang S, Lei Y, Lin B, Qin Y, Zhang H, Mao X. “Peculiar: Smart contract
vulnerability detection based on crucial data flow graph and pre-training techniques.”
Proceeding of the IEEE 32nd international symposium on software reliability engineering
(ISSRE), pp. 378389, 2021. https://doi.org/10.1109/ISSRE52982.2021.00047

[63] Chen T, Feng Y, Li Z, Zhou H, al. et. “Gaschecker: Scalable analysis for discovering
gas-inefficient smart contracts.” IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 3, pp. 1433-1448, 2020.

[64] Albert E, Correas J, Gordillo P, Roman-Diez G, Rubio A. “Gasol: Gas analysis and
optimization for ethereum smart contracts.” Proceedings of the international conference on
tools and algorithms for the construction and analysis of systems (TACAS), pp. 118-125,
2020.

https://doi.org/10.1109/ISCAS48785.2022.9937257
https://doi.org/10.1145/3442381.3449916
https://doi.org/10.1145/3366423.3380103
https://doi.org/10.1109/TCSII.2020.2968376
https://doi.org/10.1016/j.ins.2019.04.013
https://doi.org/10.1145/3485447.3512226
https://doi.org/10.1109/TCSS.2021.3093384
https://doi.org/10.1145/3576915.3616674
https://doi.org/10.1109/TCSS.2021.3108788
https://doi.org/10.5281/zenodo.3760403
https://dx.doi.org/10.14722/ndss.2023.23263
https://doi.org/10.1109/ISSRE52982.2021.00047

[65] Hu H, Bai Q, Xu Y. “Scsguard: Deep scam detection for ethereum smart contracts.”
Proceedings of the IEEE INFOCOM-IEEE conference on computer communications
workshops (INFOCOM WKSHPS), pp- 1-6, 2022.
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798296

[66] Oliva GA, Hassan AE, Jiang ZM. “An exploratory study of smart contracts in the ethereum
blockchain platform.” FEmpirical Software Engineering, vol. 25, pp. 1864—1904, 2020.
https://doi.org/10.1007/s10664-019-09796-5

https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798296
https://doi.org/10.1007/s10664-019-09796-5

	Abstract
	1.Introduction
	2.Background
	3.Common Vulnerabilities in Various Lifecycle Stages
	4. Methodology
	5.Features of Smart Contracts
	6.Detection Experiment
	Discussion
	8. Related Work
	9. Conclusion and Future Perspectives
	References

