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Abstract—We introduce a differentially private (DP) algorithm
called reveal-or-obscure (ROO) to generate a single representative
sample from a dataset of n observations drawn i.i.d. from an un-
known discrete distribution P . Unlike methods that add explicit
noise to the estimated empirical distribution, ROO achieves ϵ-
differential privacy by randomly choosing whether to “reveal" or
“obscure" the empirical distribution. While ROO is structurally
identical to Algorithm 1 proposed by Cheu and Nayak [1],
we prove a strictly better bound on the sampling complexity
than that extablished in Theorem 12 of [1]. To further improve
the privacy-utility trade-off, we propose a novel generalized
sampling algorithm called Data-Specific ROO (DS-ROO), where
the probability of obscuring the empirical distribution of the
dataset is chosen adaptively. We prove that DS-ROO satisfies ϵ-
DP, and provide empirical evidence that DS-ROO can achieve
better utility under the same privacy budget of vanilla ROO.

I. INTRODUCTION

The widespread use of sensitive data across various do-
mains, including healthcare, finance, law enforcement, and
social sciences, has heightened the importance of privacy-
preserving data analysis. Consequently, there is a growing need
for mechanisms that allow data analysis while minimizing
individual privacy risks. One promising approach is the use
of synthetic data that capture the statistical properties of the
original data.

Differential Privacy (DP) [2], [3] has emerged as a sound
framework for formalizing privacy guarantees across a range
of applications, including data analysis. In essence, DP ensures
that the output of an algorithm does not differ by much
whether or not an individual’s data is included in the input.

The task of synthetic data generation is closely related to the
broader problem of learning probability distributions [4]. In the
non-private setting, a learning algorithm approximates a dis-
tribution from which one can sample new data points that are
representative of the original data. When privacy constraints
are introduced, learning a distribution becomes significantly
more challenging. In many practical cases, it may be sufficient
to produce a small number of representative samples instead.
The task of privately releasing one sample—known as DP
sampling—is easier than full-fledged learning, since it requires
less information from the underlying distribution. Motivated
by this, we propose a novel DP sampling algorithm for discrete
distributions on a finite alphabet. The key idea of our approach
is to “obscure” the empirical distribution of the input dataset
with a certain probability, or “reveal” it otherwise. Hence, we
call our proposed algorithm reveal-or-obscure (ROO).

Main Contributions. Our main contributions are:
• We propose ROO—a sampling algorithm that achieves

differential privacy without explicitly perturbing the em-
pirical distribution of the input dataset. We incorporate
uncertainty in our algorithm by sampling from the uni-
form distribution with some fixed probability q.

• We prove that our proposed algorithm reduces the sam-
pling complexity while achieving better privacy-utility
trade-off than the state-of-the art [5], [1].

• We also propose DS-ROO (data-specific ROO) as a tech-
nique to generalize ROO by making q, i.e., the probability
of sampling from the uniform distribution, a function of
the empirical distribution of the dataset. We prove that it
is possible to achieve the same privacy guarantee with a
lower q value relative to the vanilla ROO algorithm for
sufficiently large datasets.

• We demonstrate empirically that, for the same privacy
guarantee, DS-ROO achieves better utility than vanilla
ROO as well as the state-of-the-art in [5].

Related Work. The problem of differentially private sam-
pling from unknown distributions is first investigated in [5].
Raskhodnikova et al. [5] provide the first known bounds with
(ϵ, δ)-DP guarantees on the complexity of sampling from
arbitrary distributions over a discrete alphabet. DP algorithms
for sampling from higher dimensional distributions such as
multivariate Gaussians are presented in [6]. Husain et al. [7]
considers DP sampling in the local setting, where the central
aggregator cannot be trusted and each user must produce a
single data record privately. Private sampling has also been
studied in the distributed setting [8], [9]. A key focus of
these efforts has been to reduce the sample complexity of
DP-assured private sampling. While a recent and concurrent
work [1] independent from ours proposes an algorithm struc-
turally identical to ROO, our analysis establishes a strictly
better sampling complexity bound in the same setting. More
generally, the problem of releasing a dataset in a differentially
private manner has also been studied; for example, see [10]–
[14]. Generating a single sample in a private manner is the
first step towards releasing a larger synthetic dataset, and to
this end, we focus on the former challenge in this paper.

II. PROBLEM SETUP

We begin by briefly reviewing some relevant definitions.
We use uppercase letters, e.g., X , to denote random variables
(RVs), and lowercase letters, e.g. x, for their instantiations.

ar
X

iv
:2

50
4.

14
69

6v
1 

 [
cs

.I
T

] 
 2

0 
A

pr
 2

02
5



We assume that the dataset consists of n RVs sampled from
a finite alphabet of k letters; without loss of generality,
we take this alphabet to be [k] = {1, 2, . . . , k}. Let P be
the class of probability distributions on [k]. Given a dataset
Xn = (X1, X2, . . . , Xn) of n i.i.d. observations from some
unknown P ∈ P , a randomized algorithm (privacy mecha-
nism) A : Xn 7→ X outputs a single sample from X . Let
Y = A(Xn) be the random variable corresponding to the
output of algorithm A given input Xn. The output A(Xn) is
drawn from a distribution Q such that

Q(y) =
∑

xn∈Xn

Pr {A(xn) = y|xn}Pr {Xn = xn} . (1)

The accuracy of A is measured by the closeness between Q
and P . We use the total variation distance, defined as

dTV (Q,P ) =
1

2
∥Q− P∥1 =

1

2

∑
x

|Q(x)− P (x)|. (2)

We use the following definition of sampling accuracy, intro-
duced in [15].

Definition 1 (Accuracy of Sampling [15]): An algorithm A
is α-accurate on a distribution P if the total variation distance,
dTV between Q and P is bounded by some constant α, i.e.,

dTV (Q,P ) ≤ α. (3)

An algorithm is α-accurate on a class P of distributions if it
is α-accurate on every P ∈ P .
Two datasets xn and x̃n are considered neighbors, denoted
xn ∼ x̃n, if they differ by at most one entry. DP is defined
with respect to all such neighboring datasets as follows.

Definition 2 (Differential Privacy [2]): A randomized al-
gorithm, or mechanism A : Xn → Y is considered ϵ-
differentially private (ϵ-DP) if, for every pair of neighboring
datasets xn ∼ x̃n ∈ Xn, and for all Y ⊆ Y ,

Pr{A(xn) ∈ Y } ≤ eϵ Pr{A(x̃n) ∈ Y }. (4)

In [5], the authors present an achievable ϵ-DP sampler which
does the following:
(i) computes, for each j ∈ [k], the empirical probability
distribution p̂j ,
(ii) adds Laplace noise to each count,
(iii) uses an L1 projection to restrict the Laplace-noised
distribution to be a probability vector P̃ = (p̃1, . . . , p̃k), and
(iv) outputs an element of [k] sampled from the distribution
P̃ .
For this algorithm, they show that for a sampling complexity

n′ =
2k

αϵ
, (5)

their algorithm is α-accurate. In the following section, we
prove that it is possible to achieve an ϵ-DP and α-accurate
sampler with fewer samples than n′. Notably, for higher values
of ϵ, i.e., lower privacy, we gain an exponential reduction in
the required number of samples. Moreover, [5] also establishes
a lower bound on the sampling complexity as Ω

(
k
αϵ

)
for a

restricted range of ϵ ∈ (0, 1].

III. REVEAL-OR-OBSCURE (ROO)

Algorithm 1 presents our proposed private sampler ROO.
We implement the idea of obscuring the empirical distribution
P̂xn by sampling from the uniform distribution on [k]. How-
ever, we wish to do so with a small probability q, so that we
do not deviate too much from the true distribution P . With
probability 1− q, we simply choose a sample from the given
dataset, i.e., we reveal P̂xn .

Algorithm 1: Reveal-or-Obscure (ROO)
Input: Dataset xn = (x1, . . . , xn), alphabet size k, privacy

budget ϵ, parameter q
Output: Sample y

1: With probability q, choose y ∼ Unif[1 : k];
2: Otherwise, pick i ∼ Unif[1 : n] and choose y = xi;
3: return y;

The privacy and utility guarantees provided by Algorithm 1
is given by the following theorem.

Theorem 1: Given q, Algorithm 1 is ϵ-DP and α-accurate
for

ϵ = log

(
1 +

k(1− q)

nq

)
, and (6)

α = q

(
1− 1

k

)
, (7)

from which we can solve for q to obtain the sampling
complexity as

n =
k(1− α)− 1

α(eϵ − 1)
. (8)

Lemma 1: For any k ≥ 2, ϵ > 0, and α ∈
(
0, 1− 1

k

)
, the

sampling complexity of Algorithm 1 is lower than that of [5]
and [1].
The proofs of Theorem 1 and Lemma 1 are in Appendix A
and B, respectively.

In fact, the sampling complexity of Algorithm 1 is exponen-
tially better in terms of ϵ compared to that of [5] in (5). This
would appear to violate their lower bound on the sampling
complexity; the reason it does not is that their lower bound
only applies for ϵ < 1.

IV. DATA-SPECIFIC REVEAL-OR-OBSCURE (DS-ROO)

For the ROO algorithm in Section III, we fix q in order to
achieve ϵ-DP for any possible dataset. From (27) in the privacy
analysis of Appendix A, we observe that the supremum of ratio
of probabilities is achieved by setting p = 0. This corresponds
to the case where one of two neighboring datasets under
consideration is entirely missing an element of the alphabet,
but this element is present in the other dataset. Thus, ROO
is inefficient on datasets where each element of the alphabet
appears reasonably often. In this section, we show that by
making q a function of the dataset—specifically, a function
of the smallest empirical probability, the accuracy can be
improved for the same privacy. Let m ∈

{
0, 1, . . . ,

⌊
n
k

⌋}
denote the smallest number of times an element of [k] appears
in dataset xn. Mathematically, m can be expressed as m =



n·minx P̂xn(x). The modified private sampler—which we call
the data-specific reveal-or-obscure (DS-ROO)—is presented in
Algorithm 2. In DS-ROO, the probability qm is determined
from the value of m associated with the given dataset. Notably,
when m = 0, the corresponding q0 is equivalent to that of
Algorithm 1. That is, the case of a dataset that is missing
an element of the alphabet (so m = 0) is the worst-case
scenario, and so in this case DS-ROO behaves identically to
ROO. However, we will show empirically that in other cases,
DS-ROO can do much better than vanilla ROO.

Algorithm 2: Data-specific ROO (DS-ROO)
Input: Dataset xn = (x1, . . . , xn), alphabet size k, privacy

budget ϵ
Output: Sample y

1: Compute

q0 =
1

1 + n
k (eϵ − 1)

; (9)

2: for m = 1, 2, . . . ,
⌊
n
k

⌋
do

3: Compute

um = −m

n
+

1

k
− 1

n
, (10)

vm = eϵ
(
1

k
− m

n

)
, (11)

wm = − 1

n
− m

n
+

m

n
eϵ, (12)

qm = max

{
0,

um

vm
qm−1 −

wm

vm

}
; (13)

4: end for
5: Compute m = n ·min

x
P̂xn(x);

6: With probability qm, choose y ∼ Unif[1 : k];
7: Otherwise, pick i ∼ Unif[1 : n] and choose y = xi;
8: return y;
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Fig. 1. Plot of qm as a function of m for fixed k and n, showing changes
under different privacy budgets ϵ.

Fig. 1 shows the function qm for k = 9, n = 1000,
and several different values of the privacy parameter ϵ. We

observe that qm is non-increasing in m. As m increases, the
empirical distribution of the dataset gets closer to the uniform
distribution, and qm approaches zero. Thus, DS-ROO is less
likely to obscure the empirical distribution for larger m. In
high privacy regimes, qm tends to decrease much slower. On
the other hand, for larger ϵ, i.e., low privacy, qm goes to zero
much faster. The privacy guarantee provided by DS-ROO is
given by the following theorem.

Theorem 2: Algorithm 2 is ϵ-differentially private.
The complete proof of Theorem 2 is provided in Appendix C.
We present a proof sketch below.

Proof Sketch: Recall that m denotes the smallest number
of times an element of the alphabet [k] appears in xn. For
neighboring datasets xn ∼ x̃n, let m̃ denoted the m value
for x̃n. Given m, there are three possible values of m̃: (1)
m̃ = m, (2) m̃ = m + 1, and (3) m̃ = m − 1. Considering
each of these cases separately and applying Definition 2, we
derive the conditions under which DS-ROO satisfies ϵ-DP as

qm ≥ wm

um − vm
, for m = 0, 1, . . . ,

⌊
1

eϵ − 1

⌋
, (14)

umqm+1 ≤ vmqm + wm, for m = 0, 1, . . . ,
⌊n
k

⌋
− 1, (15)

umqm−1 ≤ vmqm + wm, for m = 1, 2, . . . ,
⌊n
k

⌋
, (16)

where um, vm, and wm are as defined in (10)–(12). Addi-
tionally, for qm to be a valid probability, we must also have
0 ≤ qm ≤ 1 for all m. Setting the initial value q0 as in (9), and
assuming (16) to be an equality, we arrive at the expression

qm = max

{
0,

um

vm
qm−1 −

wm

vm

}
. (17)

In Lemmas 3 and 4 of Appendix D, we show that the above
form of qm satisfies the inequality conditions in (14) and (15),
respectively. Therefore, Algorithm 2 is ϵ-differentially private.

A. Utility of DS-ROO

We do not have theoretical bounds on the utility of DS-ROO
at this time. However, we provide empirical evidence that DS-
ROO achieves better utility than vanilla ROO and the state-
of-the-art sampler in [5] for the same privacy guarantee. In
order to measure the utility of DS-ROO, we consider an input
distribution, estimate the corresponding output distribution
according to Algorithm 2, and compute the total variation
distance. Fig. 2 shows an example case for a distribution on an
alphabet of size k = 9, with dataset size n = 1000, and privacy
parameter ϵ = 0.1. We observe that mixing with the uniform
distribution shifts some of the weight from the most probable
central element to those with lower probabilities, resulting in
reduced skewness in the output distribution.

Recall from Definition 1 that the total variation distance is
upper bounded by α. The smaller the value of α, the more
accurate the sampler is. From (5), the accuracy of the state-
of-the-art sampler in [5] is

α =
2k

n′ϵ
. (18)
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Fig. 3. Comparison of accuracy (α) versus privacy (ϵ) curves of differentially
private sampling algorithms.

From Theorem 1, we have the accuracy of ROO

α =
1

1 + n
k (e

ϵ − 1)

(
1− 1

k

)
. (19)

For fixed values of k and n, we obtain the accuracy of DS-
ROO empirically, and compare it with that of [5] and ROO.
Fig. 3 shows the α vs. ϵ curves for all three algorithms. We
observe that DS-ROO achieves dramatically better accuracy
than [5] and vanilla ROO while providing the same privacy
guarantee. Of course, the numerical results in Fig. 3 are for
the particular distribution shown in Fig. 2. We anticipate that
we will see similar improvements for distributions that are not
too skewed—if the distribution is more skewed (such as if the
probability of a letter is 0), then there will be no improvement
over vanilla ROO.

V. CONCLUSION

In this work, we propose a novel differentially private
sampling algorithm for discrete distributions on a finite alpha-
bet. Our algorithm achieves differential privacy by obscuring

the empirical distribution of a dataset without perturbing it
directly. In addition, we propose a method to generalize
our approach to achieve better utility for the same privacy
guarantee. For future work, we aim to explore the practicality
of our proposed algorithms for more complex distribution
classes.

APPENDIX

A. Proof of Theorem 1

Privacy Analysis. Given xn, Algorithm 1 chooses output
Y = y with probability

P (Y = y|xn) =
q

k
+ (1− q)P̂xn(y), (20)

where P̂xn(x) denotes the empirical probability of each x ∈
[k],

P̂xn(x) =
1

n

n∑
i=1

1(xi = x). (21)

For neighboring datasets xn ∼ x̃n, their corresponding empir-
ical probabilities of one observation differ by at most 1

n , i.e.,
for all x ∈ X ,

|P̂xn(x)− P̂x̃n(x)| ≤ 1

n
. (22)

By Definition 2, in order for ROO to satisfy ϵ-DP, the
following condition must hold for all possible xn ∼ x̃n,

P (Y = y|xn)

P (Y = y|x̃n)
≤ eϵ. (23)

We can write the left side of (23) as

P (Y = y|xn)

P (Y = y|x̃n)
=

q
k + (1− q)P̂xn(y)
q
k + (1− q)P̂x̃n(y)

(24)

≤ sup
p

q
k + (1− q)

(
p+ 1

n

)
q
k + (1− q)p

(25)

= sup
p

1 +
(1− q) 1n

q
k + (1− q)p

(26)

≤ 1 +
(1− q) 1n

q
k

. (27)

Here, in (24), we substitute (20). In (25), we use the property
of the empirical probabilities stated in (22), denoting P̂x̃n(y)
with p for notational simplicity. In (27), the supremum is
obtained when p = 0. Therefore, ROO satisfies ϵ-DP guarantee
if the right side of (27) is bounded by ϵ, i.e.,

1 +
(1− q) 1n

q
k

≤ eϵ. (28)

Rearranging (28), we obtain the privacy guarantee of Theo-
rem 1 stated in (6).



Utility Analysis. For our proposed sampler ROO in Algo-
rithm 1, the output distribution is

Q(y) =
∑

xn∈Xn

( q

k
+ (1− q)P̂xn(y)

)
Pr {Xn = xn} (29)

=
q

k

∑
xn∈Xn

Pr {Xn = xn}

+ (1− q)
∑

xn∈Xn

P̂xn(y) Pr {Xn = xn} (30)

=
q

k
+ (1− q)EXn [P̂xn(y)] (31)

=
q

k
+ (1− q)P (y), (32)

where (32) follows from the fact that P̂xn is the empirical
distribution of a dataset sampled from P . The total variation
distance between the discrete distributions Q and P is thus

dTV (Q,P ) =
1

2

∑
y∈X

|Q(y)− P (y)| (33)

=
q

2

∑
y∈X

∣∣∣∣1k − P (y)

∣∣∣∣ (34)

= q × dTV

(
1

k
, P (y)

)
(35)

≤ q ×max
P (y)

dTV

(
1

k
, P (y)

)
, (36)

where we obtain (34) by rearranging and substituting (32).
Note that, for a convex objective function, the maximum
is achieved at its corner points. Hence, the distribution P
that maximizes the dTV between the uniform distribution
on [k] and the input distribution P must be one of the
corner points of the k-dimensional probability simplex P , e.g.
P = {1, 0, . . . , 0}. The maximum dTV is then computed as

max
P (y)

dTV

(
1

k
, P (y)

)
= max

P (y)

1

2

∑
y∈X

∣∣∣∣1k − P (y)

∣∣∣∣ (37)

= 1− 1

k
. (38)

Substituting this maximum objective value into (36), we have

dTV (Q,P ) ≤ q

(
1− 1

k

)
. (39)

Comparing this result with Definition 1, we obtain the utility
of Theorem 1, stated in (7). We can then express q, i.e., the
probability of sampling from the uniform distribution, in terms
of α and k,

q =
α

1− 1
k

=
kα

k − 1
. (40)

Substituting the above into (28) and rearranging, we obtain
sample complexity

n =
k(1− α)− 1

α(eϵ − 1)
. (41)

B. Proof of Lemma 1

We first compare the sampling complexity of ROO with
that of [5]. From (8) in Theorem 1, we have the sampling
complexity of ROO,

n =
k(1− α)− 1

α(eϵ − 1)
=

k
(
1− α− 1

k

)
α(eϵ − 1)

(42)

=
2k

αϵ

ϵ

2(eϵ − 1)

(
1− 1

k
− α

)
(43)

<
2k

αϵ
= n′. (44)

As ϵ increases, the term eϵ−1 in the denominator of (8) grows
exponentially, resulting in significantly lower n compared to
n′. Secondly, we compare the sampling complexity of ROO
with that of [1]. Theorem 12 of [1] states that for any ϵ > 0
and α ∈ (0, 1), the SubRR algorithm is ϵ-DP and performs
α-sampling for distributions over [k] with sample complexity

1

αϵ
(k − 1)(1− α) ≤ k

αϵ
. (45)

Subtracting the left side of (45) from (8), we have

k(1− α)− 1

α(eϵ − 1)
− (k − 1)(1− α)

αϵ

=
k(1− α)− 1 + α− α

α(eϵ − 1)
− (k − 1)(1− α)

αϵ
(46)

=
(k − 1)(1− α)− α

α(eϵ − 1)
− (k − 1)(1− α)

αϵ
(47)

=
ϵ(k − 1)(1− α)− αϵ− (eϵ − 1)(k − 1)(1− α)

αϵ(eϵ − 1)
(48)

=
(ϵ− eϵ + 1)(k − 1)(1− α)− αϵ

αϵ(eϵ − 1)
(49)

< 0, (50)

where (50) follows from the fact that 1 + ϵ < eϵ for ϵ > 0.
Therefore, despite the similar structure of ROO and SubRR,
ROO requires fewer samples to achieve ϵ-DP.

C. Proof of Theorem 2

Since m denotes the smallest number of times an element in
the alphabet [k] appears in a dataset xn, it is at most

⌊
n
k

⌋
when

the empirical distribution is uniform. For neighboring datasets
xn ∼ x̃n, there are three possible values of m̃: (1) m̃ = m,
when the different entry in x̃n is a different element in [k],
hence it does not affect the minimum count, (2) m̃ = m+ 1,
and (3) m̃ = m− 1. In order to understand how the behavior
of qm changes with m, we first analyze the likelihood ratio
of the output distributions. Recall from Definition 2 that, for
Algorithm 2 to achieve ϵ-DP, the following condition must
hold for all possible xn ∼ x̃n pairs,

max
x

qm̃
k + (1− qm̃)P̂x̃n(x)
qm
k + (1− qm)P̂xn(x)

≤ eϵ. (51)



Adding and subtracting P̂xn(x) from P̂x̃n(x) in the numerator,
the condition becomes

max
x

qm̃
k + (1− qm̃)(P̂x̃n(x)− P̂xn(x) + P̂xn(x))

qm
k + (1− qm)P̂xn(x)

≤ eϵ.

(52)

The ratio is maximized when the numerator is maximized.
Using (22), we can rewrite the condition as

qm̃
k + (1− qm̃)( 1n + P̂xn(x))

qm
k + (1− qm)P̂xn(x)

≤ eϵ (53)

⇒ P̂xn(x) (1− qm̃ − eϵ(1− qm))

≤ eϵ
qm
k

− qm̃
k

− (1− qm̃)
1

n
. (54)

Assuming qm and qm̃ do not change significantly for xn ∼ x̃n,
we require

1− qm̃ < eϵ(1− qm) ⇒ 1− qm̃ − eϵ(1− qm) < 0. (55)

Then. the inequality in (54) becomes

P̂xn(x) ≥
eϵ qmk − qm̃

k − (1− qm̃) 1n
1− qm̃ − eϵ(1− qm)

. (56)

If (56) holds for all x ∈ X , it must also hold for the minimum
value of P̂xn(x), i.e.,

m

n
≥

eϵ qmk − qm̃
k − (1− qm̃) 1n

1− qm̃ − eϵ(1− qm)
. (57)

Simplifying (57), we arrive at the condition(
−m

n
+

1

k
− 1

n

)
qm̃ ≤ eϵ

(
1

k
− m

n

)
qm − 1

n
− m

n
+

m

n
eϵ,

(58)
⇒ umqm̃ ≤ vmqm + wm, (59)

where um, vm and wm are as defined in (10)–(12). Now, for
m̃ = m, we can replace qm̃ with qm to obtain

qm ≥ wm

um − vm
. (60)

Since the denominator is always negative, the right side of (60)
will be positive only when the numerator is also negative, i.e.,

wm = − 1

n
− m

n
+

m

n
eϵ < 0 ⇒ m <

1

eϵ − 1
. (61)

For m̃ = m + 1 and m̃ = m − 1, we obtain two more
inequalities,

umqm+1 ≤ vmqm + wm, (62)

umqm−1 ≤ vmqm + wm. (63)

Therefore, for Algorithm 2 to achieve ϵ-DP, the function qm
must satisfy the inequalities in (60), (62), and (63). Defining
the initial value q0 as in (9), and assuming (63) to be an
equality for m ≥ 1, we arrive at the expression

qm =
um

vm
qm−1 −

wm

vm
. (64)

Note that, since qm is a probability, we must have 0 ≤ qm ≤ 1
for all m. Therefore, (64) is valid only when the right side is
positive. The final form of qm is thus

qm = max

{
0,

um

vm
qm−1 −

wm

vm

}
. (65)

The proofs of (64) satisfying the conditions in (60) and (62)
are provided in Lemma 3 and 4. The proof that the function qm
is non-increasing is provided in Lemma 2. When m = 0, qm is
equal to that of the fixed q of Algorithm 1. As m increases, the
input distribution gets closer to Unif[1 : k], and Algorithm 2
obscures the output distribution with smaller probability.

D. Additional Proofs

Lemma 2: For any k ≥ 2, ϵ > 0, and datasets of size n
where n > k, the function qm is non-increasing.

Proof: Since the function qm :
{
0, 1, . . . ,

⌊
n
k

⌋}
7→ [0, 1]

is discrete, we need to show that

qm ≤ qm−1, (66)

for all m ∈
{
0, 1, . . . ,

⌊
n
k

⌋}
. From Section IV, we have, for

m ≥ 1 and positive qm,

vmqm = umqm−1 − wm (67)
⇒ vmqm − vmqm−1 = umqm−1 − wm − vmqm−1 (68)

⇒ qm − qm−1 =
um − vm

vm
qm−1 −

wm

vm
(69)

⇒ qm − qm−1 =

(
um

vm
− 1

)
qm−1 −

wm

vm
. (70)

It suffices to show that the right side of (70) is negative.
Substituting (10) and (11) into the first coefficient, we have

um

vm
− 1 =

−m
n + 1

k − 1
n

eϵ
(
1
k − m

n

) − 1 (71)

=

(
1
k − m

n

)
1
n − eϵ

(
1
k − m

n

)
eϵ

(
1
k − m

n

) (72)

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)

eϵ
(
1
k − m

n

) (73)

< 0. (74)

Similarly, substituting (12) into the second coefficient, we have

wm

vm
=

− 1
n − m

n + m
n eϵ

eϵ
(
1
k − m

n

) (75)

=
− 1

n + m
n (eϵ − 1)

eϵ
(
1
k − m

n

) (76)

> 0, (77)

for m >
⌊

1
eϵ−1

⌋
. Since qm has a lower bound 0 in this range,

the right side of (70) is(
um

vm
− 1

)
qm−1 −

wm

vm
< 0. (78)

It still remains to show that qm − qm−1 < 0 for m =

1, 2, . . . ,
⌊

1
eϵ−1

⌋
. Recall from (60) in Appendix C that, in



this range of m, qm has a non-zero, positive lower bound.
Substituting this bound to the right side of (70), we have(

um

vm
− 1

)
wm−1

um−1 − vm−1
− wm

vm

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)

eϵ
(
1
k − m

n

) m−1
n (eϵ − 1)− 1

n(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

− wm

vm
(79)

=
− 1

n −
(
1
k − m

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

m−1
n (eϵ − 1)− 1

n

eϵ
(
1
k − m

n

) − wm

vm
(80)

= C
− 1

n + m
n (eϵ − 1)− 1

n (e
ϵ − 1)

eϵ
(
1
k − m

n

) − wm

vm
(81)

= C

[
− 1

n + m
n (eϵ − 1)

eϵ
(
1
k − m

n

) −
1
n (e

ϵ − 1)

eϵ
(
1
k − m

n

)]− wm

vm
(82)

= C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)]− wm

vm
. (83)

Here, wm

vm
< 0 for the relevant range of m. Moreover, since

n
k > m, eϵ−1

eϵ(n
k −m)

is positive and less than 1. Finally, the
coefficient,

C =
− 1

n −
(
1
k − m

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

(84)

=
− 1

n −
(
1
k − m−1+1

n

)
(eϵ − 1)(

m−1
n − 1

k

)
(eϵ − 1)− 1

n

(85)

=

(
m−1
n − 1

k

)
(eϵ − 1)− 1

n + 1
n (e

ϵ − 1)(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

(86)

= 1 +
1
n (e

ϵ − 1)(
m−1
n − 1

k

)
(eϵ − 1)− 1

n

(87)

= 1− eϵ − 1

1 + n(eϵ − 1)
(
1
k − m−1

n

) (88)

< 1. (89)

Therefore, we have

C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)] <
wm

vm
(90)

⇒ C

[
wm

vm
− eϵ − 1

eϵ
(
n
k −m

)]− wm

vm
< 0 (91)

Thus, for all m,

qm ≤ qm−1, (92)

i.e., qm is non-increasing.
Lemma 3: For m = 1, 2, . . . ,

⌊
1

eϵ−1

⌋
, and um, vm, the

function qm satisfies the inequality condition

qm >
wm

um − vm
. (93)

Proof: Let,

tm =
wm

um − vm
=

wm

vm
um

vm
− 1

(94)

⇒
(
um

vm
− 1

)
tm =

wm

vm
. (95)

We observe that

t0 =
w0

u0 − v0
=

− 1
n

1
k − 1

n − eϵ

k

=
1

1 + n
k (e

ϵ − 1)
= q0. (96)

Moreover,

tm =
m
n (eϵ − 1)− 1

n(
m
n − 1

k

)
(eϵ − 1)− 1

n

(97)

=
m
n (eϵ − 1)− 1

n − 1
k (e

ϵ − 1) + 1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(98)

=

(
m
n − 1

k

)
(eϵ − 1)− 1

n + 1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(99)

= 1 +
1
k (e

ϵ − 1)(
m
n − 1

k

)
(eϵ − 1)− 1

n

(100)

= 1−
1
k (e

ϵ − 1)(
1
k − m

n

)
(eϵ − 1) + 1

n

. (101)

As m increases, (101) becomes smaller due to a larger fraction
being subtracted from 1. Thus, tm is decreasing in m. Now,
we prove the lemma for the base case and apply induction.
Base case: For m = 1, we have

q1 =
u1

v1
q0 −

w1

v1
(102)

=
u1

v1
t0 −

(
u1

v1
− 1

)
t1 (103)

=
u1

v1
(t0 − t1) + t1 (104)

> t1, (105)

since u1

v1
> 0, and tm is strictly decreasing in m.

Induction step: Let us assume qm > tm for any m. We have

qm+1 =
um+1

vm+1
qm − wm+1

vm+1
(106)

=
um+1

vm+1
qm −

(
um+1

vm+1

)
tm+1 (107)

>
um+1

vm+1
tm −

(
um+1

vm+1

)
tm+1 (108)

=
um+1

vm+1
(tm − tm+1) + tm+1 (109)

> tm+1. (110)

Thus, for m = 1, 2, . . . ,
⌊

1
eϵ−1

⌋
, qm satisfies (93).

Lemma 4: For m ∈
{
0, 1, . . . ,

⌊
n
k

⌋
− 1

}
, the function qm

satisfies the inequality condition

umqm+1 < vmqm + wm. (111)



Proof: Using (10)–(12), we have, for m = 0,

u0 =
1

k
− 1

n
, v0 =

eϵ

k
,w0 = − 1

n
. (112)

Then, we can write

u0q1 − v0q0 = u0q1 − u0q0 + u0q0 − v0q0

= u0(q1 − q0) +

(
1

k
− 1

n

)
q0 −

eϵ

k
q0 (113)

= u0(q1 − q0) +

(
1

k
+ w0

)
q0 −

eϵ

k
q0 (114)

= u0(q1 − q0) +
1

k
q0 + w0q0 −

eϵ

k
q0 (115)

= w0q0 −
eϵ − 1

k
q0 − u0(q0 − q1) (116)

< w0. (117)

Here, (117) follows from the fact that 0 ≤ q0 ≤ 1 and qm is
non-increasing.

For m = 1, 2, . . . ,
⌊
n
k

⌋
− 1, we can write

umqm+1 − vmqm = umqm+1 − umqm−1 + wm (118)
= wm + um(qm+1 − qm−1) (119)

= wm +

(
−m

n
+

1

k
− 1

n

)
(qm+1 − qm−1)

(120)

= wm −
(
1

k
− m+ 1

n

)
(qm−1 − qm+1)

(121)
< wm. (122)

Here, in (118), we substitute (64). (122) follows from the fact
that qm is non-increasing and 1

k − m+1
n is non-negative for

m = 1, 2, . . . ,
⌊
n
k

⌋
− 1. Finally, for qm+1 = 0, we have

−vmqm = wm −
(
1

k
− m+ 1

n

)
qm−1 (123)

< wm (124)

⇒ qm > −wm

vm
. (125)

It follows from (77) that the right side of (125) is negative.
Thus, (125) is a valid inequality, and we can conclude that qm
satisfies (111) for the relevant range of m.
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