
Fast Plaintext-Ciphertext Matrix Multiplication
from Additively Homomorphic Encryption

Krishna Sai Tarun Ramapragada and Utsav Banerjee

Electronic Systems Engineering, Indian Institute of Science, Bengaluru, India

Abstract. Plaintext-ciphertext matrix multiplication (PC-MM) is an indispensable
tool in privacy-preserving computations such as secure machine learning and encrypted
signal processing. While there are many established algorithms for plaintext-plaintext
matrix multiplication, efficiently computing plaintext-ciphertext (and ciphertext-
ciphertext) matrix multiplication is an active area of research which has received a lot
of attention. Recent literature have explored various techniques for privacy-preserving
matrix multiplication using fully homomorphic encryption (FHE) schemes with ci-
phertext packing and Single Instruction Multiple Data (SIMD) processing. On the
other hand, there hasn’t been any attempt to speed up PC-MM using unpacked addi-
tively homomorphic encryption (AHE) schemes beyond the schoolbook method and
Strassen’s algorithm for matrix multiplication. In this work, we propose an efficient
PC-MM from unpacked AHE, which applies Cussen’s compression-reconstruction
algorithm for plaintext-plaintext matrix multiplication in the encrypted setting. We
experimentally validate our proposed technique using a concrete instantiation with
the additively homomorphic elliptic curve ElGamal encryption scheme and its soft-
ware implementation on a Raspberry Pi 5 edge computing platform. Our proposed
approach achieves up to an order of magnitude speedup compared to state-of-the-art
for large matrices with relatively small element bit-widths. Extensive measurement
results demonstrate that our fast PC-MM is an excellent candidate for efficient
privacy-preserving computation even in resource-constrained environments.
Keywords: additively homomorphic encryption · elliptic curve cryptography ·
privacy-preserving matrix multiplication · secure edge computing · machine learning
· signal processing · software implementation · real-world application

1 Introduction
Matrix multiplication is a cornerstone of linear algebra, indispensable for representing
and computing transformations, relationships and interactions in various fields. It lies
at the foundations of various important and interesting applications in machine learning,
signal processing, cryptography, finance, robotics, bioinformatics and scientific computing.
Its widespread significance is driven by its efficiency, enabling complex computations in
diverse domains through advancements in algorithms, software and hardware.

The advent of cloud services, edge computing and Internet of Things (IoT) has raised
various privacy concerns because sensitive data remains encrypted only during communica-
tion and storage but not during computation. This has led to an important emerging field
of research – privacy-preserving computation or secure outsourced computation. Homomor-
phic encryption (HE) is one of the most promising cryptographic primitives which enables

This work was supported by the Prime Minister’s Research Fellowship (PMRF), Ministry of Education,
Government of India. A revised version of this paper was published in the IACR Communications in
Cryptology, vol. 2, no. 1 (2025) - DOI: 10.62056/abhey76bm

E-mail: krishnasai@iisc.ac.in (Krishna Sai Tarun Ramapragada), utsav@iisc.ac.in (Utsav
Banerjee)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2025-04-22.

ar
X

iv
:2

50
4.

14
49

7v
1

 [
cs

.C
R

]
 2

0
A

pr
 2

02
5

https://orcid.org/0009-0008-0508-2902
https://orcid.org/0000-0001-7949-4178
https://banerjeeutsav.github.io
https://dx.doi.org/10.62056/abhey76bm
mailto:krishnasai@iisc.ac.in
mailto:utsav@iisc.ac.in
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Fast PC-MM from Unpacked AHE

privacy-preserving computation on encrypted data without requiring decryption [AAUC18].
Partially homomorphic encryption (PHE) schemes, such as the Rivest-Shamir-Adleman
(RSA) [RSA78], Goldwasser-Micali (GM) [GM82], ElGamal [ElG85] and Paillier [Pai99]
cryptosystems, support the evaluation of only one type of operation (additions or multipli-
cations) on ciphertexts. Fully homomorphic encryption (FHE) schemes, such as the Gentry
[Gen09], Brakerski-Gentry-Vaikuntanathan (BGV) [BGV14], Brakerski-Fan-Vercauteren
(BFV) [FV12], Gentry-Sahai-Waters (GSW) [GSW13] and Cheon-Kim-Kim-Song (CKKS)
[CKKS17] cryptosystems, support the evaluation of both addition and multiplication oper-
ations on ciphertexts. The PHE schemes are based on the hardness of number theoretic
problems such as integer factorization, quadratic residuosity, composite residuosity and
discrete logarithms, while the FHE schemes are based on the hardness of lattice problems
such as learning with errors (LWE) and learning with errors over rings (Ring-LWE).

In the context of HE, plaintext-ciphertext matrix multiplication (PC-MM) is a tool
which enables the multiplication of an unencrypted matrix with an encrypted matrix,
allowing secure computation on sensitive data without decryption. PC-MM outputs the
ciphertext(s) corresponding to the (encrypted) matrix A ×B, where its inputs are the
plaintext (unencrypted) matrix A and the ciphertext(s) corresponding to the (encrypted)
matrix B. PC-MM is a crucial component of privacy-preserving machine learning which
requires computing numerous large matrix products in various encrypted neural network
stages such as convolution and fully-connected layers. For example, privacy-preserving
inference with deep neural networks (DNNs) and transformer networks for large language
models (LLMs) involve plaintext weight matrices and ciphertext user data matrices.
While there are many established algorithms for plaintext-plaintext matrix multiplication
[CLRS09], efficiently computing plaintext-ciphertext (and ciphertext-ciphertext) matrix
multiplication is an active area of research which has recently received a lot of attention.

Prior Work: Constructions of secure matrix multiplication from lattice-based FHE
schemes heavily exploit ciphertext packing [BGH13] to accommodate multiple plaintexts
in a single ciphertext (in the form of slots) and Single Instruction Multiple Data (SIMD)
homomorphic operations (which enable massively parallel execution) to efficiently perform
encrypted computations. Various techniques for FHE-based plaintext-ciphertext (and
ciphertext-ciphertext) matrix multiplication have been proposed by [HS14, LKS17, JKLS18,
WH19, JLK+22, RT22, HZ23, ZHCJ23, ZLW25, HHW+23, BCH+24, AR24, GQH+24,
HCJG24, MMJG24, Par25] using a combination of homomorphic multiplications, additions
and rotations with varying degrees of ciphertext packing. FHE-based PC-MM with packed
ciphertexts and SIMD-style arithmetic computations has been used to demonstrate privacy-
preserving applications such as deep learning [PAH+17, JVC18, CKR+20], federated
principal component analysis [FCE+23], smart contracts [LZ23] and transformer inference
[HLC+22, DGG+23, PZM+24, ZYH+25, MYJK24]. Apart from FHE, secure matrix-
vector arithmetic and inner product computations have been explored by [ABDCP15,
BJK15, ALS16, DDM16, LCFS17, KLM+18, RPB+19, MSH+19, AB22, CMAK23, Ban23]
from discrete logarithm-based and pairing-based cryptosystems which lack the ciphertext
packing and SIMD processing capabilities of FHE. It is important to note that these
implementations, especially using FHE-based schemes, face several challenges in terms of
computation, communication and memory cost which limit their practical deployment in
resource-constrained environments such as the IoT.

In this work, we are particularly interested in the efficient realization of PC-MM from
non-lattice-based additively homomorphic PHE schemes which do not support packed
ciphertexts. In the absence of packing, PC-MM of two n× n matrices A (unencrypted) and
B (encrypted) requires n2 ciphertexts to represent the elements of B = [bij]n×n [JKLS18].
The schoolbook method [CLRS09] for matrix multiplication using this setup with an
additively homomorphic encryption scheme requires n3 plaintext-ciphertext multiplications
and n2(n− 1) ciphertext-ciphertext additions [AB22, LZ23], that is, O(n3) computational

Krishna Sai Tarun Ramapragada, Utsav Banerjee 3

complexity. This can be improved to O(nlog27) ≈ O(n2.807) using Strassen’s algorithm
[Str69] which reduces the required number of plaintext-ciphertext multiplications at the
cost of slight increase in the required number of ciphertext-ciphertext additions and
significant increase in the memory requirement [LZ23]. Further mathematical details are
provided in Section 3.1. Beyond the schoolbook method and Strassen’s algorithm, there
hasn’t been any attempt in recent literature to speed up PC-MM using unpacked additively
homomorphic encryption. Furthermore, software evaluation of PC-MM in recent work
has been mostly restricted to high-performance desktop and server-scale processors, and
efficient implementations suitable for edge computing IoT platforms are largely unexplored.
We endeavour to address these research gaps in this work.

Our Contributions: We propose an efficient approach to fast PC-MM from unpacked
additively homomorphic encryption (AHE). Our key observation is that plaintext-ciphertext
multiplications are significantly more expensive to compute than ciphertext-ciphertext
additions in typical unpacked AHE schemes, so trading off plaintext-ciphertext multiplica-
tions for ciphertext-ciphertext additions can be beneficial. Our proposed PC-MM technique
is based on an extension of Cussen’s compression-reconstruction algorithm for plaintext-
plaintext matrix multiplication [CU23] to the encrypted setting. We provide a concrete
instantiation of our fast PC-MM using the well-known additively homomorphic elliptic curve
ElGamal encryption scheme. We experimentally validate our proposed approach using a
software implementation based on the open-source MIRACL cryptographic library [Sco20].
Our implementation is extensively profiled on a Raspberry Pi 5 edge computing IoT
platform, and we provide performance analysis for a wide range of matrix dimensions
n ∈ {23, 24, 25, 26, 27, 28, 29} and matrix element bit-widths t ∈ {4, 8, 12, 16}. Our mea-
surement results indicate up to an order of magnitude speedup with our proposed PC-MM
compared to Strassen’s algorithm in case of large matrices with relatively small element
bit-widths. Such large matrices with constrained elements are quite common in practical
applications like machine learning, thus making our fast PC-MM an excellent candidate
for privacy-preserving computation even in resource-constrained environments. Finally,
we provide a brief discussion on applications of our fast PC-MM technique as well as its
extension to another popular unpacked AHE scheme, the Paillier cryptosystem.

2 Preliminaries
We denote matrices and vectors by bold uppercase and bold lowercase letters respectively.
For example, an m × n matrix A is written as A = [aij]m×n, where aij is the (i, j)-th
element with 1 ≤ i ≤ m, 1 ≤ j ≤ n. Similarly, an n × 1 column vector b is written as
b = [bi]n, where bi is the i-th element with 1 ≤ i ≤ n. The i-th row and j-th column of an
m× n matrix A are denoted by A[i, :] and A[:, j] respectively. Matrix multiplications are
denoted by ×. For integer n, let Zn denote the set of integers modulo n and let Z∗

n denote
the multiplicative group of integers modulo n that are co-prime to n. Let Fp denote a
finite field whose characteristic is a large prime p.

Figure 1: Matrix multiplication Am×n ×Bn×l = Cm×l using (a) row-and-column inner
products and (b) column-and-row outer products (diagram inspired by [Gri17]).

4 Fast PC-MM from Unpacked AHE

2.1 Matrix Multiplication
We provide a quick refresher on two matrix multiplication (MatMul) techniques – using
inner products and outer products (as shown in Figure 1):

• MatMul using Row-and-Column Inner Products: This is the most commonly
used matrix multiplication algorithm where each element of the output matrix is
computed as an inner product of a row of the first input matrix and a column of
the second input matrix. For example, for m× n and n× l input matrices A and B
respectively, the elements of the m× l output matrix C = A×B are calculated as:

cij = A[i, :]×B[:, j] =
n∑

k=1
aikbkj

that is, the (i, j)-th element cij of C is the inner product of the i-th row of A and
the j-th column of B (1 ≤ i ≤ m and 1 ≤ j ≤ l).

• MatMul using Column-and-Row Outer Products: This is another well-known
matrix multiplication algorithm where the output matrix is computed as a sum of
outer products of the columns of the first input matrix and the rows of the second
input matrix. For example, for m×n and n× l input matrices A and B respectively,
the m× l output matrix C = A×B is calculated as:

C =
n∑

k=1
A[:, k]×B[k, :]

that is, C is the sum of the outer products of the k-th columns of A and the k-th
rows of B (1 ≤ k ≤ n).

2.2 Additively Homomorphic Encryption
Consider a public key encryption scheme PKE = (KeyGen, Encrypt, Decrypt). Let M and
C denote the plaintext and ciphertext spaces respectively. Then, standard definitions of
the three constituent algorithms of this encryption scheme PKE are as follows [MOV18]:

• KeyGen (1λ): this algorithm generates a public key pk and a secret key sk for the
specified security parameter λ.

• Encrypt (pk, m): this algorithm outputs the ciphertext c ∈ C corresponding to the
input plaintext message m ∈M using the public key pk.

• Decrypt (sk, c): this algorithm outputs the plaintext message m ∈M corresponding
to the input ciphertext c ∈ C using the secret key sk.

The encryption scheme PKE is correct if Decrypt(sk, Encrypt(pk, m)) = m for all m ∈M
with overwhelming probability. Now, assume that the message space M is an additive
group with the traditional + operation and the ciphertext space C also forms a group with
an appropriate operation ⊕. Then, this scheme is considered additively homomorphic if it
satisfies the following property for ciphertexts c1 and c2:

c1 ⊕ c2 = Encrypt(pk, m1)⊕ Encrypt(pk, m2) = Encrypt(pk, m1 + m2) (1)

for any pair of messages m1, m2 ∈M. Note that the ciphertext group operation ⊕ does not
necessarily need to be a numerical addition, e.g., ⊕ is a point addition in case of the elliptic
curve ElGamal encryption scheme [ElG85] and ⊕ is a modular multiplication in case of
the Paillier encryption scheme [Pai99], as discussed later. Henceforth, we will denote such

Krishna Sai Tarun Ramapragada, Utsav Banerjee 5

an additively homomorphic public key encryption scheme by AHE = (KeyGen, Encrypt,
Decrypt) which is also comprised of similar key generation, encryption and decryption
functions as described above. Note that only additively homomorphic encryption schemes
which do not support ciphertext packing are of interest in this work. Then, for such a
generic AHE scheme with any ciphertexts c, c1, c2, c3, · · · ∈ C, we can define the following:

c1 ⊕ c2 ⊕ c3 ⊕ · · · =
⊕

i

ci and c⊕ c⊕ c⊕ · · · ⊕ c︸ ︷︷ ︸
(s−1) group operations

=
s⊕

c

Note that the above two ciphertext operations are equivalent to point additions and scalar
point multiplication respectively in case of the elliptic curve ElGamal encryption scheme
[ElG85], and modular multiplications and modular exponentiation in case of the Paillier
encryption scheme [Pai99], as will be discussed later.
Clearly, Equation 1 can be extended to multiple ciphertexts ci ∈ C as:⊕

i

ci =
⊕

i

Encrypt(pk, mi) = Encrypt(pk,
∑

i

mi) ∀ mi ∈M (2)

Further, Equation 1 can also be extended to plaintext scalar s and ciphertext c ∈ C as:
s⊕

c =
s⊕

Encrypt(pk, m) = Encrypt(pk, s ·m) ∀ m, s ∈M (3)

Equations 2 and 3 can be combined to obtain the following generalization of the additively
homomorphic property with plaintext scalars si and ciphertexts ci:⊕

i

si⊕
ci =

⊕
i

si⊕
Encrypt(pk, mi) = Encrypt(pk,

∑
i

si ·mi) ∀ mi, si ∈M (4)

Note that this corresponds to homomorphic evaluation of the inner product of vectors
s = (s1, s2, · · ·) and m = (m1, m2, · · ·), where the former is unencrypted and the latter is
in the encrypted domain. This property is traditionally used to realize plaintext-ciphertext
matrix multiplication with such an encryption scheme AHE, as discussed in Section 3. Finally,
Equation 4 leads to a stricter requirement for correctness of the additively homomorphic
encryption scheme that the following should hold with overwhelming probability:

Decrypt(sk,
⊕

i

si⊕
Encrypt(pk, mi)) =

∑
i

si ·mi for mi, si ∈M

2.3 Elliptic Curve Cryptography
An elliptic curve E over a finite field K is defined as E : y2+a1xy+a3y = x3+a2x2+a4x+a6,
where a1, a2, a3, a4, a6 ∈ K. In this work, we consider elliptic curves over finite fields
with characteristic char(K) ̸= 2, 3. In particular, we are interested in fields where the
characteristic is a large prime p > 3, the corresponding field henceforth denoted as Fp.

The fundamental operations in elliptic curve cryptography (ECC) are point addition
(R = P + Q) and point doubling (R = P + P), where P, Q, R ∈ E(Fp). With these
operations, the points on the curve E(Fp) form an abelian group, with the point at infinity
∞ serving as the identity element, that is, P +∞ =∞+P = P for all P ∈ E(Fp). The order
of this group (number of points in E(Fp)) is q so that qP =∞ for all P ∈ E(Fp). Repeated
addition of a point P with itself is called elliptic curve scalar multiplication (ECSM). For
any scalar k, the scalar multiple kP is defined as [HMV06] kP = P + P + · · ·+ P (naively
requires k − 1 point additions). This computation is integral to all ECC protocols and
also forms the basis of the underlying elliptic curve discrete logarithm problem. One of the

6 Fast PC-MM from Unpacked AHE

Algorithm 1 ECSM using Montgomery ladder [Joy03]
Require: k = (kt−1, · · · , k1, k0)2 and P ∈ E(Fp)
Ensure: kP

1: R0 ←∞, R1 ← P
2: for (i = t− 1; i ≥ 0; i = i− 1) do
3: b← ki

4: R1−b ← R1 + R0, Rb ← 2Rb

5: end for
6: return R0

well-known techniques for efficiently computing ECSM is the Montgomery ladder shown
in Algorithm 1, which requires exactly t point addition and t point doubling operations
to compute kP for t-bit scalar k [Joy03]. Further details on elliptic curve cryptography,
ECSM algorithms and ECC protocols are available in [HMV06, BSS99, BSS05].

2.4 Elliptic Curve ElGamal Encryption Scheme
The ElGamal encryption scheme [ElG85] is one of the oldest and widely studied public
key encryption schemes based on the hardness of computing discrete logarithms, and it
naturally extends to elliptic curve groups. For elliptic curve ElGamal encryption, the
algorithms KeyGen, Encrypt and Decrypt from Section 2.2 are defined as follows:

• KeyGen: outputs public key pk = (E(Fp), q, G, H) and secret key sk = x for a given
cryptographically suitable elliptic curve group E(Fp) of order q with generator point
G, where x is sampled uniformly at random from [1, q − 1] and H = xG

• Encrypt: encrypts message m using public key pk = (E(Fp), q, G, H) and outputs
ciphertext c = (C1, C2) = (rG, rH + ϕ(m)) where r is sampled uniformly at random
from [1, q − 1]

• Decrypt: decrypts ciphertext c = (C1, C2) using secret key sk = x and outputs
message m = ϕ−1(C2 − xC1)

Here, ϕ :M→ E(Fp) is an invertible function which maps any message m ∈M to a unique
point in the elliptic curve group E(Fp). A simple and commonly used message-to-point map
is to use the ECSM operation such that ϕ(m) = mG. The inverse ϕ−1 involves computing
a discrete logarithm to retrieve m from mG, which is computationally intractable for
arbitrary m ∈ Zq and necessitates a bound on the message. For |M| = B ≪ q, the inverse
map can be computed in O(

√
B) space and time complexity using algorithms such as the

baby-step giant-step [MOV18]. The value of B is determined by the memory capacity
of the underlying implementation platform. Clearly, this scheme satisfies the correctness
requirements from Section 2.2 as long as the message space is appropriately bounded. The
message (plaintext) space is M⊂ Zq and the ciphertext space is C = E(Fp)× E(Fp).

This scheme is additively homomorphic for ϕ(m) = mG. Consider the ciphertexts
ci = (C(i)

1 , C
(i)
2) = (riG, riH + miG) corresponding to messages mi ∈ M, where ri are

sampled uniformly at random from [1, q − 1]. Then, for scalars si ∈M, we have:∑
i

si · ci = (
∑

i

siC
(i)
1 ,

∑
i

siC
(i)
2) = (

∑
i

si(riG),
∑

i

si(riH + miG))

= (
∑

i

siriG,
∑

i

siriH +
∑

i

simiG)) = (C⋆
1 , C⋆

2)
(5)

Clearly, C⋆
2 −xC⋆

1 =
∑

i siri(xG) +
∑

i simiG−x(
∑

i siriG) = (
∑

i simi)G since H = xG.
Hence, (C⋆

1 , C⋆
2) is a valid ciphertext for

∑
i simi under the same encryption / decryption

Krishna Sai Tarun Ramapragada, Utsav Banerjee 7

key pair provided
∑

i simi ∈M and ϕ−1(C⋆
2−xC⋆

1) can be efficiently computed. Therefore,
using the elliptic curve ElGamal scheme as an AHE requires mi and si to be restricted
to small subsets of M. For example, if si < Bs and mi < Bm for 1 ≤ i ≤ n, then∑n

i=1 simi < nBsBm < B ≪ q for M = {0, 1, · · · , B − 1}. These conditions can be
easily satisfied in case of plaintext-ciphertext matrix multiplication through the choice
of appropriate parameters B, Bs < B and Bm < B. The ElGamal encryption scheme
is not known to support ciphertext packing, thus making it an excellent candidate for
demonstrating the techniques proposed in this work.

2.5 Paillier Encryption Scheme
The Paillier encryption scheme [Pai99] is another popular public key encryption scheme
based on the hardness of computing composite residues. For Paillier encryption, the
algorithms KeyGen, Encrypt and Decrypt from Section 2.2 are defined as follows:

• KeyGen: outputs public key pk = (n, g) and secret key sk = (λ, µ) where n = pq for
large primes p and q such that gcd (pq, (p− 1)(q − 1)) = 1, λ = lcm (p− 1, q − 1), g
is sampled uniformly at random from [1, n2 − 1] such that gcd (n, L(gλ mod n2)) = 1
for the quotient function L(x) = x−1

n and µ = (L(gλ mod n2))−1 mod n

• Encrypt: encrypts message m using public key pk = (n, g) and outputs ciphertext
c = gmrn mod n2 where r is sampled uniformly at random from [1, n− 1]

• Decrypt: decrypts ciphertext c using secret key sk = (λ, µ) and outputs message
m = L(cλ mod n2) µ mod n

This scheme also satisfies the correctness requirements from Section 2.2. The message
(plaintext) space is M = Zn and the ciphertext space is C = Z∗

n2 . This scheme is also
additively homomorphic. Consider the ciphertexts ci = gmiri

n mod n2 corresponding to
messages mi ∈M, where ri are sampled uniformly at random from [1, n− 1]. Then, for
scalars si ∈M, we have:∏

i

ci
si =

∏
i

(gmiri
n mod n2)si =

∏
i

gsimiri
sin mod n2

= g
∑

i
simi(

∏
i

ri
si)

n
mod n2 = c∗

(6)

Clearly, L((c∗)λ mod n2) µ mod n =
∑

i simi. Hence, c∗ is a valid ciphertext for
∑

i simi

under the same encryption / decryption key pair provided
∑

i simi ∈M. Therefore, the
Paillier scheme can also be used as an AHE and it does not support ciphertext packing.

3 Plaintext-Ciphertext Matrix Multiplication
Next, we discuss how the generalized additively homomorphic property of an unpacked
AHE scheme (Equation 4) can be used to compute the product of a plaintext matrix and a
ciphertext matrix. While both the elliptic curve ElGamal encryption scheme and the Paillier
encryption scheme are popular choices for AHE, the former has much smaller ciphertext
sizes. For example, at the 128-bit security level, elliptic curve ElGamal ciphertexts are
128 bytes long (= 4× 32 bytes for ⌈ log2 p ⌉ = 256) while Paillier ciphertexts are 768 bytes
long (= 2× 384 bytes for ⌈ log2 n ⌉ = 3072) [MOV18]. Therefore, we choose the the elliptic
curve ElGamal (EC-ElGamal) encryption scheme for our implementation because of its
smaller key / ciphertext sizes, computational efficiency and availability of fast software
libraries optimized for embedded systems. Henceforth, we use the EC-ElGamal scheme as
our AHE with both message and ciphertext spaces being additive groups.

8 Fast PC-MM from Unpacked AHE

3.1 Traditional Approach to PC-MM from Unpacked AHE
Consider an m × n plaintext matrix A = [aik]m×n and nl ciphertexts Encrypt(pk, bkj)
corresponding to an n× l plaintext matrix B = [bkj]n×l encrypted under an unpacked AHE
scheme as defined in Section 2.2. Then, the schoolbook method for PC-MM computes the
ciphertext corresponding to the (i, j)-th element of A×B = C = [cij]m×l as:

Encrypt(pk, cij) = Encrypt(pk,

n∑
k=1

aikbkj) =
n∑

k=1
aik · Encrypt(pk, bkj)

where the row-and-column inner product technique from Section 2.1 has been employed.
Clearly, each inner product requires n plaintext-ciphertext multiplications and n − 1
ciphertext-ciphertext additions, and ml such inner product computations are required.
For the elliptic curve ElGamal instantiation (EC-ElGamal) of the AHE scheme, 1 plaintext-
ciphertext multiplication involves 2 ECSMs (each requiring t point doubling and t point
addition operations according to Algorithm 1), and 1 ciphertext-ciphertext addition involves
2 point addition operations, where t denotes the bit-width of the plaintext matrix elements.
The same analysis also holds for the column-and-row outer product technique from Section
2.1, where the output is computed as:

Encrypt(pk, c11) Encrypt(pk, c12) · · · Encrypt(pk, c1l)
Encrypt(pk, c21) Encrypt(pk, c22) · · · Encrypt(pk, c2l)

...
...

Encrypt(pk, cm1) Encrypt(pk, cm2) · · · Encrypt(pk, cml)



=
n∑

k=1


a1k · Encrypt(pk, bk1) a1k · Encrypt(pk, bk2) · · · a1k · Encrypt(pk, bkl)
a2k · Encrypt(pk, bk1) a2k · Encrypt(pk, bk2) · · · a2k · Encrypt(pk, bkl)

...
...

amk · Encrypt(pk, bk1) amk · Encrypt(pk, bk2) · · · amk · Encrypt(pk, bkl)


which also requires total mln plaintext-ciphertext multiplications and ml(n−1) ciphertext-
ciphertext additions. For square matrices with m = l = n, this translates to the O(n3)
complexity for PC-MM as mentioned in Section 1.

The key idea of Strassen’s algorithm [Str69] is to partition the matrices A, B and C
into equally sized block matrices as follows:

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
and C =

[
C11 C12
C21 C22

]
where the block matrices Aij , Bij and Cij are of dimensions m

2 ×
n
2 , n

2 ×
l
2 and m

2 ×
l
2

respectively. Then, the output matrix is computed as:[
C11 C12
C21 C22

]
=

[
M1 + M4 −M5 + M7 M3 + M5

M2 + M4 M1 −M2 + M3 + M6

]
where M1 = (A11 +A22)× (B11 +B22), M2 = (A21 +A22)×B11, M3 = A11× (B12−
B22), M4 = A22× (B21−B11), M5 = (A11 +A12)×B22, M6 = (A21−A11)× (B11 +
B12) and M7 = (A12 −A22)× (B21 + B22). This reduces the number of block matrix
multiplications to 7 instead of 8 in the schoolbook approach:[

C11 C12
C21 C22

]
=

[
A11 ×B11 + A12 ×B21 A11 ×B12 + A12 ×B22
A21 ×B11 + A22 ×B21 A21 ×B12 + A22 ×B22

]
As a trade-off, the number of block matrix additions / subtractions is increased to 18 instead
of 4. This process of partitioning into block matrices is recursively applied till the sub-
matrices are small enough, thus reducing the overall computational complexity (assuming

Krishna Sai Tarun Ramapragada, Utsav Banerjee 9

block matrix multiplications are much more expensive than block matrix additions /
subtractions). Strassen’s algorithm can be applied easily in the PC-MM setting where the
block matrices Bij and Cij are encrypted as ciphertexts, while the block matrices Aij

are in plaintext. Each recursive iteration of PC-MM with Strassen’s algorithm involves
7 plaintext-ciphertext block matrix multiplications and 13 ciphertext-ciphertext block
matrix additions / subtractions. There are 5 plaintext-plaintext block matrix additions
/ subtractions required, but these are much cheaper than encrypted computations and
hence have negligible impact on the overall computational cost. For square matrices with
m = l = n, this translates to the O(nlog27) ≈ O(n2.807) asymptotic complexity for PC-MM
as mentioned in Section 1.

3.2 Cussen’s Algorithm for Matrix Multiplication
Cussen’s compression-reconstruction algorithm for plaintext-plaintext matrix multiplication
was proposed by [CU23] in the context of improving the energy-efficiency of machine
learning hardware accelerators. The key idea of Cussen’s algorithm is that a matrix
multiplication can be reduced to a “surprisingly small number” of scalar multiplications at
the cost of extra scalar additions by cleverly pre-processing one of the input matrices and
then computing the matrix product as a sum of column-and-row outer products.

Here, we provide a brief description of Cussen’s algorithm [CU23]. The outer product
approach for multiplying two matrices A = [aik]m×n and B = [akj]n×l, as explained in
Section 2.1, requires computing the sum of n outer products of the form A[:, k]×B[k, :],
where the k-th outer product (1 ≤ k ≤ n) can be written as:

A[:, k]×B[k, :] =


a1k · bk1 a1k · bk2 · · · a1k · bkl

a2k · bk1 a2k · bk2 · · · a2k · bkl

...
...

amk · bk1 amk · bk2 · · · amk · bkl

 (7)

This outer product computation can be further decomposed into vector-scalar multipli-
cations between [a1k, a2k, · · · , amk]T and bkj which result in the j-th column of the k-th
outer product (1 ≤ k ≤ n and 1 ≤ j ≤ l) as:

a1k

a2k

...
amk

 · bkj =


a1k · bkj

a2k · bkj

...
amk · bkj

 (8)

The core of Cussen’s algorithm involves compressing [a1k, a2k, · · · , amk]T into a shorter
vector through repeated sorting, eliminating duplicates and taking differences between con-
secutive elements. Then, the vector-scalar multiplication is computed by first multiplying
this short constrained vector with bkj and accumulating the differences to reconstruct the fi-
nal result. Algorithm 2 provides an outline of Cussen’s iterative compression-reconstruction
method for plaintext vector-scalar multiplication [CU23]. This method is then extended
across the entire matrices A and B to correctly compute their matrix product A ×B.
Henceforth, we refer to these two stages of Cussen’s algorithm as Compression Phase and
Reconstruction Phase respectively.

Figure 2 shows a toy example of applying N = 4 iterations each of the compression and
reconstruction phases of Cussen’s plaintext vector-scalar multiplication algorithm. This
example multiplies a vector of length n = 8 with 8-bit elements and a scalar C. The vector
is compressed to length 3 and element-wise multiplied by C at the end of the compression
phase, where the differences of consecutive vector elements need not be taken in the last
iteration. The reconstruction phase then computes the final vector-scalar product by

10 Fast PC-MM from Unpacked AHE

Algorithm 2 Cussen’s algorithm for plaintext vector-scalar multiplication [CU23]
Require: plaintext vector a = [a1, a2, · · · , an]T of length n, plaintext scalar C and number

of iterations N of vector compression and reconstruction
Ensure: plaintext vector b = C · a = [C · a1, C · a2, · · · , C · an]T

1: n0 ← n
2: a(0) ← a
3: Compression Phase:
4: for (w = 1; w ≤ N ; w = w + 1) do
5: Sort vector a(w−1) and eliminate duplicates to obtain vector a(w) = [a(w)

1 , a
(w)
2 , · · ·]T

of length nw ≤ nw−1 and store pointers to track sorting order
6: if w ̸= N then
7: Compute differences of consecutive elements of a(w) as:
8: for (i = nw; i > 1; i = i− 1) do
9: a

(w)
i ← a

(w)
i − a

(w)
i−1

10: end for
11: end if
12: end for
13: Compute b(N) = [b(N)

1 , b
(N)
2 , · · ·]T = C · a(N) = [C · a(N)

1 , C · a(N)
2 , · · ·]T of length nN

14: Reconstruction Phase:
15: for (w = N ; w ≥ 1; w = w − 1) do
16: if w ̸= N then
17: Compute additions of consecutive elements of b(w) as:
18: for (i = 1; i < nw; i = i + 1) do
19: b

(w)
i+1 ← b

(w)
i+1 + b

(w)
i

20: end for
21: end if
22: Un-sort vector b(w) and re-insert duplicates using tracking pointers to obtain vector

b(w−1) = [b(w−1)
1 , b

(w−1)
2 , · · ·]T of length nw−1 ≥ nw

23: end for
24: b← b(0)

25: return b

Figure 2: Toy example showing four iterations each of the Compression Phase and the
Reconstruction Phase of plaintext vector-scalar multiplication using Cussen’s algorithm.

Krishna Sai Tarun Ramapragada, Utsav Banerjee 11

adding back the differences, un-sorting the elements and re-inserting any duplicates using
a set of tracking pointers. Note that this requires 3 multiplications after the compression
phase and 15 additions in the reconstruction phase as opposed to 8 multiplications in the
schoolbook method, that is, 5 less multiplications and 15 more additions. Therefore, this
approach provides an advantage over the schoolbook method if 1 multiplication is more
expensive than 3 additions in this toy example of vector-scalar multiplication, ignoring
the cost of sorting and tracking duplicates. In general, for N iterations of Cussen’s
compression-reconstruction-based plaintext vector-scalar multiplication algorithm, the
tracking pointers require O(N · n) storage for vector length n in the worst case. Further
details of the algorithm, its computational complexity, theoretical analysis and various
optimizations are available in [CU23].

To understand the benefits of Cussen’s plaintext vector-scalar multiplication algo-
rithm, we analyze the number of multiplications required after compression and the
number of additions required for reconstruction. We consider random vectors of length
n ∈ {23, 24, 25, 26, 27, 28, 29} with element bit-widths t ∈ {4, 8, 12, 16} and obtain the multi-
plication and addition counts averaged over 1000 random trials for each (n, t) combination
with 4 iterations of compression and reconstruction using our Python implementation
of Cussen’s algorithm. The results are shown in Figure 3 along with comparison with
the schoolbook approach (which simply requires n element-wise multiplications and zero
additions). We observe that Cussen’s algorithm is able to significantly reduce the multipli-
cation count (up to 2 orders of magnitude) in case of large vector sizes and relatively small

Figure 3: Number of multiplications and additions required for plaintext vector-scalar
multiplication using schoolbook approach and Cussen’s algorithm for random vectors of
length n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}.

Figure 4: Number of multiplications and additions required for plaintext matrix multipli-
cation using schoolbook approach, Strassen’s algorithm and Cussen’s algorithm for random
square matrices of dimension n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}.

12 Fast PC-MM from Unpacked AHE

element bit-widths by taking repeated differences and eliminating possible duplicates in
the compression phase. Of course, this comes at the cost of a large number of additions in
the reconstruction phase, which are not required in the schoolbook approach. Data used
to plot Figure 3 are provided in Tables 1 and 2 in the Appendix.

This can be generalized to matrix-matrix multiplication by applying the above method-
ology to each column of matrix A and then multiplying with elements of matrix B.
Note that the compression phase can be amortized across all the columns of an outer
product, while the reconstruction phase must be performed for each column separately
after multiplications with the compressed version. To understand the benefits of Cussen’s
algorithm compared to matrix multiplication using schoolbook method and Strassen’s
algorithm, we analyze their computational requirements using Python simulations. For
simplicity of presentation, we consider square matrices (m = n = l) with dimensions
n ∈ {23, 24, 25, 26, 27, 28, 29} and element bit-widths t ∈ {4, 8, 12, 16}. For Cussen’s algo-
rithm, we extrapolate from the vector-scalar multiplication analysis discussed above to the
matrix multiplication case. The results are summarized in Figure 4 and we observe that
Cussen’s algorithm is able to significantly reduce the number of multiplications (up to 2
orders of magnitude) while increasing the number of additions in case of large matrices with
relatively small element bit-widths. However, an interesting observation is that the number
of additions required in both Strassen’s and Cussen’s algorithms are still comparable (both
are larger than the n2(n− 1) additions required in schoolbook approach). Data used to
plot Figure 4 are provided in Tables 3 and 4 in the Appendix.

3.3 Proposed Approach to PC-MM from Unpacked AHE
Although proposed with the motivation to improve hardware efficiency, Cussen’s algorithm
has found little adoption so far in practical implementation, e.g., in machine learning
acceleration. This is possibly due to the fact that computer architecture and semiconductor
technology innovations have already made multiplication circuits quite efficient, and data
movement between memory and computational units has become the major performance
bottleneck in such applications rather than the computations themselves [Hor14].

In this work, we demonstrate a suitable application of Cussen’s algorithm in a very
different context of privacy-preserving computation which can truly exploit its advantage.
We extend the plaintext compression-reconstruction technique to the encrypted setting for
plaintext-ciphertext matrix multiplication (PC-MM) with unpacked additively homomorphic
encryption (AHE). In particular, we focus on the elliptic curve ElGamal (EC-ElGamal)
encryption scheme discussed in Sections 2.3 and 2.4. Here, our key observation is that
multiplication of a ciphertext by a plaintext scalar requires two ECSM computations while
adding two ciphertexts requires two point additions, since an EC-ElGamal ciphertext is a
tuple of points as explained in Section 2.4. Now, an ECSM computation with a t-bit scalar
using Algorithm 1 requires t point doubling and t point addition operations. While the
relative costs of implementing point doubling and point addition using prime field arithmetic
are different for different elliptic curves [BL24], we assume they are approximately the
same for simplicity of analysis. Then, multiplication of a ciphertext by a plaintext scalar is
≈ 2t times more expensive than addition of two ciphertexts. Therefore, we have a suitable
setting where “multiplications” (plaintext-ciphertext) are significantly more expensive than
“additions” (ciphertext-ciphertext) for reasonably large scalars.

With this motivation, we propose an efficient approach to compute PC-MM with EC-
ElGamal-based unpacked AHE by applying Cussen’s algorithm. This is summarized in
Algorithm 3 with an m×n plaintext matrix A = [aik]m×n and nl EC-ElGamal ciphertexts
corresponding to an n× l plaintext matrix B = [bkj]n×l as the inputs, and ml EC-ElGamal
ciphertexts corresponding to an m × l plaintext matrix C = A × B = [cij]m×l as the
outputs. Here, step 3 compresses the k-th column of A, while steps 5 and 6 reconstruct its
products with the ciphertexts corresponding to the (k, j)-th elements of B. Step 8 does

Krishna Sai Tarun Ramapragada, Utsav Banerjee 13

Algorithm 3 Proposed efficient PC-MM with EC-ElGamal-based unpacked AHE using
Cussen’s compression-reconstruction algorithm
Require: plaintext matrix A = [aik]m×n and nl EC-ElGamal ciphertexts (B(kj)

1 , B
(kj)
2) =

Encrypt(pk, bkj) corresponding to plaintext matrix B = [bkj]n×l

Ensure: ml EC-ElGamal ciphertexts (C(ij)
1 , C

(ij)
2) = Encrypt(pk, cij) corresponding to

plaintext matrix C = A×B = [cij]m×l where cij =
∑n

k=1 aikbkj

1: (C(ij)
1 , C

(ij)
2)← (∞,∞) ∀ 1 ≤ i ≤ m and 1 ≤ j ≤ l

2: for (k = 1; k ≤ n; k = k + 1) do
3: Convert the k-th column [a1k, a2k, · · · , amk]T of A to vector [a′

1k, · · · , a′
m′k]T of

length m′ ≤ m with multiple iterations of Cussen’s compression algorithm
4: for (j = 1; j ≤ l; j = j + 1) do
5: Multiply [a′

1k, · · · , a′
m′k]T with (B(kj)

1 , B
(kj)
2) element-wise using 2m′ ECSMs to

get [(a′
1kB

(kj)
1 , a′

1kB
(kj)
2), · · · , (a′

m′kB
(kj)
1 , a′

m′kB
(kj)
2)]T

6: Obtain m ciphertexts corresponding to the j-th column of the k-th outer product
as [(a1kB

(kj)
1 , a1kB

(kj)
2), (a2kB

(kj)
1 , a2kB

(kj)
2), · · · , (amkB

(kj)
1 , amkB

(kj)
2)]T from

[(a′
1kB

(kj)
1 , a′

1kB
(kj)
2), · · · , (a′

m′kB
(kj)
1 , a′

m′kB
(kj)
2)]T with multiple iterations of

Cussen’s reconstruction algorithm using elliptic curve point additions
7: for (i = 1; i ≤ m; i = i + 1) do
8: (C(ij)

1 , C
(ij)
2)← (C(ij)

1 + aikB
(kj)
1 , C

(ij)
2 + aikB

(kj)
2)

9: end for
10: end for
11: end for
12: return (C(ij)

1 , C
(ij)
2) ∀ 1 ≤ i ≤ m and 1 ≤ j ≤ l

column-wise summation of the encrypted outer products to obtain the final ciphertexts
corresponding to C. The compression in step 3 gets amortized across all l columns of each
of the n outer products. Therefore, the core of our proposed PC-MM is an application of
Cussen’s efficient scalar-vector multiplication algorithm in the encrypted setting, and the
same is then repeated nl times to obtain the final plaintext-ciphertext matrix product. It
is important to note that this method always performs exact reconstruction of the final
ciphertext matrix / vector, and there is no loss in accuracy compared to the plaintext
result. Of course, the plaintext matrix / vector elements need to be integers as implicitly
defined by the underlying AHE scheme and its message space M. Possible solutions for
handling real numbers are discussed in Section 4.3.

Figure 5 shows how the toy example of plaintext vector-scalar multiplication from Figure
2 can be extended to the encrypted setting. This example multiplies a plaintext vector of
length n = 8 with 8-bit elements and an EC-ElGamal ciphertext (C1, C2) corresponding
to plaintext scalar C. The compression phase remains exactly the same as in the plaintext
setting, while the reconstruction phase in the encrypted setting now involves elliptic curve
scalar multiplication (ECSM) operations and elliptic curve point additions. Compared
to 16 ECSM operations in the schoolbook approach, the example in Figure 5 requires 6
ECSM operations and 30 point additions. For 8-bit scalars, the cost of 1 ECSM operation
is approximately equivalent to 16 point additions, as discussed earlier. Therefore, our
proposed approach using Cussen’s compression-reconstruction algorithm provides a clear
advantage by saving computation cost equivalent to 130 point additions in this toy example.
The same can be extended to the case of PC-MM following Algorithm 3.

Again, we first analyze the benefits of Cussen’s compression-reconstruction algorithm in
the context of multiplying plaintext vectors with ciphertext scalars. We consider random
vectors of length n ∈ {23, 24, 25, 26, 27, 28, 29} with element bit-widths t ∈ {4, 8, 12, 16} and
obtain the operation counts averaged over 1000 random trials for each (n, t) combination

14 Fast PC-MM from Unpacked AHE

Figure 5: Toy example showing efficient multiplication of plaintext vector and EC-ElGamal
ciphertext corresponding to encrypted scalar using proposed approach with four iterations
of Cussen’s compression-reconstruction algorithm.

with 4 iterations of compression and reconstruction using our Python implementation.
The results are shown in Figure 6 along with comparison with the schoolbook approach
(which simply requires 2n ECSMs) in terms of the equivalent number of elliptic curve point
additions (where we consider point doublings to be approximately equivalent to point
additions). We observe that by applying Cussen’s algorithm, we are able to significantly
reduce the equivalent point addition count (up to 2 orders of magnitude), primarily due to
the compression phase, in case of large vector sizes and relatively small element bit-widths,
even after accounting for extra point additions required in the reconstruction phase. Data
used to plot Figure 6 are provided in Table 5 in the Appendix.

This analysis confirms our claim that it is indeed possible to reap the benefits of Cussen’s
compression-reconstruction algorithm in this encrypted setting. So, we finally compare the
equivalent number of elliptic curve point additions required for plaintext-ciphertext matrix
multiplication PC-MM using schoolbook approach, Strassen’s algorithm and our proposed
approach (Algorithm 3) based on Cussen’s algorithm. For simplicity of presentation, we
again consider square matrices (m = n = l) with dimensions n ∈ {23, 24, 25, 26, 27, 28, 29}

Krishna Sai Tarun Ramapragada, Utsav Banerjee 15

Figure 6: Equivalent number of elliptic curve point additions required for plaintext vector
and ciphertext scalar multiplication using schoolbook approach and proposed approach
based on Cussen’s algorithm for random vectors of length n ∈ {23, 24, · · · , 29} with element
bit-widths t ∈ {4, 8, 12, 16}.

Figure 7: Equivalent number of elliptic curve point additions required for plaintext-
ciphertext matrix multiplication PC-MM using schoolbook approach, Strassen’s algorithm
and proposed approach based on Cussen’s algorithm for random square matrices of
dimension n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}.

and element bit-widths t ∈ {4, 8, 12, 16}, and use Python simulations to obtain the results
shown in Figure 7. For our proposed approach using Cussen’s algorithm, we extrapolate
from the plaintext vector and ciphertext scalar multiplication analysis discussed above
to the plaintext-ciphertext matrix multiplication case. Clearly, we are able to achieve
significant reduction in the equivalent point addition count (up to an order of magnitude)
for large matrices with relatively small element bit-widths, improving even further beyond
what is possible using Strassen’s algorithm. Data used to plot Figure 7 are provided in
Table 6 in the Appendix.

4 Implementation and Analysis

4.1 Software Implementation and Experimental Setup
We experimentally validate our proposed approach for fast PC-MM with Cussen’s compression-
reconstruction algorithm using a software implementation of the elliptic curve ElGamal
additively homomorphic public key encryption scheme and its extension to plaintext-
ciphertext matrix multiplication evaluations. Previous work have mostly evaluated their
techniques on high-performance desktop or server-scale processors [HS14, PAH+17, JVC18,

16 Fast PC-MM from Unpacked AHE

Figure 8: Experimental setup used for evaluating and profiling proposed fast PC-MM.

FCE+23, LZ23], while few have presented implementations on embedded micro-controllers
and IoT platforms [RPCS22, AB22, Ban23]. It is generally believed that homomorphic
computations on encrypted data are prohibitively expensive in the IoT due to their high
computational overheads [RPCS22]. In this work, we attempt to overcome this bar-
rier and demonstrate fast PC-MM from EC-ElGamal-based unpacked AHE on a Raspberry
Pi IoT platform. Our software implementation is based on the open-source MIRACL
cryptographic library with efficient and IoT-friendly realizations of elliptic curve oper-
ations [Sco20]: https://github.com/miracl/core. The code we have used for our
experiments is available online in the following repository along with usage instructions:
https://github.com/sinesyslab/fast_pcmm_ahe_cic25.

We use the NIST standard P-256 elliptic curve E(Fp) : y2 = x3 − 3x + b (mod p)
defined over a 256-bit prime field (with p = 2256 − 2224 + 2192 + 296 − 1) and having a
256-bit prime order q. We use the MIRACL function ECP_NIST256_pinmul to compute
ECSM with any point P ∈ E(Fp) and any small t-bit scalar k ≪ q using the Montgomery
ladder method from Algorithm 1. The MIRACL implementation is constant-time and
resilient against certain classes of simple timing and power analysis side-channel attacks
[FGDM+10]. In this work, we primarily focus on demonstrating and profiling the fast
PC-MM implementation, and side-channel analysis is out of the scope. For elliptic curve
point additions, we use the function ECP_NIST256_add available in the MIRACL library.

We choose the Raspberry Pi 5 single board computer (with a 2.4 GHz quad-core 64-bit
ARM Cortex-A76-based Broadcom BCM2712 system-on-chip, an 8 GB LPDDR4X-4267
SDRAM off-chip memory and a 128 GB microSDXC A2/V30/U3 UHS-I persistent storage)
as our experimental platform as it is generally considered a good representative of an
edge computing device. We use the Ubuntu 24.04 LTS Linux operating system and all C
programs are compiled using the GCC compiler version 13.2.0-23ubuntu4 with the -O3
optimization flag. Our experimental setup is shown in Figure 8. Note that our proposed
approach for fast PC-MM is also expected to work well for any other choice of elliptic curve,
software library, operating system and evaluation platform.

4.2 Measurement Results and Performance Analysis
We present the experimentally measured performance results of our proposed approach
(as outlined in Algorithm 3 including both compression and reconstruction phases) to
PC-MM using EC-ElGamal-based unpacked AHE explained in Section 3.3 with the software
implementation and evaluation setup described in Section 4.1.

First, we measure the time required for plaintext vector and ciphertext scalar mul-
tiplication using the schoolbook approach and our proposed approach using Cussen’s
algorithm (4 iterations of compression and reconstruction). Consistent with the analysis
in Section 3.3, we consider random vectors of length n ∈ {23, 24, 25, 26, 27, 28, 29} with

https://github.com/miracl/core
https://github.com/sinesyslab/fast_pcmm_ahe_cic25

Krishna Sai Tarun Ramapragada, Utsav Banerjee 17

Figure 9: Time taken for plaintext vector and ciphertext scalar multiplication using
schoolbook approach and proposed approach based on Cussen’s algorithm for random
vectors of length n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}.

Figure 10: Speedup observed for plaintext vector and ciphertext scalar multiplication
using proposed approach based on Cussen’s algorithm compared to schoolbook approach
for random vectors of length n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}.

element bit-widths t ∈ {4, 8, 12, 16}, and obtain the execution times averaged over 100
random trials for each (n, t) combination using our software implementation on Raspberry
Pi 5. The results are shown and compared in Figure 9. Data used to plot Figure 9 are
provided in Table 7 in the Appendix. For better visualization, we also present the speedup
compared to the schoolbook approach in Figure 10. We observe speedups very similar to
our Python simulations discussed in Section 3.3 and presented in Figure 6. Note that the
speedup is > 1 for all (n, t) combinations except (n, t) ∈ {(8, 12), (8, 16), (16, 16)}. This can
be easily explained by the fact that the probability of encountering duplicates in such short
random vectors with large element bit-widths is negligible, thus making the compression
phase of Cussen’s algorithm ineffective. On the other hand, for large vectors with relatively
small element bit-widths, the speedups are very large, e.g., 148× for (n = 512, t = 4),
84× for (n = 256, t = 4), 52× for (n = 512, t = 8), 44× for (n = 128, t = 4), 36×
for (n = 256, t = 8), 31× for (n = 512, t = 12), 25× for (n = 128, t = 8), 24× for
(n = 256, t = 12), 23× for (n = 64, t = 4) and 21× for (n = 512, t = 16). Data used to plot
Figure 10 are provided in Table 8 in the Appendix.

Finally, we measure the time required for plaintext-ciphertext matrix multiplication
PC-MM using schoolbook approach, Strassen’s algorithm and our proposed approach based
on Cussen’s algorithm (4 iterations of compression and reconstruction). Consistent with
the analysis in Section 3.3, we consider square matrices (m = n = l) with dimensions
n ∈ {23, 24, 25, 26, 27, 28, 29} and element bit-widths t ∈ {4, 8, 12, 16}, and obtain the
execution times for each (n, t) combination using our software implementation on Raspberry

18 Fast PC-MM from Unpacked AHE

Figure 11: Time taken for plaintext-ciphertext matrix multiplication PC-MM using school-
book approach, Strassen’s algorithm and proposed approach based on Cussen’s algorithm
for random square matrices of dimension n ∈ {23, 24, · · · , 29} with element bit-widths
t ∈ {4, 8, 12, 16}.

Figure 12: Speedups observed for plaintext-ciphertext matrix multiplication PC-MM using
proposed approach based on Cussen’s algorithm compared to schoolbook approach and
Strassen’s algorithm for random square matrices of dimension n ∈ {23, 24, · · · , 29} with
element bit-widths t ∈ {4, 8, 12, 16}.

Pi 5. The results are shown and compared in Figure 11. Data used to plot Figure 11
are provided in Table 9 in the Appendix. For better visualization, we also present the
speedups compared to the schoolbook approach and Strassen’s algorithm in Figure 12.
Again, we observe speedups similar to our Python simulations discussed in Section 3.3
and presented in Figure 7. Note that the speedup is > 1 for all (n, t) combinations
except (n, t) ∈ {(8, 12), (8, 16), (16, 16)} due to the same reason explained earlier. As
anticipated, for large matrices with relatively small element bit-widths, the speedups are
large even compared to Strassen’s algorithm, e.g., 12× for (n, t) ∈ {(512, 4), (256, 4)},
11× for (n, t) ∈ {(512, 8), (128, 4)} and 10× for (n = 256, t = 8). Data used to plot
Figure 12 are provided in Table 10 in the Appendix. To emphasize the significance of these
speedups, we give a concrete example. The PC-MM computation for (n = 512, t = 8) with our
MIRACL-based software implementation on Raspberry Pi 5 requires ≈ 5.72 hours using the
schoolbook approach and ≈ 2.73 hours using Strassen’s algorithm, while it is executed in

Krishna Sai Tarun Ramapragada, Utsav Banerjee 19

just ≈ 15.6 minutes using our proposed approach with Cussen’s compression-reconstruction
algorithm in the encrypted setting. Our experimental results and performance analyses
confirm that we have indeed been successful in lowering the computation barrier for
PC-MM from unpacked AHE in the context of IoT, embedded systems and edge computing
platforms. While the execution times will be much faster in case of high-performance
server-scale or desktop micro-processors, the same order of speedup is expected with our
proposed approach. Of course, the execution times across all three approaches can also
be further reduced using dedicated hardware accelerators for elliptic curve cryptography
[DDQ07, Ras17, ILP24].

4.3 Applications and Extensions
4.3.1 Applications

Plaintext-Ciphertext Matrix Multiplication (PC-MM) is an indispensable tool in privacy-
preserving computations such as machine learning and signal processing in the encrypted
setting (with plaintext weights and ciphertext data). This is applicable not only in the
cloud environment but also in IoT networks where PC-MM can be used by edge computing
systems to extract useful information from sensor nodes without revealing sensitive data,
e.g., encrypted sensor data classification and secure wireless fingerprint-based indoor
localization [LSZ+14, YJ18, RPB+19, AB22, Ban23].

Matrices used to represent model parameters, such as weights, in machine learning
are often sparse. In case of sparse plaintext matrices, the column vectors can be further
compressed leading to faster PC-MM using our proposed approach. Practical applications
often need to deal with rectangular matrices, which can also be handled easily using our
proposed approach by simply setting the appropriate parameters m, n and l in Algorithm
3. Finally, computations such as 1-D / 2-D linear and circular convolutions can be
represented as matrix multiplications with Toeplitz and circulant matrices [Nik14, Sal22]
and our proposed fast PC-MM approach can be used in such applications as well.

4.3.2 Handling Real Numbers

Our proposed PC-MM approach described in Sections 3.3 and 4.2 from the EC-ElGamal
unpacked AHE scheme implicitly requires the matrix elements to be integers. This feature
is common with most other well-known homomorphic encryption schemes, both PHE and
FHE (notable exceptions include the CKKS lattice-based FHE scheme [CKKS17] which
natively supports approximate arithmetic with real numbers in the encrypted domain).
Similar to other schemes supporting encrypted integer computations, our proposed PC-MM
can be extended to handle real numbers by encoding them as integers, e.g., by scaling and
rounding. In other words, matrices whose elements are real floating-point numbers need
to be converted to fixed-point representation to be suitable for the proposed PC-MM. The
impact of such encoding on accuracy is exactly the same in both plaintext and ciphertext as
the PC-MM does not introduce any additional errors during compression and reconstruction.
Note that the original Cussen’s algorithm for plaintext matrix multiplication, which has
inspired our proposed PC-MM, is also primarily focused on integer arithmetic. Possible
optimizations to better handle real numbers will be explored in future work.

4.3.3 Extension to Paillier Encryption

Although we have demonstrated our proposed approach to fast PC-MM from EC-ElGamal-
based unpacked AHE, it can be easily extended to the additively homomorphic Paillier
encryption scheme [Pai99]. As discussed in Section 2.5, in the context of Paillier-based
unpacked AHE, multiplication of ciphertexts leads to addition of their underlying plaintexts
and exponentiating a ciphertext to a plaintext scalar power leads to multiplication of its

20 Fast PC-MM from Unpacked AHE

Algorithm 4 Exponentiation using Montgomery powering ladder [JY02]
Require: k = (kt−1, · · · , k1, k0)2 and g
Ensure: gk

1: r0 ← 1, r1 ← g
2: for (i = t− 1; i ≥ 0; i = i− 1) do
3: b← ki

4: r1−b ← r1 · r0, rb ← r2
b

5: end for
6: return r0

underlying plaintext with the scalar. Therefore, for the Paillier AHE scheme, considering an
m× n plaintext matrix A = [aik]m×n and nl ciphertexts Encrypt(pk, bkj) corresponding
to an n × l plaintext matrix B = [bkj]n×l, the ml ciphertexts corresponding to the
m × l plaintext matrix A × B = C = [cij]m×l can be expressed as follows using the
column-and-row outer product technique from Section 2.1:


Encrypt(pk, c11) Encrypt(pk, c12) · · · Encrypt(pk, c1l)
Encrypt(pk, c21) Encrypt(pk, c22) · · · Encrypt(pk, c2l)

...
...

Encrypt(pk, cm1) Encrypt(pk, cm2) · · · Encrypt(pk, cml)



=



n∏
k=1

Encrypt(pk, bk1)a1k

n∏
k=1

Encrypt(pk, bk2)a1k · · ·
n∏

k=1
Encrypt(pk, bkl)a1k

n∏
k=1

Encrypt(pk, bk1)a2k

n∏
k=1

Encrypt(pk, bk2)a2k · · ·
n∏

k=1
Encrypt(pk, bkl)a2k

...
...

n∏
k=1

Encrypt(pk, bk1)amk

n∏
k=1

Encrypt(pk, bk2)amk · · ·
n∏

k=1
Encrypt(pk, bkl)amk



which requires total mln ciphertext exponentiations to plaintext powers and ml(n − 1)
ciphertext-ciphertext multiplications.

Now, ciphertext exponentiations can be efficiently computed using the Montgomery
powering ladder (similar to the Montgomery ladder for ECSM from Algorithm 1), as shown
in Algorithm 4, where all arithmetic is performed modulo the appropriate Paillier modulus.
This algorithm requires t modular squaring and t modular multiplication operations for
exponentiation to a t-bit scalar power. Again, assuming that the implementation costs
of modular squaring and multiplication are similar, a ciphertext exponentation is ≈ 2t
times more expensive than multiplication of ciphertexts. In other words, multiplication of
a plaintext under Paillier encryption with another plaintext scalar is significantly more
expensive than addition of two plaintexts under Paillier encryption for reasonably large
scalars. Therefore, we again arrive at a setting exactly similar to Section 3.3 and the
same analysis for EC-ElGamal AHE applies directly to Paillier AHE, including the Python
profiling results (except that elliptic curve scalar multiplications and point additions are
replaced by modular exponentiations and multiplications respectively). Implementation
results will depend on the software library used for Paillier encryption and its underlying
modular arithmetic. While execution times are expected to be significantly longer than
EC-ElGamal due to the use of larger moduli, the speedups compared to schoolbook
approach and Strassen’s algorithm are expected to be quite similar.

Krishna Sai Tarun Ramapragada, Utsav Banerjee 21

5 Conclusions and Future Work
In this work, we have presented an efficient approach to plaintext-ciphertext matrix multi-
plication (PC-MM) from unpacked additively homomorphic encryption (AHE) by applying
Cussen’s compression-reconstruction algorithm for plaintext-plaintext matrix multiplica-
tion in the encrypted setting. In particular, we have considered the elliptic curve ElGamal
additively homomorphic public key encryption scheme where PC-MM requires elliptic
curve scalar multiplications and elliptic curve point additions. Our key observation is that
elliptic curve scalar multiplications are significantly more expensive than elliptic curve
point additions for reasonably large scalars. Therefore, compressing the columns of the
plaintext matrix can help reduce the number of elliptic curve scalar multiplications at
the cost of increased number of elliptic curve point additions required to reconstruct the
multiplied columns for outer product computation. To understand the benefits of our
proposed approach, we have first compared its computation cost with the schoolbook
method and Strassen’s algorithm using Python simulations with random matrices. Finally,
we experimentally validate our proposed technique using a software implementation with
the open-source MIRACL cryptographic library on a Raspberry Pi 5 edge computing
platform. Our measurement results indicate up to an order of magnitude speedup with our
proposed PC-MM compared to Strassen’s algorithm in case of large matrices with relatively
small element bit-widths. Such large matrices with constrained elements are quite common
in practical applications like machine learning and signal processing, thus making our fast
PC-MM an excellent candidate for efficient privacy-preserving computation.

Possible future extensions of this work include evaluating the proposed PC-MM with
other unpacked AHE schemes, efficient handling of real numbers, exploring the possibility
of ciphertext packing in such traditionally unpacked schemes, and exploring the feasibility
of applying Cussen’s compression-reconstruction algorithm in the context of lattice-based
FHE schemes supporting ciphertext packing and SIMD-style processing.

Acknowledgment
This work was supported by the Prime Minister’s Research Fellowship, Ministry of Educa-
tion, Government of India. The authors would like to thank the anonymous reviewers for
their valuable comments, suggestions and constructive feedback.

References
[AAUC18] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A Survey

on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Computing Surveys, 51(4):1–35, 2018. doi:10.1145/3214303.

[AB22] Faiek Ahsan and Utsav Banerjee. Embedded Software Implementation
of Privacy Preserving Matrix Computation using Elliptic Curve Cryptog-
raphy for IoT Applications. In IEEE International Conference on Ad-
vanced Networks and Telecommunications Systems (ANTS), 2022. doi:
10.1109/ANTS56424.2022.10227758.

[ABDCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple Functional Encryption Schemes for Inner Products. In IACR Inter-
national Workshop on Public Key Cryptography (PKC), pages 733–751, 2015.
doi:10.1007/978-3-662-46447-2_33.

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully Secure Functional
Encryption for Inner Products, From Standard Assumptions. In Annual

https://doi.org/10.1145/3214303
https://doi.org/10.1109/ANTS56424.2022.10227758
https://doi.org/10.1109/ANTS56424.2022.10227758
https://doi.org/10.1007/978-3-662-46447-2_33

22 Fast PC-MM from Unpacked AHE

International Cryptology Conference (CRYPTO), pages 333–362, 2016. doi:
10.1007/978-3-662-53015-3_12.

[AR24] Aikata Aikata and Sujoy Sinha Roy. Secure and Efficient Outsourced Matrix
Multiplication with Homomorphic Encryption. In International Conference
on Cryptology in India (Indocrypt), pages 51–74, 2024. doi:10.1007/978-3
-031-80308-6_3.

[Ban23] Utsav Banerjee. Privacy-Preserving Edge Computing from Pairing-Based
Inner Product Functional Encryption. In IEEE Global Communications
Conference (GLOBECOM), pages 2184–2189, 2023. doi:10.1109/GLOBECOM
54140.2023.10436785.

[BCH+24] Youngjin Bae, Jung Hee Cheon, Guillaume Hanrot, Jai Hyun Park, and
Damien Stehlé. Plaintext-Ciphertext Matrix Multiplication and FHE Boot-
strapping: Fast and Fused. In Annual International Cryptology Conference
(CRYPTO), pages 387–421, 2024. doi:10.1007/978-3-031-68382-4_12.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed Ciphertexts in LWE-
based Homomorphic Encryption. In International Conference on Practice
and Theory in Public-Key Cryptography (PKC), pages 1–13, 2013. doi:
10.1007/978-3-642-36362-7_1.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Transactions on
Computation Theory, 6(3):1–36, 2014. doi:10.1145/2633600.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-Hiding
Inner Product Encryption. In International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), pages
470–491, 2015. doi:10.1007/978-3-662-48797-6_20.

[BL24] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database, 2024.
URL: https://www.hyperelliptic.org/EFD.

[BSS99] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptog-
raphy, volume 265. Cambridge University Press, 1999. doi:10.1017/cbo978
1107360211.

[BSS05] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Advances in Elliptic Curve
Cryptography, volume 317. Cambridge University Press, 2005. doi:10.1017/
cbo9780511546570.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. In International
Conference on the Theory and Applications of Cryptology and Information
Security (ASIACRYPT), pages 409–437, 2017. doi:10.1007/978-3-319-7
0694-8_15.

[CKR+20] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and
Sameer Wagh. Maliciously Secure Matrix Multiplication with Applications
to Private Deep Learning. In International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), pages
31–59, 2020. doi:10.1007/978-3-030-64840-4_2.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-031-80308-6_3
https://doi.org/10.1007/978-3-031-80308-6_3
https://doi.org/10.1109/GLOBECOM54140.2023.10436785
https://doi.org/10.1109/GLOBECOM54140.2023.10436785
https://doi.org/10.1007/978-3-031-68382-4_12
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-662-48797-6_20
https://www.hyperelliptic.org/EFD
https://doi.org/10.1017/cbo9781107360211
https://doi.org/10.1017/cbo9781107360211
https://doi.org/10.1017/cbo9780511546570
https://doi.org/10.1017/cbo9780511546570
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64840-4_2

Krishna Sai Tarun Ramapragada, Utsav Banerjee 23

[CMAK23] Shuangyi Chen, Anuja Modi, Shweta Agrawal, and Ashish Khisti. Quadratic
Functional Encryption for Secure Training in Vertical Federated Learning. In
IEEE International Symposium on Information Theory (ISIT), pages 60–65,
2023. doi:10.1109/ISIT54713.2023.10206955.

[CU23] Daniel Cussen and Jeffrey D. Ullman. Matrix Multiplication Using Only
Addition. arXiv preprint arXiv:2307.01415, 2023. URL: https://arxiv.or
g/abs/2307.01415.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional Encryp-
tion for Inner Product with Full Function Privacy. In IACR International
Conference on Practice and Theory in Public-Key Cryptography (PKC), pages
164–195, 2016. doi:10.1007/978-3-662-49384-7_7.

[DDQ07] Guerric Meurice De Dormale and Jean-Jacques Quisquater. High-Speed
Hardware Implementations of Elliptic Curve Cryptography: A Survey. Jour-
nal of Systems Architecture, 53(2-3):72–84, 2007. doi:10.1016/j.sysarc.2
006.09.002.

[DGG+23] Yuanchao Ding, Hua Guo, Yewei Guan, Weixin Liu, Jiarong Huo, Zhenyu
Guan, and Xiyong Zhang. East: Efficient and Accurate Secure Transformer
Framework for Inference. arXiv preprint arXiv:2308.09923, 2023. URL:
https://arxiv.org/abs/2308.09923.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985. doi:10.1109/TIT.1985.1057074.

[FCE+23] David Froelicher, Hyunghoon Cho, Manaswitha Edupalli, Joao Sa Sousa, Jean-
Philippe Bossuat, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, Bonnie
Berger, and Jean-Pierre Hubaux. Scalable and Privacy-Preserving Federated
Principal Component Analysis. In IEEE Symposium on Security and Privacy
(SP), pages 1908–1925, 2023. doi:10.1109/SP46215.2023.10179350.

[FGDM+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel,
and Ingrid Verbauwhede. State-of-the-Art of Secure ECC Implementations:
A Survey on Known Side-Channel Attacks and Countermeasures. In IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST),
pages 76–87, 2010. doi:10.1109/HST.2010.5513110.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. URL:
https://eprint.iacr.org/2012/144.

[Gen09] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In Annual
ACM Symposium on Theory of Computing (STOC), pages 169–178, 2009.
doi:10.1145/1536414.1536440.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How To
Play Mental Poker Keeping Secret All Partial Information. In Annual
ACM Symposium on Theory of Computing (STOC), pages 365–377, 1982.
doi:10.1145/3335741.3335749.

[GQH+24] Yang Gao, Gang Quan, Soamar Homsi, Wujie Wen, and Liqiang Wang. Secure
and Efficient General Matrix Multiplication on Cloud using Homomorphic
Encryption. The Journal of Supercomputing, 80(18):26394–26434, 2024.
doi:10.1007/s11227-024-06428-8.

https://doi.org/10.1109/ISIT54713.2023.10206955
https://arxiv.org/abs/2307.01415
https://arxiv.org/abs/2307.01415
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1016/j.sysarc.2006.09.002
https://doi.org/10.1016/j.sysarc.2006.09.002
https://arxiv.org/abs/2308.09923
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/SP46215.2023.10179350
https://doi.org/10.1109/HST.2010.5513110
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/3335741.3335749
https://doi.org/10.1007/s11227-024-06428-8

24 Fast PC-MM from Unpacked AHE

[Gri17] Alexey Grigorev. ML Wiki: Matrix-Matrix Multiplication, 2017. URL:
http://mlwiki.org/index.php/Matrix-Matrix_Multiplication.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Annual Cryptology Conference (CRYPTO), pages 75–92,
2013. doi:10.1007/978-3-642-40041-4_5.

[HCJG24] Seungwan Hong, Yoolim A. Choi, Daniel S. Joo, and Gamze Gürsoy. Privacy-
Preserving Model Evaluation for Logistic and Linear Regression using Homo-
morphically Encrypted Genotype Data. Journal of Biomedical Informatics,
156:104678, 2024. doi:10.1016/j.jbi.2024.104678.

[HHW+23] Zhicong Huang, Cheng Hong, Chenkai Weng, Wen-jie Lu, and Hunter Qu.
More Efficient Secure Matrix Multiplication for Unbalanced Recommender
Systems. IEEE Transactions on Dependable and Secure Computing, 20(1):551–
562, 2023. doi:10.1109/TDSC.2021.3139318.

[HLC+22] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and
Tianwei Zhang. Iron: Private Inference on Transformers. In Advances in
Neural Information Processing Systems (NeurIPS), volume 35, pages 15718–
15731, 2022. URL: https://proceedings.neurips.cc/paper/2022/hash
/64e2449d74f84e5b1a5c96ba7b3d308e-Abstract.html.

[HMV06] Darrel R. Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide
to Elliptic Curve Cryptography. Springer Science & Business Media, 2006.
doi:10.1007/b97644.

[Hor14] Mark Horowitz. Computing’s Energy Problem (and what we can do about
it). In IEEE International Solid-State Circuits Conference (ISSCC), pages
10–14, 2014. doi:10.1109/ISSCC.2014.6757323.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Annual Cryptology
Conference (CRYPTO), pages 554–571, 2014. doi:10.1007/978-3-662-4
4371-2_31.

[HZ23] Hai Huang and Haoran Zong. Secure Matrix Multiplication based on Fully
Homomorphic Encryption. The Journal of Supercomputing, 79(5):5064–5085,
2023. doi:10.1007/s11227-022-04850-4.

[ILP24] Rares Ifrim, Dumitrel Loghin, and Decebal Popescu. A Systematic Re-
view of Fast, Scalable, and Efficient Hardware Implementations of Elliptic
Curve Cryptography for Blockchain. ACM Transactions on Reconfigurable
Technology and Systems, 17(4):1–33, 2024. doi:10.1145/3696422.

[JKLS18] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure
Outsourced Matrix Computation and Application to Neural Networks. In
ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 1209–1222, 2018. doi:10.1145/3243734.3243837.

[JLK+22] Jaehee Jang, Younho Lee, Andrey Kim, Byunggook Na, Donggeon Yhee,
Byounghan Lee, Jung Hee Cheon, and Sungroh Yoon. Privacy-Preserving
Deep Sequential Model with Matrix Homomorphic Encryption. In ACM on
Asia Conference on Computer and Communications Security (ASIA CCS),
pages 377–391, 2022. doi:10.1145/3488932.3523253.

http://mlwiki.org/index.php/Matrix-Matrix_Multiplication
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1016/j.jbi.2024.104678
https://doi.org/10.1109/TDSC.2021.3139318
https://proceedings.neurips.cc/paper/2022/hash/64e2449d74f84e5b1a5c96ba7b3d308e-Abstract.html
https://proceedings.neurips.cc/paper/2022/hash/64e2449d74f84e5b1a5c96ba7b3d308e-Abstract.html
https://doi.org/10.1007/b97644
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/s11227-022-04850-4
https://doi.org/10.1145/3696422
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3488932.3523253

Krishna Sai Tarun Ramapragada, Utsav Banerjee 25

[Joy03] Marc Joye. Elliptic Curves and Side-Channel Analysis. ST Journal of System
Research, 4(1):17–21, 2003. URL: https://marcjoye.github.io/papers/
Joy03ecc.pdf.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference.
In USENIX Security Symposium, pages 1651–1669, 2018. URL: https://ww
w.usenix.org/conference/usenixsecurity18/presentation/juvekar.

[JY02] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. In
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 291–302, 2002. doi:10.1007/3-540-36400-5_22.

[KLM+18] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy,
and David J Wu. Function-Hiding Inner Product Encryption Is Practical.
In Security and Cryptography for Networks (SCN), pages 544–562, 2018.
doi:10.1007/978-3-319-98113-0_29.

[LCFS17] Damien Ligier, Sergiu Carpov, Caroline Fontaine, and Renaud Sirdey. Privacy
Preserving Data Classification using Inner-Product Functional Encryption.
In International Conference on Information Systems Security and Privacy
(ICISSP), pages 423–430, 2017. doi:10.5220/0006206704230430.

[LKS17] Wen-jie Lu, Shohei Kawasaki, and Jun Sakuma. Using Fully Homomorphic
Encryption for Statistical Analysis of Categorical, Ordinal and Numerical
Data. In Network and Distributed System Security Symposium (NDSS), 2017.
doi:10.14722/ndss.2017.23119.

[LSZ+14] Hong Li, Limin Sun, Haojin Zhu, Xiang Lu, and Xiuzhen Cheng. Achieving
Privacy Preservation in WiFi Fingerprint-Based Localization. In IEEE
Conference on Computer Communications (INFOCOM), pages 2337–2345,
2014. doi:10.1109/INFOCOM.2014.6848178.

[LZ23] Jing Liu and Liang Feng Zhang. Privacy-Preserving and Publicly Verifiable
Matrix Multiplication. IEEE Transactions on Services Computing, 16(3):2059–
2071, 2023. doi:10.1109/TSC.2022.3215499.

[MMJG24] Xirong Ma, Chuan Ma, Yali Jiang, and Chunpeng Ge. Improved Privacy-
Preserving PCA using Optimized Homomorphic Matrix Multiplication. Com-
puters & Security, 138:103658, 2024. doi:10.1016/j.cose.2023.103658.

[MOV18] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 2018. doi:10.1201/9780429466335.

[MSH+19] Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak, and Jolanda Modic.
Privacy-Enhanced Machine Learning with Functional Encryption. In Eu-
ropean Symposium on Research in Computer Security, pages 3–21, 2019.
doi:10.1007/978-3-030-29959-0_1.

[MYJK24] Jungho Moon, Dongwoo Yoo, Xiaoqian Jiang, and Miran Kim. THOR:
Secure Transformer Inference with Homomorphic Encryption. Cryptology
ePrint Archive, Paper 2024/1881, 2024. URL: https://eprint.iacr.org/
2024/1881.

[Nik14] Christophoros Nikou. Digital Image Processing: Filtering in the Frequency
Domain (Circulant Matrices and Convolution), 2014. URL: https://www.
cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/\Chapter_04
c_Frequency_Filtering_(Circulant_Matrices).pdf.

https://marcjoye.github.io/papers/Joy03ecc.pdf
https://marcjoye.github.io/papers/Joy03ecc.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.5220/0006206704230430
https://doi.org/10.14722/ndss.2017.23119
https://doi.org/10.1109/INFOCOM.2014.6848178
https://doi.org/10.1109/TSC.2022.3215499
https://doi.org/10.1016/j.cose.2023.103658
https://doi.org/10.1201/9780429466335
https://doi.org/10.1007/978-3-030-29959-0_1
https://eprint.iacr.org/2024/1881
https://eprint.iacr.org/2024/1881
https://www.cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/\Chapter_04c_Frequency_Filtering_(Circulant_Matrices).pdf
https://www.cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/\Chapter_04c_Frequency_Filtering_(Circulant_Matrices).pdf
https://www.cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/\Chapter_04c_Frequency_Filtering_(Circulant_Matrices).pdf

26 Fast PC-MM from Unpacked AHE

[PAH+17] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho
Moriai. Privacy-Preserving Deep Learning via Additively Homomorphic
Encryption. IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017. doi:10.1109/tifs.2017.2787987.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT), pages 223–238, 1999.
doi:10.1007/3-540-48910-x_16.

[Par25] Jai Hyun Park. Ciphertext-Ciphertext Matrix Multiplication: Fast for
Large Matrices. Cryptology ePrint Archive, Paper 2025/448, 2025. URL:
https://eprint.iacr.org/2025/448.

[PZM+24] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider.
Bolt: Privacy-Preserving, Accurate and Efficient Inference for Transformers.
In IEEE Symposium on Security and Privacy (SP), pages 4753–4771, 2024.
doi:10.1109/SP54263.2024.00130.

[Ras17] Bahram Rashidi. A Survey on Hardware Implementations of Elliptic Curve
Cryptosystems. arXiv preprint arXiv:1710.08336, 2017. URL: https://ar
xiv.org/abs/1710.08336.

[RPB+19] Théo Ryffel, David Pointcheval, Francis Bach, Edouard Dufour-Sans, and
Romain Gay. Partially Encrypted Deep Learning using Functional Encryption.
In Advances in Neural Information Processing Systems (NeurIPS), pages
4517–4528, 2019. URL: https://proceedings.neurips.cc/paper/2019/
hash/9d28de8ff9bb6a3fa41fddfdc28f3bc1-Abstract.html.

[RPCS22] H. Manohar Reddy, Sajimon P. C., and Sriram Sankaran. On the Feasibility
of Homomorphic Encryption for Internet of Things. In IEEE World Forum
on Internet of Things (WF-IoT), pages 1–6, 2022. doi:10.1109/WF-IoT54
382.2022.10152214.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the
ACM, 21(2):120–126, 1978. doi:10.1145/359340.359342.

[RT22] Panagiotis Rizomiliotis and Aikaterini Triakosia. On Matrix Multiplication
with Homomorphic Encryption. In Cloud Computing Security Workshop
(CCSW), pages 53–61, 2022. doi:10.1145/3560810.3564267.

[Sal22] Ali Salehi. Convolution as Matrix Multiplication, 2022. URL: https:
//github.com/alisaaalehi/convolution_as_multiplication.

[Sco20] Michael Scott. On the Deployment of Curve Based Cryptography for the
Internet of Things. Cryptology ePrint Archive, Paper 2020/514, 2020. URL:
https://eprint.iacr.org/2020/514.

[Str69] Volker Strassen. Gaussian Elimination is Not Optimal. Numerische Mathe-
matik, 13(4):354–356, 1969. doi:10.1007/BF02165411.

[WH19] Shufang Wang and Hai Huang. Secure Outsourced Computation of Multi-
ple Matrix Multiplication Based on Fully Homomorphic Encryption. KSII
Transactions on Internet and Information Systems, 13(11):5616–5630, 2019.
doi:10.3837/tiis.2019.11.019.

https://doi.org/10.1109/tifs.2017.2787987
https://doi.org/10.1007/3-540-48910-x_16
https://eprint.iacr.org/2025/448
https://doi.org/10.1109/SP54263.2024.00130
https://arxiv.org/abs/1710.08336
https://arxiv.org/abs/1710.08336
https://proceedings.neurips.cc/paper/2019/hash/9d28de8ff9bb6a3fa41fddfdc28f3bc1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9d28de8ff9bb6a3fa41fddfdc28f3bc1-Abstract.html
https://doi.org/10.1109/WF-IoT54382.2022.10152214
https://doi.org/10.1109/WF-IoT54382.2022.10152214
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/3560810.3564267
https://github.com/alisaaalehi/convolution_as_multiplication
https://github.com/alisaaalehi/convolution_as_multiplication
https://eprint.iacr.org/2020/514
https://doi.org/10.1007/BF02165411
https://doi.org/10.3837/tiis.2019.11.019

Krishna Sai Tarun Ramapragada, Utsav Banerjee 27

[YJ18] Zheng Yang and Kimmo Jarvinen. The Death and Rebirth of Privacy-
Preserving WiFi Fingerprint Localization with Paillier Encryption. In IEEE
Conference on Computer Communications (INFOCOM), pages 1223–1231,
2018. doi:10.1109/INFOCOM.2018.8486221.

[ZHCJ23] Lin Zhu, Qiang-sheng Hua, Yi Chen, and Hai Jin. Secure Outsourced
Matrix Multiplication with Fully Homomorphic Encryption. In European
Symposium on Research in Computer Security (ESORICS), pages 249–269,
2023. doi:10.1007/978-3-031-50594-2_13.

[ZLW25] Xiaopeng Zheng, Hongbo Li, and Dingkang Wang. A New Framework for
Fast Homomorphic Matrix Multiplication. Designs, Codes and Cryptography,
pages 1–23, 2025. doi:10.1007/s10623-025-01614-y.

[ZYH+25] Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, Wen jie Lu, Yinghao
Wang, Xiaoyang Hou, Jian Liu, Kui Ren, and Xiaohu Yang. Secure Trans-
former Inference Made Non-Interactive. In Network and Distributed System
Security Symposium (NDSS), 2025. doi:10.14722/ndss.2025.230868.

Appendix

A Detailed Profiling Results
Here, we provide detailed tables containing our experimental profiling data used in the
plots in Sections 3 and 4. First, we tabulate our Python implementation results which
we have used to compare different algorithms in terms of: (1) the number of integer
multiplications and additions required for plaintext vector-scalar multiplication as well
as plaintext matrix multiplication, and (2) the equivalent number of elliptic curve point
additions required for plaintext vector and ciphertext scalar multiplication as well as
plaintext-ciphertext matrix multiplication. Then, we tabulate the experimental results
from our MIRACL-based software implementation measured on Raspberry Pi 5 to compare
the above in terms of absolute execution time as well as relative speedup.

A.1 Analysis with Python

Table 1: Number of multiplications required for plaintext vector-scalar multiplication
using schoolbook approach and Cussen’s algorithm for random vectors of length n ∈
{23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16} (data for Figure 3).

n Schoolbook Cussen (t = 4) Cussen (t = 8) Cussen (t = 12) Cussen (t = 16)
8 8 1 4 8 8

16 16 1 3 9 15
32 32 1 2 7 20
64 64 1 2 5 15

128 128 1 1 4 11
256 256 1 1 3 9
512 512 1 1 2 7

https://doi.org/10.1109/INFOCOM.2018.8486221
https://doi.org/10.1007/978-3-031-50594-2_13
https://doi.org/10.1007/s10623-025-01614-y
https://doi.org/10.14722/ndss.2025.230868

28 Fast PC-MM from Unpacked AHE

Table 2: Number of additions required for plaintext vector-scalar multiplication us-
ing schoolbook approach and Cussen’s algorithm for random vectors of length n ∈
{23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16} (data for Figure 3).

n Schoolbook Cussen (t = 4) Cussen (t = 8) Cussen (t = 12) Cussen (t = 16)
8 0 11 21 24 24

16 0 14 35 46 48
32 0 16 49 79 94
64 0 17 73 128 172

128 0 17 111 197 288
256 0 17 169 307 487
512 0 17 225 523 781

Table 3: Number of multiplications required for plaintext matrix multiplication using
schoolbook approach, Strassen’s algorithm and Cussen’s algorithm for random square
matrices of dimension n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16} (data
for Figure 4).

n Schoolbook Strassen Cussen (t = 4) Cussen (t = 8) Cussen (t = 12) Cussen (t = 16)
8 512 343 64 256 512 512

16 4096 2401 256 768 2304 3840
32 32768 16807 1024 2048 7168 20480
64 262144 117649 4096 8192 20480 61440

128 2097152 823543 16384 16384 65536 180224
256 16777216 5764801 65536 65536 196608 589824
512 134217728 40353607 262144 262144 524288 1835008

Table 4: Number of additions required for plaintext matrix multiplication using schoolbook
approach, Strassen’s algorithm and Cussen’s algorithm for random square matrices of
dimension n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16} (data for Figure
4).

n Schoolbook Strassen Cussen (t = 4) Cussen (t = 8) Cussen (t = 12) Cussen (t = 16)
8 448 1674 1152 1792 1984 1984

16 3840 12870 7424 12800 15616 16128
32 31744 94698 48128 81920 112640 128000
64 258048 681318 327680 557056 782336 962560

128 2080768 4842954 2359296 3899392 5308416 6799360
256 16711680 34195590 17825792 27787264 36831232 48627712
512 133955584 240548778 138412032 192937984 271056896 338690048

Krishna Sai Tarun Ramapragada, Utsav Banerjee 29

Table 5: Equivalent number of elliptic curve point additions required for plaintext vector
and ciphertext scalar multiplication using schoolbook approach and proposed approach
based on Cussen’s algorithm for random vectors of length n ∈ {23, 24, · · · , 29} with element
bit-widths t ∈ {4, 8, 12, 16} (data for Figure 6).

t n Schoolbook Proposed

4

8 128 38
16 256 44
32 512 48
64 1024 50
128 2048 50
256 4096 50
512 8192 50

8

8 256 170
16 512 166
32 1024 162
64 2048 210
128 4096 254
256 8192 370
512 16384 482

12

8 384 432
16 768 524
32 1536 494
64 3072 496
128 6144 586
256 12288 758
512 24576 1142

16

8 512 560
16 1024 1056
32 2048 1468
64 4096 1304
128 8192 1280
256 16384 1550
512 32768 2010

30 Fast PC-MM from Unpacked AHE

Table 6: Equivalent number of elliptic curve point additions required for plaintext-
ciphertext matrix multiplication PC-MM using schoolbook approach, Strassen’s algorithm
and proposed approach based on Cussen’s algorithm for random square matrices of
dimension n ∈ {23, 24, · · · , 29} with element bit-width t ∈ {4, 8, 12, 16} (data for Figure 7).

t n Schoolbook Strassen Proposed

4

8 9088 7906 3328
16 73216 57006 18944
32 587776 405698 112640
64 4710400 2866510 720896
128 37715968 20172066 4980736
256 301858816 141630446 36700160
512 2415394816 993117058 281018368

8

8 17280 13394 11776
16 138752 95422 50176
32 1112064 674610 229376
64 8904704 4748894 1376256
128 71270400 33348754 8323072
256 570294272 233867262 57671680
512 4562878464 1638774770 394264576

12

8 25472 18882 28544
16 204288 133838 141824
32 1636352 943522 569344
64 13099008 6631278 2547712
128 104824832 46525442 13762560
256 838729728 326104078 83099648
512 6710362112 2284432482 567279616

16

8 33664 24370 36736
16 269824 172254 278016
32 2160640 1212434 1566720
64 17293312 8513662 5857280
128 138379264 59702130 25133056
256 1107165184 418340894 135004160
512 8857845760 2930090194 794820608

Krishna Sai Tarun Ramapragada, Utsav Banerjee 31

A.2 Measurements on Raspberry Pi 5

Table 7: Time taken (in micro seconds) for plaintext vector and ciphertext scalar multipli-
cation using schoolbook approach and proposed approach based on Cussen’s algorithm
for random vectors of length n ∈ {23, 24, · · · , 29} with element bit-width t ∈ {4, 8, 12, 16}
(data for Figure 9).

t n Schoolbook Proposed

4

8 929.364 250.138
16 1853.07 261.694
32 3700.836 296.418
64 7400.958 318.018
128 14837.766 335.144
256 29592.7 353.944
512 59153.174 399.094

8

8 1194.568 723.292
16 2386.114 588.268
32 4765.696 551.734
64 9526.752 615.192
128 19047.554 765.108
256 38086.59 1071.834
512 76327.824 1473.63

12

8 1460.39 1472.122
16 2917.274 1905.484
32 5830.14 1563.06
64 11652.792 1458.826
128 23298.534 1583.76
256 46590.522 1978.638
512 93181.214 3044.194

16

8 1729.608 1814.146
16 3445.01 3502.018
32 6884.118 4633.108
64 13775.728 3949.804
128 27523.884 3692.986
256 55047.72 4172.836
512 110086.372 5272.712

Table 8: Speedup observed for plaintext vector and ciphertext scalar multiplication using
proposed approach based on Cussen’s algorithm compared to schoolbook approach for
random vectors of length n ∈ {23, 24, · · · , 29} with element bit-widths t ∈ {4, 8, 12, 16}
(data for Figure 10).

n t = 4 t = 8 t = 12 t = 16
8 3.715 1.652 0.992 0.953
16 7.081 4.056 1.531 0.984
32 12.485 8.638 3.73 1.486
64 23.272 15.486 7.988 3.488
128 44.273 24.895 14.711 7.453
256 83.608 35.534 23.547 13.192
512 148.219 51.796 30.609 20.879

32 Fast PC-MM from Unpacked AHE

Table 9: Time taken (in seconds) for plaintext-ciphertext matrix multiplication PC-MM
using schoolbook approach, Strassen’s algorithm and proposed approach based on Cussen’s
algorithm for random square matrices of dimension n ∈ {23, 24, · · · , 29} with element
bit-width t ∈ {4, 8, 12, 16} (data for Figure 11).

t n Schoolbook Strassen Proposed

4

8 0.06 0.05 0.02
16 0.49 0.4 0.09
32 3.93 2.95 0.43
64 31.43 21.73 2.46
128 251.74 158.82 14.31
256 2017.64 1161.86 95.5
512 16139.04 8480.31 687.85

8

8 0.08 0.07 0.05
16 0.63 0.48 0.18
32 5.02 3.51 0.7
64 40.13 25.66 3.65
128 321.82 186.59 20.96
256 2571.89 1355.63 139.56
512 20577.63 9824.45 932.97

12

8 0.1 0.08 0.1
16 0.76 0.56 0.5
32 6.11 4.07 1.71
64 48.92 29.52 7.13
128 391.16 213.63 34.53
256 3134.81 1544.58 198.54
512 25079.63 11292.73 1305.7

16

8 0.11 0.09 0.12
16 0.9 0.64 0.91
32 7.19 4.63 4.93
64 57.61 33.43 17.14
128 461.59 241.41 69.5
256 3687.85 1759.8 334.51
512 29503.38 12489.93 1862.09

Krishna Sai Tarun Ramapragada, Utsav Banerjee 33

Table 10: Speedups observed for plaintext-ciphertext matrix multiplication PC-MM using
proposed approach based on Cussen’s algorithm compared to schoolbook approach and
Strassen’s algorithm for random square matrices of dimension n ∈ {23, 24, · · · , 29} with
element bit-width t ∈ {4, 8, 12, 16} (data for Figure 12).

t n Schoolbook vs Proposed Strassen vs Proposed

4

8 3.68 3.23
16 5.54 4.52
32 9.05 6.8
64 12.79 8.84
128 17.59 11.1
256 21.13 12.17
512 23.46 12.33

8

8 1.6 1.33
16 3.5 2.67
32 7.2 5.04
64 11 7.03
128 15.36 8.9
256 18.43 9.71
512 22.06 10.53

12

8 0.99 0.79
16 1.53 1.12
32 3.58 2.38
64 6.86 4.14
128 11.33 6.19
256 15.79 7.78
512 19.21 8.65

16

8 0.95 0.74
16 0.99 0.7
32 1.46 0.94
64 3.36 1.95
128 6.64 3.47
256 11.02 5.26
512 15.84 6.71

	Introduction
	Preliminaries
	Matrix Multiplication
	Additively Homomorphic Encryption
	Elliptic Curve Cryptography
	Elliptic Curve ElGamal Encryption Scheme
	Paillier Encryption Scheme

	Plaintext-Ciphertext Matrix Multiplication
	Traditional Approach to PC-MM from Unpacked AHE
	Cussen's Algorithm for Matrix Multiplication
	Proposed Approach to PC-MM from Unpacked AHE

	Implementation and Analysis
	Software Implementation and Experimental Setup
	Measurement Results and Performance Analysis
	Applications and Extensions

	Conclusions and Future Work
	References
	Detailed Profiling Results
	Analysis with Python
	Measurements on Raspberry Pi 5

