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Abstract
Layer 2 (L2) solutions are the cornerstone of blockchain scalability,

enabling high-throughput and low-cost interactions by shifting ex-

ecution off-chain while maintaining security through interactions

with the underlying ledger. Despite their common goals, the prin-

cipal L2 paradigms—payment channels, rollups, and sidechains—

differ substantially in architecture and assumptions, making it diffi-

cult to comparatively analyze their security and trade-offs.

To address this challenge, we present the first general security

framework for L2 protocols. Our framework is based on the IITM-

based Universal Composability (iUC) framework, in which L2 proto-

cols are modeled as stateful machines interacting with higher-level

protocol users and the underlying ledger. The methodology defines

a generic execution environment that captures ledger events, mes-

sage passing, and adversarial scheduling and characterizes protocol

security through trace-based predicates parameterized by adversar-

ial capabilities and timing assumptions. By abstracting away from

protocol-specific details while preserving critical interface and exe-

cution behavior, the framework enables modular, protocol-agnostic

reasoning and composable security proofs across a wide range of

L2 constructions.

To demonstrate the framework’s applicability, we analyze an

illustrative example from each of the three dominant L2 scaling

paradigms: a payment channel (Brick), a sidechain (Liquid Net-

work), and a rollup (Arbitrum). By instantiating each within our

framework, we derive their respective security properties and ex-

pose key trade-offs. These include: the time required for dispute

resolution, the distribution of off-chain storage and computation,

and varying trust assumptions (e.g., reliance on honest parties or

data availability). Our framework thus not only unifies the analysis

of diverse L2 designs but also pinpoints their inherent strengths and

limitations, providing a foundation for the secure and systematic

development of future L2 systems.

1 Introduction
Despite their promise to transform the financial sector, blockchains

face fundamental limitations in scalability, costs, and latency. To

address these challenges, a broad class of protocols—collectively

referred to as Layer 2 (L2) protocols—offload part of the workload

from the base layer (L1) to an auxiliary layer that interacts with the

L1 only when necessary [20]. Prominent examples include payment

channels such as the Bitcoin Lightning Network [27], rollups like

Optimism [26] and Arbitrum [8], and sidechains such as the Liquid

Network [25] and Polygon [7].

While these systems are increasingly deployed and architec-

turally diverse, there is currently no unifying framework to for-

mally reason about their security guarantees in a modular and

composable way. Existing definitions are often tailored to specific

constructions, making it difficult to compare protocols, identify

necessary and sufficient conditions for desired properties, or build

reusable abstractions that enable principled design trade-offs.

In this work, we close this gap by introducing the first general se-
curity framework for L2 protocols. At the core of our framework lies

the ideal functionality F Λ

layer2, which formalizes the key security

guarantees that any L2 protocol Λ should satisfy. The function-

ality abstracts over protocol-specific mechanisms to capture the

essential workflow common to all L2 constructions: joining the

L2, submitting off-chain requests, updating the state, reading the

state, and exiting the L2. Each phase of L2 interaction is captured

by a separate subroutine (Fopen, Fsubmit
, F

update
, F

read
, F

settlement
),

invoked through a central interface machine (see Figure 1). This de-

composition enables formal reasoning about security, performance,

and trust assumptions across a wide spectrum of designs, within a

composable setting.

To demonstrate the generality and practical relevance of our

framework, we instantiate it with three qualitatively distinct L2

protocols: the Brick payment channel [5], the Liquid Network side-
chain [25], and the Arbitrum Nitro rollup protocol [8]. These case

studies highlight how F
layer2

unifies diverse constructions under

a single formal umbrella, reveals structural commonalities, and

sharpens the articulation of trade-offs.

Beyond capturing existing protocols, our framework reveals and

formalizes fundamental trade-offs among safety, liveness, and data

availability. We show that the way an L2 protocol instantiates core

subroutines determines what guarantees it can provide. For exam-

ple, payment channels offer instant finality but are vulnerable to

crash faults; rollups inherit safety from L1 but incur latency and

high on-chain storage cost; sidechains rely on internal consensus

to balance trust and performance but naturally achieve lower se-

curity guarantees. These distinctions, long understood informally,

are made precise in our framework and shown to reflect inherent

limitations in protocol design. In particular, we prove a set of lower

bounds (Theorems 5.4–5.6) that characterize the constraints each

L2 paradigm faces under standard assumptions.

Summary of Contributions. In summary, our contributions

are as follows:

• We propose the first general security framework for L2

protocols, formalized as an ideal functionality F
layer2

with

modular subroutines that capture core L2 operations and

support composable, protocol-agnostic reasoning (Sec. 3).

• We apply our framework to three qualitatively distinct L2

protocols—Brick (payment channel), Liquid (sidechain), and

Arbitrum Nitro (rollup)—demonstrating its expressiveness

and generality (Sec. 4).

• We formalize and prove key trade-offs between safety, live-

ness, and data availability across L2 designs, showing that

these are intrinsic to subroutine instantiations (Sec. 5).
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2 Model
We now formalize the system and threat model that underpins our

framework. The goal is to abstract the behavior of a broad class

of L2 protocols without committing to specific implementation

details, allowing security analysis to be carried out in a modular

and composable way.

System Model and Assumptions. In this paper, we focus ex-

clusively on the primitive operation of L2 protocols, considering

only single-hop constructions where interactions occur directly

between a client and the operator or supporting entities. Multi-

hop extensions, such as payment channel hubs [28] and multi-hop

payment protocols [2], are out of scope.

All parties are assumed to be probabilistic polynomial-time (PPT)

interactive Turing machines. We assume access to a cryptographic

ideal functionality Fcert that supports EUF-CMA secure signature

schemes. If synchronous communication is required by the pro-

tocol, we assume the existence of a synchronous communication

functionality Fcom. Finally, we model the L1 blockchain as an ideal

ledger functionality F
ledger

, following the definition in [19]. We

abstract network conditions and protocol logic through dedicated

subroutines within our framework to preserve generality and mod-

ularity.

In practice, while terminology may vary across L2 designs, most

protocols involve three core roles:

• Operator: Also referred to as channel owners, sequencers,

or maintainers, operators are responsible for processing

protocol requests, managing off-chain state transitions, and

ensuring the correct execution of transactions.

• Client: Clients are users who join the L2 protocol to issue

execution requests that update the off-chain state. They

may initiate settlement procedures to commit the current

state to the L1 ledger and can also query the protocol for

its current status.

• Third-party participants: This role encompasses auxil-

iary actors that support the protocol, such as watchtowers

that monitor L1 for disputes on behalf of clients, or valida-

tors responsible for verifying state transitions.

We assume that the set of operators and third-party participants

in the L2 protocol is static and publicly known, treated as global

parameters. While some protocols adopt dynamic operator sets to
preserve security over long time periods, we fix the participant set

for simplicity. In our analysis, we assume that any required trust

assumptions, such as bounds on the adversarial corruption ratio,

hold throughout the execution of the protocol.

Threat Model. We adopt the standard honest/Byzantine adver-

sarial model. The adversary may corrupt a subset of participants up

to a fixed bound defined by the protocol assumptions. Corrupted

parties may arbitrarily deviate from the protocol, including submit-

ting invalid inputs, crashing, or withholding messages. However,

they cannot forge digital signatures or drop messages between hon-

est parties, as this would violate the underlying cryptographic and

network assumptions.

3 The Ideal Functionality for L2 Protocols
In this section, we formalize the core contribution of this work:

an ideal functionality F
layer2

that captures the essential behavior

and security properties of general L2 protocols. The functionality

is defined in the iUC framework [10]
1
and is composed of modular

subroutines corresponding to the phases of an L2 protocol’s life-

cycle. We begin by describing the design rationale, followed by a

detailed presentation of the subroutines and their interactions.

Figure 1: Structure of the ideal functionality F Λ

layer2 for a
secure L2 protocol Λ. E refer to the environment, S refer to
the simulator and A refer to the adversary.

Design Rationale. The ideal functionality F
layer2

is designed

to capture the core phases of interaction in a broad class of L2

protocols, from payment channels to rollups and sidechains. Its

structure reflects a minimal and modular decomposition of proto-

col behavior that abstracts away implementation-specific details

while preserving the key security and performance considerations

common to L2 designs.

Each subroutine models a fundamental aspect of L2 operation:

• Fopen models the act of joining the L2 system, such as estab-

lishing a channel or registering with a rollup or sidechain.

• F
submit

captures how clients issue off-chain requests or

transactions.

• F
update

formalizes how state transitions are agreed upon

and executed—whether via unilateral action (channels), con-

sensus (sidechains), or sequencer output (rollups).

• F
read

reflects the visibility of the off-chain state, modeling

different data availability assumptions.

• F
settlement

abstracts the final anchoring of off-chain state

back to the L1 ledger.

• F
updRnd

simulates the internal protocol clock to capture

time-related behaviors, such as synchronous communica-

tion.

• F
leak

defines the information leakage during protocol exe-

cution resulting from corruption.

This structure is both expressive and minimal: each subroutine

isolates a specific trust or performance dimension (e.g., execution

validity, fault tolerance, or availability) that varies across L2 designs.

By keeping the abstraction modular and interaction-driven, F
layer2

enables rigorous reasoning without overfitting to any particular

protocol type.

1
The iUC framework extends Canetti’s UCmodel [11] to support stateful, multi-session

protocols. Prior work argues that iUC is more suitable for modeling complex systems

like blockchain protocols than the standard UC [19]. We provide a brief overview in

Appendix A.
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3.1 Description of Flayer2 and subroutines
At its core, the functionality F Λ

layer2
defines the interface machine

that implements different roles and connects to the external environ-

ment E, specifying how the protocol responds to the corresponding

outputs to the higher-level protocols based on the parameter subrou-

tines. In real-world implementations, this interface with different

roles can be understood as the participants of a L2 protocol, and

subroutines capture the underlying scheme used by the protocol. In

this paper, we focus on defining the client role, but the description
of other different roles can also be added if needed. The core logic of

the client interface machine of ideal functionality F
layer2

is shown

in Figure 2.

Description of Mclient of functionality 𝐹layer2

Implement roles: Layer 2 protocol client
Internal state :

• Round
• RequestQueue
• ExecutedRequest
• StateList
• LastReadPointer
• OnchainState
• Identities

Corrupt behavior:
Receive corruption request for (pidcur, sidcur, role):
(1) Send (Corrupt, pidcur, side, Internal state) to (pidcur, sidcur,

F
leak

: leak);

(2) Wait for (Corrupt, leak) from F
leak

;

(3) Reply leak through NET;

Main:
Receive (Submit, request) from I/O:

(1) Send {Submit, request, Internal state} to (pidcur, sidcur,
F
submit

: submit);

(2) Wait for {Submit, response, leak} from F
submit

s.t. response ∈ {True, False};

(3) If response = True, add request to RequestQueue. Send
{Submit, leak} to S through NET;

Receive {Open, Initialstate, Attachment} from NET:

(1) Send {Open, Initialstate, Attachement, Internal state} to
(pidcur, sidcur, Fopen : open);

(2) Wait for the output {Open, response, leak} from Fopen,
s.t. response ∈ {True, False};

(3) If reponse = True, then update Internal state according to
{Initialstate, Attachment}, and reply {Open, Initialstate,
Attachment} to corresponding parties in Identities via I/O;

(4) Send {Open, leak} through NET;

Receive {Update, NewState, Attachment} from NET:

(1) Send {Update, NewState, Internal state} to (pidcur, sidcur,
F
update

: update);

(2) Wait for {Update, response,NewState, leak} from F
update

;

(3) If response = True, update the Internal state accordingly

with NewState, and send leak through NET;

Receive {Read} from I/O:

(1) Send {Read Internal state} to (pidcur, sidcur, Fread : read);

(2) Wait for ReadResult from F
read

, if ReadResult is not empty,

reply {Read, ReadResult} to I/O;

(3) Update the LastReadPointer accordingly.

Receive {Settlement, Attachment} from NET:

(1) Send {Settlement, Attachment, Internal state} to (pidcur,
sidcur, Fsettlement

: settlement);

(2) Wait for {Settlement, response, leak} from F
settlement

s.t. respone
∈ {True, False};

(3) If response = True, reply {Settlment, Success, LatestState}
to I/O;

Receive {UpdateRound} from NET or I/O:

(1) Send {UpdateRound, internal state} to (pidcur, sidcur, FupdRnd :

updRnd);

(2) Wait for {response, leak} from F
updRnd

s.t. respone ∈ {True,
False};

(3) If response = True, Round = Round + 1, reply to I/O;

(4) Send {UpdateRound,leak} to NET;

Figure 2: The ideal functionality Flayer2’s main logic for han-
dling the requests. pidcur is the current party and sidcur the
L2 protocol’s current session.

During the execution of F
layer2

, there may exist multiple in-

stances of the ideal functionality, each representing a distinct L2

protocol running concurrently and uniquely identified by a session

ID (𝑠𝑖𝑑). In this paper, we focus on a single instance. Within a ses-

sion, the functionality supports an unbounded number of parties,

each identified by a unique party ID (𝑝𝑖𝑑), who may issue requests.

A party is either honest or corrupted and once corrupted, certain

information may be leaked. Security guarantees apply only to hon-

est parties. The entities in subroutine machines are assumed to be

incorruptible. In what follows, we describe the entire lifecycle of a

L2 protocol from the perspective of an honest client party to show

how subroutines work.

Input request communication. The higher-level protocol may

instruct an honest party to propose multiple different types of

execution requests during the time this party participates in the

protocol, and three types of requests are accepted: (1) Protocol

opening (joining) request, (2) State transition request, and (3) State

settlement request.

Upon receiving this request, F
layer2

forwards it to the subroutine

F
submit

. The F
submit

subroutine verifies whether the submitted re-

quest is semantically valid, ensuring it is correctly formatted as one

of the three types of requests. Based on these checks, F
submit

out-

puts a boolean value indicating whether the submission is success-

ful, along with the corresponding information leak to the adversary,

as determined by F
leak

. Finally, F
layer2

updates the RequestQueue
based on the boolean response and sends the request and leak

through a network connection.

Protocol opening (joining). To open or join the protocol, there

should be enough agreements on the initial state from participants
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and commit the according initial state on the L1 ledger. In our frame-

work, we use the parameter subroutine Fopen to check whether

these requirements for opening a protocol are done. If all the checks

pass, the StateList, OnchainState, ExecutedRequest as well as

the Identities in the Internal state of the F
layer2

machine,

representing the global state of the protocol, will be updated to

the initial state and notify all the participants that the protocol is

opened. And the corresponding request for opening recorded in

RequestQueue will be deleted.
Since the adversary can significantly influence the open pro-

cedure by either ignoring requests or tampering with message

delivery, we capture this behavior by allowing the simulator to

trigger the checking procedure. Specifically, instead of letting the

subroutine perform the check immediately upon receiving a re-

quest from F
layer2

, the simulator explicitly sends a request to F
layer2

through the network connection NET to initiate the check. The

request includes the InitialState and Attachments, which con-

tain additional information required for subroutine checks and for

generating the final output—such as signatures indicating agree-

ment or the transaction needs to be committed on blockchain. Note

that the subroutine like Fopen does not verify the cryptographic

validity of the signatures; it only checks structural correctness, such

as whether the required number of signatures is present. Only af-

ter the protocol is considered as opened will the following steps

proceed, such as state update and state settlement, proceed.

Protocol state update. F
layer2

will also receive the update re-

quest from the network connection to update the participants’

states. This especially captures protocols like sidechain, where the

state update could be carried out by the participants corrupted

by the adversary. Additionally, even for the protocols in which

the state update is started by the honest party, the adversary can

still be influenced by corrupted participants’ non-responding or

delaying the message delivery among honest participants. Upon

receiving the request for state update, F
layer2

forwards it to the

F
update

subroutine, along with the current Internal state it main-

tains. F
layer2

then waits for a response from F
update

, which includes

the updated state after execution and the corresponding informa-

tion leak to the adversary. At the end of the procedure, F
layer2

will update the StateList according to the update result. And

RequestQueue is also updated to represent the requests submitted

before it is executed, and the evidence for execution is recorded

in ExecutedRequest. By customizing the checks in F
update

, our

framework can accommodate a wide range of mechanisms used

by different L2 protocols, such as consensus-based agreement in

sidechain protocols or layer 1 interactions in rollup protocols.

L2 state settlement. As the mark of ending the L2 protocol,

a higher-level protocol may instruct to close or exit the L2 proto-

col, which requires the final settlement of the L2 state on the L1

ledger. After the settlement request is sent through F
submit

, the

functionality waits for the simulator to trigger the settlement sub-

routine F
settlement

to decide whether the settlement is successful.

The F
settlement

access the L1 ledger’s functionality, F
ledger

, to verify

the on-chain state published by participants whether is the correct

one according to Internal state.
Read L2 information. A L2 protocol should support read ac-

cess for clients to necessary L2 information, such as participants’

states and the executed requests that are related to the state transi-

tion. Upon receiving a read request, F
layer2

forwards it to the F
read

subroutine, along with the identity of the requester as well as the

Internal state. F
read

then determines which information the

requester is permitted to access based on the underlying schemed

use by the protocol and the possible influence of the adversary.

L2 clock simulation. Time-related assumptions are common

in L2 protocols. Our framework introduces F
updRnd

to simulate an

internal clock for L2 protocols to describe such assumptions like

message delivery among protocol participants.

Information leakage. For the complementary requirements of

the framework, we introduce the subroutine F
leak

to capture the

information leaked to the adversary through corruption. This sub-

routine can be formally instantiated when analyzing protocols that

aim to achieve certain privacy properties. However, such privacy

guarantees typically depend on specific cryptographic primitives

employed by the protocol and our focus is to capture differences

in functional logic across L2 protocol designs. Therefore, in the

remainder of this paper, we assume that protocols do not involve

any secret inputs and that all requests are received from the envi-

ronment. Under this assumption, F
leak

leaks all information like

request plaintext to the simulator and adversary.

3.2 Security Properties
After introducing the components of our framework F

layer2
, we

then formally define the security properties that a L2 protocol

should realize with the parameter subroutines of our framework.

Correct initialization. A fundamental step for the subsequent

execution of the L2 protocol is the correct initialization of the state

after a client requests to join the protocol. In particular, the check

within the subroutine Fopen should guarantee two main perspec-

tives: (1) all the involved honest clients should agree on the initial

state; (2) there should be a corresponding state value committed on

the blockchain (L1). Assuming that the environment issues a request

for an honest participant 𝑝ℎ open or join the protocol with an initial

state 𝑠𝑖𝑛𝑡 , we define the following security property to capture the

guarantees required during the open procedure formally:

Definition 3.1 (Correct Initialization). A L2 protocol Λ built on

a secure L1 ledger F
ledger

realizes correct initialization if its cor-

responding ideal functionality F Λ

layer2
’s interface F

layer2
outputs

{Open, True, 𝑠𝑖𝑛𝑡 } to an honest participant 𝑝ℎ only when:

(1) 𝑠𝑖𝑛𝑡 was previously requested by an honest participant 𝑝ℎ .

(2) 𝑠𝑖𝑛𝑡 is committed as a valid state in the output of F
ledger

through a Read request.

𝑓 -safety. Due to the involvement of multiple participants, a

critical security property during the update procedure is safety,
which ensures the consistency of the executed request order among

all honest participants and guarantees execution correctness. We

further introduce the parameter 𝑓 to represent the maximum num-

ber of deviating participants that the protocol can tolerate while

still maintaining safety. In our framework, 𝑓 -safety is captured

by the subroutines F
update

and F
read

. Although F
update

does not

directly produce outputs to the environment, its modifications to

the Internal state influence the subsequent outputs of F
read

. To

formally define this property, we use the notation R𝑃
𝑟 to denote the
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read output about the executed requests from F Λ

layer2
, as instructed

by the subroutine F Λ

read
at round 𝑟 for participant 𝑃 , and define

𝑓 -safety as follows:

Definition 3.2 (𝑓 -safety). A L2 protocol Λ built on a secure L1

ledger F
ledger

satisfies 𝑓 -safety if the executed requests in read

output of F Λ

read
at round 𝑟 satisfies:

• (Self-consistency) For any honest participant 𝑃 and any

rounds 𝑟1 ≤ 𝑟2, it holds that R𝑃
𝑟1

⪯ R𝑃
𝑟2

.

• (View-consistency) For any honest participants 𝑃1, 𝑃2, and

any round 𝑟 , it holds that R𝑃1

𝑟 ⪯ R𝑃2

𝑟 or R𝑃2

𝑟 ⪯ R𝑃1

𝑟 .

{𝑓 ,𝑇 }-liveness.Note that 𝑓 -safety guarantees consistency among

all participants regardless of the content, meaning that even a pro-

tocol incapable of executing any request would still achieve safety.
However, such a protocol would be functionally useless. To capture

the requirement for system liveness, we formally define another

critical security property, {𝑓 ,𝑇 }-liveness, which characterizes both

the corruption tolerance 𝑓 and the maximum time latency 𝑇 for an

executed request Q proposed by an honest client to be executed

and accessible by all honest participants eventually. In L2 protocols,

multiple types of input requests exist. In this paper, we focus on the

liveness of three types of requests: (1) Protocol opening (joining) re-

quests, (2) State update requests, and (3) Settlement requests. Since

different requests can exhibit different liveness characteristics in a

L2 protocol, we define a protocol as satisfying 𝑓 ,𝑇 -liveness based
on the read result as follows:

Definition 3.3 ({𝑓 ,𝑇 }-liveness for request). An L2 protocol Λ built

on a secure L1 ledger F
ledger

satisfies {𝑓 ,𝑇 }-liveness if the ideal func-
tionality F Λ

layer2
that it realizes ensures that for any valid request

Q sent to its interface F
layer2

, the request receives a reply from

the interface or is included in the output of F Λ

read
at some time

𝑡 ′ ≥ 𝑡 +𝑇 for all honest participants, provided that no more than 𝑓

participants are corrupted by the adversary.

Correct settlement. As the final step of an L2 protocol, correct
settlement must be ensured to guarantee that either an agreed-upon

result or the final execution result of the L2 protocol is eventually

committed to the L1 ledger. In our framework, the completion of the

settlement procedure is marked by the output message {Settlement,

True} from the interface F
layer2

, which is instructed by the subrou-

tine F
settlement

. In most cases, this subroutine verifies that the latest

state in StateList, as provided by the caller interface, has been

committed to the L1 ledger. Some protocols also permit settlement

for a state based on an agreement between participants, a topic that

will be discussed further in the next section. The definition of this

property is as follows:

Definition 3.4 (correct settlement). An L2 protocol Λ, built on a

secure L1 ledger F
ledger

, satisfies correct settlement if F Λ

settlement

outputs True to an honest participant 𝑝ℎ only when:

(1) 𝑆
𝑝ℎ
𝑛 is the latest state for the participant included in StateList

or is explicitly included in the settlement request submitted 𝑝ℎ .

(2) 𝑆
𝑝ℎ
𝑛 is committed as a valid state in the output of F

ledger

through a Read request.

After formally defining the security properties, we can propose

the definition for a secure L2 protocol:

Definition 3.5. An L2 protocol Λ is secure if and only if its real-

world protocol PΛ
realizes the ideal functionality F Λ

layer2
= (F

layer2

|F Λ

open
, F Λ

submit
, F Λ

update
, F Λ

read
, F Λ

updRnd
, F Λ

settlement
, F Λ

leak
) satisfying

correct intialization, safety, liveness and correct settlement.

3.3 Efficiency Property
Although secure L2 protocols achieve the required security proper-

ties, the employed different underlying schemes will lead to varia-

tions in efficiency performance. We focus on (𝐺𝐿2
, 𝐺𝐿1

)-data avail-
ability, a widely discussed efficiency metric that reflects the lower

bound of L2 and L1 storage cost to ensure security.

Let 𝑓𝑠𝑡 (𝑆, 𝐸) = 𝑆 ′ denote the deterministic state transition func-

tion used by an L2 protocol, where 𝑆 represents the previous valid

state, and 𝐸 contains the executed requests for the state transition.

The property data availability captures the storage lower bound of

an L2 protocol, which also affects the outputs of F Λ

read
. Specifically,

under data availability constraints, there are three types of data

that should be output by F Λ

read
: (1) The initial state 𝑆𝐿1; (2) The

current state 𝑆 ′ at round 𝑟 ; (3) The executed requests and evidence

𝐸 required to reconstruct the state transition 𝑓𝑠𝑡 (𝑆𝐿1, 𝐸) = 𝑆 ′. We

define the property formally as follows:

Definition 3.6 ((𝐺𝐿2
,𝐺𝐿1

)-Data Availability). A Layer2 protocol

Λ, built on a secure Layer1 blockchain F ledger, realizes (𝐺𝐿2
,𝐺𝐿1

)-
data availability if, for any honest participant 𝑝ℎ at any round 𝑟 , the

data set {𝐸, 𝑆𝐿1, 𝑆
′} is accessible via F Λ

read
and satisfies 𝑓𝑠𝑡 (𝑆𝐿1, 𝐸) =

𝑆 ′. Furthermore, the storage lower bounds on Layer2 and Layer1

are 𝐺𝐿2
and 𝐺𝐿1

, respectively.

4 Case Studies in L2 Protocols
After defining secure Layer 2 (L2) protocols and the correspond-

ing security properties, we now demonstrate how our framework

captures the three primary classes of L2 scaling approaches: pay-

ment channels (and channel factories), sidechains, and rollups. We

instantiate our framework with one representative protocol from

each category—Brick, Liquid, and Arbitrum Nitro—omitting pri-

vacy considerations for clarity. Full formalizations and proofs are

provided in Appendices B to D due to space constraints.

4.1 Case Study: The Brick Channel
4.1.1 The Real Brick Protocol PBrick. The Brick channel [5] is the

first two-party payment channel designed to operate under an

asynchronous communication assumption. The protocol involves

two types of participants:

• Clients (Operators): Two parties conduct transactions

with each other through the payment channel. They serve

as both the clients and operators of the protocol. In the anal-

ysis of Brick, we use these two designations interchange-

ably. And at least one of them is assumed to be honest.

• Third-party wardens: A group of third-party participants

who verify and store state updates from the clients and

assist in settling the channel state on the L1 ledger unilat-

erally if needed. Brick assumes more than
2

3
wardens are

honest.

The general procedure of the Brick channel operates as follows:
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wardenClient
(Operator)

interface to enviroment

Figure 3: The Brick payment channel protocol
Channel Opening. The two clients communicate to agree on

the initial state and select the wardens. Once the wardens are no-

tified, all participants deposit collateral on the L1 ledger. After

verifying that the collateral has been committed on the L1 ledger,

the channel is considered open.

Channel Update. After the channel is opened, the two clients

can update the channel state in two steps: (1) The two clients ex-

change the new state value and sign the state. (2) Once both sig-

natures are collected, the signed new state is sent to all wardens.

A client considers the newly updated state valid once at least
2

3
of

the wardens’ signatures have been received.

Channel State Settlement. In the Brick channel, an client can

settle the channel state on the L1 ledger through two methods:

• Collaborative Settlement: A client first sends a settle-

ment request to the counterparty along with the proposed

settlement state. If the counterparty agrees, they sign the

collaborative settlement request. The settlement transac-

tion, including the settlement state and both participants’

signatures, is then published on the L1 ledger. Once con-

firmed, the channel state is considered settled, and the chan-

nel is closed.

• Unilateral Settlement: Due to the asynchronous commu-

nication network assumption, the Brick channel allows a

client to settle the state unilaterally with the help of war-

dens. To do so, the client instructs the wardens to publish

the stored latest state on the L1 ledger. After at least
2

3
of

the wardens have published their stored values, the channel

will be closed with the state with the highest state sequence

number.

Then we can define the real-world Brick payment channel pro-

tocol as PBrick
= (Client|Warden, Fcert), where Client represents

the machine with the code for both the client’s behavior in the pro-

tocol, where could exist multiple instances representing different

clients in the real protocol. The Client machine is also connected

to the external environment to receive instruction requests; Warden
represents the machine with the code for the warden’s behavior,

but it does not receive requests from the environment, only the re-

quests from the Client. The connection among different machines,

along with the underlying ideal L1 blockchain functionality, can be

shown in Figure 3.

4.1.2 The Ideal Functionality F Brick
layer2. After showing the real-world

protocol of the Brick channel, we then propose the formal definition

for the ideal functionalityF Brick

layer2
= (F

layer2
|F Brick

submit
, F Brick

open
, F Brick

update
,

F Brick

read
, F Brick

settelment
, F Brick

updRnd
, F Brick

leak
). While the interface F

layer2
re-

mains the same as discussed before, in the following, we will show

how the subroutines are specified in order to capture the security

properties. Noted the entities subroutine machine instance can not

be corrupted.

F Brick

submit
checks whether the received request belongs to one of

the following three types of requests:(i) The open request to initiate

the payment channel. (ii) The transaction requests to update the

channel state. (iii) The state settlement request. F Brick

submit
verifies that

incoming requests are semantically valid. Besides, no state update

request will be accepted before the open request is executed and

after the settlement request is executed.

F Brick

open
checks that the channel open request proposed by the

simulator S that it is agreed by honest clients by checking the

RequestQueuemodified by F Brick

submit
. Besides, F Brick

open
also checks the

proposed transaction, along with all clients’ and wardens’ collateral,

are committed on the L1 ledger by interacting with F
ledger

.

F Brick

update
verifies that any newly proposed state update from the

simulator S includes agreements from all honest clients and at least

2

3
of the wardens. Notably, F Brick

update
does not validate the correctness

of signatures; rather, it checks whether the received state update

proposal is formally well-structured and contains the required com-

ponents.

When receiving a read request, F Brick

read
first checks with the

adversaryA through the NET connection. Due to the asynchronous

communication network assumption, the adversary A can only

influence the read result by delaying message delivery. As a result,

the read output will either contain the latest state or the previous

state. Additionally, all intermediate states from the initial state

onward, along with their corresponding certificates, must also be

returned to the read requester.

F Brick

settlement
verifies two types of settlement proposals triggered by

the simulator S. For collaborative settlement, F Brick

settlement
checks

that all honest clients agree on the settlement state and that the

settlement transaction has been successfully committed on the

L1 ledger. For unilateral settlement, F Brick

settlement
verifies that at

least
2

3
of the wardens have published their stored state on the L1

ledger and ensures that only the latest state is committed. Once

these checks pass, all participants are notified via the output of

the interface. By enforcing these conditions, F Brick

settlement
guarantees

correct settlement for both types of settlement procedures.

Since the Brick channel operates under an asynchronous com-

munication assumption, the internal clock subroutine F Brick

updRnd
does

not impose additional checks on requests to update the round.

With the subroutines above, we can have the following conclu-

sion for the ideal functionality F Brick

layer2
:

Theorem 4.1. The ideal functionality F Brick
layer2 guarantees all the

security properties of a secure L2 protocol.

The security of the real Brick payment channel protocol can then

be demonstrated by proving that the real protocol iUC realizes the

ideal functionality. This can be formally defined as follows:

Theorem 4.2. Let Fledger be the idealized L1 ledger functionality
and Fcert be the idealized functionality for EUF-CMA secure signature
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scheme. Then, the real Brick payment channel protocol PBrick realizes
the ideal Brick payment channel functionality F Brick

layer2.

4.2 Case Study: The Liquid Network Sidechain
4.2.1 The Real Liquid Network Protocol PLiquid. The Liquid Net-

work [25] is a sidechain built on top of Bitcoin. The protocol in-

volves the following participants:

• Operators: In the original protocol, there are two distinct

roles: block signers and watchmen. Block signers are re-

sponsible for generating blocks for the sidechain, while

watchmen handle the creation of peg-out transactions on

the L1 ledger. For simplicity, we assume both roles are com-

bined under the term operator. It is assumed more than
2

3

operators are honest.

• Clients:Clients are the users of the LiquidNetwork sidechain.
They receive instructions from the environment and submit

requests to the protocol.

The original Liquid Network employs a more complex design to

support additional functional properties, such as privacy preserva-

tion. However, to capture the core secure functional logic of the

Liquid Network, we abstract and describe the general procedure of

the sidechain from the perspective of a client as follows:

Sidechain Joining. In order to join the sidechain, the client

must first send collateral coins to a publicly known deposit address

controlled by the operator federation on the L1 ledger. Once the

transaction has been confirmed for a sufficient period (100 blocks),

the client generates and submits a peg-in transaction to the oper-

ators. This peg-in transaction includes proof of the existence of

the corresponding deposit transaction on the L1 ledger. Once the

peg-in transaction is successfully recorded on the sidechain, the

client is considered to have joined the sidechain.

Sidechain Update. A client’s state is updated based on trans-

actions occurring within the sidechain. To initiate a state update,

the client generates and submits a transaction to the operators. The

operators execute a two-phase Byzantine Fault Tolerant (BFT) con-

sensus protocol among themselves. Here, we assume that a block

is considered valid if it receives a quorum certificate, meaning that

more than
2

3
of all operators agree on its validity with signature.

Once the transaction is included in a block proposed by the op-

erators and the quorum certificate is obtained, the transaction is

considered executed, and the client’s state is updated accordingly.

Sidechain Leaving. To leave the sidechain protocol, the client

prepares a peg-out transaction and submits it to the operators.

Once the transaction is recorded on the sidechain, the operators

publish a corresponding transaction on the L1 ledger to transfer

the appropriate amount of coins to the client, completing the exit

process.

Based on the protocol description above, we can define the real-

world protocol as PLiquid
= (Client|Operator, F𝑐𝑜𝑚, Fcert), where

Client represents the interaction interface with the environment

and processes requests to the L2 protocol. Operator includes the
machine code that implements the core logic for reaching consensus

on new blocks and issuing peg-out transactions on the L1 ledger.

The structure of the real protocol is shown in Figure 4.

Operator

Client

interface to

Figure 4: The Liquid Network sidechain protocol

4.2.2 The Ideal FunctionalityF Liquid
layer2 . After showing the real-world

protocol of the Liquid Network sidechain, we then propose the for-

mal definition for the ideal functionalityF Liquid

layer2
= (F

layer2
|F Liquid

submit
,

F Liquid

open
, F Liquid

update
, F Liquid

read
, F Liquid

settelment
, F Liquid

updRnd
, F Liquid

leak
).While the in-

terface F
layer2

remains the same, in the following, we will show

how the subroutines are specified in order to capture the security

properties. Noted the entities subroutine machine instance can not

be corrupted.

F Liquid

submit
checks the received requests belonging to one of the

following: (i) the request from the client to join the Liquid Network

sidechain, (ii) the transaction request to update the sidechain state,

and (iii) the request from the client to leave the sidechain protocol.

F Liquid

submit
verifies that incoming requests are semantically valid. In

Case (i), the request must include proof for the peg-in transaction

on the L1 ledger. In Case (ii), the transaction must be signed by

the initiator. In Case (iii), the request must include the necessary

proofs for its identity. While the content validity of the request is

not checked at this stage, the subroutine ensures that the requests

are semantically well-formed.

F Liquid

open
verifies that a sidechain joining request, triggered by the

simulator S, satisfies two conditions. First, a corresponding peg-in

transaction must be recorded in the StateList, which represents

the current transaction list of the sidechain. Second, a collateral

deposit transaction must exist on the L1 ledger. Since a client can

only join the sidechain by initiating the deposit itself, and the

majority of the Operators are assumed to be honest, the joining

process is guaranteed to be known by all participants.

F Liquid

update
verifies that any newly proposed state update from the

or the simulator S, which is a newly formed block. Notably, F Liquid

update

checks there are agreements from more than
2

3
of all the operators.

In the Liquid Network sidechain, the communication among

participants is assumed to be synchronous, and a client is guar-

anteed to be connected to at least one honest operator under the

majority honest assumption. Thus, after receiving the read request,

the F Liquid

read
simply replies to all the transaction lists, as well as the

state value recorded in StateList. Thus F Liquid

read
guarantees the

data availability property.

F Liquid

settlement
verifies the settlement proposals triggered by the ad-

versary A based on two checks: (1) there exists an according set-

tlement request recorded in the ExecutedRequest; (2) there is also
and transferring transaction committed on the L1 ledger through

the checking with underlying F
ledger

. Under the assumption of
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honest majority operator and the secure L1 ledger, F Liquid

settlement
guar-

antees correct settlement.
Since the Liquid Network sidechain assumes the communication

within L2 participants is synchronous, the subroutine F Liquid

updRnd
will

not agree the round proceed if there exist request in RequestQueue
last for more than 𝛿 time.

With the subroutines above, we can have the following result:

Theorem 4.3. The ideal functionality F Liquid
layer2 guarantees all the

security properties of a secure L2 protocol.

The security of the Liquid Network sidechain protocol can be

demonstrated by proving that the real protocol iUC realizes the

ideal functionality. This can be formally defined as follows:

Theorem 4.4. Let Fledger be the idealized L1 ledger functionality,
Fcom be the synchronous communication channel, Fcert be the ideal-
ized functionality for EUF-CMA secure signature scheme. Then, the
real Liquid Network sidechain protocol PLiquid iUC-realizes the ideal
Liquid Network sidechain functionality F Liquid

layer2 .

4.3 Case Study: The Arbitrum Nitro Rollup
4.3.1 The Real Arbitrum Nitro Protocol PArbitrum. The Arbitrum
Nitro [8] is an optimistic protocol. While the real-world implemen-

tation includes more complex participant roles and mechanisms

to support a broader range of functionalities, here we provide a

simplified discussion focusing on the core aspects of the protocol

related to scaling L1 execution. To achieve scalability, the protocol

primarily involves two types of participants:

• Operators: In the Arbitrum Nitro rollup, operators are re-

ferred to as sequencers or managers. There may be multiple

Operators, but unlike sidechain protocols, these Operators

do not need to run a consensus protocol among themselves.

And there should be at least one honest operator. Note that

in the original protocol, Arbitrum also allows clients to

submit requests directly to the L1 ledger to prevent censor-

ship. In such cases, the client effectively acts as an honest

operator.

• Validators: Validators are responsible for verifying the

new rollup state published by the operators. There should

be at least one honest validator to verify publishment.

• Clients: Clients are the users of the rollup protocol who

submit transactions to the Operators for execution.

The core logic of the Arbitrum Nitro protocol then operates as

follows:

Rollup joining:A client joins the rollup by first depositing coins

on the L1 ledger. Then, the client submits a joining transaction to

the sequencer via the rollup network. Once the client observes that

the joining transaction has been committed to the rollup protocol,

the client is considered successfully joined.

Rollup update: To update the rollup state, the operator first

collects and batches valid transactions from clients and then exe-

cutes them. After execution, the sequencer publishes the executed

transactions and their results to the L1 ledger. Noted the L1 ledger

maintainer does not need to execute the published transactions.

Operator

Client

interface to

Validator

Figure 5: The Arbitrum protocol

Once published, validators can re-execute and verify the state up-

date’s correctness based on the published transactions. If the pub-

lished result is incorrect, fraud-proof can be submitted to invalidate

the incorrect update. If no fraud proof is submitted within the des-

ignated challenge period, the state is considered valid. If a client

notices its transaction has not been executed for a time period, it

can also publish it to the L1 ledger by itself.

Rollup exit:A client exits the rollup by first submitting a leaving

transaction to the Operator. Once the transaction is successfully

executed, the client can then publish a transfer transaction on the

L1 ledger, marking the official exit from the protocol.

Based on the protocol description above, we can define the

real-world protocol as PArbitrum
= (Client|Operator, Validator,

Fcert, Fclock), where Client represents the interaction interface

with the environment and processes requests to the rollup protocol.

We use F
clock

to model the periodic behavior of operators and val-

idators, including the publishing of state updates on the L1 ledger

by operators and the subsequent verification of these updates by

validators.Operator includes the machine code that implements

the core logic for the sequencer. The structure of the real protocol

is shown in Figure 5.

4.3.2 The Ideal Functionality F Arbitrum
layer2 . After showing the real-

world protocol of the Arbitrum Nitro rollup, we then propose the

formal definition for the ideal functionality FArbitrum

layer2
= (F

layer2
|

FArbitrum

submit
, FArbitrum

open
, FArbitrum

update
, FArbitrum

read
, FArbitrum

settelment
, FArbitrum

updRnd
,

FArbitrum

leak
). While the interface F

layer2
remains the same, in the

following, we will show how the subroutines are specified in order

to capture the security properties. Noted the entities subroutine

machine instance can not be corrupted.

FArbitrum

submit
checks whether the received requests are one of the

following types: (i) the request from the client to join the Arbitrum

Nitro rollup, (ii) the transaction request to update the rollup pro-

tocol state, and (iii) the request from the client to leave the rollup

protocol. F Liquid

submit
verifies that incoming requests are semantically

valid, including all the necessary information for checking. While

the content validity of the request is not checked at this stage, the

subroutine ensures that the requests are semantically well-formed.

FArbitrum

open
verifies that rollup joining request, triggered by the

simulator S, satisfies two conditions. First, a corresponding peg-

in transaction must be recorded in the L1 ledger F
ledger

, which is

published by the operator. Second, a collateral deposit transaction

must exist on the L1 ledger published by the joining client.
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FArbitrum

update
verifies any newly proposed state update from the

simulator S by checking the underlying L1 ledger, which consists

of a new result and a batch of executed transactions. The verification

process follows two possible scenarios:(1) If the request batch is

published on the blockchain and lasts a time period𝑇
period

without

any fradu-proof, FArbitrum

update
outputs True, confirming the validity of

the update; (2) If any issue is detected in the batch, FArbitrum

update
must

check whether a fraud-proof transaction is published before the

period 𝑇
period

ends. If valid fraud-proof is provided, the incorrect

state update is invalidated, and subroutine outputs False. However,
if no fraud proof is submitted within the given timeframe, the

functionality halts.

In the Arbitrum Nitro rollup, FArbitrum

read
does not determine the

read result based on the Internal state maintained by the inter-

face. Instead, the read result is directly obtained by sending a read

request to the underlying F
ledger

, ensuring that the state retrieved

is consistent with the data stored on the L1 ledger.

FArbitrum

settlement
verifies the settlement proposals triggered by the

simulator S based on two checks with the underlying blockchain

F
ledger

: (1) the proposed settlement request is executed and com-

mitted to the L1 ledger by the client or the operator; (2) there is also

and transaction transferring coins to the leaving client according

to the latest state committed on the L1 ledger.

Since the Arbitrum Nitro rollup protocol requires the opera-

tor to publish state and request batch periodically, the subroutine

FArbitrum

updRnd
will not agree the round proceed if there no update more

than 𝑇
period

time. These subroutines yield the following result:

Theorem 4.5. The ideal functionality F Arbitrum
layer2 guarantees all

the security properties of a secure L2 protocol.

The security of the Arbitrum Nitro rollup protocol can be demon-

strated by proving that the real protocol iUC realizes the ideal

functionality. This can be formally defined as follows:

Theorem 4.6. Let Fledger be the idealized L1 ledger functionality,
Fcert be the idealized functionality for EUF-CMA secure signature
scheme. Then, the real Liquid Network sidechain protocol PArbitrum

iUC-realizes the ideal Arbitrum Nitro rollup functionality F Arbitrum
layer2 .

5 Comparative Analysis of L2 Designs
In this section, we analyze the structural differences and design

trade-offs among Layer 2 (L2) protocols as revealed by our frame-

work. By instantiating the framework for representative construc-

tions, we identify the fundamental differences in parameter subrou-

tines that influence protocol behavior and demonstrate how these

differences impact the trade-offs on both security and efficiency

properties. Omitted proofs can be found in Appendix E.

5.1 Subroutine Comparison
As observed in the case studies above, the core mechanism by which

the framework captures the properties of L2 protocols is through

triggering subroutines to determine whether the protocol state,

represented by the Internal state, should be updated based on

protocol-specific requirements. In this section, we analyze how

these subroutines define the structural differences among various

types of L2 protocols, thereby revealing the key design choices

that differentiate them. Specifically, we focus on five subroutines:

Fopen, Fsubmit
, F

update
, F

read
, and F

settlement
, as these encapsulate

the essential procedures involved in the lifecycle of an L2 protocol.

5.1.1 The Subroutine Content. The general conditions within each

subroutine that determine when a positive output is generated

differentiate L2 protocols from each other, as illustrated in Table 1.

In the following, we describe how these conditions vary across the

three types of L2 protocols.

Protocol opening (joining) Fopen. In payment channel facto-

ries (PCFs), this procedure requires agreement directly from the

clients themselves, represented by their requests sent to the protocol

and recorded in RequestQueue. In addition, the agreement from all

other participants, including potential third-party entities, must be

verified through checks on the L1 ledger. In contrast, for sidechain

and rollup protocols, the responsibility for agreement verification is

delegated solely to the operators and recorded in ExecutedRequest.
Consequently, in PCFs, a client’s joining depends on other partici-

pants, including both other clients and third-party entities. How-

ever, in sidechain and rollup protocols, the decision depends only

on the joining client and the operators.

Request communcation Fsubmit. In our analysis, communica-

tion is a shared commonality across all types of L2 protocols. To

ensure that requests are executed timely, they must be broadcast

to all relevant operators. However, assuming the same number of

clients 𝑛𝐶 are supported, the communication complexity differs

across protocol types. In PCFs, each client is also an operator, mean-

ing each request must be sent to all 𝑛𝐶 participants. In contrast, in

sidechains and rollups, requests only need to be sent to a designated

set of 𝑛𝑂𝑃 operators, where typically 𝑛𝑂𝑃 < 𝑛𝐶 . Consequently,

when supporting the same number of clients, PCF protocols may

incur higher communication complexity compared to sidechain

and rollup protocols.

Request execution Fupdate. The subroutine F
update

defines

the requirements for an L2 protocol to order and execute requests.

The PCF protocol differs from the sidechain protocol in that PCF

requires full agreement from all operators, whereas the sidechain

requires agreement only from a subset of operators, as specified by

its consensus algorithm. Notably, both protocols can achieve safety
without relying on the L1 ledger.

In contrast, the rollup protocol fundamentally differs from both

PCF and sidechain protocols due to its reliance on the subroutine

F
ledger

during execution to guarantee safety. Rollups use the L1
ledger to ensure consistency of executed requests among all partici-

pants. Without publishing the necessary data or if the safety of the

L1 ledger is violated, the safety of the rollup also fails. Therefore, for

rollup protocols, interaction with F
ledger

is a necessary condition
for achieving safety.

L2 protocol data reading Fread. As a side effect of the update
procedure, the data reading mechanism for PCF and sidechain

protocols also differs from that of rollups. PCFs and sidechains

exhibit similar behavior in data reading, as all data is stored off-

chain and can be directly accessed within L2. In contrast, rollups

rely on the L1 ledger for data storage, which necessitates interaction

with the L1 for data reading.
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Table 1: Difference in main parameter subroutines. Assume in each type of protocol there are the same number of 𝑛𝐶 clients
and 𝑛𝑂𝑃 operators

Fopen F
submit

F
update

F
settlement

F
read

PCF

All participants agree on opening

+

Check the L1

Send to 𝑛𝐶 clients Agreed by all clients

Enough clients agreements

according to settlement type

+

Check the L1

Read through L2

sidechain Request executed by operators

+

Check the L1

Send to 𝑛𝑂𝑃 operators

Agreed by 𝜃 (𝑛𝑂𝑃 ) operators Request Executed by operators

+

Check the L1Rollup

Agreed by 𝜃 (1) operators

+

Publish on the L1

Read through L1

L2 state settlement Fsettlement. Similar to the protocol open-

ing (joining) procedure, PCF protocols finalize the protocol state

based on direct agreement from the clients themselves, whereas, in

sidechain and rollup protocols, this responsibility is delegated to the

operators. However, unlike the opening procedure, PCF protocols

like the Brick channel additionally support unilateral settlement,

which requires agreement only from the initiating client, allowing

an individual client to settle the state without the cooperation of

other participants.

5.1.2 The Subroutine Connection. From the content differences

of subroutines, we can further capture some insights about the

connection relationship among subroutines for different types of

L2 protocols. The subroutine connection differences can be seen in

Figure 6.

To start with, the direct connection, represented by the I/O connec-

tion, is more apparent. The rollup protocol is distinct from the other

two types of L2 protocols in that its subroutines F
update

and F
read

require direct interaction with the underlying L1 ledger F
ledger

.

Recall that F
update

specifies the requirements for generating a new

valid state in the protocol. Unlike PCFs or sidechains, the executed

requests received agreements from the L2 participants only for con-

sistency, rollups require the executed requests and the new state

to be published on the L1 ledger to realize consistency among L2

protocol participants. Consequently, the way participants learn

the executed requests and latest state through F
read

is by directly

fetching the state from F
ledger

.

Additionally, as has been noted, subroutine Fopen and Fsettlement

checks RequestQueue or ExecutedRequest, which are internal

state variables updated by other subroutines. This creates an indi-

rect dependency between subroutines through shared state.

5.1.3 Classification andDefinition. According to the analysis above,
the primary factor that differentiates L2 protocols from each other

is the behavior and structure of their subroutines. Based on the

characteristics of these subroutines, we propose the following defi-

nitions for the three primary types of L2 protocols:

Definition 5.1 (PCF). An L2 protocol Λ is a PCF protocol if the

ideal functionality F Λ

layer2
realized by Λ satisfies the following:

• Subrotuine F Λ

open
and F Λ

settlement
relies on the result of

F
submit

.

• F
update

and F
read

does not need checking with F
ledger

to

guarantee safety.
• F

update
requires agreement from all operators.

Definition 5.2. An L2 protocol Λ is a sidechain protocol if the

ideal functionality F Λ

layer2
realized by Λ satisfies the following:

• Subrotuine F Λ

open
and F Λ

settlement
relies on the result of

F
update

.

• F
update

and F
read

does not need checking with F
ledger

to

guarantee safety.
• F

update
requires agreement from 𝜃 (𝑛𝑂𝑃 ) participants.

Definition 5.3. An L2 protocol Λ is a rollup protocol if the ideal

functionality F Λ

layer2
realized by Λ satisfies the following:

• Subrotuine F Λ

open
and F Λ

settlement
relies on the result of

F
update

.

• Checking with F
ledger

is the necessary condition for F
update

and F
read

to guarantee safety.

5.2 Security and Performance Properties
5.2.1 Comparison of Properties. The key distinction between L2

protocol types lies in the structure of their subroutines, which in

turn affects how they satisfy security properties. While all secure

L2 protocols must guarantee correct initialization and correct settle-
ment, the performance and assumptions required to satisfy other

properties may differ across designs. In what follows, we compare

how PCF, sidechain, and rollup protocols realize three key proper-

ties: 𝑓 -Safety, (𝑓 ,𝑇 )-Liveness, and Data Availability. The results are

summarized in Table 2.

𝑓 -Safety characterizes a protocol’s resilience to adversarial cor-

ruption while maintaining consistency of the off-chain state. Across

all L2 designs, the safety of state transitions depends on the behav-

ior of the operator(s). In PCFs, safety is strongest: each state update

must be agreed upon by all operators, so the protocol remains

safe as long as at least one operator is honest. Sidechains achieve

safety through their consensus protocol, typically tolerating up to

𝑓 Byzantine faults (BFT threshold). In rollups, safety depends on

the underlying L1 ledger and the existence of at least one honest

operator. In zk-rollups, safety depends solely on the safety of the L1,

as state transitions are verified through validity proofs. In contrast,

optimistic rollups additionally rely on L1’s liveness, as fraud proofs

must be submitted and resolved within a bounded time window.

(𝑓 ,𝑇 )-Liveness characterizes the protocol’s resilience to adver-

sarial blocking of honest requests, as well as the latency incurred

before such requests are successfully processed. We distinguish

between two sources of latency: 𝑇𝐿2
, caused by execution and com-

munication within the L2 protocol, and𝑇𝐿1
, incurred by interactions

with the L1 ledger.
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(a) PCF (b) sidechain (c) Rollup

Figure 6: Connection among main parameter subroutines. The solid line represents the direct I/O connection. The dotted line
represents the indirect connection.

Table 2: Comaprison of security properties and efficiency properties for different types of L2 protocol. Assuming there are
𝑛𝑃 = 𝑛𝐶 + 𝑛𝑂𝑃 participants in total for clients and operators. 𝑓𝑂𝑃 is the maximum corrupted operator assumed by the sidechain
consensus algorithm. And there are𝑚 executed state update requests after the protocol starts and no clients leave the protocol.

f-safety

(f,T)-Liveness

Data availability

f T

PCF (𝑛𝑂𝑃 − 1) 0𝑝+Layer 1 0𝑂𝑃 = Layer 1 𝑇𝐿2
+𝑇𝐿1

𝑇𝐿2
𝑇𝐿1

{Ω(𝑚),Ω(𝑛𝑝 )}
sidechain 𝑓𝑂𝑃 ⌊𝑛−(𝑓𝑂𝑃+1)

2
⌋+Layer1 ⌊𝑛−(𝑓𝑂𝑃+1)

2
⌋ ⌊𝑛−(𝑓𝑂𝑃+1)

2
⌋+Layer1 𝑇𝐿2

+𝑇𝐿1
𝑇𝐿2

𝑇𝐿2
+𝑇𝐿1

{Ω(𝑚),Ω(𝑛𝑝 )}
Rollup = Layer 1 (𝑛𝑂𝑃 − 1𝑂𝑃 )+ Layer 1 𝑇𝐿2

+𝑇𝐿1
{Ω(1),Ω(𝑚) + Ω(𝑛𝑝 )}

Although our framework defines three types of requests—open,
update, and settlement—their liveness varies across L2 designs.

In sidechains and rollups, the update logic is reused across re-

quest types via F
update

, resulting in uniform liveness behavior. For

sidechains, 𝑇𝐿2
-bounded liveness is guaranteed for off-chain up-

dates as long as the consensus threshold is met (e.g., a majority of

honest operators). However, operations that require anchoring on

L1—such as joining or exiting—also depend on the liveness of the

L1 ledger, yielding a total latency of 𝑇𝐿2
+𝑇𝐿1

.

Rollups exhibit uniform liveness across all requests, as every

update must be finalized on L1. As long as one honest operator

exists and the L1 ledger is live, progress is guaranteed. Thus, rollups

are less sensitive to L2 synchrony and exhibit optimal fault tolerance

but they are entirely dependent on L1 throughput and liveness

guarantees, resulting in a latency of 𝑇𝐿2
+𝑇𝐿1

for all operations.

In contrast, PCFs exhibit request-specific liveness behavior. The

open and update procedures require active participation from all

involved parties, meaning any crash or delay can block progress. As

a result, 𝑇𝐿2
is undefined or unbounded unless all participants are

honest and responsive. The settlement procedure, however, supports
unilateral execution, and its liveness depends solely on L1 liveness,

with latency dominated by𝑇𝐿1
. In general, PCF protocols are highly

sensitive to participant behavior, with liveness varying significantly

across subroutines.

Data Availability. The F
read

subroutine models the ability of

clients to access the current L2 state. The availability guarantees

and storage complexity vary significantly across L2 designs.

In PCFs and sidechains, data availability depends on the assump-

tion that a sufficient number of honest operators are online and

responsive. Clients retrieve the current state by combining the ini-

tial configuration, stored on the L1 ledger, with off-chain logs of

executed requests. As a result, both designs require Ω(𝑛𝑝 ) storage

on L1, where 𝑛𝑝 is the number of participants, and Ω(𝑚) storage

off-chain, where𝑚 is the number of executed requests representing

the L2 ledger size.

Rollups, by contrast, enforce data availability through on-chain

publication. All executed requests and resulting states are posted

to the L1 ledger, allowing the full state to be reconstructed directly

from on-chain data without relying on operator availability. This

design yields an L1 storage complexity of Ω(𝑛𝑝 +𝑚), while removing

the need for persistent off-chain storage to guarantee availability.

Accordingly, no lower bound on L2 storage is required, since all

state-relevant data resides on L1. We emphasize, however, that

this is a design choice. In more decentralized rollup architectures,

data availability could instead be ensured by relying on existential

honesty among L2 archival nodes—i.e., requiring that at least one

node faithfully stores the L2 ledger [4, 12]. In such designs, the

on-chain storage burden may be reduced at the cost of additional

trust assumptions on L2 participants.

Our framework captures this via F
read

depending on local stor-

age (PCFs, sidechains) or F
ledger

(rollups).

5.2.2 Properties Tradeoffs. After outlining how L2 protocols differ

in security and efficiency properties, we now examine the trade-

offs these designs entail. Since the core goal of an L2 protocol is

to execute state updates efficiently while maintaining consistency,

this objective is captured by the safety and liveness properties. We

show that a fundamental trade-off exists between them for state

update requests. Omitted proofs appear in Appendix E.

Theorem 5.4. A secure PCF and sidechain protocol can only re-
alize 𝑓𝑂𝑃 -safety and {⌊𝑛𝑂𝑃 −(𝑓𝑂𝑃+1)

2
⌋,𝑇𝐿2

}-liveness for state update
requests.

Theorem 5.5. A secure rollup protocol can only realize L1-Safety
and {(𝑛𝑂𝑃 −1)+Layer 1,𝑇𝐿2

+𝑇𝐿1
}-Liveness for state update requests.

Beyond the relationship between security properties, our frame-

work also reveals a trade-off between security and efficiency. In
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particular, recall that under our definition, liveness for a given re-

quest holds if the resulting state can be retrieved via a corresponding

read request. As demonstrated in the case studies, different L2 pro-

tocols implement the F
read

subroutine using distinct mechanisms

to determine the final read result. These design choices directly

affect how L1 and L2 storage are utilized in practice. We summarize

this connection below.

Theorem 5.6. Assume𝑚 state update requests are executed after
the protocol starts. To guarantee liveness for secure PCF protocol and
sidechain protocol, the Data availability needs to have {Ω(𝑚),Ω(𝑛𝑝 )}
efficiency.

Theorem 5.7. Assume𝑚 state update requests are executed after
the protocol starts. To guarantee liveness for secure rollup protocol,
the Data availability needs to have {Ω(1),Ω(𝑚) + Ω(𝑛𝑝 )} efficiency.

6 Related Work
Payment channels, e.g., [2, 3, 5, 6, 9, 14, 20, 24, 27], enable two
parties to conduct off-chain transactions by locking funds on-chain

and exchanging signed messages that update their balance, with

only the final state submitted to the blockchain for settlement.

Security analyses for these protocols typically focus on the closing

phase, capturing guarantees such as balance security, which ensures
that honest parties can reclaim their rightful funds. However, these

analyses are often protocol-specific and do not generalize to broader

L2 architectures. In contrast, our framework captures payment

channels as a special case of a general L2 functionality, enabling

uniform reasoning and comparison across diverse protocol designs.

Sidechains [7, 18, 25] operate as separate blockchains with

their own consensus mechanisms, often maintained by federated

operators. Clients interact with the sidechain while funds remain

escrowed on the L1. Existing work defines security in terms of

ledger safety and liveness, drawing from traditional blockchain the-

ory [17]. These models typically analyze the sidechain in isolation

and do not easily support cross-paradigm comparisons or compos-

able reasoning. In our framework, sidechains are treated within

the same ideal functionality as other L2 protocols, allowing their

assumptions and trade-offs to be systematically compared.

Rollups [8, 12, 15, 20, 23] outsource execution to an off-chain

sequencer that posts commitments and proofs to the L1. Optimistic

rollups rely on fraud proofs and timeout-based dispute windows,

while zk-rollups use succinct validity proofs. A central challenge in

rollups is data availability, ensuring honest parties can reconstruct

and verify protocol state. Although addressed in protocol design

and empirical analysis [12, 15], formal models are lacking while

existing analyses are protocol-specific. Our framework unifies these

models by capturing rollup behavior through a common interface

structure, exposing trade-offs between availability, latency, and

trust assumptions.

Security Frameworks. Formal frameworks for L2 protocols

have primarily focused on specific constructions. Aumayr et al. [1]

formalize state channel networks using UC, while Kiayias et al. [22]

study composability in Lightning-style channels. These approaches

offer strong guarantees but do not extend to sidechains or rollups.

In the L1 setting, Graf et al. [19] introduce a general framework

for distributed ledgers based on trust and consistency assumptions.

Our work builds on this line of reasoning by presenting the first gen-

eral security framework for L2 protocols. It supports composable

reasoning across L2 paradigms and formalizes shared and diverg-

ing properties within a single ideal functionality. [21] formalizes

L2 protocols by modeling L1 as responsible solely for participant

registration and L2 for execution. However, this abstraction does

not accurately capture rollup protocols, which rely on L1 for more

than just participant registration. In contrast, [13] focuses on addi-

tional functionalities of zk-rollups, such as censorship resistance

and protocol upgrades, rather than the core execution logic shared

across L2 protocols. Our framework captures the essential logic

underlying all types of L2 protocols. Furthermore, while [20] in-

formally discusses the design trade-offs in L2 protocols, it only

addresses implementation differences without formally analyzing

the corresponding security guarantees.

7 Conclusion
This paper introduced the first general security framework for Layer

2 (L2) blockchain protocols, formalized as a modular ideal func-

tionality in the iUC framework. By structuring protocol behavior

through well-defined subroutines—capturing initialization, request

submission, state updates, reading, and settlement—our framework

abstracts over protocol-specific mechanisms while preserving the

key dimensions of L2 security.

This abstraction enables, for the first time, composable reasoning

across structurally diverse L2 designs such as payment channels,

sidechains, and rollups. It also provides a formal foundation for

comparing their safety, liveness, and data availability guarantees

within a common model. Our framework not only validates known

trade-offs—such as the reliance of rollups on L1 liveness versus the

sensitivity of payment channels to participant availability—but also

reveals implicit design constraints and minimal trust assumptions

previously only understood informally.

Through detailed case studies and a comparative analysis, we

demonstrate the generality and applicability of our model, and

prove that key properties can be realized under standard assump-

tions. More broadly, our framework lays the groundwork for formal

analysis of emerging challenges in L2 protocol design. Its modular

structure enables composable reasoning and supports extensions to

other settings, e.g., with rational adversaries by leveraging Rational

Protocol Design [16] to capture utility-based guarantees and starte-

gic behavior. Our subroutine-based abstraction is also well-suited

to modeling cross-chain interoperability and multi-hop L2 compo-

sitions, where clear isolation of roles and assumptions is essential.

We see this work as a foundational step toward the security- and

incentive-aware design of scalable blockchain infrastructure.
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A The iUC Framework
In this section, we provide a brief introduction to the Interactive

Universal Composability (iUC) framework, which underpins our

proposed framework and analysis. For a complete formal specifica-

tion, we refer the reader to the original iUC framework paper [10].

The iUC framework is a highly expressive and modular model for

universal composability and supports the analysis of various types

of protocols in different security settings. It is based on interactive

Turing machines, which communicate via designated interfaces.

In the iUC framework, a protocol P is defined as a set of ma-

chines: P = {M1, · · · ,M𝑛}. Each machineM𝑖 implements one or

more roles, where a role defines the behavior of an entity executing

a specific part of the protocol logic. For instance, in Layer 2 (L2)

protocols, distinct roles, such as clients and operators, are instan-

tiated. During the execution of a protocol, multiple instances of

each machine may run concurrently. These instances interact with

each other and with the adversary via designated I/O and network

interfaces (NET). An instance of machineM𝑖 may host one or more

entities, each identified by a tuple (pid, sid, role), representing the

party ID, session ID, and assigned role, respectively. Communica-

tion between entities is permitted only if their respective machine

instances are appropriately connected via I/O interfaces (i.e., the

callee machine is registered as a subroutine of the caller).

To illustrate the relationship among these elements, consider a

signature scheme. In the iUC framework, the real-world protocol is

typically modeled with two machines: one implementing the role

of signer and the other implementing the verifier. Each machine

instance governs an entity representing a signing or verification

execution. In contrast, the ideal functionality for such a schememay

use a single machine that implements both roles and contains mul-

tiple entities, thereby modeling the shared internal state required

to define security properties like unforgeability.

The iUC framework defines two types of roles when describing

the protocol: public and private roles. In the iUC framework, only

public roles can be accessed by the environment. The protocol spec-

ification syntax “(pubrole1, ..., pubrole𝑛 | privrole1, ..., privrole𝑚)”

explicitly denotes which roles are public and which are private.

There are some iUC functions that are not specifically men-

tioned in our machine description. When an entity (pid, sid, role) is

addressed for the first time, the request is routed to all instances

that implement the specified role until one accepts it. This deci-

sion is made using the CheckID algorithm, and in our framework

by default, CheckID accepts all entities from the same session.

If no entities have yet been accepted, the instance runs the Ini-
tialization algorithm to initialize its internal state with the global

parameter. If an entity is corrupted by the adversary, the instance

will record it inCorruptionSet to keep track of the corrupted party
and uncorrupted ones.

To define the universal composability (UC) security experiment,

the model distinguishes between three types of machines: protocols,

environments, and adversaries. As is standard in UC-based mod-

els, all machines must run in polynomial time. The core security

https://milkomeda.com/Milkomeda%20Rollup.pdf
https://milkomeda.com/Milkomeda%20Rollup.pdf
https://polygon.technology/papers/pol-whitepaper
https://polygon.technology/papers/pol-whitepaper
https://docs.zksync.io/
https://docs.optimism.io/stack/rollup/overview
https://docs.optimism.io/stack/rollup/overview
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experiment compares the real-world protocol P with an ideal func-

tionality F . The protocol P is said to securely realize F if for every

adversary A interacting with P, there exists a simulator S such

that the joint executions of (A,P) and (S, F ) are indistinguishable

to any environment E. In this case, we say P iUC realizes F .

B Case Study: The Brick Channel
B.1 Brick Channel Real Protocol
To start with, we first propose the protocol implementation PBrick

in the real world. The real protocol’s structure is shown in Figure. 3,

and is formally defined as PBrick
= (client|warden, Fcert). client

and warden are the two participant roles in the Brick protocol, but

here, 𝑐𝑙𝑖𝑒𝑛𝑡 is the only interface to the outside since the clients are

the main party who get instructed by the environment to proceed

with the protocol, and wardens are the service parties to prevent the

incorrect state settlement to the L1 ledger. Here we assume there

are 𝑛 = 3𝑓 + 1 wardens in total, and the adversary could corrupt no

more than 𝑓 wardens.

B.1.1 Client Machine. The client machine defines the code run-

ning by the two main parties of the Brick channel that do offchain

transactions.

Description of Mclient of protocol PBrick

Implement roles: Client (Operator)
Internal state :

• Round
• RequestQueue
• ExecutedRequest
• StateList
• OnchainState
• Identities

Main:

Receive {Open, Identities, InitialState} from I/O:

(1) If requets is valid, genrates 𝑠=InitialState, and Sig(𝑠) from Fcert;

(2) Request A throughNET formessage delivery. If receives request

from NET, send {Open, Identities, InitialState,Sig} to
(pid, sidcur, client);

(3) If receive (Open, Sig’), then send {𝑠 , Sig, Sig’} to all

(pid, sidcur,warden) after receiving delivery request from A;

(4) If receive 2𝑓 + 1 SigW, then send (Submit, 𝑇𝑋open ={W1, ..., Wn,
𝑓 , InitialState}) to (pidcur, sidcur, Fledger : ClientL1);

(5) Send Read to (pidcur, sidcur, Fledger : ClientL1) if𝑇𝑋open is com-

mitted by all participants, reply {Open, InitialState} to environ-

ment E through I/O;

Receive {Submit, NewState {𝑠, 𝑖 }} from I/O:

(1) Check validity of the request, if the check passes, then generate

Sig(𝑠) with Fcert, add {𝑠 ,𝑖} to RequestQueue;

(2) Send {Submit, {𝑠, 𝑖 }, Sig} to counterparty (pidcur, sidcur, client)
after receiving message delivery request from adversary A
through NET;

(3) If receive {Submit, {𝑠, 𝑖 }, Sig’} from counterparty client, check

the validity with Fcert;

(4) If check passes, send {{𝑠 ,𝑖}, Sig Sig’} to all (pid, sidcur,warden)

after receiving message delivery request from A through NET;

Receive (Update, SigW) from (𝑝𝑖𝑑cur, sidcur,warden) through I/O:

(1) If already received 2𝑓 request before. Add {𝑠, 𝑖 } to StateList;

(2) Add {Sig, Sig’, {SigW}
2f+1

} to ExecutedRequest;

Receive {Settlement, collaborate} from I/O:

(1) Choose the latest state 𝑠𝐿= Latest(StateList), generate Sig
from Fcert;

(2) Send {Settlement, 𝑠𝐿 , Sig} to counterparty (pidcur, sidcur, client)
after receiving themessage delivery notitifaction fromA through

NET;

(3) If receive {Settlement, 𝑠𝐿 , Sig’}, send {Submit, 𝑇𝑋
close

={𝑠𝐿 ,
Sig, Sig’}} to (pidcur, sidcur, Fledger : Client𝐿1).

(4) Send Read to (pidcur, sidcur, Fledger : Client𝐿1), if 𝑇𝑋
close

is

committed, outputs {Settlement, success, 𝑠𝐿 } to environment E
through I/O.

Receive {Settlement, unilateral} from I/O:

(1) Choose the latest state 𝑠𝐿=Latest(StateList);

(2) Send {Settlement, unilateral} to all (pid, sidcur,warden) after

receiving delivery request from A through NET;

(3) Send Read to (pidcur, sidcur, Fledger : Client𝐿1), wait for 2𝑓 + 1

publishements from warden.

(4) Send {Submit, 𝑆𝐿 , 𝑟𝐿 , fraud-proof} to (pidcur, sidcur, Fledger :

Client𝐿1);

(5) Send Read to F
ledger

, if latest state is committed, outputs closed
to I/O;

Receive {Read} from I/O:

(1) Outputs { ExecuteReuqest, StateList} to I/O;

B.1.2 Warden Machine. The warden machine defines the code run

by the third-party wardens, they do not get inputs from the envi-

ronment but only communicate with the clients through the asyn-

chronous communication channel, in which the message delivery

is controlled by the adversary, which simulates the asynchronous

communication.

Description of Mwarden of protocol PBrick

Implement roles: Warden

Internal state :
• ExecutedRequest

Main:

Receive {Open, IntialState Sig, Sig’} from (𝑝𝑖𝑑cur, sidcur, client) through
I/O:

(1) Check the validity of {Sig, Sig’} with Fcert;

(2) Genrate SigW(𝑆) from Fcert;

(3) Send {𝑠 ,SigW} to both(pid, sidcur, client) after receiving the mes-

sage delivery notitifaction from A through NET;

(4) Send {Submit, 𝑇𝑋open ={InitialState} }to (pidcur, sidcur,Fledger :

Client𝐿1);

Receive {Update, {𝑠 ,𝑖}, Sig Sig’} (𝑝𝑖𝑑cur, sidcur, client):
(1) Check the validity of {Sig, Sig’} with Fcert;
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(2) Check sequence number 𝑖 for consistency;

(3) Genrate SigW(𝑆) from Fcert;

(4) Send {Update,SigW} to both (𝑝𝑖𝑑cur, sidcur, client) after receiving
message delivery request from A through NET;

(5) Add {{𝑠 ,𝑖}, Sig Sig’} to ExecutedRequest;

Receive {Settlement, unilateral} from NET:

(1) Choose the latest stored {{𝑠 ,𝑖}, Sig Sig’};

(2) Send {Submit, {{𝑠 ,𝑖}, Sig Sig’}, SigW} to (pidcur, sidcur,Fledger :

cleint);

B.2 Brick Channel Ideal Functionality
After proposing the real protocol, we formally define the ideal

functionality for the Brick channel based on our framework, the

ideal functionality is defined as F Brick

layer2
= (F

layer2
|F Brick

𝑖𝑛𝑖𝑡
, F Brick

𝑠𝑢𝑏𝑚𝑖𝑡
,

F Brick

update
, F Brick

read
, F Brick

settlement
, F Brick

updRnd
, F Brick

leak
).

B.2.1 Submit Functionality. The submit function handles the re-

quests that would change the protocol status,

• Open request: the request to open the Brick channel with

an initial state and all the participants’ identities. Other

requests will be rejected unless the open request is executed.

• State transition request: since the Brick channel is used

for off-chain payments, a state transition request can be

understood as a payment request sent by the payer.

• Settlement request: settlement request means the partici-

pant requests to settle its state on L1 ledger, and once it is

submitted, other requests from the party will be rejected.

Generally, we use subroutine F Brick

𝑠𝑢𝑏𝑚𝑖𝑡
to check whether the

request sent from the environment is correct in the format and

whether it is valid according to the current protocol status.

Description of MBrick
𝑠𝑢𝑏𝑚𝑖𝑡

of subroutine FBrick
𝑠𝑢𝑏𝑚𝑖𝑡

Implement roles: Submit

Main:

Receive {Submit, request, Internal state} from I/O:

(1) Check the received request is within one of the three valid

types:

• Open request: {Open, IntialState, Identities};

• State update request for a new state {𝑠, 𝑖 }: {Update, {𝑠, 𝑖 }};

• Settlement request: {settlement, collaborate, {𝑠 ,𝑖}} and {set-

tlement, unilateral};

(2) Check the open request has been executed or request is the

open request;

(3) Check there is no settlement request recorded in Internal
state;

(4) Wait for FBrick

leak
decides the leakage;

(5) If all checks pass, return {Submit, True, leakage};

B.2.2 Open Functionality. Similar to what is done in the real Brick

payment channel protocol, the open subroutine of F Brick

open
outputs

the success request, the initial states, and the necessary attachments

like the warden signatures, only after requests from both parties

are received and the state is committed on the L1 ledger, which is

same as that’s been done in the real Brick protocol PBrick
.

Description of MBrick
open of subroutine FBrick

open

Implement roles: Open
Main:

Receive {Open, InitialState, Attachment, Internal state} from
I/O:

(1) Check Internal state’s RequestQueue and there exist the

same open requests from all honest clients.

(2) Check there are 2𝑓 + 1 agreements in Attachment from the

wardens recorded in Identities of Internal state.

(3) Send Read request to (pidcur, sidcur,Fledger : Client𝐿1) and check

InitialState is commit on L1 ledger by all participants recorded

in Identities;

(4) Wait for FBrick

leak
decides the leakage;

(5) If all checks passes, reply {Open, True, leakage} to I/O;

Lemma B.1. The subroutine F Brick
open guarantees Correct Initializa-

tion and (1𝑝 + 𝑓Layer1,𝑇𝐿2
+𝑇𝐿1

)-liveness for the opening procedure.

Proof. We prove this by contradiction. Suppose Correct Initial-
ization can be violated by the adversary. This would imply that the

environment receives a successful initialization request for at least

one honest participant under one of the following two conditions:

(1) the finalized initial state included in the output differs from the

state proposed by the honest client, or (2) the state committed on

the L1 ledger is different, or no commitment is made at all.

However, F Brick

open
only outputs a success request if the initial-

ization check, triggered by the simulator, contains the initial state

proposed by all honest clients via F Brick

submit
. Additionally, F Brick

open

interacts with F
ledger

to verify that this initial state is indeed com-

mitted on the L1 ledger. As long as the transaction can not be forged

and the L1 ledger is secure, this contradicts the assumption. Thus,

Correct Initialization is guaranteed by F Brick

open
.

Now assume that F Brick

open
fails to generate a positive output even

when fewer than 1 + 𝑓Layer1 participants are corrupted and a delay

greater than 𝑇𝐿2
+𝑇𝐿1

has elapsed. If no participants are corrupted

and the liveness of the L1 ledger is guaranteed, then the adversary

can, at most, delay the opening procedure but cannot prevent it. This

implies that a successful output will be produced within the worst-

case delay of 𝑇𝐿2
+𝑇𝐿1

. This contradicts the assumption. Therefore,

(1 + Layer 1,𝑇𝐿2
+𝑇𝐿1

)-liveness for opening is also guaranteed by

F Brick

open
. □

B.2.3 Update Functionality. In the Brick channel, in order to pro-

ceed with the protocol state update, the state transition proposal

should satisfy the following two requirements:

• Both clients’ agreements

• 2𝑓 + 1 wardens’ agreements
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The update subroutine checks for the update request from the

simulator through the NET. Once the check passes, the subrou-

tine F Brick

update
will suggest F Brick

layer2
to update the Internal state

accordingly.

Description of MBrick
update of subroutine FBrick

update

Implement roles: Update
Main:

Receive {Update, NewState, Attachment,Internal state} from I/O:

(1) Check the Internal state and Attachemnt that there exists
agreement from both clients;

(2) Check Attachement includes at least 2𝑓 + 1 agreements from

participant wardens;

(3) Wait for FBrick

leak
decides the leakage;

(4) If all check passes, reply {Update, True, NewState,leakage};

Lemma B.2. The subroutine F Brick
update guarantees (1𝑂𝑃 ,𝑇𝐿2

) liveness

for state updates.

Proof. We prove this by contradiction. Suppose F Brick

update
does

not guarantee liveness under no corruption or any time delay. Then

consider the case where both clients of the Brick channel and more

than
2

3
of the wardens are honest. In this setting, the simulator can

always construct a state update that satisfies the checks defined in

F Brick

update
as long as the adversary allows the message to be delivered.

This contradicts the assumption that liveness cannot be guaran-
teed in any case. Therefore, F Brick

update
guarantees liveness for state

updates. □

B.2.4 Read Functionality. The read function decides what infor-

mation a participant can learn based on the internal state. Because

of data availability, the clients directly obtain output based on the

latest RequestQueue, ExecutedReuqets, and StateList that are

able to reconstruct the state transition.

Description of MBrick
read of subroutine FBrick

read

Implement roles: Read
Main:

Receive {Read, Internal state} from I/O:

(1) If LastReadPointer is the previous one before the latest state.

Then send responsive request to S to decide message delivery;

(2) If there is nomessage delay, get the LatestState from Internal
state, update LastReadPointer.

(3) Otherwise sey LatestState still be previous state;

(4) Check the LatestState should not be older than the state stored
in Pointer. Otherwise,

(5) Check ExecutedReusts, get the TransitionData that includes
all the signatures;

(6) If reconstruct LatestState from OnchainState
based on TransitionDtata, then reply {Read, ReadResult=
{LatestState, TransitionData, LastReadPointer}};

(7) Else reply {Read, readResult = ⊥};

Lemma B.3. The subroutines F Brick
read and F Brick

update guarantee ((𝑛𝑂𝑃−
1))-safety.

Proof. For safety, which captures the consistency of the current
protocol state among honest clients, we consider the behavior of

F Brick

read
. The adversarymay influence its output due to asynchronous

message delivery and thus may either reflect the latest state in

StateList or the previous read result. Therefore, safety would

only be violated if the two outputs returned to different honest

clients are not prefix-related.

However, according to F Brick

update
, a new valid state requires agree-

ment from both clients, as long as there exists one honest client,

there should be no inconsistency for different honest clients. This

guarantees that outputs from F Brick

read
for different honest clients

are always consistent in the prefix sense. For self-consistency, the

LastReadPointer ensures that any earlier read result is always a

prefix of the read result obtained at a later time. Hence, safety is

ensured. □

B.2.5 Settlement Functionality. Once the settlement is triggered by

the simulator, the settlement subroutine will check whether it is a

collaborative closing request with the agreement from both parties

or a unilateral closing case. In the previous situation, the subroutine

will output success after checking it is both agreed upon and

published on the L1 ledger. In the latter case, the subroutine will

not only check the latest state committed onchain but also the

publishments from the wardens, which are decided by the simulator.

Description of MBrick
settlement of subroutine FBrick

settlement

Implement roles: Settlement

Main:

Receive {Settlement, SettlementType, Attachment, Internal state}
from I/O:

(1) If SettlementType is collaborate, and do the following:

(a) Check Attachement includes agreement from both clients.

(b) Check the Internal state, there exist settlement re-

quests from all honest clients in RequestQueue, set the
request settlement state to be LatestState;

(c) Send Read request to (pidcur, sidcur, Fledger : ClientL1), to

check if there exists a corresponding state on the L1 ledger;

(2) If SettlementType is unilateral, then do the following:

• Search the LatestState from Internal state;

• Send Read request to (pidcur, sidcur, Fledger : ClientL1)

check at least 2𝑓 + 1 wardens publish onchain, in which

LatestState is committed;

(3) Wait for FBrick

leak
decides the leakage;

(4) If check passes, reply {Settlement, True, LatestState} to I/O;

Lemma B.4. The subroutine F Brick
settlement guarantees correct settle-

ment, (1OP,𝑇𝐿2
+𝑇𝐿1

)-liveness for collaborative settlement request,
and (Layer1, 𝑇𝐿1

)-liveness for unilateral settlement request.
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Proof. The correct settlement is violated if the environment

receives a successful settlement request from F
layer2

to an honest

client, but the corresponding settlement state committed on the

L1 ledger is neither the latest state nor the state proposed by any

honest client. However, the subroutine F Brick

settlement
only outputs a

successful settlement if the committed state on the L1 ledger is

either (i) the latest state recorded in StateList, or (ii) the state
proposed by all honest clients, depending on the type of settlement

request (collaborative or unilateral). Therefore, correct settlement is
guaranteed.

Liveness for settlement requests is violated if the subroutine

fails to produce a successful output under any corruption and af-

ter bounded delay. For collaborative settlement, if both clients are

honest and the liveness of the L1 ledger is guaranteed, then the

adversary can at most delay message delivery, but cannot prevent

F Brick

settlement
from eventually generating a successful output. For uni-

lateral settlement, if at least one honest client initiates the request

and the L1 ledger ensures liveness, then the state will eventually be

published and accepted. Therefore, liveness for settlement requests

is also guaranteed. □

B.2.6 Update Round Functionality. Since we assume an asynchro-

nous communication channel, there will be no further requirement

for round updating.

Description of MBrick
updRnd of subroutine FBrick

updRnd

Implement roles: UpdateRound
Main:

Receive {UpdateRound, Internal state} from I/O:

(1) Reply {UpdateRound, True};

B.3 Security Proof
After proposing the ideal functionality and real-world implementa-

tion, we now show the security of the Brick channel protocol. To

start with we first show the ideal functionality for Brick capture all

the security properties with the following conclusion:

Theorem 4.1. The ideal functionality F Brick
layer2 guarantees all the

security properties of a secure L2 protocol.

Proof. According to Lemma B.1 to B.4, the ideal functionality

F Brick

layer2
guarantees all security properties. □

Our main proof strategy is to show that there exists a simulator

for the ideal functionality F Brick

layer2
that internally simulates an alter-

native version of the real-world protocol PBrick
and interacts with

the ideal functionality in a way that produces the same outputs to

the environment. This ensures that the adversary’s view in the real

world is indistinguishable from that in the ideal world.

We assume there is a simulator S that internally simulates the

same protocol of PBrick
, which is noted with P′Brick

. The simulator

S behaves according to the following rules:

Network connection with ideal functionality and environ-
ment.

• Any message the simulator S received from the environ-

ment through the network connection, which can be un-

derstood as the adversary instruction, will be forwarded to

the internal simulation P′Brick
.

• Any message sent from the internal simulation P′Brick
to

the network connection, which can be seen as leakage to

the environment, will be forwarded to the environment by

the simulator.

• Whenever there is a request for open protocol, update state,

or settlement state inside the simulation, the simulator will

trigger the ideal functionalityF Brick

layer2
to synchronize the

change.

Corruption handling.

• The simulator will keep track of the corrupt entities and

keep the corrupted parties in P′Brick
and F Brick

layer2
synchro-

nized.

• The simulator will forward themessages from the corrupted

entities in the ideal functionality to the adversary.

Message delivery. For the L2 communication, the Brick channel

assumes the asynchronous network; thus, the message delivery

will be eventually decided by the adversary. We let the simulator

bookkeep all the messages in the simulation and trigger message

delivery in the same way as the real-world protocol.

Reuqest submission. Whenever an honest entity in ideal func-

tionality F Brick

layer2
receives a request from the environment after it

gets accepted decided by the subroutine F Brick

submit
, it will forward

the transaction to the simulator S. After receiving the forwarded
request from the F Brick

layer2
, S will send the request to its internal

simulated protocol P′Brick
.

Protocol opening. The simulator S monitors both the internal

simulation state and the L1 ledger.Whenever it detects that the open

procedure has completed in P′Brick
, it prepares a request to be sent

to F Brick

layer2
for validation. This request includes the InitialState

used to initialize the protocol and the corresponding Attachment,
which contains the signature agreements generated via Fcert within
the simulation.

Protocol state update. The simulator S monitors the internal

simulation for state updates. Based on the requests previously re-

ceived from F Brick

layer2
, once S detects that a state update has been

completed within the simulation, it prepares an update request and

sends it to F Brick

layer2
to synchronize the internal state. This request

includes the updated state and an Attachment containing the exe-

cuted requests, along with signatures from both clients and 2𝑓 + 1

wardens, generated via Fcert.
Protocol state read.When F Brick

layer2
queries S the message deliv-

ery to decide the read result, S replies according to its interaction

with the adversary about the message delivery.

Protocol state settlement. After receiving the settlement re-

quest from F Brick

layer2
, the simulator S executes the settlement pro-

cedure as defined in the real protocol for all non-corrupted enti-

ties. S continuously monitors the simulation, and once the set-

tlement procedure is completed, it prepares a request containing

the SettlementType and an Attachment that includes the relevant
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signatures generated via Fcert, and sends this request to F Brick

layer2
for

checking.

Further details. The simulator S also maintains synchroniza-

tion of the internal clock/round with the ideal functionality. When-

ever S is instructed by the adversary A to advance the round, it

sends an UpdateRound request to F Brick

layer2
and triggers the corre-

sponding round update.

Then, we prove the security of the protocol by showing that for

each procedure, the environment can not distinguish between the

output of ideal functionality and the output of the real protocol.

Theorem 4.2. Let Fledger be the idealized L1 ledger functionality
and Fcert be the idealized functionality for EUF-CMA secure signature
scheme. Then, the real Brick payment channel protocol PBrick realizes
the ideal Brick payment channel functionality F Brick

layer2.

Proof. We analyze the output for each step of the protocol in

both worlds.

Request submission. For any received request from the environ-

ment, the subroutine F Brick

𝑠𝑢𝑏𝑚𝑖𝑡
will check whether the format is

correct. Therefore, the real protocol and ideal functionality realize

the same functions. After the checks pass, a request along with the

accepted request will be forwarded to the simulator to simulate the

same action.

Protocol open. In the real protocol, the open procedure of the Brick
channel is not finished immediately, even though an honest party

starts the procedure. This is because some parties are corrupted

and want to prevent the open procedure from happening, or the

messages and actions are delayed or reordered, including publishing

on the Layer 1 ledger. Thus, in the ideal world, we let the simulator

trigger the open procedure of the ideal functionality to simulate

the possible influence. Since we assume the simulator keeps track

of the adversary’s instruction in the real world, whenever the open

procedure is finished in the simulation P′Brick
, the F Brick

open
will be

triggered by the simulator, where all parties agreement and the

onchain committed value will be checked. Once all the check passes,

the Internal state of F Brick

layer2
will be updated accordingly and

notify all the participants. The output for protocol open will only

be sent to all the participants if all the requirements are satisfied,

which is the same in both worlds. Besides, all the messages in

the open procedure are broadcast to the public on the L1 ledger.

Thus, the simulator can generate the same message leakage to the

environment. Therefore, the environment can not tell the difference.

Protocol state update. Once the protocol is opened, the state of
the L2 protocol can be updated. The adversary could influence

this procedure by delaying the update procedure or proposing

an incorrect update request. We let the simulator simulate all the

possible misbehavior, whenever there is an instruction from the

adversary, the simulator will act accordingly in the inside simulation

P′Brick
, and the simulator will trigger the F Brick

update
whenever there is

a state update in the simulation P′Brick
. The F Brick

update
will check the

update includes the agreement from both parties and at least 2𝑓 + 1

wardens if so it will let the F Brick

layer2
to update the Internal state

accordingly. The same check is also realized in the real protocol

by the honest client machine. Thus, the Internal state in the

ideal functionality is synchronized with the real protocol as long

as the adversary is not able to forge a signature. Although this

procedure does not generate direct output to the environment, the

update to the Internal state could influence the outputs of other
procedures like read and settlement, which will be discussed in the

following.

Protoocl state read. In the real protocol, each machine will locally

store the information it receives during the protocol execution. Al-

though in the state update procedure, the states are synchronized

between the ideal functionality and the real-world protocol, the

adversary could still influence the read result. Specifically, since the

message delivery is decided by the adversary, although there might

be a valid update approved by the ideal function, the honest partici-

pants could not know it because the message has not been delivered

yet. To simulate such influence, the ideal functionalityF Brick

read
will

check with the simulator for message delivery. If the latest message

is delivered, it will output the latest state and the data to reconstruct

the state transition. Otherwise, the previous state will be output.

By doing so, the simulator helps the ideal functionality to generate

the same read result as the real protocol does.

Protocol state settlement. Similar to the real protocol, the ideal

functionality also takes two types of settlement requests: collateral

and unilateral. In the ideal world, the settlement procedure is also

triggered through the network connection to simulate the malicious

parties’ possible behaviors, like settling the state unilaterally with-

out notifying the counterparty. Once there is an incoming collateral

settlement request, F Brick

layer2
checks both two parties agree on the

settlement request, and it has already been committed on the L1

ledger. Note that the settlement state, in this case, does not need

to be the latest state due to the possible message delay; it is valid

as long as there are agreements from both clients (operators). As

for the unilateral close, F Brick

settlment
will check the request and the L1

ledger that the latest state in Internal state has been committed

onchain. Once these checks pass, all the participants will be notified

by F Brick

layer2
for successful closure. As long as the adversary is not

able to forge a signature and construct a valid transaction itself,

the outputs of the real protocol and ideal functionality during the

settlement procedure are indistinguishable.

Based on the analysis of all the procedures of the Brick channel,

we can know that the Brick channel PBrick
iUC realizes F Brick

layer2
. □

C Case Study: The Liquid Network Sidechain
C.1 Liquid Network Real Protocol
To analyze the security of the Liquid Network, we first describe

the real-world protocol of Liquid Network: PLiquid
= (Client|

Operator, F𝑐𝑜𝑚, Fcert). The Liquid Network protocol in the real

world is realized based on two types of machines as main com-

ponents: the client machine MLiquid

client
and the operator machine

MLiquid

operator
. Here we assume there are 𝑛 = 3𝑓 + 1 operators in total,

and the adversary could corrupt no more than 𝑓 operators.

C.1.1 Client Machine. The client machine specifies the behavior

of an honest client in the Liquid Network protocol as follows:
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Description of MLiquid
client of protocol PLiquid

Implement roles: Client
Internal state :

• Round
• ExecutedRequest
• StateList
• OnchainState
• Identities

Main:

Receive {Open, Identities, InitialState} from I/O:

(1) According to InitialState, prepare the peg-in transaction𝑇𝑋peg-in,

and parse the destination account address Address from Identi-

ties;

(2) Send {Submit,𝑇𝑋
deposit

, Address} to (pidcur, sidcur, Fledger :

Client𝐿1);

(3) Send Read to (pidcur, sidcur, Fledger : Client𝐿1), wait for𝑇𝑋
deposit

committed by 100 blocks;

(4) Obtain Sig from ideal functions Fcert on peg-in transaction

𝑇𝑋peg-in;

(5) Send {Open,𝑇𝑋peg-in, Sig} to all (pidcur, sidcur,Moperator : operator)

through Fcom;

(6) Send {Read} to all (pidcur, sidcur,Moperator : operator), and check

𝑇𝑋peg-in is included in the ReadResult;

(7) Reply {Open, InitialState} through I/O;

Receive {Update,𝑇𝑋 } from I/O:

(1) Obtain Sig on transaction𝑇𝑋 from the ideal functions Fcert;

(2) Send {Submit,𝑇𝑋 , Sig} to to all (pidcur, sidcur,Moperator : operator);

Receive {Settlement} from I/O:

(1) Prepare the peg-out transaction𝑇𝑋peg-out and obtain Sig from

Fcert;

(2) Send {Settlement,𝑇𝑋peg-out, Sig} to to all (pidcur, sidcur,Moperator :

operator);

(3) Send {Read} to both (pidcur, sidcur,Fledger : Client𝐿1) and to all

(pidcur, sidcur,Moperator : operator);

(4) If LatestState is recorded in both ReadResult, reply {Settle-

ment, LatestState};

Receive {Read} from I/O:

(1) Send {Read} to all (pidcur, sidcur,Moperator : operator);

(2) Set ReadResult be the chain, in which each block contains 2𝑓 +1

operator signatures;

(3) Rely ReadResult through I/O;

C.1.2 Operator Machine. The operator machine defines the code

for an honest operator who is responsible formaintaining the Liquid

sidechain:

Description of MLiquid
operator of protocol PLiquid

Implement roles: Operator
Internal state :

• Round
• RequestQueue

• ExecutedRequest
• StateList
• OnchainState
• Identities

Main:

Receive {Open,𝑇𝑋peg-in} from I/O:

(1) Verify the validity of𝑇𝑋peg-in;

(2) Send {Read} to (pidcur, sidcur, Fledger : Client𝐿1) and check

𝑇𝑋peg-in is committed for 100 blocks;

(3) If check passes, add 𝑇𝑋peg-in to RequestQueue and broadcast

to all other (pid, sidcur,Moperator : operator) through Fcom;

Receive {Submit,𝑇𝑋 , Sig} from I/O:

(1) Verify the validity of𝑇𝑋 and Sig with Fcert;

(2) If check passes, add {𝑇𝑋 , Attachment} to RequestQueue and

broadcast to all other (pid, sidcur,Moperator : operator)

through Fcom;

Receive {Settlement,𝑇𝑋peg-out,Sig} from I/O:

(1) Check the validity of the received Sig with Fcert, which guar-

antees the requester is a valid client participant;

(2) If the check passes, add settlement request𝑇𝑋peg-out to

RequestQueue and broadcast to all other

(pid, sidcur,Moperator : operator) through Fcom;

Receive {Read} from I/O:

(1) Rely StateList and ExecutedRequest through I/O;

Receive {UpdateLeader} from I/O:

(1) Generate a new valid block with all the valid requests recorded

in RequestQueue;

(2) The block should not contain invalid requests cause double-

spending;

(3) Send {UpdatePropose, Block} to all other

(pidcur, sidcur,Moperator : operator) through Fcom;

Receive {UpdatePropose, Block} from I/O:

(1) Check the validity of Block, which indicates following:

• Block is in the correct form.

• Included transactions are in the correct form and have

valid signatures.

• There are no double-spending transactions.

(2) If all the check passes, obtain Precommittment from Fcert.

(3) Send {UpdatePrecommittement, Block, Precommittment} to all

other (pid, sidcur,Moperator : operator) through Fcom;

Receive {UpdatePrecommittement, Block,Precommittment} from I/O:

(1) If already received 2𝑓 Precommittments before, generate Sig
for Block with Fcert.

(2) Send {UpdateFinal, Block, Sig} to all other MLiquid

operator
;

Receive {UpdateFinal, Block, Sig} from I/O:

(1) For the received Block, if there already received 2𝑓 Sigs before,
then add all the requests in the Block to StateList;
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C.2 Liquid Network Ideal Functionality
After proposing the real protocol, we formally define the ideal func-

tionality for the Liquid Network sidechain based on our framework,

the ideal functionality is defined asF Liquid

layer2
= (F

layer2
|F Liquid

𝑖𝑛𝑖𝑡
, F Liquid

𝑠𝑢𝑏𝑚𝑖𝑡
,

F Liquid

update
, F Liquid

read
, F Liquid

settlement
, F Liquid

updRnd
, F Liquid

leak
).

C.2.1 Submit Functionality. The submit function handles the re-

quests that would change the protocol status:

The F Liquid

submit
to check whether the request sent from the clients,

who are instructed by the environment, is correct in the format

and valid according to the current status of the Liquid Network

protocol.

Description of MLiquid
submit of subroutine FLiquid

submit

Implement roles: Submit

Main:

Receive {Submit, request, Internal state} from I/O:

(1) Check the received request is within one of the three valid

types:

• Open request: {Open, IntialState, Identities};

• State update request: {Submit,𝑇𝑋 };

• Settlement request: {Settlement};

(2) Check the open request has been executed or request is the

open request;

(3) Check there is no settlement request from the caller participants;

(4) Wait for FLiquid

leak
decides the leakage;

(5) If all checks pass, return {Submit, True, leakage};

C.2.2 Open Functionality. In the Liquid Network, whether a client

is considered as successfully participating in the protocol is decided

based on two requirements: (1) the commitment transaction needs

to be committed on the L1 ledger for 100 blocks; (2) there is also a

claiming transaction in the sidechain maintained by the operators.

Description of MLiquid
open of subroutine FLiquid

open

Implement roles: Open
Main:

Receive {Open, InitialState, Attachment=𝑇𝑋peg-in, Internal state}
from I/O:

(1) Send Read request to (pidcur, sidcur, Fledger : Client𝐿1) and check

InitialState is commit on L1 ledger for 100 blocks;

(2) Check Internal state that StateList and ExecutedRequest
includes the𝑇𝑋peg-in;

(3) Wait for FLiquid

leak
decides the leakage;

(4) If all checks passes, reply {Open, True, leakage} to I/O;

Lemma C.1. F Liquid
open guarantees correct initialization and (𝑓𝑂𝑃 +

Layer1, 𝑇𝐿2
+𝑇𝐿1

)-liveness for open requests.

Proof. The correct initialization property is violated if the initial
state committed on the L1 ledger differs from the state recorded in

StateList, yet the environment still receives a successful initializa-

tion output from F
layer2

. However, F Liquid

open
generates a positive out-

put only if the updated StateList and ExecutedRequestmatches

the state and the peg-in transaction that have been committed on

the L1 ledger. As long as there only exists less than 𝑓𝑂𝑃 =
1

3
𝑛𝑂𝑃

corrupted operators, and the L1 ledger is secure, there will not be a

mismatch. Therefore, correct initialization is guaranteed.

Now assume that the liveness for an open request from an honest

client is broken, meaning that a positive output is never generated

under any corruption setting or time delay. However, as long as the

liveness of the L1 ledger is guaranteed and more than
2

3
of the oper-

ators are honest, F Liquid

open
will eventually generate a positive output.

The worst-case time delay is bounded by 𝑇𝐿2
+ 𝑇𝐿1

, representing

the time required for communication among L2 operators and for

committing a value on the L1 ledger. Thus, the liveness of the open
request is also guaranteed by F Liquid

open
. □

C.2.3 Update Functionality. In the liquid network, the StateList
and ExecutedRequest in the internal state of F

layer2
is updated

based on the BFT protocol that operator running to maintain the

sidechain. If all the check passes, the update function generates

positive output and

Description of MLiquid
update of subroutine FLiquid

update

Implement roles: Update
Main:

Receive {Update, NewState={StateList, Block}, Attachment, Internal
state} from I/O:

(1) Check the Internal state and Attachemnt that there exists
agreements from 2𝑓 + 1 operators;

(2) Check all the transactions in the Block that there is no double

spending;

(3) Wait for FLiquid

leak
decides the leakage;

(4) If all check passes, reply {Update, True, NewState, leakage};

Lemma C.2. F Liquid
update guarantees (𝑓𝑂𝑃 , 𝑇𝐿2

)-liveness for update
requests.

Proof. Suppose that the liveness for update requests is violated.
This would imply that F Liquid

update
never generates a positive output

under any corruption scenario or time delay. However, as long as

there are only less than 𝑓𝑂𝑃 =
1

3
𝑛𝑂𝑃 of the operators are corrupted

and not responding, the rest of the honest operators can still reach

consensus, and the simulator can therefore produce a valid state

update to the ideal functionality. In this case, F Liquid

update
will generate a

positive output for the update request within a time delay bounded

by𝑇𝐿2
, which is the latency caused solely by the L2 communication.

Therefore, liveness for update requests is guaranteed by F Liquid

update
. □

C.2.4 Read Functionality. The read function in the Liquid Network

represents the client’s procedure for fetching the latest chain status

from the operator. Here, we assume each client is connected to all
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the operators, and the communication is under the synchronous

assumption. Thus, in the ideal function, only the blocks from the

previous read result till the latest block should be replied through

I/O.

Description of MLiquid
read of subroutine FLiquid

read

Implement roles: Read
Main:

Receive {Read,Internal state} from I/O:

(1) Get LatestState from Internal state.

(2) Check the LastReadPointer ExecutedReusts,
get the TransitionData that includes all the blocks till the latest
one, including all the agreements from operators;

(3) If reconstruct LatestState from LatestState based on

TransitionDtata, then reply {Read, ReadResult={LatestState,
TransitionData}};

(4) Else reply {Read, ReadResult = ⊥};

Lemma C.3. F Liquid
update and F Liquid

read guarantee ( 1

3
𝑛𝑂𝑃 )-safety.

Proof. Since F Liquid

read
always selects the latest state recorded in

StateList as the read result, and each new state along with the

according ExecutedRequest must be agreed upon by more than

2

3
of the operators (as specified in F Liquid

update
), thus conflicting read

results cannot occur for different honest clients, which guarantees

view-consistency. Additionally, the synchronous communication

assumption, together with the assumption that at least one hon-

est operator will respond with the latest state of the sidechain to

the client, guarantees self-consistency for honest clients. There-

fore, all read results are prefix-comparable, satisfying the safety
requirement. □

C.2.5 Settlement Functionality. Once the settlement is triggered by

the simulator, similar to the open procedure, the F Liquid

settlement
will also

check whether two requirements are satisfied: (1) the settlement

request𝑇𝑋
settlement

is committed in the StateList of the Internal
state; (2) the settlement request 𝑇𝑋

settlement
should be committed

on the L1 ledger as well.

Description of MLiquid
settlement of subroutine FLiquid

settlement

Implement roles: Settlement

Main:

Receive {Settlement, Attachment=𝑇𝑋peg-out, Internal state} from
I/O:

(1) Search Internal state, check𝑇𝑋peg-out is included in

ExecutedRequest;

(2) Obtain the LatestState from the StateList;

(3) Send Read request to (pidcur, sidcur, Fledger : Client𝐿1) check

LatestState is committed on the L1 ledger;

(4) Wait for FLiquid

leak
decides the leakage;

(5) If check passes, reply {Settlement, True, LatestState} to I/O;

Lemma C.4. F Liquid
settlement guarantees correct settlement and

(𝑓𝑂𝑃+Layer1, 𝑇𝐿2
+𝑇𝐿1

)-liveness for settlement requests.

Proof. Correct settlement is considered violated if the environ-

ment receives a successful settlement output from F
layer2

to an

honest client, but one of the following holds: (1) the client did

not propose a settlement request on the L1 ledger, or (2) the state

committed on the L1 ledger differs from the latest L2 protocol

state. However, F Liquid

settlement
only generates a positive output if: (1)

the client explicitly proposes to settle the state on the L1 ledger,

and (2) the committed state on the L1 ledger matches the latest

state recorded in ExecutedRequest. Therefore, correct settlement
is guaranteed.

Liveness for settlement requests is considered violated ifF Liquid

settlement

does not generate a positive output under any corruption status or

time delay. However, as long as more than
2

3
of the operators are

honest and the liveness of the L1 ledger is guaranteed, F Liquid

settlement

will produce a positive output after verifying both the L2 and L1

conditions. The total delay is bounded by 𝑇𝐿2
+𝑇𝐿1

. Thus, liveness
is guaranteed. □

C.2.6 Update Round Functionality. Here, the communication is

assumed to be synchronous. Thus, the round update should have

certain requirements. Specifically, for any request from the client,

there should be a time delay upper bound 𝛿 , if the request is not

executed with more delay than 𝛿 , the round can not be updated.

Description of MLiquid
updRnd of subroutine FLiquid

updRnd

Implement roles: UpdateRound
Main:

Receive {UpdateRound, Internal state} from I/O:

(1) Check Internal state, there exists no request that has not

been executed more than 𝛿 time.

(2) If the check passes, reply {UpdateRound, True};

C.3 Security Proof
After proposing the ideal functionality and real-world implementa-

tion, we now show the security of the Liquid Network sidechain.

We first prove that the ideal functionality F Liquid

layer2
.

Theorem 4.3. The ideal functionality F Liquid
layer2 guarantees all the

security properties of a secure L2 protocol.

Proof. According to Lemma C.1 to C.4, it can be concluded

F Liquid

layer2
guarantees all the security properties. □

Our main proof strategy is to show that there exists a simulator

for the ideal functionality F Liquid

layer2
that internally simulates an alter-

native version of the real-world protocol PLiquid
and interacts with

the ideal functionality in a way that produces the same outputs to

the environment. This ensures that the adversary’s view in the real

world is indistinguishable from that in the ideal world.
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Here we assume there is a simulator S that internally simulates

the same protocol of PLiquid
, which is noted with P′Liquid

. The

simulator S behaves according to the following rules:

Network connection with ideal functionality and environ-
ment.

• Any message the simulator S received from the environ-

ment through the network connection, which can be un-

derstood as the adversary instruction, will be forwarded to

the internal simulation P′Liquid
.

• Any message sent from the internal simulation P′Liquid
to

the network connection, which can be seen as leakage to

the environment, will be forwarded to the environment by

the simulator.

• Whenever there is a request for open protocol, update state,

or settlement state inside the simulation, the simulator will

trigger the ideal functionalityF Liquid

layer2
to synchronize the

change.

Corruption handling.

• The simulator will keep track of the corrupt entities, and

keep the corrupted parties in P′Liquid
and F Liquid

layer2
synchro-

nized.

• The simulator will forward themessages from the corrupted

entities in the ideal functionality to the adversary.

Message delivery. For the Liquid Network, we assume the com-

munication is under a synchronous setting. We assume in the real

protocol there is a communication function Fcom that takes the

delay input from the adversary. And the simulator bookkeeps all the

received sending through Fcom in the simulated P′Liquid
, whenever

the adversary A triggers the message delivery, the simulator will

do the same.

Reuqest submission. Whenever an honest entity in ideal func-

tionality F Liquid

layer2
receives a request from the environment after it

gets accepted decided by the subroutine F Liquid

submit
, it will forward

the transaction to the simulator S. After receiving the forwarded
request from the F Liquid

layer2
, S will send the request to its internal

simulated protocol P′Liquid
.

sidechain joining. The simulator S monitors both the internal

simulation state and the L1 ledger. Whenever it detects that the

open procedure has completed and received output from the simu-

lated entities in P′Liquid
, it prepares a request to be sent to F Liquid

layer2

for validation. This request includes the InitialState used to

initialize the protocol and the corresponding Attachment, which
contains the signature agreements from the client and operators

generated via Fcert within the simulation, as well as the on-chain

committed transaction required for verification.

Protocol state update. The simulator S simulates the real pro-

tocol by allowing the simulated operators to generate new blocks

according to the timing signals from the inner clock defined in Fcom.
It monitors the internal simulation for state updates, and once a

new block is generated in the simulated sidechain, S prepares an

update request and sends it to F Liquid

layer2
to synchronize the internal

state. This request includes the updated state and an Attachment
containing the newly generated block with the executed requests,

along with the quorum certificate consisting of operator signatures

generated via Fcert.
Protocol state read. Becasue of the synchronous communica-

tion assumption, the F Liquid

layer2
will not query S to decide the read

result.

Protocol state settlement. After receiving the settlement re-

quest from F Liquid

layer2
, the simulator S wait for its execution. S con-

tinuously monitors the simulation and the L1 ledger, and once the

settlement procedure is completed, it prepares a request containing

the SettlementType and an Attachment that includes the peg-out
transaction published on the L1 ledger and sends this request to

F Liquid

layer2
for checking.

Further details. The simulator S also maintains synchroniza-

tion of the internal clock/round with the ideal functionality. When-

ever S is instructed by the adversary A to advance the round

through Fcom in the simulation, it sends an UpdateRound request

to F Liquid

layer2
and triggers the corresponding round update.

Then, we prove the security of the protocol by showing that for

each procedure, the environment can not distinguish between the

output of ideal functionality and the output of the real protocol.

Theorem 4.4. Let Fledger be the idealized L1 ledger functionality,
Fcom be the synchronous communication channel, Fcert be the ideal-
ized functionality for EUF-CMA secure signature scheme. Then, the
real Liquid Network sidechain protocol PLiquid iUC-realizes the ideal
Liquid Network sidechain functionality F Liquid

layer2 .

Proof. Here we prove it by showing that the outputs for each

step of the protocol in both worlds are indistinguishable.

Request submission. For any received request from the environ-

ment, the subroutine F Liquid

submit
will check whether the format is

correct, and after the checks pass, a request and the accepted re-

quest will be sent to the simulator to simulate the same action. As

a result, in both the real world and the ideal world, the same types

of valid requests will be accepted.

sidechain join. In the real protocol, the open procedure of the

Liquid Network first requires verifying that the commit transaction

has been confirmed on the L1 for a sufficient duration, and that

the client can observe the corresponding peg-in transaction on

the Liquid sidechain. The adversary may influence this procedure

by corrupting operators and deviating from the protocol, such as

proposing an incorrect peg-in transaction to the sidechain or gener-

ating an invalid block containing the peg-in transaction and falsely

claiming that the procedure has completed successfully. Therefore,

in the ideal world, we allow the simulator to trigger the open proce-

dure of the ideal functionality to simulate this possible adversarial

influence. Since the simulator is assumed to keep track of the adver-

sary’s instructions in the real world, whenever the open procedure

completes in the simulation, the functionality F Liquid

open
is triggered.

In this procedure, it is required that the open request is agreed

upon by the majority of all operators, and that the corresponding

on-chain value is correctly committed on the L1. Once all checks

pass, the Internal state of F Liquid

layer2
is updated accordingly and

all participants are notified. The output for the open request is only

sent if all the requirements are satisfied, ensuring that the real and
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ideal executions are indistinguishable, as long as the assumption

of a majority of honest operators holds and the adversary cannot

forge signatures.

Protocol state update. Once a client is considered as having joined
the sidechain, it can propose to update the state of the Liquid Net-

work protocol by submitting transactions. The adversary may in-

fluence this procedure by proposing an invalid block containing

incorrect transactions. In the ideal world, we let the simulator sim-

ulate all such potential misbehavior. Whenever there is an instruc-

tion from the adversary, the simulator acts accordingly within the

internal simulation P′Liquid
, and triggers the subroutine F Liquid

update

whenever a state update occurs within the simulation. The subrou-

tine F Liquid

update
performs checks to validate the proposed block. These

checks mirror those carried out in the real protocol. Therefore, the

Internal state of the ideal functionality remains synchronized

with the real protocol execution, provided that the adversary cannot

forge signatures and that the assumption of a majority of honest

operators holds. Although this update procedure does not gener-

ate direct output to the environment, changes to the Internal
state can affect the outputs of other procedures, such as read and

settlement, which are discussed in the following sections.

Protocol state read. Here since the data is stored in the operators,

we assume a client is connected to all operators, along with the

assumption of synchronous communication, it guarantees the client

is always able to obtain the latest block and state of the sidechain.

To simulate such read method, the ideal functionalityF Liquid

read
will

directly output the latest state recorded in StateList, as long as
the transaction list stored in ExecutedRequest starting from the

LastReadPoint. In that case, the read result in both the ideal world

and the real world will be the same.

Protocol state settlement. In the ideal world, the settlement pro-

cedure is also triggered through the network connection in order

to simulate the malicious parties’ possible behaviors, F Liquid

settlement

checks the settlement transaction is both committed on the sidechain

and the L1 ledger. Once these checks pass, all the participants will

be notified by F Liquid

𝑙𝑎𝑦𝑒𝑟𝑠
for successful closure. As long as the adver-

sary is not able to forge a signature or a valid transaction itself,

the outputs of the real protocol and ideal functionality during the

settlement procedure are indistinguishable.

Based on the analysis of all the procedures of the Liquid Network,

we can know that the Liquid Network protocol PLiquid
iUC realizes

F Liquid

layer2
. □

D Case Study: The Arbitrum Nitro Rollup
D.1 Arbitrum Nitro Real Protocol
We here first propose the real-world protocol of the Arbitrum Nitro

rollup protocol PArbitrum
= (Client|Operator, Validator, Fcert,

F
clock

). In the Arbitrum Nitro rollup protocol, we focus on three

roles of participants: client, operator, and validator. Here we assume

there is at least one honest operator and one honest validator.

D.1.1 Client Functionality. Clients are the users of the rollup pro-

tocol; after joining the protocol, they can propose transactions to

the operator for execution.

Description of MArbitrum
client of protocol PArbitrum

Implement roles: Client
Internal state :

• Round
• ExecutedRequest
• StateList
• OnchainState
• Identities

Main:

Receive {Open, Identities, InitialState} from I/O:

(1) According to InitialState, prepare the deposit transaction

𝑇𝑋
deposit

, and parse the destination account address Address
from Identities;

(2) Send {Submit,𝑇𝑋
deposit

, Address} to (pidcur, sidcur, Fledger :

Client𝐿1);

(3) Send Read to (pidcur, sidcur, Fledger : Client𝐿1), wait for commit-

ted in the L1 ledger;

(4) Prepare the peg-in transaction𝑇𝑋peg-in and generate according

Sig with Fcert for signatures;

(5) If receive message delivery request from A through NET, send

{Open,𝑇𝑋peg-in, Sig} to the (pidcur, sidcur,MArbitrum

operator
: operator);

(6) Send {Read} to (pidcur, sidcur, Fledger : Client𝐿1), and check

𝑇𝑋peg-in is included in ReadResult without any fraud-proof;

(7) Reply {Open, InitialState} through I/O;

Receive {Submit,𝑇𝑋 } from I/O:

(1) Obtain Sig for𝑇𝑋 from the ideal functions Fcert
;

(2) Send {Submit,𝑇𝑋 , Sig} to (pidcur, sidcur,MArbitrum

operator
: operator)

after receive the message delivery request from A through NET;

Receive {Settlement} from I/O:

(1) Prepare the peg out transaction 𝑇𝑋peg-out and generates Sig
with Fcert;

(2) Send {Settlement,𝑇𝑋peg-out, Sig} to (pidcur, sidcur, MArbitrum

operator
:

operator) after receive the message delivery request from A
through NET;

(3) Send {Read} to (pidcur, sidcur, Fledger : Client𝐿1);

(4) If LatestState is recorded in ReadResult, reply {Settlement,

LatestState};

Receive {Read} from I/O:

(1) Send {Read} to (pidcur, sidcur, Fledger : Client𝐿1);

(2) Wait for ReadResult;

(3) Rely ReadResult through I/O;

D.1.2 Operator Functionality. The operator is responsible for ex-
ecuting the received transaction request 𝑇𝑋 . After the execution,

the operator is responsible for publish the requests and final result

state to the L1 ledger every 𝑇
period

time, which is triggered by the

ideal clock functionality F
clock

with request {Updaterequest}.

Description of MArbitrum
operator of protocol PArbitrum
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Implement roles: Operator
Internal state :

• Round
• RequestQueue
• Identities

Main:

Receive {Open,𝑇𝑋peg-in, Sig} from I/O:

(1) Verify the validity of𝑇𝑋peg-in and Sig with Fcert;

(2) Send {Read} to (pidcur, sidcur, Fledger : ClientL1) and check𝑇𝑋peg-in

is committed;

(3) If check passes, add𝑇𝑋peg-in to RequestQueue;

Receive {Submit,𝑇𝑋 , Sig} from I/O:

(1) Verify the validity of𝑇𝑋 and Sig with Fcert;

(2) If check passes, add𝑇𝑋 to RequestQueue;

Receive {Settlement,𝑇𝑋peg-out} from I/O:

(1) Check the validity of the transaction𝑇𝑋peg-out;

(2) If the check passes, add settlement request to RequestQueue ;

Receive {Updaterequest} from I/O:

(1) Send {write, RequestQuque, ExecuteResult} to the

(pidcur, sidcur, Fledger : Client𝐿1);

D.1.3 Validator Funcaionality. The validator in Arbitrum Nitro

rollup protocol is responsible for verifying the published executed

requests whether match up with the resulting state. If there is a

mismatch, the validator should propose a fraud-proof to prevent

the state update from happening during the challenge period. The

ideal clock functionality F
clock

should trigger the validator for

verification.

Description of MArbitrum
validator of protocol PArbitrum

Implement roles: Validator
Internal state :

• Round
Main:

Receive {UpdateCheck} from I/O:

(1) Send {Read} request to (pidcur, sidcur, Fledger : Client𝐿1).

(2) Check the correctness of the newly published RequestQueue
and ExecutedResult;

(3) If check does not pass, send {Submit, FraduProof} to
(pidcur, sidcur, Fledger : Client𝐿1);

D.2 Arbitrum Nitro Ideal Funcationality
After proposing the real protocol, we formally define the ideal func-

tionality for the Liquid Network sidechain based on our framework,

the ideal functionality is defined as FArbitrum

layer2
= (F

layer2
|FArbitrum

𝑖𝑛𝑖𝑡
,

FArbitrum

𝑠𝑢𝑏𝑚𝑖𝑡
, FArbitrum

update
, FArbitrum

read
, FArbitrum

settlement
, FArbitrum

updRnd
, FArbitrum

leak
).

D.2.1 Submit Functionality. The submit function handles the re-

quests that would change the protocol status: (1) Open request; (2)

State update request that includes a transaction 𝑇𝑋 ; (3) Settlement

request. The FArbitrum

submit
to check whether the request sent from

the clients, who are instructed by the environment, is correct in

the format and valid according to the current status of the Liquid

Network protocol.

Description of MArbitrum
submit of subroutine FArbitrum

submit

Implement roles: Submit

Main:

Receive {Submit, request, Internal state} from I/O:

(1) Check the received request is within one of the three valid

types:

(2) Check the received request is within one of the three valid

types:

• Open request: {Open, IntialState, Identities};

• State update request: {Submit,𝑇𝑋 };

• Settlement request: {Settlement};

(3) Check the open request has been executed or request is the

open request;

(4) Check there is no settlement request from the caller party;

(5) Wait for FArbitrum

leak
decides the leakage;

(6) If all checks pass, return {Submit, True, leakage};

D.2.2 Open Functionality. Once triggered by the simulator, the

open subroutine will help to check whether the peg-in transac-

tion and the initial state that is proposed by the honest client are

committed on the L1 ledger.

Description of MArbitrum
open of subroutine FArbitrum

open

Implement roles: Open
Main:

Receive {Open, InitialState, Attachment=𝑇𝑋peg-in, Internal
state} from I/O:

(1) Send Read request to F
ledger

and check both InitialState,
𝑇𝑋peg-in are commited on L1 ledger;

(2) Wait for FLiquid

leak
decides the leakage;

(3) If all checks passes, reply {Open, True, leakage} to I/O;

Lemma D.1. The subroutine F Arbitrum
open guarantees correct initial-

ization and ((𝑛𝑂𝑃 − 1) + Layer1, 𝑇𝐿2
+ 𝑇𝐿1

)-liveness for the open
request.

Proof. Correct initialization is considered violated if the initial-

ization state or the corresponding request is not properly committed

on the L1 ledger, while FArbitrum

open
still generates a positive output.

However, FArbitrum

open
only produces output when all required data is

correctly committed on the L1 ledger. Besides, as long as the trans-

action can not be forged by forging a signature and there exists an

honest validator for any incorrect published on the L1 ledger from

the operator, it will be invalidated by fraud-proof. Thus, correct
initialization is guaranteed.

Liveness is considered violated if FArbitrum

open
fails to generate a

positive output under any corruption level or time delay. However,
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since FArbitrum

open
relies on the publishment from the operator on L1

ledger to generate positive output, thus as long as the L1 ledger

guarantees liveness and there exists one honest operator, FArbitrum

open

will eventually generate a positive output within the bounded de-

lay of 𝑇𝐿2
+ 𝑇𝐿1

. Therefore, liveness for the open request is also

guaranteed. □

D.2.3 Update Functionality. To update the protocol state, the up-

date subroutine will check on the L1 ledger whether the published

new state is correctly computed based on the executed requests

that should also be published on the L1 ledger. If the punishment

is correct, the update finality generates positive output to update

the Interanl state accordingly. If the publishment is incorrect,

there should also be a corresponding fraud-proof.

Description of MArbitrum
update of subroutine FArbitrum

update

Implement roles: Update
Main:

Receive {Update, NewState, Attachment= {RequestBatch}, Internal
state} from I/O:

(1) Send {Read} to F
ledger

to check the NewState is committed on-

chain;

(2) Check all the requests in Attachment and the new state in the

NewState is correctly executed.

(3) If the check passes, wait for FArbitrum

leak
decides the leakage, and

reply {Update, True, NewState, leakage}

(4) If execution is incorrect, check FraudProof is published, if so,
reply {Update, False, leakage};

(5) If no fraud-proof published, HALT;

Lemma D.2. F Arbitrum
update guarantees ((𝑛𝑂𝑃 − 1) + Layer1,𝑇𝐿2

+𝑇𝐿1
)-

liveness for update requests.

Proof. The liveness for update requests is considered violated if
FArbitrum

update
fails to generate a positive output under any corruption

status or time delay. However, as long as the liveness of the L1

ledger is guaranteed and there exists one honest operator honestly

published on the blockchain periodically, FArbitrum

update
—which ver-

ifies the publishment of the updated state by checking with the

L1 ledger—will be able to generate a positive output. Therefore,

liveness for update requests is guaranteed. □

D.2.4 Read Functionality. In the Arbitrum Nitro rollup protocol,

instead of deciding the read result based on the Internal state
stored by the F

layer2
machine, the read result will be the output

of sending read request to the underlying L1 ledger functionality

F
ledger

.

Description of MArbitrum
read of subroutine FArbitrum

read

Implement roles: Read
Main:

Receive {Read,Internal state} from I/O:

(1) Send {Read} to (pidcur, sidcur,Fledger : Client𝐿1), wait for

ReadResult={LatestState, TransactionData};

(2) If reconstruct LatestState from LatestState based on

TransitionData, then reply {Read, ReadResult}};

(3) Else reply {Read, ReadResult = ⊥};

Lemma D.3. The subroutines F Arbitrum
update and F Arbitrum

read guarantee
(Layer1)-safety.

Proof. The safety property is considered violated if there exist

conflicting read results among honest parties. However, FArbitrum

read

obtains its output by querying the underlying L1 ledger. There-

fore, as long as the safety of the L1 ledger is guaranteed—meaning

both self-consistency and view-consistency hold for the underly-

ing ledger—the read outputs will be consistent, and thus, safety is

guaranteed. □

D.2.5 Settlement Functionality. Once triggered, the settlement func-

tion verifies whether the peg-out transaction has been executed

and committed on the L1 ledger and whether the latest state of the

L2 protocol has also been correctly committed on the L1 ledger.

Description of MArbitrum
settlement of subroutine FArbitrum

settlement

Implement roles: Settlement

Main:

Receive {Settlement, Attachment=𝑇𝑋peg-out, Internal state} from
I/O:

(1) Find the LatestState from Internal state;

(2) Send {Read} to (pidcur, sidcur, Fledger : Client𝐿1) and check

𝑇𝑋peg-out, LatestState are committedwithout any FraudProof;

(3) Wait for FArbitrum

leak
decides the leakage;

(4) If check passes, reply {Settlement, True, LatestState} to I/O;

LemmaD.4. F Arbitrum
settlement guarantees correct settlement and (Layer1,

𝑇𝐿2
+𝑇𝐿1

)-liveness for settlement requests.

Proof. The correct settlement property is considered violated if

a settlement request committed on the L1 ledger results in a final

committed value that differs from the submitted request and is not

the latest valid state, yet still triggers a positive output. However,

FArbitrum

settlement
generates a positive output only after verifying that the

state committed on the L1 ledger is consistent with the submitted

request and corresponds to the latest valid state. Therefore, as long

as the L1 ledger is secure and valid transactions can not be forged

by forging signatures, the correct settlement is guaranteed.
For liveness, since FArbitrum

settlement
only needs to check the state com-

mitted on the L1 ledger to generate a positive output, and clients

are allowed to publish the transaction to L1 ledger by itself, the

liveness of the settlement request depends solely on the liveness

of the underlying blockchain. Thus, as long as the L1 ledger pro-

vides liveness, the settlement request will be processed within time

𝑇𝐿2
+𝑇𝐿1

, and the liveness is guaranteed. □
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D.2.6 Update Round Functionality. Although the Arbitrum Nitro

protocol does not assume any bound on communication latency

between clients and operators, the operator is expected to publish

a batch of executed requests and results every 𝑇
period

.

Description of MArbitrum
updRnd of subroutine FArbitrum

updRnd

Implement roles: UpdateRound
Main:

Receive {UpdateRound, Internal state} from I/O:

(1) Every𝑇
period

time, send {Read} to (pidcur, sidcur, Fledger : Client𝐿1)

and check if there any publishement from operator;

(2) If the check passes, reply {UpdateRound, True};

D.3 Security Proof
After proposing the ideal functionality and real-world implemen-

tation, we now show the security of the Arbitrum Nitro rollup

protocol. We first prove that the ideal functionality FArbitrum

layer2
guar-

antees all the security properties.

Theorem 4.5. The ideal functionality F Arbitrum
layer2 guarantees all

the security properties of a secure L2 protocol.

Proof. According to Lemaa D.1 to D.4, we can conclude that

FArbitrum

layer2
gaunratees all the security properties. □

Our main proof strategy is to show that there exists a simulator

for the ideal functionality FArbitrum

layer2
that internally simulates an

alternative version of the real-world protocol PArbitrum
and inter-

acts with the ideal functionality in a way that produces the same

outputs to the environment. This ensures that the adversary’s view

in the real world is indistinguishable from that in the ideal world.

Here we assume there is a simulator S that internally simulates

the same protocol of PArbitrum
, which is noted with P′Arbitrum

.

The simulator S behaves according to the following rules:

Network connection with ideal functionality and environ-
ment.

• Any message the simulator S received from the environ-

ment through the network connection, which can be un-

derstood as the adversary instruction, will be forwarded to

the internal simulation P′Arbitrum
.

• Any message sent from the internal simulation P′Arbitrum

to the network connection, which can be seen as leakage

to the environment, will be forwarded to the environment

by the simulator.

• Whenever there is a request for open protocol, update state,

or settlement state inside the simulation, the simulator will

trigger the ideal functionalityFArbitrum

layer2
to synchronize the

change.

Corruption handling.
• The simulator will keep track of the corrupt entities, and

keep the corrupted parties in P′Arbitrum
and FArbitrum

layer2
syn-

chronized.

• The simulator will forward themessages from the corrupted

entities in the ideal functionality to the adversary

Message delivery. For the Liquid Network, we assume the com-

munication among participants in Arbitrum Nitro is asynchronous;

thus, the message delivery will be eventually decided by the adver-

sary. Here, we let the simulator bookkeep all the messages in the

simulation and trigger message delivery the same as the real-world

protocol.

Reuqest submission. Whenever an honest entity in ideal func-

tionality FArbitrum

layer2
receives a request from the environment after it

gets accepted decided by the subroutine FArbitrum

submit
, it will forward

the transaction to the simulator S. After receiving the forwarded
request from the FArbitrum

layer2
, S will send the request to its internal

simulated protocol P′Arbitrum
.

Rollup joining. The simulator S monitors both the internal

simulation state and the L1 ledger. Whenever it detects that the

open procedure has completed in P′Arbitrum
, it prepares a request

to be sent to FArbitrum

layer2
for validation. This request includes the

InitialState used to initialize the protocol and the corresponding
Attachment, which contains the peg-in transaction that must be

published on the L1 ledger, as generated using Fcert within the

simulation P′Arbitrum
.

Protocol state update. The simulator S monitors the internal

simulation and the L1 ledger for state updates. Once S detects that

a state update has been published on the L1 ledger, the challenging

time period 𝑇
period

ends. It prepares an update request and sends it

to FArbitrum

layer2
to synchronize the internal state. This request includes

the updated state and an Attachment containing the executed re-

quests, along with signatures generated via Fcert.
Protocol state read. FArbitrum

layer2
directly gets the read result by

quering the underlying F
ledger

, S will not influence the read result.

Protocol state settlement. After receiving the settlement re-

quest from FArbitrum

layer2
, the simulator S executes the settlement

procedure as defined in the real protocol for all non-corrupted

entities. S continuously monitors the simulation, and once the set-

tlement procedure is completed, it prepares a request containing the

Attachment that includes the valid peg-out transaction generated

with Fcert that needs to be published on the L1 ledger, and sends

this request to FArbitrum

layer2
for checking.

Further details. The simulator S also maintains synchroniza-

tion of the internal clock/round with the ideal functionality. When-

ever S is instructed by the adversary A to advance the round, it

sends an UpdateRound request to FArbitrum

layer2
and triggers the corre-

sponding round update.

Then, we prove the security of the protocol by showing that for

each procedure, the environment can not distinguish between the

output of ideal functionality and the output of the real protocol.

Theorem 4.6. Let Fledger be the idealized L1 ledger functionality,
Fcert be the idealized functionality for EUF-CMA secure signature
scheme. Then, the real Liquid Network sidechain protocol PArbitrum

iUC-realizes the ideal Arbitrum Nitro rollup functionality F Arbitrum
layer2 .

Proof. We prove it by showing the outputs of each procedure

of the protocol in both worlds are indistinguishable.

Request submission. For any received request from the environ-

ment, the subroutine FArbitrum

submit
will check whether the format is
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correct. The accepted requests are forwarded to the simulator for

the following simulation. Since the real-world protocol and the

ideal functionality accept the same types of requests, there are no

differences to distinguish both worlds.

Rollup join. In the real protocol, the adversary could influence the
joining procedure by deviating from the expected steps. However,

since both the ideal functionality and the real protocol perform

the same checks, the output for client joining remains consistent

across both worlds. Additionally, the adversary may delay the com-

munication between the joining client and the operator, causing

the joining procedure not to be completed immediately. We simu-

late such adversarial influence by allowing the simulator to trigger

the corresponding check in the ideal functionality once the join-

ing procedure is completed in its internal simulation—either when

the adversary permits the message to be delivered, or when the

client independently submits the peg-in transaction to the L1 ledger.

Therefore, the outputs of the rollup joining procedure in both the

real and ideal worlds are indistinguishable.

Protocol state update. To begin with, in both the ideal and real

worlds, state update proposals are periodically published on the

L1 ledger; otherwise, the protocol round does not proceed. The

adversary may attempt to influence this procedure by publishing

an invalid batch of requests on the L1 ledger. In the real protocol, as

long as there exists at least one honest validator, a fraud-proof will

be submitted, rendering the proposed state update invalid. In the

ideal world, since the simulator internally runs the same protocol

and all previously accepted requests by F
layer2

are forwarded to the

simulator, the adversary learns the same leakage and can publish

the same invalid batch. Similarly, the simulator can simulate the

response of an honest validator by generating a fraud-proof and

triggering FArbitrum

update
to perform the corresponding check, which

will result in a rejection and no state change. Therefore, the update

procedure remains indistinguishable between the two worlds.

Protocol state read. In both the ideal world and the real world,

the read result is directly fetched from the L1 ledger. Therefore, as

long as the update procedure ensures that the state transitions in

both the real and ideal world protocols are consistent, the outputs

for read requests will be indistinguishable.

Protocol state settlement. Similar to the open procedure, the same

checks for settlement are conducted in both the real and ideal

worlds. Any incorrect settlement request will either not be com-

mitted on the L1 ledger or will be invalidated via a fraud-proof,

resulting in the same output behavior in both worlds. On the other

hand, the adversary can delay the settlement request from the client

to the operator. This delay is simulated in the ideal world by al-

lowing the simulator to emulate the communication delay, without

immediately forwarding the request to the ideal functionality. Once

the simulator determines that the settlement is successfully com-

pleted in its internal simulation, it triggers the ideal functionality to

perform the corresponding checks and generate a positive output,

consistent with the behavior of the real-world protocol. Conse-

quently, the outputs of the settlement procedure in both worlds are

indistinguishable.

Based on the analysis of all the procedures of the Arbitrum Nitro

rollup protocol, we know that the Arbitrum Nitro rollup protocol

PArbitrum
iUC realizes FArbitrum

layer2
. □

E Missing Proofs of Comparative Analysis
Theorem 5.4. A secure PCF and sidechain protocol can only re-

alize 𝑓𝑂𝑃 -safety and {⌊𝑛𝑂𝑃 −(𝑓𝑂𝑃+1)

2
⌋,𝑇𝐿2

}-liveness for state update
requests.

Proof. To begin, observe that in PCF and sidechain-based pro-

tocols, all execution occurs off-chain. Consequently, the liveness

latency is determined solely by the off-chain environment and is

always 𝑇𝐿2
.

Suppose the protocol simultaneously realizes 𝑓OP-safety and{⌊
𝑛OP − (𝑓OP + 1)

2

⌋
+ 1, 𝑇𝐿2

}
-liveness.

This implies that to execute a request, it suffices to obtain agreement

from only

𝑛OP −
⌊
𝑛OP − (𝑓OP + 1)

2

⌋
− 1

operators.

Assume the adversary corrupts 𝑓OP operators. Then, by coor-

dinating with up to half of the remaining honest operators, the

adversary can potentially form a coalition of size

𝑓OP +

⌊
𝑛OP − 𝑓OP

2

⌋
.

We now show that:

𝑓OP +

⌊
𝑛OP − 𝑓OP

2

⌋
≥ 𝑛OP −

⌊
𝑛OP − (𝑓OP + 1)

2

⌋
− 1.

Let 𝑥 := 𝑛OP − 𝑓OP > 0. Then the inequality becomes:⌊𝑥
2

⌋
+

⌊
𝑥 − 1

2

⌋
≥ 𝑥 − 1.

This identity holds for all integers 𝑥 > 0, with equality:⌊𝑥
2

⌋
+

⌊
𝑥 − 1

2

⌋
= 𝑥 − 1.

Therefore, the adversary is capable of gathering sufficient votes

to satisfy the liveness condition. This implies that the adversary

could cause inconsistent state transitions, contradicting the assump-

tion that the protocol realizes 𝑓OP-safety.

Thus, there exists a fundamental trade-off between liveness and

safety under adversarial corruption thresholds. □

Theorem 5.5. A secure rollup protocol can only realize L1-Safety
and {(𝑛𝑂𝑃 −1)+Layer 1,𝑇𝐿2

+𝑇𝐿1
}-Liveness for state update requests.

Proof. We prove this by contradiction. Assume that a secure

rollup protocol realizes Layer 1-safetywhile also achieving a stronger
liveness tolerance of 𝑛𝑂𝑃 + Layer 1,𝑇𝐿1

-liveness. This implies that

even if all operators are corrupted, the protocol should still guaran-

tee that a request from an honest client will eventually be executed

within time 𝑇𝐿1
. However, in practice, the execution of any request

requires it to be published on the L1 ledger by at least one operator.

If all operators are corrupted, they can simply ignore the request

from the honest client, thereby preventing it from being published

and executed. This violates the liveness property, contradicting the

assumption. Hence, such a liveness guarantee is not achievable

under full operator corruption. □
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Theorem 5.6. Assume𝑚 state update requests are executed after
the protocol starts. To guarantee liveness for secure PCF protocol and
sidechain protocol, the Data availability needs to have {Ω(𝑚),Ω(𝑛𝑝 )}
efficiency.

Proof. To start with, since all the 𝑛 participants are required

to publish their joining transactions on the L1 for the protocol to

begin, the L1 storage efficiency must be at least Ω(𝑛𝑝 ).

For the L2 storage efficiency, we prove it by contradiction. As-

sume that liveness still holds even if fewer than𝑚 executed requests

are stored off-chain. In that case, there must exist at least one re-

quest that cannot be retrieved through the read interface at a certain

round based solely on the L2 storage. Since PCF and sidechain proto-

cols do not retrieve execution data from the L1, the missing request

would violate the definition of liveness. Thus, the assumption leads

to a contradiction, and storing fewer than 𝑚 requests off-chain

breaks liveness. □

Theorem 5.7. Assume𝑚 state update requests are executed after
the protocol starts. To guarantee liveness for secure rollup protocol,
the Data availability needs to have {Ω(1),Ω(𝑚) + Ω(𝑛𝑝 )} efficiency.

Proof. The L1 storage efficiency consists of two parts. The first

part is the Ω(𝑛𝑝 ) storage requirement for the participants’ joining

requests, all of which are published on the L1.

For the second part, assume that liveness still holds for state up-
date requests in a rollup protocol even if fewer than𝑚 requests are

stored on the L1. Since the rollup protocol’s read result is derived di-

rectly from the L1, this would imply that at least one request cannot

be retrieved by a read query at a certain round. This contradicts the

definition of liveness, and therefore the assumption must be false.

Thus, storing fewer than𝑚 requests on the L1 would break liveness,
and the L1 storage efficiency must also be at least Ω(𝑚) + Ω(𝑛𝑝 ) in

total. □
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