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Abstract
Diffusion models (DMs) have revolutionized text-to-image genera-

tion, enabling the creation of highly realistic and customized images

from text prompts. With the rise of parameter-efficient fine-tuning

(PEFT) techniques like LoRA, users can now customize powerful

pre-trained models using minimal computational resources. How-

ever, the widespread sharing of fine-tuned DMs on open platforms

raises growing ethical and legal concerns, as these models may inad-

vertently or deliberately generate sensitive or unauthorized content,

such as copyrighted material, private individuals, or harmful con-

tent. Despite the increasing regulatory attention on generative AI,

there are currently no practical tools for systematically auditing

these models before deployment.

In this paper, we address the problem of concept auditing: deter-

mining whether a fine-tuned DM has learned to generate a specific

target concept. Existing approaches typically rely on prompt-based

input crafting and output-based image classification but suffer

from critical limitations, including prompt uncertainty, concept

drift, and poor scalability. To overcome these challenges, we intro-

duce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-

centric concept auditing framework. By treating the DM as the

object of inspection, PAIA enables direct analysis of internal model

behavior, bypassing the need for optimized prompts or generated

images. It integrates two key components: a prompt-agnostic strat-

egy that mitigates prompt sensitivity by analyzing model behavior

during late-stage denoising, and an image-free detection method

based on conditional calibrated error, which compares the internal

dynamics of a fine-tuned model against its base version. We evalu-

ate PAIA on 320 controlled models trained with curated concept

datasets and 690 real-world community models sourced from a

public DM sharing platform, covering a wide range of concepts

including celebrities, cartoon characters, videogame entities, and

movie references. Evaluation results show that PAIA achieves over

90% detection accuracy while reducing auditing time by 18˘40×
compared to existing baselines. To our knowledge, PAIA is the first

scalable and practical solution for pre-deployment concept auditing

of diffusion models, providing a practical foundation for safer and

more transparent diffusion model sharing.
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1 Introduction
Diffusion models (DMs) have revolutionized text-to-image (T2I)

generation, enabling the synthesis of highly realistic and semanti-

cally rich images from natural language prompts [1–3]. Through

iteratively refining noise into coherent visual content, DMs have

surpassed traditional generative methods such as GANs [4] and

VAEs [5] in both visual fidelity and flexibility. This leap in gener-

ative quality has been further accelerated by parameter-efficient

fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) [6],

which allow users to customize large pre-trained models, such as

Stable Diffusion [7], for specific concepts or styles using limited

compute and memory resources.

This shift has catalyzed a thriving ecosystem of community-

driven model customization. Users can now fine-tune and distrib-

ute their models with minimal technical expertise, aided by user-

friendly toolkits [8, 9] and supported by sharing platforms such as

CivitAI [10], HuggingFace [11], and SeaArt [12]. These platforms

host tens of thousands of customized DMs, covering a broad spec-

trum of visual concepts, artistic styles, and application domains.

While this democratization has opened new frontiers in creativity

and accessibility, it has also introduced significant risks. Fine-tuned

DMs can be misused or repurposed to generate inappropriate, of-

fensive, or legally problematic content. Studies have documented

instances where models replicate copyrighted characters [13–15],

impersonate real individuals via deepfakes [16], or produce not safe

for work (NSFW) content [17–19].

Despite growing concerns, technical oversight remains mini-

mal. Current auditing practices on public model hubs rely heavily

on user-supplied tags with little automation or verification. For

example, CivitAI [10], one of the most widely used platforms, re-

lies primarily on user-provided metadata to flag models, such as

“mature content” or depictions of “real people,” which are loosely

defined, inconsistently applied, and easily circumvented. The ab-

sence of standardized review procedures or systematic validation

has already led to legal consequences. The community reports and

discussions suggest that CivitAI has received takedown requests
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related to the unauthorized use of copyrighted or personal content

due to the models trained on proprietary content
12
.

To mitigate such risks, some efforts have introduced proactive

defenses, such as built-in safety filters designed to block harmful

content by detecting unsafe prompts or screening generated im-

ages [20, 21]. However, their effectiveness is limited. These filters

are often implemented as optional add-ons and can be easily dis-

abled after model download, leaving the core DMunrestricted. More

importantly, both these reactive and proactive defenses suffer from

a shared limitation: they rely on observable behaviors, prompts

and outputs, that are unstable, easy to manipulate, and difficult to

verify at scale. These limitations call for a deeper shift in auditing

methodology: rather than focusing on what a model produces, we

ask a more direct and scalable question - what lurks within?
In this work, we study the problem of concept auditing: given

a specific concept or a curated set of concepts, such as copyrighted

characters, company logos, or celebrity identities, can a shared,

fine-tuned diffusion model generate content that embodies those

concepts? Rather than attempting to flag all forms of inappropri-

ate content, we focus on concept-specific auditing at scale. This

reflects real-world enforcement needs, where moderation and le-

gal action often target clearly defined entities tied to intellectual

property. To keep the scope practical and aligned with real-world

use cases, we focus on concepts that are visually distinctive and

often subject to content moderation or IP protection. These include

individual celebrity identities (e.g., “Taylor Swift”), characters from
well-known cartoons (e.g., “Muppets”), and entities from games

and movies. Our framework is designed to accommodate this diver-

sity through an example-based approach: a concept is considered

present if the model can generate recognizable outputs aligned with

a small set of reference examples of the concept. This flexible defi-

nition allows us to support a broad range of concept granularities

without relying on a rigid taxonomy. A detailed discussion of how

we define and structure concept scopes for auditing can be found

in Section 8.1.

A common approach to this problem is to audit models through

their outputs: by crafting prompts that might trigger the concept of

interest, generating images from the model, and using a classifier

to determine whether the concept appears, as shown in Figure 1.

While, this output-driven pipeline has become the dominant strat-

egy, it relies on two fragile assumptions: first, that effective prompts

can be reliably discovered to generate the target concept; and sec-

ond, that external detectors can accurately identify whether the

generated output matches that concept. In practice, both assump-

tions often fail for community-tuned models. A key issue is trigger
uncertainty: identifying prompts that consistently activate a tar-

get concept is inherently difficult due to the vast, discrete, and

ambiguous nature of the prompt space. Optimization-based meth-

ods such as adversarial or reinforcement learning often converge on

unnatural or semantically misaligned phrases, undermining their

reliability. Evenwhen triggers are found, the assumption of accurate

detection is weakened by concept drift [22, 23]: external classifiers

1
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or CLIP-based detectors are typically trained on natural images and

often perform poorly on synthetic outputs, especially when prompt

probing introduces distributional shifts that degrade both detection

accuracy and optimization guidance [17, 24]. These problems are

further compounded by limited scalability: discovering effective

prompts and verifying them via image generation and classification

is computationally intensive, often requiring hundreds of iterations

per model.

These limitations highlight a fundamental bottleneck in cur-

rent auditing pipelines: their reliance on observable behaviors —

prompts and outputs — that are inherently unstable, costly to evalu-

ate, and easily manipulated. To overcome these issues, we propose a

fundamentally different approach grounded in a shift of perspective:

rather than auditing DMs by adjusting their inputs or analyzing

their outputs, we treat the model itself as the source of truth. This
leads to a new direction in concept auditing, determining what

a model has actually learned by examining its internal behavior,

rather than what it happens to generate.

Our approach is built on two complementary strategies that

collectively form the foundation of a model-centric auditing frame-

work. Through theoretical analysis and empirical observation, we

first uncover that the influence of prompts varies significantly through-
out the denoising process. Specifically, we find that prompts exert

the strongest influence during the early stages of denoising, while

their impact diminishes substantially in later steps. This insight

motivates our first strategy: a prompt-agnostic design that aims

to mitigate the effects of prompt uncertainty. Rather than depending

on fragile prompt optimization, we focus on the model’s internal

behavior during the later stages of generation, where its learned rep-

resentations are more stable and less sensitive to the input prompt.

This enables concept auditing that is inherently more robust to

inaccurate, incomplete, or missing prompts.

While prompt-agnosticism reduces reliance on brittle input prob-

ing, current output-based detectionmethods remain limited by their

dependence on image generation and external classifiers, leading

to concept drift and are prohibitively expensive at scale. To address

this, we introduce our second strategy: an image-free design that

further reinforces our model-centric paradigm. Instead of evaluat-

ing model outputs, we directly assess the model’s internal denoising
dynamics. Specifically, we propose a metric called conditional cali-

brated error, which quantifies the behavioral discrepancy between

a fine-tuned model and its corresponding base model when process-

ing concept-relevant inputs. Notably, the base models are typically

accessible in real-world deployments, because LoRA fine-tuning

is designed to be modular, which requires the base model to be

loaded alongside the LoRA weights at inference time. This makes

the base model a natural and reliable reference point for behavioral

comparison. By comparing internal activations directly, we can iso-

late fine-tuning effects and detect concept learning, without image

sampling or reliance on noisy supervision.

Together, these strategies offer two key advantages. First, they

enhance robustness by grounding auditing in the model’s own

training dynamics, avoiding false positives caused by prompt mis-

alignment or miscalibrated detectors. Second, they improve effi-
ciency and scalability by operating entirely within the model’s

latent space—eliminating the need for prompt optimization, image
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Figure 1: Overview of PAIA: AModel-Centric Concept Auditing for Fine-Tuned DiffusionModels. Community users increasingly
fine-tune and share DMs on platforms such as CivitAI [10], HuggingFace [11], and SeaArt [12], introducing risks of unauthorized
or sensitive content generation. Existing approaches rely on observable behaviors—prompts and outputs—that are inherently
unstable, easily manipulated, and costly to evaluate. We conduct a systematic study and propose a model-centric framework
PAIA that bypasses these limitations by auditing internal model behavior directly.

generation, or downstream classification. Crucially, the prompt-

agnostic and image-free designs are mutually reinforcing: by shift-

ing the focus away from unstable input-output behavior and toward

internal model representations, they enable a principled and scal-

able approach to concept auditing. We operationalize this model-

centric perspective in a unified framework: Prompt-Agnostic
Image-Free Auditing (PAIA), designed to efficiently and effec-

tively determine whether a fine-tuned DM can generate a given

target concept. To the best of our knowledge, PAIA represents the

first practical, scalable, and systematically validated solution for

concept auditing in fine-tuned DMs. Our major contributions are

summarized below.

• ANewPerspective onConceptAuditing.We introduce Prompt-

Agnostic Image-Free Auditing (PAIA), the first model-centric

auditing framework that shifts the focus from observable inputs

and outputs to the model’s internal behavior. By treating the

fine-tuned DM itself as the source of evidence, PAIA enables

principled, robust, and scalable auditing.

• Prompt-Agnostic Design. Adopting a model-centric perspec-

tive, we move beyond fragile prompt probing and examine how

the model internally responds to prompts during generation. Our

theoretical and empirical analysis reveals that prompt influence

diminishes significantly in later denoising stages. Guided by this

insight, we design a prompt-agnostic mechanism that analyzes

late-stage model behavior to detect learned concepts, removing

dependence on costly and ineffective prompt optimization.

• Image-Free Design. Extending the model-centric paradigm,

we shift from analyzing observable outputs to examining the

model’s internal behavior. We introduce an image-free detection

mechanism based on a novel metric, conditional calibrated error,

which captures behavioral deviations between a fine-tuned DM

and its base counterpart. This approach enables accurate and

scalable concept auditing without the need for image generation

or external supervision.

• Extensive Experimental Validation in the Wild. We con-

duct comprehensive experiments to evaluate PAIA on both con-

trolled and real-world settings. In our controlled evaluation, we

fine-tune 320 DMs, each on a specific target concept, where a

concept refers to a recognizable visual entity such as an indi-

vidual celebrity or a cartoon character. This dataset includes 50

celebrity identities and 10 cartoon characters. For real-world

evaluation, we collect 690 community-shared models from the

Civitai platform, spanning 174 celebrities, 145 cartoon characters,

192 videogame-related entities, and 179 movie-based concepts.

Across both settings, PAIA consistently achieves high accuracy

(over 90%) and efficiency (18 − 40× speedup), significantly out-

performing existing baselines. To the best of our knowledge, this

constitutes the first large-scale, systematic evaluation of concept

auditing for fine-tuned DMs.

2 Background
2.1 Diffusion Models (DMs)
DMs have emerged as one of the most effective models for image

generation [1–3], powering commercial image-generation appli-

cations, such as Stable Diffusion [7], DALL-E 3 [25], and MidJour-

ney [26]. Conceptually, the diffusion process can be described as

a stochastic, iterative procedure in which noise is gradually intro-

duced into an image until it becomes indistinguishable from pure

noise. Specifically, in the diffusion process, given an image 𝒙0, a

time step 0 ≤ 𝑡 ≤ 𝑇 , and a white noise vector 𝝐𝑡 ∼ N(0, I), a noisy
image at time step 𝑡 , x𝑡 , is generated

x𝑡 =
√︁
𝛼𝑡x0 +

√︁
1 − 𝛼𝑡𝝐𝑡 ,

where𝛼𝑡 represents a noise scheduling factor controlling the amount

of noise injected at time step 𝑡 . The noise schedule is designed to

smoothly transform the image from the original x0 to an almost

pure noise distribution, x𝑇 , as 𝑡 → 𝑇 .

DMs are trained by learning to reverse the above forward dif-

fusion process, progressively denoising x𝑡 to recover the original

image x0. During training, a neural network parameterized by𝑊

learns to reverse this process by predicting 𝝐𝑡 from the noisy input

x𝑡 , minimizing the MSE loss:

min

𝑊
E
[
∥𝝐𝑊 (x𝑡 ) − 𝝐𝑡 ∥2

]
. (1)

To reduce computing for high-resolution generation, Latent Dif-

fusion Models (LDMs) [7] operate in a lower-dimensional latent

space z𝑡 and apply the same training objective.

Text-to-Image (T2I) generation: T2I generation leverages tex-

tual input, i.e., prompts, to guide the image generation process [1–3].
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This begins by encoding the textual prompt into a prompt embed-

ding p via a text encoder. The prompt embedding p is then incor-

porated into a DM 𝝐𝑊 (z𝑡 , p), conditioning the image generation

process on the textual description. This integration is facilitated

through a cross-attention mechanism. Specifically, text features are

encoded and projected into a key vector 𝐾 and a value vector 𝑉

using linear projection matrices𝑊𝐾 and𝑊𝑉 , respectively. Simulta-

neously, the latent image features are projected into a query vector

𝑄 using another projection matrix𝑊𝑄 . A cross-attention map 𝑆 is

computed as

𝑆 = softmax

(
𝑄𝐾𝑇
√
𝑑

)
, (2)

where 𝑑 denotes the dimension of the projected vectors. The cross-

attentionmap 𝑆𝑖 𝑗 represents the attentionweights of the 𝑗-th tokens

on the 𝑖-th pixel of the latent image features. Using this attention

map, the output of the cross-attention layer is given by

𝑌 = 𝑆𝑉 . (3)

By applying multiple cross-attention layers throughout the DM,

the text features guide the iterative refinement of the latent image

representation z𝑡 , ensuring that the generated image aligns with

the input prompt.

The training process of the text-guided DM follows the same

objective function as the original DM, where the prompt embedding

p is used to minimize the denoising error,

min

𝑊
E
[
∥𝝐𝑊 (z𝑡 , p) − 𝝐𝑡 ∥2

]
. (4)

During inference, the T2I generation process involves both con-

ditional denoising (where the prompt embedding is set to p) and
unconditional denoising (where the prompt embedding is encoded

on a null character, i.e., p = ∅). To balance the impact of p on a

generated image, the predicted noise at time step 𝑡 is calculated as

𝝐𝑊 (z𝑡 , p) = 𝝐𝑊 (z𝑡 ,∅) + 𝜂 (𝝐𝑊 (z𝑡 , p) − 𝝐𝑊 (z𝑡 ,∅)) , (5)

where 𝜂 > 1 is the guidance scale that controls the strength of text

conditioning. A higher 𝜂 increases the influence of the text prompt,

making the generated image more closely aligned with the textual

description, at the expense of diversity. After the iterative denoising

process, the final latent image representation z0 is decoded into a

high-resolution image x0 using a pre-trained decoder.

2.2 Parameter-Efficient Fine-Tuning (PEFT)
PEFT has emerged as a widely adopted strategy for adapting large-

scale models while significantly reducing computational and mem-

ory overhead [27–29]. This paper focuses primarily on Low-Rank

Adaptation (LoRA) [6], one of the most popular PEFT for fine-

tuning DMs. LoRA introduces low-rank updates to pre-trained

weight matrices during fine-tuning. Instead of updating the full

parameter matrix, LoRA learns and stores a pair of low-rank ma-

trices, 𝐵 ∈ R𝑑×𝑟 and 𝐴 ∈ R𝑟×𝑘 , such that the original weight𝑊 is

modified as:

𝑊 ′ =𝑊 + Δ𝑊 =𝑊 + 𝐵𝐴, (6)

where the rank 𝑟 ≪ min(𝑑, 𝑘) is typically small. This approach

significantly reduces the number of trainable parameters, enabling

efficient fine-tuning with minimal resource demands. In practice,

LoRA is applied to all attention modules within the DM, including

both self-attention and cross-attention layers.

A major advantage of LoRA in real-world settings, such as

community-driven model sharing, is its compact parameter foot-

print. Rather than sharing the entire set of fine-tunedmodel weights,

users only need to share the small set of learned LoRA parameters.

For example, when using rank 𝑟 = 32, the total size of LoRA pa-

rameters for Stable Diffusion 1.5 is approximately 25 MB, orders of

magnitude smaller than the full model size of around 5 GB. This

makes LoRA particularly attractive for scalable and lightweight

distribution of fine-tuned models.

3 Problem Setup: Concept Auditing in the Wild
While thewidespread adoption of PEFT has enabled individual users

to rapidly customize and share DMs across public platforms, it also

introduces serious risks: many fine-tuned models are trained on un-

verified, proprietary, or sensitive datasets, with minimal oversight

or transparency. This raises an urgent need for concept auditing:

verifying whether a shared DM has learned to generate specific

high-risk concepts.

In practice, auditing in this ecosystem is both essential and ex-

tremely challenging. Platforms such as Civitai allow users to upload

and download models freely, often with incomplete, inconsistent, or

misleading metadata. Trigger words may be omitted or obfuscated,

and sample outputs are typically sparse, low-quality, or unavailable

altogether. This auditing task remains unsolved at scale due to three

core challenges:

• Prompt Uncertainty. Trigger phrases for sensitive concepts are

rarely documented, often idiosyncratic, and embedded in a vast,

ambiguous prompt space.

• Concept Drift in Detection. Output-based classifiers are typically

trained on natural images and generalize poorly to synthetic

content, especially under distribution shifts from prompt probing.

• Scalability Limitations. Existing pipelines require hundreds of

iterations for prompt probing and image evaluation, making

them impractical for large-scale auditing.

These challenges render the current auditing pipelines, whose

reliance on observable behaviors—prompts and outputs, brittle, ex-

pensive, and unreliable in real-world auditing scenarios. Therefore,

we ask a more direct and scalable question: what the model has
internally learned, regardless of how it is prompted or what
it outputs? This motivates the need for amodel-centric auditing
framework that avoids reliance on prompts or outputs and instead

operates directly on the model’s internal behavior. We present our

solution in the next section.

4 PAIA: A Model-Centric Auditing Framework
To address the practical challenges of concept auditing in the wild,

we propose a model-centric framework, Prompt-Agnostic Image-

Free Auditing (PAIA). Instead of relying on optimized prompts or

generated outputs, PAIA analyzes the internal behavior of DMs to

determine whether they can generate specific target concepts.

PAIA integrates two key innovations: a prompt-agnostic design

that reduces reliance on prompt optimization by focusing on stable

model behavior in the later stages of generation, and an image-

free design that avoids output generation and external classifiers,

4
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enabling scalable and robust auditing. This section details each

of these components, starting with the prompt-agnostic design,

followed by the image-free design, and concludes with the full

auditing pipeline.

4.1 Prompt-Agnostic Design
A core limitation of existing concept auditing pipelines is their de-

pendence on observable behaviors—namely, carefully crafted input

prompts and generated outputs. This reliance introduces inherent

fragility: effective prompts are difficult to discover, model outputs

are sensitive to slight input variations, and both are easily manipu-

lated or obfuscated. These challenges hinder both the robustness

and scalability of prompt-based auditing.

To address this, we adopt a fundamentally different perspective:

rather than auditing the model through what it generates, we exam-

ine what it has learned. Specifically, we investigate whether concept

auditing can be made prompt-agnostic by analyzing the model’s

internal behavior during generation—thereby avoiding dependence

on brittle prompt optimization.

4.1.1 Motivation and KeyQuestion. Our approach is grounded in

a critical question: Does prompt influence persist uniformly
or diminish over time during the diffusion process? If the
model’s reliance on prompt information fades in later denoising

steps, it opens the door to auditing based on more stable, prompt-

independent internal dynamics. To explore this, we analyze how

the prompt embedding affects the model’s behavior at different

timesteps during generation.

4.1.2 Theoretical Insight. We begin with a theoretical analysis of

the prompt’s effect on the model’s denoising process. In DMs, cross-

attention modules align text and image features, making them key

to understanding how prompts influence generation. Let p be the

text embedding extracted from the input prompt (Eq. 4). We derive

the gradient of the cross-attention output with respect to the text

embedding p:

Lemma 1. The gradient of the cross-attention function with respect
to the text embedding p is given by:

𝜕𝑌𝑖

𝜕p
= (𝑑𝑖𝑎𝑔(𝑆𝑖 ) − 𝑆𝑖𝑆𝑇𝑖 ) (

1

√
𝑑
(𝑋𝑊𝑄 )𝑊𝑇

𝐾 )p𝑊𝑉 + 𝑆𝑖𝑊𝑇
𝑉 , (7)

where 𝑆 denotes the cross-attention map (Eq. 2), 𝑆𝑖 the 𝑖-th row of 𝑆 ,
𝑋 the image features calculated by the previous layers, and 𝑌𝑖 the 𝑖-th
output of the cross-attention layer (Eq. 3).

We provide a full proof in Appendix (Section A).

Assumption 1. We assume that text embedding p is compact and
∥p∥ ≤ p∗.

ASSUMPTION 1 is satisfied in practice, as the text embedding P

is normalized by the text encoder before being used in DMs. For

example, Stable Diffusion uses a CLIP text encoder to extract the

text embedding from the input prompt. The output embedding of

CLIP is processed using layer normalization [30], defined as:

LN(x) = x − 𝜇 (x)√︁
𝜎2 (x) + 𝜖

⊙ 𝜸 + 𝜷, (8)

0 200 400 600 800
time step (t)

0.7

0.8

0.9

1.0

celebrity
cartoon

(a) attention map ∥𝑆 ∥ over time 𝑡 .

0 200 400 600 800
time step (t)

0.00

0.05

0.10

0.15
celebrity
cartoon

(b) ∥𝑑𝑖𝑎𝑔 (𝑆 ) − 𝑆𝑆𝑇 ∥ over time 𝑡 .

Figure 2: Impact of prompts on cross-attention. We present
the results of attention map ∥𝑆 ∥ and ∥𝑑𝑖𝑎𝑔(𝑆) − 𝑆𝑆𝑇 ∥ with
respect to the first token [BOS] in the prompt. The results
are averaged over all models in two categories in our experi-
ments, detailed in Section 5.1.

where 𝜇 (x) = 1

𝐷

∑𝐷
𝑑=1

𝑥𝑑 and 𝜎2 (x) = 1

𝐷

∑𝐷
𝑑=1

(𝑥𝑑 − 𝜇 (x))2
calcu-

lates the mean and variance of 𝑥𝑑 across layers. Here,𝜸 , 𝜷 ∈ R𝐷 are

learnable scaling factors. Similarly, the input of each cross-attention

layer is applied by layer normalization, which loosely bounds ∥p∥
and ensures Assumption 1 holds.

Theorem 1. The cross-attention function is Lipschitz continuous
with respect to p under Assumption 1.

Proof. During inference, the parameters𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are

fixed, and the targeted image features 𝑋 are also given and fixed.

Furthermore, the softmax output satisfies 0 ≤ 𝑆𝑖 𝑗 ≤ 1. From Eq. 7,

the gradient norm of 𝑌 with respect to p is bounded as:

∥ 𝜕𝑌
𝜕p

∥ ≤ 𝐶1∥𝑑𝑖𝑎𝑔(𝑆𝑖 ) − 𝑆𝑖𝑆𝑇𝑖 ∥∥p∥ +𝐶2, (9)

≤ 𝐶1p∗ +𝐶2,

where𝐶1 = ∥𝑊𝑄 (𝑊𝐾𝑋 )𝑇𝑊𝑉 /
√
𝑑 ∥ and𝐶2 = ∥𝑊𝑉 ∥. Since the cross-

attention function is continuously differentiable and its gradient is

bounded, it satisfies the conditions for Lipschitz continuity. □

Remark 1. The gradient of the cross-attention function diminishes
diminishes as the generation progresses ( i.e., as 𝑡 becomes smaller).

4.1.3 Empirical Analysis. To complement this theoretical finding,

we empirically examine how prompt influence evolves during

the denoising process. Specifically, we track two metrics across

timesteps: (1) the magnitude of the attention map |𝑆 |, and (2) the

5



Conference’17, July 2017, Washington, DC, USA X. Yuan, X. Ma, L. Guo, L. Zhang

value of |𝑑𝑖𝑎𝑔(𝑆)−𝑆𝑆𝑇 |, which reflects prompt sensitivity. We focus

on the [BOS] token, which typically carries the highest semantic

weight in a prompt. As shown in Figure 2, during the later stages

of generation (smaller 𝑡 ), the attention map becomes more focused,

with |𝑆 | approaching 1. Simultaneously, |𝑑𝑖𝑎𝑔(𝑆) − 𝑆𝑆𝑇 | decreases
toward 0, indicating a lower sensitivity to prompt variations. This

empirical trend confirms our theoretical result: in the later stages of

the generation process, the model becomes increasingly confident

about the image contents and relies less on the conditioning text

prompt.

Remark 2. These findings indicate that the prompt’s influence
diminishes significantly in the later stages of diffusion. Hence, auditing
the model during these stages can be done without relying on carefully
engineered prompts.

4.2 Image-Free Design
While prompt-agnosticism addresses the fragility of input discov-

ery, traditional output-based identification methods remain fun-

damentally limited. They depend on expensive image generation

and are prone to concept drift, as external classifiers often misin-

terpret synthetic outputs. To overcome these issues, we introduce

an image-free design that further reinforces our model-centric ap-

proach. Instead of evaluating what the model generates, we directly
assess how it behaves during the denoising process.

4.2.1 Calibrated Error Measurement. Our key insight is that the

denoising errors of a fine-tuned DM differ from its base model when

generating concepts the fine-tuned DM has learned. Specifically,

if a fine-tuned DM can generate a new concept, the difference in

denoising error between the fine-tuned DM and the base DM should

be smaller for this concept compared to other, irrelevant concepts.

This observation motivates the use of denoising errors as a reliable

signal for concept auditing.

To quantify this, we introduce a calibrated error measure-
ment, which captures the difference in denoising performance be-

tween the fine-tuned model’s parameters𝑊 ′
and the base model’s

parameters𝑊 . The calibrated error is defined as:

L𝑡𝑐𝑒 ≜ Ex∈D𝑡𝑎𝑟𝑔𝑒𝑡

[
∥𝝐𝑊 ′ (z𝑡 , p) − 𝝐0∥2 − ∥𝝐𝑊 (z𝑡 , p) − 𝝐0∥2

]
,

(10)

where D𝑡𝑎𝑟𝑔𝑒𝑡 represents the images of the target concept.

Using this metric, we evaluate whether a fine-tuned DM can gen-

erate a specific concept by comparing the calibrated error against a

threshold 𝜏 :

I(L𝑡𝑐𝑒 < 𝜏), (11)

If the calibrated error falls below the threshold, the detector predicts

that the fine-tuned DM can generate the target concept. Figure 3

demonstrates the effectiveness of this approach: the calibrated er-

rors for target concepts are significantly lower than those for ir-

relevant concepts, enabling accurate differentiation. Note that to

ensure the analysis is not influenced by inaccurate prompts, we

employ the original (accurate) prompts used during fine-tuning.

The calibration error is normalized by the denoising error of the

base model to account for variations across different time steps,

ensuring a fair comparison.
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Figure 3: Calibration error across denoising timesteps. We
compare the difference in denoising error between the fine-
tuned model and its base model for target vs. irrelevant con-
cepts. Early stages (large 𝑡 ) offer stronger separation but are
more prompt-sensitive. This motivates our conditional cali-
brated error (CCE), which preserves early-stage signals while
reducing prompt influence.

4.2.2 Conditional Calibrated Error Measurement. While calibrated

error effectively identifies target concepts, it exhibits varying per-

formance across different stages of the DM generation process. As

shown in Figure 3, the calibration errors (using original prompts) in

the early stages of generation (large 𝑡 ) are more effective in concept

identification. This finding aligns with the recent studies on DM

generation mechanisms [31, 32]: DMs primarily generate semantic

information (e.g., structure) during early stages, while later stages

focus on refining image details (e.g., texture). Since semantic infor-

mation is more directly tied to concepts, later-stage details alone

may be insufficient for distinguishing between concepts.

However, this presents a challenge for prompt-agnostic analysis.

While the impact of prompts diminishes during the later stages,

the calibrated errors at these stages are less effective for concept

auditing. Conversely, early-stage calibrated errors are more effec-

tive but are influenced by prompts, creating a conflict between

prompt-agnostic and image-free auditing designs.

To reconcile the tension between prompt-agnostic and image-

free auditing, we propose a conditional calibrated error (CCE)
that enables effective concept auditing across all generation stages.

Specifically, in the early stages, we calculate the calibrated error

by freezing the original parameters of the cross-attention layers

from the base model and apply fine-tuned parameters only to other

layers (mainly self-attention layers). This setup reduces prompt

influence during early denoising stages. In the later stages, we use

fine-tuned parameters across all layers to calculate the calibrated

error, as the impact of prompts is already reduced. The conditional

calibrated error is formally defined as:

L𝑡𝑐𝑐𝑒 ≜
{
E ∥𝝐𝑊 ′ (z𝑡 , p) − 𝝐0∥2 − ∥𝝐𝑊 (z𝑡 , p) − 𝝐0∥2 , 𝑡 ≤ 𝛾
E ∥𝝐𝑊 ′′ (z𝑡 , p) − 𝝐0∥2 − ∥𝝐𝑊 (z𝑡 , p) − 𝝐0∥2 , 𝑡 > 𝛾,

(12)

where𝑊 ′′
denotes the parameters excluding fine-tuned updates

to cross-attention layers, and 𝛾 is the cutoff time step separating

6
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early and later stages. In this work, 𝛾 is set to the midpoint of the

generation process: 𝛾 = 𝑇 /2.

By combining early-stage analysis with prompt-insensitive cross-

attention and late-stage behavior with reduced prompt dependence,

CCE enables robust and prompt-agnostic concept auditing across

the entire generation process.

4.3 Unsupervised Concept Detector
In an ideal scenario, concept auditing could involve calculating the

conditional calibrated error for a set of images that the fine-tuned

DM can generate based on Eq. 12 and comparing these errors to a

predefined threshold 𝜏 (Eq. 11). This threshold could be established

by analyzing the error distributions of both target and irrelevant

concepts, as shown in Figure 3.

However, in real-world scenarios, especially on community plat-

forms such as Civitai [10], the availability of generated images

is often severely limited. For many fine-tuned models, users may

upload fewer than 10 example images, making it difficult or infea-

sible to learn a reliable threshold through supervised comparison

between target and irrelevant concepts.

To address this practical challenge, we introduce an unsuper-
vised concept detector that eliminates the need for a large col-

lection of target concept images. Instead of relying on positive

examples, our framework leverages a set of irrelevant images, rep-

resenting concepts that the DM is not expected to generate, and

uses their conditional calibrated errors to train an outlier detection

model. This model captures the typical error distribution associ-

ated with unlearned or unrelated concepts. At inference time, if

the calibrated errors corresponding to a candidate concept devi-

ate significantly from this baseline and are flagged as outliers, the

detector concludes that the fine-tuned DM has likely learned to

generate the target concept. Note that this approach requires only a

small number of target concept images for inference, and no target

examples are needed during training. We implement the detector

using Isolation Forest [33], a widely used method for unsupervised

outlier detection.

4.4 Overall PAIA Pipeline
We present the overall framework of PAIA, which integrates the

prompt-agnostic and image-free design principles, along with unsu-

pervised concept detector. The complete procedure of PAIA consists

of the following four steps.

• Step 1: Construct Irrelevant Concept Set. Collect a set of
images representing concepts the DM is not expected to gener-

ate. For each image, compute conditional calibrated error (CCE)

L𝑡𝑐𝑐𝑒 (Eq. 14) across multiple timesteps. CCE integrates early-

stage measurements with frozen cross-attention parameters

and late-stage measurements using all fine-tuned parameters.

• Step 2: Learn Baseline Error Distribution. Train an outlier

detection model using the constructed irrelevant concept set

{L𝑡𝑐𝑐𝑒 }. This model captures the typical internal behavior of

unlearned concepts across all denoising stages.

• Step 3: Evaluate Target Concept. Using a small number of

images representing the target concept, compute their CCE

values, again using only late-stage denoising, using the same

procedure as in Step 1.

• Step 4: Detect Concept Generation. Apply the trained out-

lier detector to the target concept’s calibrated errors. If these

values are statistically distinct from the baseline (i.e., flagged
as outliers), the model concludes that the DM has learned to

generate the target concept.

5 Experiments
5.1 Experimental Settings
We first evaluate the performance of PAIA on two categories of

fine-tuned DMs and compare it against six baselines. Details on

dataset construction, image examples, and random prompt term

lists are provided in Appendix D.

5.1.1 Datasets and Fine-tuned DMs. We construct two benchmark

datasets in the categories of celebrity and cartoon, each consisting

of multiple visual concepts. In the celebrity category, we include

50 individual celebrities, each represented by approximately 20

images, sourced from the Celebrity-1000 dataset
3
. For cartoons,

we collect 10 distinct characters (e.g., Pikachu, Bart Simpson, Rick

Sanchez) using publicly available datasets from Hugging Face
4
,

each containing on average 417 images.

We generate textual prompts for each image using BLIP [34]. For

auditing, we define two trigger types per concept: a normal trigger
that aligns with the target concept, and an abnormal trigger that is
semantically unrelated, simulating the effect of a simple backdoor-

style trigger. Datasets are split evenly into training and testing

subsets; training data is used for LoRA fine-tuning, and test data is

used for auditing evaluation. Full sample visualizations are included

in Appendix D.

All DMs are fine-tuned from Stable Diffusion 1.5
5
using Low-

Rank Adaptation (LoRA), with rank 𝑟 = 64, a learning rate of 1𝑒-4,

and the AdamW optimizer. Each model is trained for 50 epochs.

For each category, we fine-tune models with 1, 2, and 3 concepts

per model to evaluate multi-concept auditing. This results in 50

celebrity and 10 cartoon models for each setting. Additionally, we

include 50 celebrity and 10 cartoon models trained with abnormal

(i.e., semantically unrelated) trigger words to evaluate robustness

under mismatched prompt conditions.

5.1.2 PAIA Settings. Outlier detection model. In PAIA, we de-

ploy a widely used data anomaly detection algorithm, Isolation

Forest [33], as the detector. We train the Isolation Forest model on

the irrelevant images (the DM model cannot generate them) and

then predict if the images of the target concept are irrelevant. If not,

then we predict the DM can generate this concept and vice versa.

The outlier detection model is trained with 100 images with

irrelevant concepts. In our evaluation, we randomly select images

from the same category (celebrity or cartoon) but with different

concepts. In practice, a straightforward strategy for constructing

such a set is to use rare images —those that are unlikely to be

generated by fine-tuned DMs.

Prompt strategies.We assume we have no access to the original

prompt with accurate trigger words for the target concept, we

deploy three strategies to generate pseudo prompts that are fed

3
https://huggingface.co/datasets/tonyassi/celebrity-1000

4
https://huggingface.co/datasets

5
https://huggingface.co/stabilityai/stable-diffusion-1-5

7
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into DMs for concept detection. The impact of different prompt

strategies is investigated in Section 5.4.

• Caption. The prompt is synthesized using an image captioning

model, GenerativeImage2Text [35]. To make a fair analysis, this

image captioning model is selected to differ from the BLIP model

used in data collection. The generated pseudo-prompts are then

different from the ground-truth prompts, making it challenging

for concept detection. In the evaluation, we use this strategy by

default if not explicitly mentioned.

• Random. The prompt is composed of five randomly selected

terms from a common word list for generating DMs, e.g., “nat-
ural lighting,” “best quality,” “ultra detailed.” A complete list is

presented in Table 8 in Appendix.

• Null. The null text, i.e., “”, is employed as the prompt input for

DMs.

5.2 Baselines
We consider baselines derived from two state-of-the-art prompt

probing techniques and two image-based concept detectors.

Prompt probing techniques:Weadopt two state-of-the-art prompt

probing techniques and a naive probing approach using an image

captioning method.

• MU: UnlearnDiff [17] is a novel adversarial prompt generation

method designed to evaluate the robustness of safety-driven

unlearned DMs. UnlearnDiff optimizes the prompt via a variant

of projected gradient descent (PGD) attack, Textgrad [36], which

is tailored for discrete text optimization. UnlearnDiff leverages

the denoising loss as the optimization objective, but it considers

the denoising loss in the early generation stage (large 𝑡 ), which is

more sensitive to prompts. Additionally, during the optimization,

UnlearnDiff still needs an external classifier to determinewhether

the prompt can generate the image of the target concept. We

follow their open-source implementation
6
.

• PEZ: Hard PromptsMade Easy (PEZ) [24] optimizes hard prompts

for text-to-image and text-only applications using a gradient-

based discrete optimization technique. By iteratively projecting

continuous embeddings onto discrete token spaces, PEZ bal-

ances the automation of gradient-based optimization with the

interpretability and flexibility of hard prompts. We follow their

open-source implementation
7
.

• Naive: We consider a naive probing approach that uses an image

captioning model, GIT [35], to derive prompts from the target

images.

Image-based concept identifiers: We adopt two image-based

concept identifiers.

• Image Classifier: We train a ConvNeXt [37]-based image clas-

sifier to identify celebrity/cartoon concepts. The classifier is pre-

trained on ImageNet and fine-tuned on the collected training

data. After fine-tuning, the image classifier achieves 89.2% and

98.1% accuracy on celebrity and cartoon data, respectively.

• CLIP: This classifier utilizes the pre-trained CLIP [38] model’s

capability to align text and image embeddings within a shared

multimodal space. It performs classification by extracting an

6
https://github.com/OPTML-Group/Diffusion-MU-Attack

7
https://github.com/YuxinWenRick/hard-prompts-made-easy

Table 1: Performance comparison on Celebrity DMs. We re-
port accuracy, precision, recall, F1 score, and auditing time
for detecting a concept with 10 images.

Detector Accuracy Precision Recall F1 Score Time (s)
8

Naive Classifier 53% 100% 6% 12% 75.45

Naive CLIP 57% 64% 32% 43% 76.48

MU Classifier 58% 55% 92% 69% 2010.28

MU CLIP 51% 51% 98% 67% 1560.21

PEZ Classifier 75% 75% 76% 75% 1162.22

PEZ CLIP 59% 56% 80% 66% 933.32

PAIA 92% 90% 94% 92% 54.14/483.42

Table 2: Performance comparison on Cartoon DMs.

Detector Accuracy Precision Recall F1 Score Time (s)

Naive Classifier 79% 89% 66% 76% 76.54

Naive CLIP 63% 62% 68% 65% 77.20

MU Classifier 60% 56% 100% 71% 1005.20

MU CLIP 44% 47% 82% 59% 1113.03

PEZ Classifier 77% 68% 100% 81% 1053.47

PEZ CLIP 55% 54% 73% 62% 931.33

PAIA 92% 86% 100% 93% 56.55/485.30

image’s embedding using the CLIP image encoder and comparing

it with class label embeddings produced by the CLIP text encoder,

assigning the image to the class with the highest cosine similarity.

The CLIP classifier is widely adopted for classifying generated

concepts due to its robustness and flexibility.

By combining three prompt probing techniques and two image-

based concept identifiers, we consider six baselines in the evalu-

ation: Naive Classifier, Naive CLIP, MU Classifier, MU CLIP, PEZ

Classifier, and PEZ CLIP.

5.3 Comparison with Baselines
We compare the auditing performance between PAIA and baselines.

We first show the results on normal triggers, where the triggers

relevant to the target concept are used in fine-tuning DMs, and

then the results on abnormal triggers, which are irrelevant to the

target concept.

Performance Comparison on Normal Triggers: We first com-

pare PAIA with baselines with results presented in Tables 1 and 2.

PAIA consistently achieves the highest accuracy (92% and 91%),

precision (90% and 89%), and recall (94% for both categories), demon-

strating its superior performance in concept auditing. Among the

baselines, the PEZ Classifier performs relatively well with accuracy

of 75% and 77%, but still significantly lower than PAIA. Other meth-

ods, such as MU Classifier and MU CLIP, achieve high recall but

suffer from poor precision and accuracy, indicating a high positive

rate.

Auditing times (in seconds) for analyzing a concept with 10 im-

ages are also reported in the tables. For PAIA, we evaluate auditing

time in two scenarios: (1) analyzing a single concept for a fine-tuned

DM and (2) analyzing multiple concepts, which is more representa-

tive of practical applications. In the second scenario, PAIA achieves

8

https://github.com/OPTML-Group/Diffusion-MU-Attack
https://github.com/YuxinWenRick/hard-prompts-made-easy
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Table 3: Performance comparison on Celebrity DMs with
abnormal triggers.

Detector Accuracy Precision Recall F1 Score

Naive Classifier 75% 86% 60% 71%

Naive CLIP 77% 81% 70% 75%

MU Classifier 57% 54% 100% 70%

MU CLIP 57% 54% 100% 70%

PEZ Classifier 82% 81% 84% 82%

PEZ CLIP 65% 60% 92% 72%

PAIA 94% 89% 100% 94%

significantly reduced auditing time, as the conditional calibrated

errors for irrelevant images (Step 2) are computed only once and

reused for subsequent concepts.

Compared to baselines, PAIA demonstrates much greater effi-

ciency and scalability. Prompt probing techniques (MU and PEZ)

often require considerably longer optimization times. Even against

naive image-captioning-based methods, PAIA is more efficient in

the second scenario since it computes denoising errors at a limited

number of time steps rather than performing the full generation

process.

Performance Comparison on Abnormal Triggers: The results
for abnormal triggers follow a similar trend to those observed with

normal trigger words. PAIA consistently outperforms all baseline

methods across both datasets, achieving the highest accuracy, preci-

sion, recall, and F1 score. PEZ Classifier shows competitive perfor-

mance across baselines, while methods like MU Classifier and MU

CLIP continue to suffer from high false positive rates, leading to

poor precision and low overall accuracy. Interestingly, these meth-

ods perform even worse than the naive prompt probing approaches,

such as Naive Classifier and Naive CLIP, which do not rely on so-

phisticated optimization. This suggests that the MU methods face

significant challenges when attempting to optimize for abnormal

triggers. The results underscore the robustness of PAIA, which

remains effective in detecting concepts fine-tuned on both normal

and abnormal triggers.

An interesting observation is that auditing performance on ab-

normal triggers is generally better than on normal triggers. We

attribute this to differences in the fine-tuned DMs rather than the

detectors themselves, likely due to stronger memorization of ab-

normal triggers in fine-tuned DMs, a phenomenon noted in back-

door attack research. For instance, Naive Classifier and Naive CLIP

demonstrate improved auditing performance on abnormal triggers,

despite not utilizing any prompt information. This suggests that

the difference arises from the performance of the fine-tuned DMs

rather than the concept auditing methods.

5.4 Ablation Study
This section systematically analyzes the key factors that may influ-

ence the performance of PAIA.

Impact of Prompt Generation Methods:We evaluate PAIA us-

ing different prompt generation strategies, including Null, Random,

Table 4: Performance comparison on Cartoon DMs with ab-
normal triggers.

Detector Accuracy Precision Recall F1 Score

Naive Classifier 85% 86% 84% 85%

Naive CLIP 55% 55% 58% 56%

MU Classifier 56% 53% 100% 69%

MU CLIP 45% 47% 86% 61%

PEZ Classifier 83% 75% 100% 85%

PEZ CLIP 53% 52% 72% 61%

PAIA 92% 86% 100% 93%
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Figure 4: Auditing performance of PAIA with different
prompt generation strategies.

and Caption (as described in Section 5.1.2) and compare their per-

formance with PAIA using the original (accurate) prompts (org). As

shown in Figure 4, the Caption strategy achieves nearly identical

performance to the original prompts, while the Null and Random

strategies exhibit only slightly lower performance. This demon-

strates the robustness of PAIA’s prompt-agnostic design, ensuring

effective auditing even with less accurate prompts.

Effectiveness of Conditional Calibrated Error Measurement:
We analyze the role of conditional calibrated error measurement

in Figures 5 and 6. We compare the auditing performance across

four settings: 1) freezing cross-attention layers at the early stages

(i.e., conditional calibrated error), 2) not freezing any layers (i.e.,
calibrated error), 3) freezing cross-attention layers at all stages,

and 4) freezing self-attention layers at all stages. The results show

that by freezing parameters in cross-attention layers at the early

stages of generation, conditional calibration error improves the

performance of PAIA in most cases.

Effectiveness of Outlier Detection Algorithms: We investi-

gate the effectiveness of different outlier detection methods, in-

cluding Isolation Forest (IF) [33], Angle-based outlier detection

(ABOD) [39], k-Nearest Neighbors (kNN) [40], Gaussian Mixture

Model (GMM) [41], and One-class SVM (OneSVM) [42].We evaluate

these algorithms on both celebrity and cartoon DMs with 1 concept

and normal triggers. Among the algorithms investigated, Isolated

Forest (the default algorithm in PAIA) consistently achieved the

highest accuracy and F1 scores, but other robust outlier detection

algorithms like ABOD and kNN also performed competitively, with

slightly lower precision.

9



Conference’17, July 2017, Washington, DC, USA X. Yuan, X. Ma, L. Guo, L. Zhang

1 concept 2 concepts 3 concepts
70

75

80

85

90

95

A
cc

ur
ac

y

w/ selective calibration
w/o selective calibration
w/ self-attention only
w/ cross-attention only

Figure 5: Effectiveness of conditional calibration error mea-
surement on Celebrity DMs.
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Figure 6: Effectiveness of conditional calibration error mea-
surement on Cartoon DMs.

Table 5: Effectiveness of outlier detection algorithms on
Celebrity DMs.

Algorithm Accuracy Precision Recall F1 Score

IF 92% 90% 94% 92%

ABOD 90% 84% 98% 91%

kNN 89% 83% 98% 90%

GMM 53% 52% 100% 68%

OneSVM 64% 58% 100% 74%

Table 6: Effectiveness of outlier detection algorithms on Car-
toon DMs.

Algorithm Accuracy Precision Recall F1 Score

IF 92% 86% 100% 93%

ABOD 88% 81% 100% 89%

kNN 89% 82% 100% 90%

GMM 57% 54% 100% 70%

OneSVM 73% 65% 100% 79%

Performance on Individual Time Steps: We investigate the per-

formance of PAIA when predicting based on individual time steps

during the generation process. As shown in Figure 7, PAIA performs
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Figure 7: Performance on different time steps.
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Figure 8: Impact of concept number in each fine-tuned DM.

best in the middle stages of generation. This observation aligns

with our previous analysis: the prompt-agnostic design of PAIA

is highly effective in the later stages, while the image-free design

excels in the early stages. However, relying on individual time steps

may not fully utilize the potential of PAIA, which analyzes across

all time steps. This highlights the effectiveness of the conditional

calibration error, which combines the strengths of both designs

across all stages to deliver robust predictions.

Impact of Number of Concepts:We investigate how the number

of concepts in fine-tuned DMs affects auditing performance. As

shown in Figure 8, there is no significant difference in performance

when more concepts are included, except for a slight degradation

when fine-tuning DMs on two celebrity concepts. This suggests

that PAIA remains robust across a range of concept complexities in

fine-tuned DMs.

Impact of Number of Irrelevant Images: PAIA computes the

conditional calibration errors from irrelevant images and utilizes

these errors to train the outlier detector. We examine how the num-

ber of irrelevant images impacts auditing performance, as shown in

Figure 9. While irrelevant images (from concepts that the fine-tuned

DMs cannot generate) are generally accessible to the detector, in-

creasing their number can lead to a longer auditing time. By default,

we use 200 irrelevant images. The results indicate that using 120 im-

ages is sufficient for training an effective detector in PAIA. Adding

more irrelevant images beyond this threshold does not significantly

improve auditing performance.

6 Evaluation on Real-World DMs.
In this section, we evaluate PAIA on real-world DMs on Civitai, a

popular online DM-sharing platform [10].
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Figure 10: Common trigger words on Civitai. N/A indicates
that the user does not provide trigger words.

6.1 Statistic Analysis on Civitai
We first collect and analyze meta from 100, 200 LoRA DMs available

on Civitai at the time of collection.

Our analysis reveals that most DMs do not specify trigger words

in their metadata (Figure 10). In some cases, “unclaimed” prompts

like “ohwx,” “sks” are used. These prompts, which are not part of

the model vocabulary, are often introduced during fine-tuning to

trigger unique concepts. However, the absence of trigger words

or the use of uncommon words creates significant challenges for

concept auditing, as the intended concepts cannot be easily inferred

from the metadata.

To perform a comprehensive evaluation, we conduct an analysis

on the models hosted by Civitai. Based on the analysis result (see

Section D in Appendix for details), we identify four major topics

of concepts: “celebrity,” “game,” “cartoon,” and “movie,” and a dom-

inant DM: Stable Diffusion 1.5 (SD1.5). Hence, we download and

analyze the LoRAmodels from these four categories and with Stable

Diffusion 1.5 as the base model.

6.2 Model Collection
The model collection process is as follows. First, we search for the

LoRA models using the tags provided by each model in Civitai. For

the celebrity topic, we use the tag “celebrity,” “actress,” “real_person,”

and “actor.” For the cartoon topic, we use the tag “cartoon,” “manga,”

and “anime.” For the videogame topic, we use the tag of “videogame,”

“videogames,” and “video_game.” For the movie topic, we use the tag

of “movie.” Second, we download the most frequently downloaded

LoRA models in the search results. Third, since the model files may

stored in different formats (e.g., different parameter names), we

Table 7: Auditing performance of PAIA on Civitai DMs.

Category Accuracy Precision Recall F1 Score

Celebrity 93.97% 94.74% 93.10% 93.91%

Cartoon 96.90% 97.22% 96.55% 96.89%

Videogame 95.83% 94.44% 97.40% 95.90%

Movie 92.74% 91.80% 93.85% 92.82%

standardize all DMs with consistent formats. Lastly, we manually

remove DMs with duplicate concepts (e.g., multiple DMs fine-tuned

on the same celebrity or character) and exclude style-related LoRA

models that are not concept-specific.

After filtering, we have collected 174 celebrity models, 145 car-

toon models, 192 videogame models, and 179 movie models.

6.3 Auditing Performance of PAIA
We evaluate PAIA on the collected LoRA models across the four

categories. For evaluation, we use 10 positive samples (images as-

sociated with the target concept) and 10 negative samples (images

unrelated to the target concept) for each model. Table 7 summarizes

the auditing performance of PAIA. PAIA achieves high auditing

accuracy, precision, and recall across all categories. Specifically, the

cartoon category achieves the best performance with 97% across all

metrics, followed closely by the videogame and celebrity categories.

The movie category shows slightly lower precision but maintains

robust performance overall. These results demonstrate the effec-

tiveness of PAIA in detecting diverse concepts across real-world

DMs.

We further analyze the failure cases in the auditing results and ob-

serve that a significant portion of these failures arise from concepts

that are closely related. Specifically, these include different concepts

generated by the same creator or those originating from the same

movie or TV show (e.g., StarWars). Such scenarios introduce shared

underlying features in fine-tuned DMs, making it challenging to

distinguish between fine-grained variations. We will investigate

this challenging scenario and enhance PAIA’s fine-grained auditing

capabilities in our future work.

7 Related Work
7.1 Inappropriate concept generation in DMs
The creative potential of DMs has raised growing concerns about

their ability to generate inappropriate concepts. Current approaches

to preventing inappropriate concept generation can be categorized

into three main strategies. First, defensive mechanisms aim to pre-

vent the generation of certain concepts. For instance, add-on safety

filters are employed to detect unsafe input texts or generated im-

ages [20]. However, these filters can often be disabled by users

after downloading the models, leaving the core DMs capable of

generating inappropriate content. Additionally, safety filters of-

ten lack generalization and are susceptible to adversarial attacks,

undermining their reliability in diverse scenarios [20, 21].

Second, model refining methods attempt to modify or remove

latent representations of inappropriate concepts through techniques

like concept removal and machine unlearning [43–46]. However,

these methods are computationally expensive and time-intensive,
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making them impractical for real-world applications, particularly

for DM-sharing platforms or end users who cannot afford the high

costs of retraining models.

Third, prompt probing techniques have shown promise in audit-

ing concepts by exploring prompts capable of generating specific

concepts [19, 47]. These methods leverage adversarial attacks to

optimize prompts, aligning them with target concepts. For exam-

ple, prompts can be optimized to match the text embeddings of

unsafe target prompts filtered by safety mechanisms [19, 48], or to

align with image embeddings of a certain concept [18, 49]. How-

ever, these techniques rely heavily on accurate prompt probing and

robust external detectors to guide the prompt optimization [47].

Unfortunately, external detectors are not typically trained on gen-

erated data, particularly for fine-grained concepts, making them

vulnerable to concept drift and biased predictions. Our experimental

results highlight this limitation: while external detectors perform

effectively on real-world images, their reliability degrades signif-

icantly when applied to generated content, leading to high false

positives.

To the best of our knowledge, there is a critical void of practical

and effective tools for large-scale evaluation of DMs.

7.2 Data memorization analysis
Data memorization analysis investigates the extent to which diffu-

sion models memorize their training data, primarily through data

extraction attacks and membership inference attacks. For example,

Data extraction attacks aim to recover exact data samples from

the model’s training set [50, 51, 51] while membership inference

attacks determine whether a specific data sample was part of the

model’s training set [52–54]. This line of analysis identifies an ex-

act match of the data samples in the DM’s training data, which,

if successful, provides strong evidence for concept auditing. How-

ever, applying these data memorization approaches in our work

is limited, since deriving precise conclusions for individual data

samples often requires extensive querying of the DMs and access

to a substantial amount of training data for statistical analysis.

These demands make such methods impractical and inefficient for

large-scale concept auditing.

8 Discussions
8.1 Scope of Concepts
Defining what constitutes a “concept” in DMs remains an open and

underexplored problem. Depending on the context, a concept may

refer to a broad category, such as “Disney characters,” or a highly

specific instance, like “Mickey Mouse.” This ambiguity exists across

related areas such as concept customization [55–57] and concept

erasure research [44, 58, 59], where there is no consistent standard

for what counts as a distinct or meaningful concept. This ambiguity

presents a challenge for concept auditing, as it is difficult to define

universal criteria.

In this paper, rather than relying on a rigid definition, we adopt

an example-based approach: a concept is considered present if the

model can generate recognizable outputs that are aligned with a

small set of reference examples. This flexible design enables our

framework to handle a broad range of concept granularities and

types. In our evaluation, we include concepts such as individual

celebrities, full character sets from specific cartoons (e.g., all charac-
ters from Pokémon), and object classes from video games. We leave

further exploration of formal concept taxonomies and boundaries

as future work, particularly toward improving auditing resolution

across different concept types.

8.2 Auditing in Multi-LoRA Scenarios
This work mainly focuses on auditing fine-tuned models with a

single LoRA module. We investigated the scenarios where multi-

ple concepts are embedded in a single LoRA. Real-world DM de-

ployments also involve multiple LoRAs, which are simultaneously

loaded into a DM model. This practice is increasingly common on

community platforms, where users compose multiple LoRAs, each

capturing different aspects of model behavior such as style, texture,

or object identity. The multi-LoRA scenario raises questions about

how concept representations may be distributed across different

LoRAs, and how interactions between LoRAs might influence a

model’s generative behavior. We view multi-LoRA auditing as a

promising direction for extending the PAIA framework.

8.3 Toward Adversarial Auditing
This work focuses on non-adversarial auditing, where fine-tuned
DMs are not deliberately optimized to evade auditing. This setting

reflects the majority of real-world cases on public platforms, where

users unknowingly or negligently publish potentially problematic

DMs, often without consistent metadata or clear prompt disclosure.

To assess robustness under adversarial conditions, we include a con-

trolled experiment with a simple backdoor-style trigger (Tables 3

and 4), where a concept is activated by an unrelated and abnormal

prompt. PAIA remains effective in this setting, highlighting the

robustness of its model-centric design.

Nonetheless, backdoor attacks represent an emerging threat to

DMs [60–63], where adversaries inject covert patterns into train-

ing data or prompts to trigger specific outputs. Existing backdoor

detectors primarily focus on defending against image-based trig-

gers [64–66]. Effective and robust prompt-based trigger detection

remains an open challenge. Extending PAIA to adversarially eva-

sive fine-tuning introduces a fundamentally different threat model,

where the goal is to actively conceal learned concepts. Addressing

this challenge would likely require new assumptions, threat mod-

els, and detection mechanisms. Moreover, adversarial auditing may

conflict with PAIA’s scalability goals, as stronger defenses often

require expensive or targeted model interrogation. We leave this

important but orthogonal direction to future work, and view our

current focus as a necessary first step toward practical, large-scale

concept auditing.

9 Conclusion
We introduce Prompt-Agnostic Image-Free Detection (PAIA), a

model-centric framework for auditing fine-tuned diffusion models

without relying on prompt optimization or image-based detection.

PAIA combines two key innovations: a prompt-agnostic design that

analyzes internal model behavior during prompt-insensitive stages

of generation, and an image-free mechanism based on conditional

calibrated error, which compares denoising behavior against the

base model to reveal concept learning.
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Extensive experiments demonstrate that PAIA consistently out-

performs state-of-the-art baselines in both accuracy and efficiency.

On 320 benchmark models, PAIA achieves accurate and efficient

concept auditing with significantly reduced computation. On 690

real-world models collected from Civitai, it reaches an average ac-

curacy of over 92% across categories including celebrities, cartoons,

video games, and movies, highlighting its robustness and real-world

applicability.

Our results establish PAIA as the first practical and scalable

solution for pre-deployment concept auditing in diffusion models.

We hope this work contributes to safer, more transparent model

sharing and lays the groundwork for future efforts in responsible

generative model management.
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[23] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM computing surveys
(CSUR), 46(4):1–37, 2014.

[24] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and

Tom Goldstein. Hard prompts made easy: Gradient-based discrete optimization

for prompt tuning and discovery. Advances in Neural Information Processing
Systems, 36, 2024.

[25] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long

Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation

with better captions. Computer Science. https://cdn. openai. com/papers/dall-e-3.
pdf, 2(3):8, 2023.

[26] Ali Borji. Generated faces in the wild: Quantitative comparison of stable diffusion,

midjourney and dall-e 2. arXiv preprint arXiv:2210.00586, 2022.
[27] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel

Collier. On the effectiveness of parameter-efficient fine-tuning. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pages 12799–12807,

2023.

[28] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,

Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient

fine-tuning of large-scale pre-trained language models. Nature Machine Intelli-
gence, 5(3):220–235, 2023.

[29] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang,

Mohit Bansal, and Colin A Raffel. Few-shot parameter-efficient fine-tuning is

better and cheaper than in-context learning. Advances in Neural Information
Processing Systems, 35:1950–1965, 2022.

[30] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

ArXiv e-prints, pages arXiv–1607, 2016.
[31] Wentian Zhang, Haozhe Liu, Jinheng Xie, Francesco Faccio, Mike Zheng Shou,

and Jürgen Schmidhuber. Cross-attention makes inference cumbersome in text-

to-image diffusion models. arXiv preprint arXiv:2404.02747, 2024.
[32] Mingyang Yi, Aoxue Li, Yi Xin, and Zhenguo Li. Towards understanding the work-

ing mechanism of text-to-image diffusion model. arXiv preprint arXiv:2405.15330,
2024.

[33] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth
ieee international conference on data mining, pages 413–422. IEEE, 2008.

[34] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping

language-image pre-training for unified vision-language understanding and

generation. In International conference on machine learning, pages 12888–12900.
PMLR, 2022.

[35] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan,

Zicheng Liu, Ce Liu, and Lijuan Wang. Git: A generative image-to-text trans-

former for vision and language. arXiv preprint arXiv:2205.14100, 2022.
[36] Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu,

and Shiyu Chang. Textgrad: Advancing robustness evaluation in nlp by gradient-

driven optimization. The Eleventh International Conference on Learning Represen-
tations (ICLR), 2023.

[37] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,

and Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11976–11986, 2022.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. Learning transferable visual models from natural language supervision. In

International conference on machine learning, pages 8748–8763. PMLR, 2021.

[39] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based outlier

detection in high-dimensional data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 444–452,
2008.

[40] Jorma Laaksonen and Erkki Oja. Classification with learning k-nearest neighbors.

In Proceedings of international conference on neural networks (ICNN’96), volume 3,

pages 1480–1483. IEEE, 1996.

[41] Charu C Aggarwal and Charu C Aggarwal. An introduction to outlier analysis.
Springer, 2017.

[42] Larry M Manevitz and Malik Yousef. One-class svms for document classification.

Journal of machine Learning research, 2(Dec):139–154, 2001.
[43] Patrick Schramowski, Manuel Brack, Bjorn Deiseroth, and Kristian Kersting. Safe

latent diffusion: Mitigating inappropriate degeneration in diffusion models. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
22522–22531, 2022.

[44] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau.

Erasing concepts from diffusion models. 2023 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2426–2436, 2023.

[45] Sanghyun Kim, Seohyeong Jung, Balhae Kim, Moonseok Choi, Jinwoo Shin, and

Juho Lee. Towards safe self-distillation of internet-scale text-to-image diffusion

models. ArXiv, abs/2307.05977, 2023.

13

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://www.comfy.org/
https://civitai.com/models
https://huggingface.co/models?pipeline_tag=text-to-image
https://huggingface.co/models?pipeline_tag=text-to-image
https://www.seaart.ai/model


Conference’17, July 2017, Washington, DC, USA X. Yuan, X. Ma, L. Guo, L. Zhang

[46] Xinfeng Li, Yuchen Yang, Jiangyi Deng, Chen Yan, Yanjiao Chen, Xiaoyu Ji, and

Wenyuan Xu. Safegen: Mitigating unsafe content generation in text-to-image

models. 2024.

[47] Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng

Liu, Ke Ding, and Sijia Liu. To generate or not? safety-driven unlearned diffusion

models are still easy to generate unsafe images ... for now. ArXiv, abs/2310.11868,
2023.

[48] Yijun Yang, Ruiyuan Gao, Xiaosen Wang, Nan Xu, and Qiang Xu. Mma-diffusion:

Multimodal attack on diffusion models. ArXiv, abs/2311.17516, 2023.
[49] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and

Tom Goldstein. Hard prompts made easy: Gradient-based discrete optimization

for prompt tuning and discovery. ArXiv, abs/2302.03668, 2023.
[50] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,

Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting

training data from diffusionmodels. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 5253–5270, 2023.

[51] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom

Goldstein. Diffusion art or digital forgery? investigating data replication in

diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6048–6058, 2023.

[52] Jinhao Duan, Fei Kong, Shiqi Wang, Xiaoshuang Shi, and Kaidi Xu. Are diffusion

models vulnerable to membership inference attacks? In International Conference
on Machine Learning, pages 8717–8730. PMLR, 2023.

[53] Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. Membership inference

attacks against diffusion models. In 2023 IEEE Security and Privacy Workshops
(SPW), pages 77–83. IEEE, 2023.

[54] Zhe Ma, Xuhong Zhang, Qingming Li, Tianyu Du, Wenzhi Chen, Zonghui Wang,

and Shouling Ji. Could it be generated? towards practical analysis of memoriza-

tion in text-to-image diffusion models. arXiv preprint arXiv:2405.05846, 2024.
[55] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan

Zhu. Multi-concept customization of text-to-image diffusion. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1931–1941,
2023.

[56] Yan Zeng, Masanori Suganuma, and Takayuki Okatani. An improved method for

personalizing diffusion models. arXiv preprint arXiv:2407.05312, 2024.
[57] James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin

Shen, and Hongxia Jin. Continual diffusion: Continual customization of text-to-

image diffusion with c-lora. arXiv preprint arXiv:2304.06027, 2023.
[58] Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace:

Mass concept erasure in diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 6430–6440, 2024.

[59] Zhili Liu, Kai Chen, Yifan Zhang, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo

Li, Dit-Yan Yeung, and James T Kwok. Implicit concept removal of diffusion

models. In European Conference on Computer Vision, pages 457–473. Springer,
2024.

[60] Weixin Chen, Dawn Song, and Bo Li. Trojdiff: Trojan attacks on diffusion models

with diverse targets. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4035–4044, 2023.

[61] Shengfang Zhai, Yinpeng Dong, Qingni Shen, Shi Pu, Yuejian Fang, and Hang Su.

Text-to-image diffusion models can be easily backdoored through multimodal

data poisoning. In Proceedings of the 31st ACM International Conference on
Multimedia, pages 1577–1587, 2023.

[62] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion

models? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4015–4024, 2023.

[63] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. Villandiffusion: A unified

backdoor attack framework for diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

[64] Shengwei An, Sheng-Yen Chou, Kaiyuan Zhang, Qiuling Xu, Guanhong Tao,

Guangyu Shen, Siyuan Cheng, Shiqing Ma, Pin-Yu Chen, Tsung-Yi Ho, et al.

Elijah: Eliminating backdoors injected in diffusion models via distribution shift.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages

10847–10855, 2024.

[65] Yichuan Mo, Hui Huang, Mingjie Li, Ang Li, and Yisen Wang. Terd: A unified

framework for safeguarding diffusion models against backdoors. arXiv preprint
arXiv:2409.05294, 2024.

[66] Yang Sui, Huy Phan, Jinqi Xiao, Tianfang Zhang, Zijie Tang, Cong Shi, Yan Wang,

Yingying Chen, and Bo Yuan. Disdet: Exploring detectability of backdoor attack

on diffusion models. arXiv preprint arXiv:2402.02739, 2024.

14



Concept Auditing for Shared Diffusion Models at Scale Conference’17, July 2017, Washington, DC, USA

A Proof of Lemma 1
We present the full derivation of the gradient of the cross-attention function with respect to the text embedding p.

Lemma 2. The gradient of the cross-attention function with respect to the text embedding p is given by:

𝜕𝑌𝑖

𝜕p
= (𝑑𝑖𝑎𝑔(𝑆𝑖 ) − 𝑆𝑖𝑆𝑇𝑖 ) (

1

√
𝑑
(𝑋𝑊𝑄 )𝑊𝑇

𝐾 )p𝑊𝑉 + 𝑆𝑖𝑊𝑇
𝑉 , (13)

where 𝑆 denotes the cross-attention map (Eq. 2), 𝑆𝑖 the 𝑖-th row of 𝑆 , 𝑋 the image features calculated by the previous layers, and 𝑌𝑖 the 𝑖-th output
of the cross-attention layer (Eq. 3).

Proof. The cross-attention function can expressed as

𝑌 = softmax(𝑄𝐾
𝑇

√
𝑑

)𝑉

= softmax(
(z𝑊𝑄 ) (p𝑊𝐾 )𝑇√

𝑑
) (p𝑊𝑉 )

Let 𝐴 = (𝑋𝑊𝑄 ) (p𝑊𝐾 )𝑇 /
√
𝑑 and 𝑆 = softmax(𝐴), where 𝑆𝑖 𝑗 = 𝑒

𝐴𝑖 𝑗∑
𝑘 𝑒

𝐴𝑖𝑘
. Therefore, we have 𝑌 = 𝑆p𝑊𝑉 . To compute the gradient of 𝑌 with

respect to p, we use the chain rule:

𝜕𝑌

𝜕p
=
𝜕𝑆

𝜕p
(p𝑊𝑉 ) + 𝑆

𝜕p𝑊𝑉
𝜕p

(14)

To calculate the first term, we have the Jacobian matrix of Softmax, which is given by:

𝜕𝑆𝑖 𝑗

𝜕𝐴𝑙𝑘
=

{
0 𝑖 ≠ 𝑙

𝑆𝑖 𝑗 (𝛿 𝑗𝑘 − 𝑆 𝑗𝑘 ) 𝑖 = 𝑙
(15)

where 𝛿 𝑗𝑘 is the Kronecker delta, 𝛿 𝑗𝑘 = 1 if 𝑗 = 𝑘 and 0 otherwise. For simplicity, we denote the Jacobian of 𝑆𝑖 with respect to 𝐴 as:

𝐽𝑖 :=
𝜕𝑆𝑖

𝜕𝐴
= 𝑑𝑖𝑎𝑔(𝑆𝑖 ) − 𝑆𝑖𝑆𝑇𝑖 . (16)

Thus, the gradient in the first term of Eq. 14 becomes:

𝜕𝑆𝑖

𝜕p
=
𝜕𝑆𝑖

𝜕𝐴

𝜕𝐴

𝜕p
= 𝐽𝑖 (

1

√
𝑑
(𝑋𝑊𝑄 )𝑊𝑇

𝐾 ) . (17)

By incorporating Eq. 17 into Eq. 14, we have:

𝜕𝑌𝑖

𝜕p
= 𝐽𝑖 (

1

√
𝑑
(𝑋𝑊𝑄 )𝑊𝑇

𝐾 )p𝑊𝑉 + 𝑆𝑖𝑊𝑇
𝑉

□

B Terms used in random prompt generation.
The following set of descriptive keywords was used to augment prompts in the random-prompt evaluation setting. These terms were

randomly inserted to simulate realistic prompt noise and diversity.

Table 8: Words used in pseudo prompt generation strategy.

natural lighting portrait photorealistic best quality

realistic ultra detailed standing highres

detailed face solo masterpiece outdoors

film grain illustration soft light raw photo

street from side looking at viewer sitting

C Benchmarking Dataset Samples: Celebrities and Cartoons
We provide example images from the curated datasets used in our benchmark evaluation. Each concept is represented by a small set of

reference images used during fine-tuning and for auditing evaluation.
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Figure 11: Example concept images from the Celebrity dataset used in benchmarking.

Figure 12: Example concept images from the Cartoon character dataset used in benchmarking.

D Civitai model analysis.
To support real-world evaluation, we analyze the diffusion models hosted on Civitai, one of the largest community platforms for sharing

LoRA-based fine-tuned models.

Figure 13 shows the distribution of commonly used tags on Civitai. Among these, the most frequent concept categories include “celebrity,”

“game,” and “cartoon.” Based on this trend, our evaluation focuses on LoRA models falling within these categories. Additionally, we include a

“movie” category to capture models, which overlaps with tags such as “character” and “actress”.

Figure 14 shows that Stable Diffusion 1.5 (SD1.5) is the most commonly used base model for LoRA fine-tuning. Therefore, our real-world

evaluation focuses primarily on LoRA models adapted from SD1.5.
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Figure 13: Common tags in models uploaded to Civitai.
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Figure 14: Distribution of base models used for LoRA fine-tuning on Civitai.

E Trigger Quality Analysis on Civitai Models
To better understand the challenges in prompt-based auditing, we analyze the trigger words associated with LoRA models uploaded to

Civitai. While many models provide trigger prompts, the quality and alignment of these prompts vary significantly.
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(a) Percentage of valid English words used in trigger words.
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(b) CLIP similarity between generated images and their associ-
ated trigger words.

Figure 15: Analysis of trigger words that are associated with uploaded DMs over four categories on Civitai.

Figure 15a shows that a large portion of trigger words used by creators are not valid English words. These nonstandard or synthetically

generated tokens are common in community models, making them difficult to probe or interpret.

Figure 15b further highlights the issue by quantifying the semantic alignment between trigger words and their corresponding images. We

use CLIP similarity scores to measure how well a trigger word matches the content of its sample image. The observed scores reveal that

many triggers exhibit weak semantic correspondence with the generated outputs, indicating that even when a trigger is known, it may not

meaningfully reflect the learned concept.

Together, these findings underscore a key obstacle in prompt-based auditing—trigger uncertainty, which arises from the large, discrete

nature of the prompt space and the inherent ambiguity of natural language. Optimization-based probing methods (e.g., adversarial or
reinforcement learning) often fail to reliably discover effective prompts, especially in the presence of low-quality or misleading triggers.

These issues further motivate our model-centric, prompt-agnostic auditing framework.
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