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Abstract

Differentially private (DP) machine learning often relies on the availability of public data for tasks like
privacy-utility trade-off estimation, hyperparameter tuning, and pretraining. While public data assumptions
may be reasonable in text and image domains, they are less likely to hold for tabular data due to tabular data
heterogeneity across domains. We propose leveraging powerful priors to address this limitation; specifically,
we synthesize realistic tabular data directly from schema-level specifications – such as variable names, types,
and permissible ranges – without ever accessing sensitive records. To that end, this work introduces the
notion of “surrogate” public data – datasets generated independently of sensitive data, which consume no
privacy loss budget and are constructed solely from publicly available schema or metadata. Surrogate public
data are intended to encode plausible statistical assumptions (informed by publicly available information)
into a dataset with many downstream uses in private mechanisms. We automate the process of generating
surrogate public data with large language models (LLMs); in particular, we propose two methods: direct
record generation as CSV files, and automated structural causal model (SCM) construction for sampling
records. Through extensive experiments, we demonstrate that surrogate public tabular data can effectively
replace traditional public data when pretraining differentially private tabular classifiers. To a lesser extent,
surrogate public data are also useful for hyperparameter tuning of DP synthetic data generators, and for
estimating the privacy-utility tradeoff.
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1 Introduction
Differential privacy (DP) is a mathematical framework for protecting individuals’ privacy in statistical
analysis and machine learning (Dwork et al., 2016), and was deployed in multiple recent high-stakes releases
and systems (Abowd et al., 2022; Hod & Canetti, 2025; Miklau, 2022; Burman et al., 2019; Wilson et al., 2020;
Fitzpatrick & DeSalvo, 2020) (see (Desfontaines, 2021) for a more complete list). It is common in the design
of differentially private algorithms to assume access to a relevant public dataset that can guide hyperparameter
tuning, pretraining, or performance improving mechanisms (Bassily et al., 2019, 2020b; Liu et al., 2021a; Zhou
et al., 2021). Executing these tasks with sensitive data would require an additional allocation of the privacy
budget, resulting in weaker overall privacy guarantees or reduced utility. However, using this assumed public
data in a private mechanism avoids additional privacy budget consumption. This leads to the following
informal definition of public data in our work:

Public Data (informal)
A dataset is considered public if a computation taking it as input does not consume privacy loss budget
with respect to any fixed private, sensitive dataset.

For text and image domains, assuming public data availability is often reasonable: public image collections
or large-scale textual corpora are readily available, and it has been shown that even out-of-distribution data
can serve as a valuable prior in these contexts, whether through pretraining or foundation models (Nasr
et al., 2023; Ganesh et al., 2023). However, this assumption does not often hold in a tabular data setting.
Tabular data is heterogeneous, high-dimensional, subject to strict privacy or legal restrictions, and has few
universal priors (Müller et al., 2022). In many real-world domains like healthcare, finance, and government
administration, tabular data encodes sensitive information that drives high-stakes decisions. It is thus rare to
find truly public, non-sensitive samples with sufficient alignment to a private distribution to be used for
private hyperparameter tuning or pretraining.

OutputPrivate Data

M

Hparams Tuning♆
Priv./Utility Est.

Model Pretraining ▣

Many design choices…

How to inform these design choices?
If  we just had a dataset to run experiments without consuming 

privacy loss budget….

Panel of  ExpertsPublic Data LLM Gen. data

May not exist or 
be accessible

May be expensive 
and slow This Work

Figure 1: An overview of the premise of this work: Can
we utilize LLMs to generate surrogate public data to
solve DP auxiliary tasks?

Nevertheless, recent theoretical insights confirm
that if a public dataset is “close enough” to a sen-
sitive data distribution, then private learning can
still achieve strong utility, even when the public and
private datasets are not perfectly matched (Bassily
et al., 2019). In practice, however, identifying or
constructing such a surrogate is often far from triv-
ial. Real-world deployments of differentially pri-
vate methods face numerous hurdles related to data
availability (Cummings & Sarathy, 2023; Cummings
et al., 2024a). As an example, a recent release of
Israel’s Live Birth Registry (Hod & Canetti, 2025)
underscores the challenges of obtaining an end-to-
end differential privacy guarantee.

Public data served two purposes for Hod & Canetti
(2025): it helped constrain the hyperparameter
space within a computationally locked-down en-
clave environment, and it enabled the estimation
of the privacy-utility trade-off when allocating pri-
vacy budget. Yet, in general, sensitive datasets (e.g.,
birth records) are not readily available as public data.
Hod & Canetti (2025) reported finding only one
open-access birth dataset worldwide (in the U.S.);
without it, estimating the necessary parameter set-
tings for their release would have been significantly
more challenging.

Additionally, a recent practical guide for differen-
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tially private machine learning recommends that “the simplest approach, when possible, is to do all model
architecture search and hyperparameter tuning on a proxy public dataset (with a distribution similar to the
private data), and only use the private training dataset to train the final DP model” (Ponomareva et al., 2023).

These two examples highlight a fundamental challenge; many differentially private algorithms require
informed decisions a priori that, ideally, do not consume extra privacy budget. This leads us to consider a
class of DP auxiliary tasks, which we define informally as:

Differential Privacy Auxiliary Task
A differential privacy auxiliary task, with respect to a differentially private mechanism for conducting an
analysis of interest, is a required decision or procedure for execution. The auxiliary task may or may not
incur privacy loss. Examples include hyperparameter tuning, setting ε, mechanism initialization, model
selection, etc.

Motivated by the example of Hod & Canetti (2025) and the recommendation of Ponomareva et al. (2023), we
imagine a world where we could convene a panel of domain experts, and ask them to manually encode an
approximate data-generating process. In the birth registry example, epidemiologists and bio-statisticians
could approximate high-level relationships among the birth-related variables (e.g., premature birth correlated
with infant weight), yielding a sufficiently similar distribution. From this data generating process, one could
then generate “public” samples for tasks such as hyperparameter tuning, privacy-utility calibration, or model
pretraining. Indeed, for many tabular settings that must accommodate strict privacy and legal constraints,
we hypothesize that such an expert-driven approach could offer a practical surrogate to traditional public
data (Hasani et al., 2024).

Surrogate Public Data
We consider a dataset generated independently of a sensitive dataset, consuming no privacy loss budget,
and based only on publicly available schema or metadata to be a surrogate public dataset.

Surrogate public data is positioned in contrast to “traditional” public data, which shares a similar generation
process (often the nature itself) as the private data. Then, the main question of this paper is: how useful
is surrogate public (1) relative to traditional public data, or (2) relative to the lack of any public data? Is,
for example, automating the process of expert panel data generation with large language models (LLMs) a
suitable surrogate?

To investigate these questions, we evaluate automated data generation approaches that leverage LLMs
(Borisov et al., 2023; Zhao et al., 2023; Kim et al., 2024). LLMs are trained on enormous and diverse datasets,
including vast amounts of tabular data (Borisov et al., 2023; Hegselmann et al., 2023) as well as scientific
literature (Phan et al., 2025) that captures rich structural and contextual knowledge of relationships between
variables. This allows for the direct generation of realistic tabular records, along with the indirect generation
of coherent, causally informed relationships among variables that can lead to the generation of reasonable
tabular data. Specifically, we draw inspiration from causal and Bayesian modeling methods – DAG-based
generative models, analogous to structural causal models or Bayes nets – but do not strictly rely on or guarantee
correctness of any true causal structure. Rather, our goal is to capture plausible dependencies among variables
using only schema-level metadata (such as variable names, types, allowable ranges, and domain constraints).
With this approach, we attempt to bridge the gap left by the unavailability of suitable public tabular data in
arbitrary settings. But how can we best utilize LLMs?

Recent work on causal modeling with LLMs suggests they can encode causal information (Kiciman et al.,
2023) and can be used to generate data with casual structure, for example, simulating counterfactuals (Bynum
& Cho, 2024). We take this direction as inspiration, but leave open whether it is important for the generated
data to have a realistic causal structure or effects. We can use causal principles as a way to encourage, but not
guarantee, consistent, higher-order dependencies among variables – with the hope of ultimately generating
more coherent tabular datasets. We can also, of course, directly request synthetic records from the LLM. We
compare these approaches for generating surrogate public data with much simpler baselines, such as uniform
sampling or arbitrarily defined Bayesian networks over the domain. This leads us to our main contributions.
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1.1 Contributions
Methods for generating surrogate public data (Section 4). We introduced an agent-based strategy with a
black-box LLM access assumption to automatically construct a plausible structural causal model for surrogate
public data generation. We also introduce a number of simpler baselines methods for comparison.

Benchmark of DP auxiliary tasks with surrogate public data (Section 5). Auxiliary DP tasks are part
of a wider private pipeline. Consequently, evaluating the usefulness of surrogate public data requires a
careful design across the DP downstream task, datasets, baselines, comparison conditions, and aggregated
metrics. In this work, we propose such a benchmark framework and provide an extensible, method-agnostic
implementation.

In-depth experimental results identifying the usefulness of surrogate public data on some DP auxiliary
tasks (Section 6). We find that pretraining with LLM-generated surrogate public data can substantially
improve differentially private classification performance; this holds true in the low dataset size regime in
particular. Additionally, we show that LLM-generated surrogate public data can be useful for hyperparameter
tuning of private data synthesizers. We further present a complicated story on using surrogate public data
for privacy-utility tradeoff estimation (i.e. “setting the privacy budget”).

We also examine the role of dataset similarity in a follow-up analysis (Section 7).

The code used to generate the surrogate public data and execute the experiments is publicly available.1

2 Related Work
Public data in differential privacy Empirical evidence demonstrates that public data can improve the
performance of differentially private machine learning models through a two-stage approach: pretraining
on public data followed by differentially private fine-tuning on sensitive data. This approach has been
extensively studied across NLP and vision tasks (Tramèr & Boneh, 2021; Amid et al., 2022; Yu et al., 2022;
Golatkar et al., 2022; Ginart et al., 2022; He et al., 2023; Bu et al., 2024).

Ganesh et al. (2023) identify two phases in neural network optimization within non-convex loss landscapes.
The first locates an optimal basin, where public data suffices and using the privacy budget is unnecessary.
The second performs local optimization within that basin; here, if the public and target distributions differ –
as they often do – consuming privacy budget to update weights with sensitive data is beneficial. Supporting
this, Thaker et al. (2024) show that public pretraining outperforms fully private training in vision tasks, even
under significant distribution shifts. This advantage holds even when private fine-tuning is limited to the
final layer, as in Ke et al. (2024).

Another research direction incorporates public data directly into differentially private computations, rather
than treating it as a separate preprocessing step. This approach spans private estimation (Bie et al., 2022),
statistical queries (Bassily et al., 2020a; Liu et al., 2021a), and learning and optimization (Bassily et al., 2019;
Wang & Zhou, 2020; Bassily et al., 2020b; Kairouz et al., 2021; Zhou et al., 2021; Nasr et al., 2023; Ben-David
et al., 2023; Gu et al., 2023; Olatunji et al., 2023; Wang et al., 2023a; Block et al., 2024; Lowy et al., 2024). An
emerging line of research finetunes pretrained, open-source LLMs on private, sensitive data with DP-SGD
(Abadi et al., 2016) to generate training data for downstream models, such as classifiers or other LLMs
(Kurakin et al., 2023; Yu et al., 2023; Amin et al., 2024; Wu et al., 2024). For a broader survey on recent
advances in privacy research, see (Cummings et al., 2024a).

Finally, contemporary work by Swanberg et al. (2025) is closely related to ours, but with three key differences.
First, while they evaluate LLM-generated public data in a single experimental setting (for public pretraining
of private synthetic data mechanisms), we assess its utility across several DP auxiliary tasks — including
hyperparameter tuning for synthetic data generation, privacy/utility tradeoff estimation, and private classifier
pretraining. Second, our evaluation is broader in scope, incorporating multiple datasets (with different

1https://github.com/shlomihod/surrogate-public-data
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data-origins), diverse metrics and additional baselines / methods for leveraging an LLM to produce surrogate
public data. Third, we designed our experiments to mitigate the risk of positive results due to memorization,
including an explicit test based on Bordt et al. (2024), and provide results and analysis to assess the impact
of data leakage on the performance of our methods.

Generating tabular data with LLMs Transformer-based models can be used to generate synthetic samples
from tabular data. The fundamental approach involves treating each record as a “sentence” for the transformer
architecture to process. Two overall strategies exist: training transformers from scratch specifically for tabular
data and adapting pretrained LLMs for tabular generation tasks. For the first strategy, one variant trains
a transformer on an individual dataset or distribution to produce synthetic records (Solatorio & Dupriez,
2023; Zhao et al., 2023; Gulati & Roysdon, 2023; Zhao et al., 2023); another variant pretrains a general
tabular foundation model on multiple datasets and then adapts this model to novel unseen datasets through
in-context learning (Ma et al., 2024). The second strategy uses existing pretrained LLMs, adapting them
for tabular data generation through either fine-tuning (Borisov et al., 2023) or in-context learning (Seedat
et al., 2024; Kim et al., 2024). These methods cannot be directly applied to our setting, as we only consider
DP auxiliary tasks (e.g., pretraining, hyperparameter tuning) that do not consume privacy budget. Both
approaches condition on sensitive data and thus require accounting for privacy loss.

Recent work has explored the potential of LLMs for causal modeling tasks, including pairwise causal
discovery, causal model generation, and counterfactual reasoning (Kiciman et al., 2023; Chen et al., 2024).
While causality itself is not the primary focus of our project, the ability to produce plausible causal models is
highly relevant since causal models are also generative, capable of producing realistic records. LLM-based
causal model discovery methods can operate either with metadata alone (using only dataset descriptions
and schema) (Vashishtha et al., 2023; Long et al., 2023b,a; Zhang et al., 2024; Darvariu et al., 2024; Bynum &
Cho, 2024) or with additional observations (Abdulaal et al., 2024; Le et al., 2024) – with the metadata-only
approach being particularly relevant to our project as we have no access to observations. Most literature in this
area that operates without observations focuses solely on discovering causal graphs – descriptions of causal
dependencies without specifying conditional distributions. However, (Bynum & Cho, 2024) extends this
approach by adding a second step that prompts LLMs with the topological order over variables, embedded
in a prompt structure, to generate records directly.

3 Preliminaries
We now provide relevant background on differential privacy, large language models, and statical distance
metrics.

3.1 Differential Privacy
Differential privacy (DP) ensures that the presence or absence of a single individual’s data has only a limited
influence on an output statistic; in other words, it restricts howmuch any single record can affect the outcome
of an analysis. To define this, we consider two datasets D, D′ ∈ Xn, which are neighboring if they differ in at
most one data entry. Let X denote the universe of records.

Definition 1 (Differential Privacy (Dwork et al., 2016)). An algorithm M : Xn → R satisfies (ε, δ)-
differentially private if, for every pair of neighboring datasets D, D′ ∈ Xn, and for every subset of possible
outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ .

The ε parameter is considered the leading privacy parameter. (ε, δ)-DP is also referred to as approximate
differential privacy. When δ = 0, i.e., (ε, 0)-DP, we refer to it as pure differential privacy and denote it with ε-DP.

The following definition of public data is inspired by Ben-David et al. (2023).
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Definition 2 (Public Data). A dataset D̂ ∈ Xm is public if incorporating it into any computation does not
incur additional privacy loss. That is, for any sensitive dataset D ∈ Xn and for every (ε, δ)-differentially
private mechanismM, the privacy guarantee is identical whether D̂ is used or not, i.e.,M(D, ·) andM(D, D̂)
both satisfy identical (ε, δ)-differential privacy guarantees.

3.2 Large Language Models
Large Language Models (LLMs) are trained to generate sequences of tokens by modeling the probability of
the next token given its preceding context (Devlin et al., 2019). Let V be the vocabulary of tokens. Formally,
given a sequence of tokens x = (x1, x2, . . . , xn) ∈ V n, a generative language model estimates,

Pr[x1, x2, . . . , xn] =
n∏

i=1
Pr[xi | x1, . . . , xi−1] .

In other words, a language model is a function f : V n → P(V ); f(x) maps a sequence to a probability
distribution over the vocabulary V of possible tokens for the next token, whereP(V ) is the space of probability
distributions over V . This autoregressive formulation enables, for example, the generation of new samples
from a tabular distribution when prompted with known samples (Borisov et al., 2023; Zhao et al., 2023).

3.3 Statistical Distance Metrics
We now introduce metrics for comparing probability distributions and datasets used throughout this paper.

Definition 3 (Total Variation Distance). For discrete probability distributions P and Q over X , the Total
Variation Distance (TVD) is defined as:

TVD(P, Q) = 1
2

∑
x∈X
|P (x)−Q(x)|

The Total Variation Similarity (TVS) is simply 1 − TVD(P, Q), representing the similarity rather than the
distance between distributions. Both TVD and TVS can be naturally extended to datasets by considering the
empirical probability distributions induced by the datasets over the universe X .

Now we turn to a more specific measurement of disparity between two datasets based on the results of
statistical queries.

Definition 4 (Linear Query). Given a predicate ϕ : X → {0, 1} that maps database records to binary values,
a linear query qϕ : Xn → N+

0 is a function that, for a dataset D ∈ Xn, computes:

qϕ(D) =
∑
r∈D

ϕ(r)

In other words, a linear query counts the number of records in dataset D that satisfy the predicate ϕ.

Definition 5 (Workload Error). Given a workload W = {q1, . . . , qk} of linear queries, and a pair of datasets
D, D′ ∈ Xn, the workload error is defined as:

WError(D, D′) =
∑
q∈W

|qi(D)− qi(D′)|

The average k-way marginal error can be defined as a special case of the workload error where the workload
W consists of all possible k-way marginal queries. For instance, the 3-way marginal error uses all possible
triplet combinations of attributes as queries. Assuming datasets of equal size, the average k-way marginal
error is normalized by both the number of queries in the workload |W | and the size of the datasets |D|:

7



Table 1: Large Language Models (LLMs) used in this work

Name Provider Version Cutoff Date

GPT-4o OpenAI gpt-4o-2024-08-06 October 2023
Claude 3.5 Sonnet Anthropic claude-3-5-sonnet-20241022 April 2024
Llama 3.3 70B Instruct-Turbo Meta via TogetherAI Llama-3.3-70B-Instruct-Turbo December 2023

AvgErrork-way(D, D′) = 1
|W | · |D|

∑
q∈W

|q(D)− q(D′)|

where W is the set of all k-way marginal queries, and |W | =
(

d
k

)
for a dataset with d attributes.

4 Producing Public Data Surrogates
We evaluate multiple methods for generating surrogates to public data, categorizing them into baseline
and LLM-based approaches. For these methods, we assume that the private data’s metadata – consisting
of the dataset schema and a brief description of its topic (e.g., demographics, epidemiology) – is publicly
available. All methods we introduce rely solely on this metadata.2 A schema provides a description of the
dataset domain and structure, specifying for each variable: (1) its name, (2) a very brief description, (3) the
data type (e.g., integer, string), and (4) either allowed values and their meanings for categorical columns or
value ranges for continuous columns. This metadata is typically extracted from the dataset’s accompanying
README file or codebook (see, e.g., (Lemieux et al., 2024) on ICPSR). Figure 10 is an excerpt from a schema.

Each LLM-based method is applied to the three models presented in Table 1.

4.1 Baselines
Before discussing the LLM-based approach, we present a series of baseline generation processes to sys-
tematically evaluate which aspects of public data characteristics are useful for differential privacy tasks:
pretraining, hyperparameter tuning, and estimating the privacy-utility trade-off. The baselines differ in
statistical structure and in the information available about the private data.

4.1.1 Uniform Distribution over the Domain

The dimensionality of the data plays a critical role in differentially private algorithms (McKenna et al., 2021;
Rosenblatt et al., 2023), as it could affect, for example, the magnitude of noise introduced to satisfy DP or
the ratio between signal and that noise (e.g., when tuning data synthesizers like PrivBayes or AIM). This
Uniform distribution baseline captures the scenario where we have no prior knowledge about the underlying
data distribution beyond the schema itself by using the maximum entropy probability distribution (Jaynes,
1957): for each record, Uniform samples i.i.d. from either the set of possible values (for categorical columns)
or the specified range (for continuous columns), both given in the schema.

4.1.2 Univariate Distribution

Beyond knowledge of the record domains, organizations and researchers might have access to prior infor-
mation about the univariate distributions of individual columns, either precisely or approximately. This
prior knowledge is available in cases where organizations may have released various statistical measures
of private data, such as histograms, means, medians, and standard deviations, with or without differential
privacy (Rosenblatt et al., 2024a; Hasani et al., 2024). As a facsimile for data generated with knowledge of the
distributions along individual columns, the Univariate baseline samples independently from each column

2With one exception: the univariate baseline, which samples directly from the sensitive data without correlation between variables.
This method is introduced purely for comparison, and is not a valid public data surrogate under our working defition.
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according to the empirical univariate distribution drawn directly from the private data. To make this baseline
more realistic – assuming only an approximate PDF (e.g., the distribution’s “shape”) is known – we round
the probabilities to two decimal places, normalize to 1, and rescale during sampling.

4.1.3 Arbitrary Distribution

The previous two baselines are limited by column independence in their sampling, preventing them from
capturing complex statistical structures needed for higher-order analysis and predictive tasks (Rosenblatt
et al., 2023). To isolate the role of structural dependencies in our DP auxiliary taskswith surrogate public data,
we consider whether only capturing the existence of relationships between columns could make surrogate
public data a useful prior. To test this, we generate an arbitrary dataset from a random but structured
distribution that adheres to the schema.

Algorithm 1 details the full Arbitrary baseline procedure; here, we provide a high-level overview of the
two-step generation process. First, we construct a random Directed Acyclic Graph (DAG) representing a
Bayesian network over the column variables. The DAG is built sequentially, with each new node potentially
connecting to any previously added nodes, subject to a maximum in-degree (here we used 5). This ensures
a structured yet arbitrary dependency pattern between variables. Second, we parameterize the network
by sampling conditional probability tables for each node. For a given node, we use a Dirichlet distribution
with concentration parameter α = 1 to generate probability distributions for each configuration of its parent
variables. Specifically, for each parent value combination, we sample a categorical distribution from the
k-simplex, where k is the cardinality of the node’s domain. This yields a distribution with meaningful
dependencies (e.g., correlations) while remaining entirely independent of the true empirical distribution of the
private data.

4.2 CSV Direct Generation
We evaluate a direct approach to data generation using LLMs. The generation process involves prompting the
LLM to create CSVs – tabular records that adhere to the schema while following specific guidelines (Almeida,
2024). These guidelines instruct the model to ensure realistic value distributions and relationships between
fields, maintain real-world patterns and constraints, and incorporate edge cases at frequencies that mirror
their natural occurrence. Similarly to the other surrogate public data methods we evaluate, this approach
operates without access to the private dataset, relying solely on the LLM’s pretrained knowledge.

To ensure data quality, each generated record is validated against the schema, and only valid records are
retained. Due to context window limitations and API constraints, the generation process is executed in
multiple batches until the desired number of records is obtained (OpenAI, 2025; Anthropic, 2025; Together
AI, 2025). Note that, due to the autoregressive nature of LLMs (see e.g., Section 3), records within the same
generation batch are not sampled independently, in contrast to the baseline methods.

4.3 Agent (State Machine) Approach
As a final approach, we employ a multi-step, Agent-based process to elicit a structural causal model (SCM)
from an LLM given only text-based access through prompts and responses. Our goal is to arrive at a coherent
directed acyclic graph (DAG) that captures the inter-dependencies among variables in the schema, along
with associated structural equations (e.g., the actual distributional parameters, probabilities, etc.). Each
step concludes with an automated validation of the LLM’s output; so, if any contradictions or omissions are
detected, the Agent (implemented as a state machine, see Figure 12) automatically refines our prompt and
re-queries the LLM.

First, we prompt the LLM to 1 list out all variables (keys) from the provided schema, ensuring the response
exactly matches the schema’s variable set. Next, we ask it to 2 propose realistic consistency constraints
among these variables; these constraints should capture domain knowledge such as permissible value ranges
(e.g., “age must be at least 0”) or logical relationships (e.g., “an individual who is 10 years old must have
fewer than 10 years of education”). We then instruct the LLM to 3 identify a subset of variables that can
serve as the “root nodes” in a causal graph, typically those deemed exogenous or less likely to be influenced
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Figure 2: An overview of our evaluation framework. We assess the usefulness of regular public data and
surrogate public data (Section 4) on three tasks (Section 5.1). Two tasks are related to synthetic data
generation – hyperparameter tuning (Section 5.1.2) and privacy-utility estimation (Section 5.1.3) – and one
to classification model pretraining (Section 5.1.1).

by other variables in the schema. From there, the LLM proposes parent–child relationships 4 from root
nodes to non-root nodes, and then 5 among all remaining variables, 6 ensuring no cycles are introduced so
that the final structure is a DAG (which we validate with a graph library to confirm it contains all variables
exactly once and remains acyclic (Hagberg et al., 2008)).

Having obtained a DAG, we prompt the LLM to 7 map each variable to a structural equation that references
its parents. For instance, if a node depends on two parents, the LLMmight generate a formula specifying
a probabilistic distribution conditional on parent values. These structural equations encode marginal dis-
tributions for root variables and conditional distributions for their descendants. Sometimes the structural
equations are not fully specified (e.g., the probability parameter in Bernoulli distribution is parameterized),
so we instruct the LLM to 8 assign values to all parameters. Then, 9 we combine the DAG and structural
equations automatically into a single code snippet (we use the Pyro library (Bingham et al., 2019)), which
lets us generate synthetic data automatically. Finally, we ask the LLM to amend the Python code to 10 enforce
the range or valid values for each column, and 11 include the constraints elicited at the beginning of the
interaction. This entire interaction is a stateful, automatic, closed loop, allowing the LLM to act on its own
as an “expert” to design a plausible causal model solely from schema level information (containing short
descriptions of each variable), without a need to inspect any real-world sensitive records.

To extend this approach from a “single expert” to a “panel of experts,” we execute the complete generation
workflow multiple times to produce a collection of datasets, inspired by prior work on “self-consistency”
prompting methods (Wang et al., 2023b). These datasets are then combined to yield a single mixed dataset
using two approaches. The first approach, Unif., involves uniform sampling of records across all generated
datasets. The second approach, Max Cov., solves the Facility Location submodular problem (Wang & Zhou,
2020) by finding a subset of datasets that maximizes the sum of pairwise Total Variation similarities. This
optimization selects a subset of datasets that aims to represent the space of all generated datasets (Wang &
Zhou, 2020). Then, similarly to the Unif. approach, we sample records uniformly from the selected datasets.

One important advantage of agent-generated SCMs is that domain experts can modify the causal structure,
structural equations, and constraints based on their expertise, scientific literature, and common sense. We
leave this for future work.

5 Evaluation Framework
Our evaluation framework assesses the viability of the surrogate public data in three DP auxiliary tasks
(Section 5.1): (1) classifier pretraining, (2) hyperparameter optimization, and (3) privacy-utility trade-off
estimation. Each task is assessed using three datasets (Section 5.2), and corresponding DP mechanisms
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(Section 5.3). Our strategy in evaluating each task is guided by a high level question: how useful is each
surrogate public data method relative to traditional public data and relative to the lack of any public data?

5.1 Tasks
5.1.1 Task 1: Model Pretraining for Classification

A common practice in machine learning with DP is to first pretrain a model on public data (incurring no
privacy loss) before fine-tuning it privately on sensitive data (using e.g., DP-SGD, incurring fixed (ε, δ)-privacy
loss). We apply this method to evaluate surrogate public data for binary classification tasks on tabular data
(recall that this is a less common setting than public pretraining with image data (Ganesh et al., 2023; Thaker
et al., 2024), due to a general lack of publicly available priors for tabular datasets).

We divided public and private datasets into train, validation, and test subsets using a 72 : 8 : 20 ratio,
and used an FTTransformer deep neural attention based classification model architecture (Gorishniy et al.
(2021); see Appendix B.2.1 for more details). Our classification evaluation framework follows three steps:
(1) standard pretraining, updating model weights with gradients calculated from (surrogate) public data;
(2) DP fine-tuning on private training data; and (3) performance assessment on the private test data. For
comparison, we include a control condition that omits the pretraining phase. We measure classification
performance using AUC metric and ensure balanced datasets by downsampling the majority class to match
the minority class size. We also consider an AUC Advantagemetric, which we define as the difference in
AUC between models with public data pretraining and a model without pretraining, which directly quantifies
the incremental benefit provided by pretraining before private finetuning.

To account for the multiple hyperparameters in both pretraining and fine-tuning stages, we conduct a compre-
hensive grid search, further running each configuration 10 times to mitigate variations inherent to differential
privacy training and model initialization. We analyze results using two complementary approaches: averag-
ing performance across all hyperparameter combinations, and simulating a real-world scenario by selecting
the optimal pretraining hyperparameters based on public validation data before averaging results across
fine-tuning hyperparameters. Refer to Appendix B.3 for the complete hyperparameter space details.

5.1.2 Task 2: Hyperparameter Tuning for Synthetic Data

Hyperparameters play an important role in training machine learning models, especially when differential
privacy is involved (Ponomareva et al., 2023). While selecting the best performing hyperparameters in the
non-private setting can be done with many model training runs using a validation split or cross-validation,
this is not feasible in a straightforward manner with differential privacy due to the privacy loss incurred on
each run. Public data may be helpful in this case, allowing researchers to run multiple experiments without
consuming the privacy loss budget (Iyengar et al., 2019; Cattan et al., 2022).

To assess the usefulness of surrogate public data for this DP auxiliary task, we run a large-scale DP synthetic
data evaluation across multiple dimensions: (1) datasets (including private and public splits, and various
public data surrogates); (2) privacy loss budget ε; (3) different DP synthetic data generators (see Section B.2.2;
GEM (Liu et al., 2021b), AIM (McKenna et al., 2022), PrivBayes (Zhang et al., 2014)); and (4) their associated
hyperparameter spaces. For each configuration, we fit a synthetic data generator and produce a synthetic
dataset of the same size as the original, private data. We then evaluate across a variety of metrics, which fall
into three general categories: marginal-based metrics, correlational metrics, and classification-based metrics,
as shown in Table 17.

We conduct our analysis (1) per synthetic data generator, because each has a different hyperparameter space and
different sensitivity to changes in hyperparameter configuration; (2) per metric, because the best-performing
hyperparameter is defined with respect to a specific metric; and (3) per privacy loss budget ε. We quantify the
degradation in performance when using the synthetic generator on the private data by comparing the best
hyperparameter setting that we would have chosen with the private data (i.e., the optimal case) relative to the
hyperparameters we would have chosen with each of the (potentially surrogate) public datasets.

To aggregate the usefulness of public data in choosing hyperparameter configurations across different
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Table 2: Overview of the datasets used for evaluation.

Dataset Topic Features ×Dims Private Split Public Split
Name Size Published Name Size Published

ACS Census 7 116,640 National 23,006 Sep 2020 Massachusetts 23,006 Sep 2020
EDAD Disability 11 2,188,800 2023 1,469 Apr 2024 2020 1,469 Apr 2022
WE Workplace 12 1,924,560 2023 1,400 Apr 2024 2018 837 Dec 2019

evaluationmetrics, we computed a relative performance degradationmetric for each configuration. Concretely,
for every private synthetic data generator, privacy level ε anddataset (ACS, EDAD, andWE),we first identified
the hyperparameter configuration that yielded the best performance on the private reference dataset (i.e. the
real data). We then determined, for each candidate surrogate public dataset (and the regular public data),
the hyperparameter configuration that would have been chosen based solely on its corresponding performance.
Our benchmark quantifies degradation as the relative difference between the performance achieved by the
surrogate-chosen hyperparameters on the private reference and the optimal performance on the reference
dataset (measured as either absolute error or percent degradation, depending on the metric). We conducted
this process independently for each metric – across classification, correlation, and marginal-based metrics.
We averaged across multiple experimental seeds to obtain aggregate performance with standard error; we
then conducted a Pareto frontier analysis (Ehrgott, 2005) across the frontier defined by aggregating into the
three metric categories: classification, correlation and marginal-based metrics.

5.1.3 Task 3: Privacy-Utility Estimation for Synthetic Data

Understanding the privacy-utility trade-off of a mechanism for a specific private dataset is extremely useful
for producing a differentially private release in the real world (Rosenblatt et al., 2024a). For example, it may
provide guidance on setting the privacy loss budget by exposing its impact on the fidelity of private synthetic
data (e.g., (Abowd et al., 2023; Hod & Canetti, 2025)).

In this task, we evaluate how well a public dataset – either traditional or surrogate – can estimate the privacy-
utility curve for each utility metric. This experiment is, in a sense, the “dual” of the hyperparameter tuning
task described in the previous section: here, we compare the privacy-utility curve computed on the public
data with the curve obtained on the private data. To mimic real-world usage, we run the DP mechanism
with the best-performing hyperparameters determined from the public data (Table 17), selecting the optimal
configuration independently at each tested ε value.

For each dataset, synthetic data generator, and evaluation metric, we created both public-based and private-
based curves over a range of privacy loss budgets ε. To aggregate the results across different evaluationmetrics,
we first compute, for each metric group (classification, correlation, and marginals) and each synthesizer
(PrivBayes, AIM, and GEM), an aggregated performance value that is the average “chosen value” across all
metrics in that group. For a given synthesizer and for each ε, we group the results by dataset and reference
dataset and then pivot these averages so that each row corresponds to a dataset and each column to an ε level.
This representation enables us to generate line plots to visually assess the similarity between performance
curves (see, e.g., Figure 27 for an example with the PrivBayes synthesizer).

Since the line plots alone are insufficient to quantify aggregate closeness, we compute both ℓ1 and ℓ2 distances
between each pair of curves. The ℓ1 distance is more interpretable – being in the same units as the evaluation
metric – while the ℓ2 distance is less sensitive to outliers. We average the ℓ1 and ℓ2 distances across the
different metric categories (weighting each category equally). To reduce variability, each configuration is
run 10 times. Finally, we perform a Pareto frontier analysis across both ℓ1 and ℓ2 distances for each dataset
(Ehrgott, 2005).
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5.2 Datasets
We run the experiments on three datasets (ACS, EDAD, and WE; high-level details presented in Table 2).
Each dataset has a private, sensitive split; additionally, we pair each dataset with a reasonable public analogue.
These public datasets have inherent distribution shift between them; for ACS this is a geographical variation
(assuming the Massachusetts sample is publicly available, while a more diverse national sample is private)
or, for EDAD and WE, temporal differences (versions of the same survey from prior years). All datasets
contain only categorical features to ensure compatibility with synthetic data generation methods. The private
split serves as ground truth to benchmark the contribution of the “traditional” approach of using a public
split compared to our surrogate generation methods. To mitigate the risk of data memorization in LLMs, we
specifically selected the private splits for EDAD and WE to be recently published, i.e., after the training data
cutoff of some of the LLMs we evaluate. To this end, we include a memorization analysis in Appendix B.1.4,
based on the methodology of Bordt et al. (2024). For the complete details for each dataset and an in-depth
discussion of LLM memorization, refer to Appendix B.1.

5.3 Mechanisms
Our private mechanisms encompass differentially private classification (Task 1) and data synthesis (Tasks
2 & 3). As discussed previously, for classification, we employ an FTTransformer model (Gorishniy et al.,
2021) – a transformer-based architecture tailored for tabular data that rivals gradient boosting methods like
XGBoost – by adapting it with minor modifications to support DP-SGD for private fine-tuning and allowing
pretraining with public data via standard gradient updates (Abadi et al., 2016; Rosenblatt et al., 2024b). For
private data synthesis, we evaluate three state-of-the-art methods – PrivBayes, GEM, and AIM – that follow
the “Select-Measure-Project” paradigm: they privately select statistical queries (e.g., k-way marginals or
correlations) on sensitive data, add noise to these measurements, and then project the results onto a synthetic
distribution (Zhang et al., 2014; Liu et al., 2021c; McKenna et al., 2022). See Appendix B.2 for complete model
details, with detailed hyperparameter settings provided in Appendix B.3.

6 Results
In this section, we present the results of our evaluation framework (Section 5) for the following DP auxiliary
tasks: pretraining (Section 6.1), hyperparameter tuning (Section 6.2), and estimating the privacy-utility
trade-off (Section 6.3). Appendix C provides additional results details.

All of the experiments were done with ε ∈ {1, 2, 4, 8, 16}, and each hyperparameter configuration (Ap-
pendix B.3) was run 10 times.

6.1 Results for Task 1: Pretraining for DP Classification
For the classifier pretraining task, we observe different patterns for the EDAD and WE datasets compared to
the ACS dataset. The overall takeaway is that for smaller datasets (e.g., fewer than 10k records), surrogate
public data generated via CSV or Agent methods can offer a meaningful pretraining advantage similar to that
of traditional public data. Appendix C.1 provides a detailed account of the results. In our analysis, the best
pretraining hyperparameter configuration was selected based on the public validation subset (see Figure 14
and Table 22a for full hyperparameter averaging results, which show similar trends).

EDAD andWE. Overall, we find strong evidence that LLM-based methods – both CSV and Agent surrogate
public data generation (particularly with Claude 3.5 Sonnet) – offer a competitive alternative to traditional
public data. Figure 3 presents our experimental results on the WE and EDAD (ε = 1), demonstrating how
pretraining on the surrogate public data can vastly improve the starting point of model performance.

Figure 7 shows a diminishing pretraining advantage when increasing ε for both EDAD and WE. This is an
expected behavior: high epsilon allows for the extraction of more signal from the private dataset, and may
reduce the usefulness of public data, regular or surrogate (Thaker et al., 2024).
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Figure 3: Mean AUC on the test subset of the private dataset split for the pretraining model and the fine-tuned
model, grouped by generation method. The mean is calculated across the DP finetuning hyperparameter
space when best pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs
per hyperparameter configuration.

Under a more granular analysis, the EDAD dataset benefits substantially from pretraining, with average AUC
advantages per method ranging from 0.09 to 0.19. Here, the traditional public dataset delivers the highest
improvement across ε values. When aggregated by generation method, CSV-based methods perform slightly
worse than the regular public dataset, followed by the Agent-based method. A more careful examination of
surrogate approaches in Table 3b reveals that the CSV (Claude) (AUC advantages ranging from 0.07-0.17)
and CSV (Llama) (ranging from 0.08-0.17) perform on par with or slightly worse than the regular public
data (ranging from 0.09-0.19). For example, at ε = 1, the AUC advantages of traditional public data, CSV
(Claude), CSV (Llama) are 0.19 and 0.17, respectively. As expected, pretraining with baselines (Uniform
and Univariate) and Arbitrary yields almost no benefit, because they contain essentially no signal about
the relationship between the target variable and the features in the classification task.

The WE dataset exhibits trends similar to EDAD. Although the traditional public dataset achieves the best
advantage at ε = 2, its performance is not consistently top-ranked across all privacy levels. In fact, for
ε = 1, 4, 16, it is not in the top three. Notably, the two Claude Agent-based variants have the best performance
across most ε values, with AUC improvements ranging from 0.07 to 0.21.

ACS and the Role of Dataset Size. For the ACS dataset, we do not observe any benefit from pretraining,
either with traditional or surrogate public data (e.g., as Figure 8a shows for ε = 1).

However, a follow-up analysis reveals that this is due to the relatively large size of the dataset. Dataset size
is a key factor in differentially private mechanisms, as it directly influences the noise level added to achieve a
specific level of privacy protection (Dwork et al., 2016). The relatively large size of the ACS dataset partly
explains why the benefit of regular public data pretraining appears marginal in, e.g., Table 3a; as privacy
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Figure 7: Mean AUC Advantage of the DP model after pretraining, grouped by generation method. The
mean is calculated across the DP finetuning hyperparameter space when best pretraining hyperparameter
configuration is chosen for the pretraining step, with 10 runs per hyperparameter configuration.

sensitivity scales inversely with dataset size, when the private dataset is sufficiently large, the magnitude of
noise necessary for a DP guarantee decreases.

To investigate this effect, we repeated the full pretraining experiment (Section 5.1.1) on four ACS subsets
obtained by subsampling at 5%, 10%, 20%, and 50%. In these experiments we focus on the AUC advantage at
ε = 1, where the benefit of public data is most pronounced.

Figure 8b shows that with 5% subsampling, the ACS dataset exhibits a similar pattern of performance to the
one we found with the EDAD and WE datasets. In fact, the LLM-based methods (using Claude Sonnet 3.5)
outperformed the traditional public dataset. Figure 9 presents the relationship between the (subsampled)
dataset size and the AUC advantage per generation method category to ε = 1. As we examine smaller
datasets, the differences we observe align with results on the EDAD and WE datasets. Both the CSV and
Agent surrogate datasets perform on average similarly to traditional public data.

This observation may also help explain the negative findings reported by Swanberg et al. (2025) regarding
the use of LLM-generated public data for DP synthetic data generation on the Adult dataset, which consists
of 48,842 records – substantially larger than some of the datasets considered here. We hypothesize that
with smaller datasets, LLM-generated public data surrogates could provide some benefit in pretraining
differentially private data synthesizers, but leave a closer examination of that DP auxiliary task to future
work.
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Table 3: Mean AUC Advantage (AUC in parentheses) of the DP model after pretraining, grouped by
generation method. The mean is calculated across the DP finetuning hyperparameter space when the best
pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs per hyperparameter
configuration.

(a) ACS

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

Public .01 (.75) .01 (.76) .01 (.76) .00 (.75) .00 (.75)

Baseline (Domain) -.03 (.71) -.03 (.71) -.03 (.71) -.03 (.72) -.05 (.70)
Baseline (Univariate) -.01 (.73) .00 (.74) -.03 (.71) -.02 (.73) .00 (.75)

Arbitrary .00 (.74) .01 (.75) .00 (.74) .00 (.75) .00 (.75)

CSV (Claude 3.5 Sonnet) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .01 (.76)
CSV (GPT-4o) .01 (.74) .01 (.75) .01 (.76) .00 (.75) .01 (.76)
CSV (Llama 3.3 70B) .01 (.75) .01 (.75) .01 (.75) .00 (.75) .01 (.76)

Agent (Claude 3.5 Sonnet, Unif.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (Claude 3.5 Sonnet, Max Cov.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Unif.) .00 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Max Cov.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Unif.) -.01 (.73) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Max Cov.) .00 (.74) .01 (.75) .01 (.75) .00 (.75) .01 (.76)
Agent (All, Unif.) .01 (.75) .01 (.75) .01 (.75) .01 (.76) .01 (.76)
Agent (All, Max Cov.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

(b) EDAD

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.65) .00 (.69) .00 (.71) .00 (.74) .00 (.76)

Public .19 (.84) .12 (.81) .13 (.85) .08 (.82) .09 (.85)

Baseline (Domain) .00 (.65) .00 (.69) -.02 (.70) -.04 (.70) .02 (.78)
Baseline (Univariate) .04 (.69) -.06 (.63) .05 (.76) -.07 (.67) .03 (.79)

Arbitrary .04 (.69) .03 (.72) .03 (.75) -.01 (.74) .04 (.80)

CSV (Claude 3.5 Sonnet) .17 (.82) .12 (.80) .10 (.81) .07 (.82) .07 (.83)
CSV (GPT-4o) .15 (.81) .09 (.77) .11 (.83) .07 (.81) .07 (.83)
CSV (Llama 3.3 70B) .17 (.82) .12 (.80) .12 (.83) .08 (.82) .08 (.84)

Agent (Claude 3.5 Sonnet, Unif.) .14 (.79) .10 (.79) .10 (.81) .06 (.81) .07 (.82)
Agent (Claude 3.5 Sonnet, Max Cov.) .16 (.81) .10 (.79) .09 (.81) .06 (.80) .08 (.84)
Agent (GPT-4o, Unif.) .15 (.80) .05 (.74) .10 (.81) .06 (.81) .07 (.83)
Agent (GPT-4o, Max Cov.) .14 (.80) .08 (.77) .07 (.78) .04 (.79) .07 (.83)
Agent (All, Unif.) .13 (.78) .09 (.78) .08 (.79) .07 (.81) .07 (.83)
Agent (All, Max Cov.) .16 (.81) .07 (.76) .12 (.84) .07 (.81) .07 (.83)

(c) WE

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.53) .00 (.55) .00 (.58) .00 (.63) .00 (.66)

Public .11 (.64) .18 (.73) .13 (.71) .06 (.69) .06 (.72)

Baseline (Domain) -.01 (.53) -.01 (.54) -.06 (.52) -.06 (.57) -.07 (.59)
Baseline (Univariate) .00 (.53) .02 (.58) .00 (.58) .01 (.64) -.05 (.61)

Arbitrary .01 (.55) .01 (.56) .01 (.59) -.02 (.61) -.05 (.61)

CSV (Claude 3.5 Sonnet) .12 (.65) .09 (.65) .09 (.67) .02 (.65) .05 (.70)
CSV (GPT-4o) .05 (.58) .08 (.64) .06 (.64) .05 (.69) .03 (.69)
CSV (Llama 3.3 70B) -.01 (.52) .01 (.57) .04 (.61) .00 (.63) -.04 (.62)

Agent (Claude 3.5 Sonnet, Unif.) .21 (.74) .15 (.70) .17 (.75) .07 (.70) .11 (.77)
Agent (Claude 3.5 Sonnet, Max Cov.) .20 (.73) .17 (.72) .15 (.73) .06 (.69) .07 (.73)
Agent (GPT-4o, Unif.) -.01 (.52) .02 (.58) -.01 (.57) -.04 (.59) -.06 (.60)
Agent (GPT-4o, Max Cov.) -.05 (.48) -.05 (.50) -.07 (.51) -.05 (.58) -.02 (.63)
Agent (Llama 3.3 70B, Unif.) .00 (.54) .03 (.59) .04 (.62) .02 (.66) .02 (.68)
Agent (Llama 3.3 70B, Max Cov.) -.01 (.52) -.01 (.54) .02 (.60) .02 (.65) .02 (.68)
Agent (All, Unif.) .09 (.62) .15 (.71) .12 (.70) .05 (.68) .07 (.73)
Agent (All, Max Cov.) .08 (.61) .14 (.69) .13 (.71) .07 (.71) .06 (.72)
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Figure 8: Mean AUC on the test subset of the private dataset split for the pretraining model and the fine-tuned
model, grouped by generation method. The mean is calculated across the DP finetuning hyperparameter
space when best pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs
per hyperparameter configuration.
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grouped by generation method category. The mean is calculated across the DP finetuning hyperparameter
space when best pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs
per hyperparameter configuration.
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Method Classification Correlation Marginals
CSV (Claude) 0.002 0.033 0.121
CSV (GPT) 0.001 0.149 0.096
CSV (Llama) 0.003 0.052 0.041
Agent (Llama, Unif.) 0.002 0.061 0.086

Table 4: Pareto Efficient Methods (Task 2: Hyper-
parameter tuning for private synthetic data) for
PrivBayes on ACS.

Method Classification Correlation Marginals
Public 0.008 0.047 0.097
CSV (Claude) 0.033 0.046 0.227
Agent (Claude, Unif.) 0.004 0.134 0.225

Table 5: Pareto Efficient Methods (Task 2: Hyper-
parameter tuning for private synthetic data) for
PrivBayes on EDAD.

6.2 Results for Task 2: Hyperparameter Tuning for DP Synthetic Data Generation
Across all three datasets, we find that no single surrogate public data method consistently excels across all
considered metrics for hyperparameter tuning DP data synthesizers. Instead, each method tends to do better
on certain metrics (classification performance, correlation, or marginal consistency). Given the variation in
data and model structure, this is unsurprising.

However, our Pareto frontier analysis revealed an interesting phenomenon. We found that complexity (in
terms of higher-order relationships between variables) for the surrogate public datasets appears to be the
most important factor. In several cases, some baseline methods (e.g., the Arbitrary approach) also lie on
the Pareto frontier, which reinforces the idea that any dependency structure – not necessarily an exact match
of the “true,” private distribution – can be sufficient for effective hyperparameter selection. Nonetheless, we
also find the CSV and Agent-based methods have the best aggregate performance trade-offs among metrics
for this task. This suggests that LLM-based generation methods are useful for tuning compared to using
sensitive data. See Appendix C.2 for detailed results.

ACS. On ACS, where LLMs are likely to possess well-calibrated priors due to extensive training on U.S.
Census data (see Appendix B.1.4), the AIM synthesizer (Table 7) shows that Agent (Claude, Unif.)
is best for both classification (0.004) and marginal consistency (0.024), while CSV (Claude) has the best
correlation metric (0.002) (although the Agent based Claude methods here are close behind). For the
PrivBayes synthesizer (Table 4), the CSV-based approaches are impressive: CSV (GPT) achieves the best in
terms of classification metrics (0.001), CSV (Llama) is best in marginal metrics (0.041), and CSV (Claude) is
best for correlationmetrics (0.033). For GEM onACS, the Agent (Claude, Max Cov.) approach is dominant
along with the Arbitrary baseline. Recall that the Arbitrary baseline directly encodes relationships into
the data (via the Bayesian approach described in Section 4.1.3). In the case of GEM, whether relationships
between variables are accurate to true relationships in the private data is less important when tuning its
hyperparameters.

EDAD. We now turn to the EDAD dataset (a Spanish disability survey); EDAD was published after many
LLMs’ training cutoffs, so we expect the LLMs to have less, if any, prior exposure to tabular data in the
same domain as the schema we present. For the AIM synthesizer (Table 8), several agent-based methods
(e.g., Agent (All, Unif.)) are similarly strong for classification metrics (0.001). Although the correlation
metrics are tightly grouped (ranging from 0.014 to 0.019), the overall Pareto frontier is defined by a mix of
the CSV and Agent approaches. For the PrivBayes synthesizer (Table 5), the agent-based method Agent
(Claude, Unif.) again leads on classification (0.004) while CSV (Claude) remains on the Pareto frontier
for correlation (0.046); meanwhile, the real Public data yields the best marginal consistency (0.097).

WE. For WE – the Workplace Equity survey dataset, also from a period after many LLM training cutoffs
– for the AIM synthesizer (Table 9) the best-performing methods are exclusively Agent-based methods.
Here, Agent (Claude, Unif.) leads in classification metrics (0.016), Agent (GPT, Unif.) attains the
best correlation metrics (0.007), and Agent (GPT, Max Cov.) provides the strongest marginal consistency
(0.025). In contrast, for the PrivBayes synthesizer (Table 6), although the Arbitrary baseline dominates on
marginal consistency (0.056) and is competitive on correlation (0.052), agent-based methods (both All, Max
Cov. and Claude, Unif.) yield a substantial improvement in classification performance (0.016 - 0.019).
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Method Classification Correlation Marginals
Arbitrary (Baseline) 0.043 0.052 0.056
Agent (All, Max Cov.) 0.016 0.096 0.172
Agent (Claude, Unif.) 0.019 0.040 0.070

Table 6: Pareto Efficient Methods (Task 2: Hyper-
parameter tuning for private synthetic data) for
PrivBayes on WE.

Method Classification Correlation Marginals
CSV (Claude) 0.013 0.002 0.045
Agent (Claude, Max Cov.) 0.010 0.003 0.125
Agent (Claude, Unif.) 0.004 0.003 0.024

Table 7: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for AIM
on ACS.

Method Classification Correlation Marginals
CSV (Claude) 0.004 0.014 0.037
CSV (Llama) 0.003 0.018 0.010
Agent (All, Max Cov.) 0.001 0.019 0.013
Agent (All, Unif.) 0.001 0.018 0.040
Agent (Claude, Max Cov.) 0.004 0.014 0.010
Agent (Claude, Unif.) 0.003 0.014 0.025
Agent (GPT, Max Cov.) 0.003 0.017 0.012
Agent (GPT, Unif.) 0.003 0.015 0.011

Table 8: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for AIM
on EDAD.

Method Classification Correlation Marginals
Agent (Claude, Unif.) 0.016 0.016 0.198
Agent (GPT, Max Cov.) 0.033 0.013 0.025
Agent (GPT, Unif.) 0.020 0.007 0.030
Agent (Llama, Unif.) 0.017 0.010 0.047

Table 9: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for AIM
on WE.

Method Classification Correlation Marginals
Arbitrary (Baseline) 0.002 0.023 0.043
Agent (Claude, Max Cov.) 0.002 0.039 0.072

Table 10: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for GEM
on ACS.

Method Classification Correlation Marginals
Public 0.008 0.222 0.146
CSV (GPT) 0.004 0.172 0.166
Agent (Claude, Max Cov.) 0.007 0.104 0.147

Table 11: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for GEM
on EDAD.

Method Classification Correlation Marginals
CSV (LLaMA) 0.025 0.057 0.521
Agent (All, Unif.) 0.007 0.071 0.059
Agent (GPT, Unif.) 0.028 0.056 0.058

Table 12: Pareto Efficient Methods (Task 2: Hyperpa-
rameter tuning for private synthetic data) for GEM
on WE.
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6.3 Results for Task 3: Privacy-Utility Trade-off Estimation for DP Synthetic Data
Generation

For privacy–utility tradeoff estimation, the story is less clear-cut. While surrogate public data generally
provides a reasonable approximation of the privacy–utility tradeoff curves, the differences between various
generation methods were not pronounced. We observed that regular public data provided the best or second-
best estimation of the privacy–utility tradeoff curve in the vast majority of cases. This observation suggests
that data similarity may be an important contributing factor. However, a subsequent analysis (Section 7)
examining the role of similarity did not reveal a clear pattern explaining this result. See Appendix C.3 for an
in-depth treatment of our privacy/utility tradeoff estimation results.

As shown in Table 13, Table 14, and Table 15, the distances between the performance vectors – measured
in both ℓ1 and ℓ2 norms – vary considerably across datasets and synthesizers. For example, in the AIM
synthesizer (Table 13), methods such as Agent (All, Max Cov.) achieve an ACS ℓ1 of 0.039 and an ACS
ℓ2 of 0.023, while CSV (Llama) attains similar values (ACS ℓ1: 0.044, ACS ℓ2: 0.023). In the GEM setting
(Table 14), a similar trend is observed. Here, the Arbitrary baseline exhibits impressively low EDAD ℓ1
(0.028) and EDAD ℓ2 (0.013) distances, while other methods, such as Agent (All, Unif.) and CSV (GPT),
also display competitive performance on certain metrics. For the PrivBayes synthesizer (Table 15), CSV (GPT)
achieves an ACS ℓ1 of 0.091 and an ACS ℓ2 of 0.042 – values that are generally lower than those produced by
several agent-based approaches on other metrics.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

Arbitrary (Baseline) 0.353 0.510 0.367 0.184 0.231 0.166
Agent (All, Max Cov.) 0.364 0.258 0.330 0.186 0.116 0.148
Agent (All, Unif.) 0.519 0.126 0.373 0.274 0.057 0.168
Agent (Claude, Unif.) 0.705 0.257 0.254 0.355 0.115 0.124
Agent (Llama, Max Cov.) 0.543 0.559 0.260 0.288 0.251 0.119
Agent (Llama, Unif.) 0.337 0.696 0.295 0.176 0.312 0.133

Table 13: Priv/Util Pareto Efficient Methods (Task 3:
Privacy/utility tradeoff estimation) for AIM.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

Univariate (Baseline) 0.321 0.028 0.294 0.144 0.013 0.133
CSV (GPT) 0.091 0.155 0.402 0.042 0.070 0.180
Agent (All, Max Cov.) 0.094 0.071 0.318 0.043 0.033 0.144
Agent (All, Unif.) 0.112 0.051 0.280 0.051 0.024 0.126
Agent (GPT, Max Cov.) 0.127 0.061 0.232 0.058 0.027 0.105

Table 14: Priv/Util Pareto Efficient Methods (Task 3:
Privacy/utility tradeoff estimation) for GEM.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

CSV (Llama) 0.044 0.387 0.376 0.023 0.188 0.171
Agent (All, Max Cov.) 0.039 0.100 0.191 0.023 0.051 0.092
Agent (All, Unif.) 0.082 0.091 0.167 0.041 0.056 0.081
Agent (Claude, Max Cov.) 0.068 0.152 0.111 0.033 0.085 0.063
Agent (Claude, Unif.) 0.070 0.151 0.114 0.035 0.082 0.059
Agent (GPT, Max Cov.) 0.065 0.164 0.194 0.034 0.099 0.092
Agent (Llama, Max Cov.) 0.048 0.332 0.158 0.024 0.180 0.073
Agent (Llama, Unif.) 0.042 0.442 0.177 0.023 0.216 0.082

Table 15: Priv/Util Pareto Efficient Methods (Task 3:
Privacy/utility tradeoff estimation) for PrivBayes.
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Table 16: Dataset similarity assessment against the private data for ACS, EDAD and WE. The datasets are
evaluated based on two distance metrics (Section 3.3): (1) Total Variation Distance (TVD); and (2) Average
error on 3-Way Marginals (3WM). Both metrics are in range [0, 1], inverted to represent similarity (1− x),
and scaled by 100. Zero values (rounded) are omitted for readability.

ACS EDAD WE
Method 1-TVD 1-3WM 1-TVD 1-3WM 1-TVD 1-3WM
Public 48.5 50.4 4.9 26.1 6.7 34.1
Baseline (Domain) 4.3 0.1 0.2
Baseline (Univariate) 44.6 63.8 7.1 66.7 15.4 78.5
Arbitrary 2.8 0.1
CSV (Claude 3.5 Sonnet) 14.4 15.0 10.9
CSV (GPT-4o) 25.7 30.2 11.5 14.2
CSV (Llama 3.3 70B) 16.6 10.0 2.4
Agent (Claude 3.5 Sonnet, Unif.) 41.5 48.3 5.5 11.7
Agent (Claude 3.5 Sonnet, Max Cov.) 40.1 40.0 6.8 8.0
Agent (GPT-4o, Unif.) 27.3 23.3 7.2
Agent (GPT-4o, Max Cov.) 27.4 20.4 6.9
Agent (Llama 3.3 70B, Unif.) 13.8
Agent (Llama 3.3 70B, Max Cov.) 10.3
Agent (All, Unif.) 30.5 26.6
Agent (All, Max Cov.) 24.6 15.7

7 Dataset Similarity May Be Less Important Than You’d Think
By using public data in DP auxiliary tasks, we implicitly assume statistical similarity to the private, sensitive
data. Our results generally back this up; in pretraining (Task 1) and privacy-utility trade-off estimation
(Task 3), we observe consistently better traditional public data performance. To explore whether the tradi-
tional public data dominance (and the relative performance rankings of the surrogate public data) could be
explained by dataset similarity, we measure the similarity between all datasets using two common metrics
from the DP literature (see Section 3.3): Total Variation Distance (TVD) and average error across all 3-way
marginal queries (3WM) (Liu et al., 2021c; McKenna et al., 2022).

7.1 Comparing Private vs. Public
The first dataset similarity question we ask is: how similar is a public data variant to the true, private data?
Both traditional and surrogate private vs. public data similarity results are shown in Table 16. In general, our
metrics suggest that the traditional public dataset and the Univariate baseline (recall, this baseline samples
independently with a little noise from the true private distribution) are most similar to the private data. For
EDAD and WE datasets, we can explain the lower overall similarity scores due to their higher dimensionality
(defined as the Cartesian product of possible unique variable values; see the “× Dims” column in Table 2);
the dataset distance is exacerbated by sparsity (particularly for TVD). However, even accounting for the
limitations of these metrics, we did not observe a clear relationship between the similarity rankings of public datasets
and their usefulness rankings in the pretraining and privacy-utility tasks. Our explanatory hypothesis: common
similarity metrics, like TVD and 3WM, may not adequately capture dataset characteristics relevant to the DP
auxiliary tasks we frame. We leave further exploration of suitable metrics to future research.

7.2 Comparing Among (Traditional or Surrogate) Public Data
The second dataset similarity question we ask is: how similar are public data variants to each other, and
does this partially explain their relative performance rankings? To this end, we compared similarity
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metrics among traditional and surrogate public data, with heatmap plots provided in Appendix D. The most
consistent pattern observed across datasets and metrics is the strong similarity between Agent pairs using
the same LLM but differing only in mixing methods (Unif. vs. Max Cov.) (this is barring TVD for EDAD
and WE, where most entries are zero due to the aforementioned dimensionality constraints). This pattern
extends to similarities between the overall mixing datasets and individual Agent datasets (with the exception
of the Llama datasets on EDAD). This is expected since these pairs share the same underlying source of
sampled records. Interestingly, we did not find stable similarities across generated data between different
LLMs within either Agent or CSV methods, or between the same LLM across these two methods. Again, this
could be an artifact of the metrics we use, but we leave a deeper exploration of this for future work.

8 Discussion
In this work, we asked whether LLMs can be used to generate effective surrogate public data for solving DP
auxiliary tasks in settings where traditional public tabular data is limited or unavailable. Each approach
we considered leveraged schema-level metadata to generate surrogate public data in the same domain as
the private, sensitive data. We considered LLM data generation methods like directly prompting for tabular
CSV records, and through an Agent that constructs an SCM over the schema variables using the LLM as
an expert prior. Our evaluations demonstrated that LLM-generated public data surrogates can be used
to significantly improve the DP auxiliary task of private classifier pretraining with public data. The LLM-
generated public data surrogates were also useful for the tasks of hyperparameter tuning and privacy/utility
tradeoff estimation, albeit with less impressive performance relative to a strong baseline (Arbitrary). Overall,
our results provide an affirmative answer: for the DP auxiliary tasks we considered, generating surrogate
public data with LLMs can overcome tabular public data scarcity.

8.1 Limitations
Our work does have several limitations. First, there is a risk that LLM memorization may lead to overly
optimistic performance estimates. Second, the normative implications of employing LLMs to generate
surrogate public data should be carefully analyzed in this context. In the following block, we highlight this
limitation, drawing from an excellent position paper by Tramèr et al. (2024).

Skepticism: Are LLMs Really “Public Data”?
Recent work by Tramèr et al. (2024) cautions against treating web-scraped LLM training data as “public”
or non-sensitive. Traditionally, differentially private algorithms have assumed data is either fully private
(restricted) or fully public (freely available and safe to reuse). However, Tramèr et al. (2024) emphasize
a messier reality; social media and other sources of personally identifiable information, for example,
may be both accessible to language models for training data and contain sensitive information specific to
individuals. When an LLM is trained on such data, it may memorize fragments of it; regurgitating these
private fragments could be interpreted as a privacy violation. Indeed, even if a final model is fine-tuned
under DP constraints, privacy violations may originate from the pretrained model (e.g., a base model
memorized private details during pretraining, and a subsequent DP fine-tuning step does not noise those
probabilities sufficiently to obfuscate). This undermines trust, as an individual may be told that the entire
pipeline is “privacy preserving,” yet see their personal data re-emerge in the final model’s outputs.

We carefully position our work under the paradigm shift identified by Tramèr et al. (2024). Using LLMs to
emulate expert-driven data-generating processes risks inadvertently exposing sensitive information that
is publicly available, as mediated by the LLM. Thus, we propose that best practice is to report empirical
measurements of memorization levels. We do this by leveraging work by Bordt et al. (2024) on verbatim
memorization of tabular data by LLMs; see Appendix B.1.4. Additionally, we report on datasets (see
Table 2) that post-date LLM training (for the models we evaluate; see Table 1). Choosing tasks where the
LLM’s prior knowledge is outdated or non-existent demonstrates performance on truly unseen data (Cheng
et al., 2024). We stress the importance of communicating these nuances, and of reporting, to the best of
one’s knowledge/ability, the empirical level of memorization and the potential LLM data regurgitation
risks when presenting these methods.
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Finally, given substantial evidence that LLMs encode biases (Gallegos et al., 2024), these biases could be
reflected in the generated data – either implicitly in CSV generation or explicitly via the causal relationships
in the Agent-based approach. For instance, a stereotypical correlation could persist through pretraining and
DP fine-tuning, ultimately resulting in an unfair classifier. We leave a detailed investigation of these issues
for future work.

8.2 Future Work
The strong performance of the Arbitrary method in hyperparameter tuning is intriguing, as it suggests that
finding good-enough hyperparameter configuration might depend on the record domain and the synthetic
data generators, and not necessarily on the private data. This raises questions about potential theoretical
justifications for this observation.

The fact that traditional public data often performs best for privacy/utility trade-off estimation would lead us
to believe that dataset similarity plays an important role for this task. We hypothesize that the two similarity
metrics used in this work, while being natural candidates, may not adequately capture dataset characteristics
relevant to estimating the behavior of data synthesizers across privacy budget settings. Identifying metrics
that better predict which surrogate data provides accurate trade-off estimations would be beneficial. Such a
metric could enable, e.g., the exponential mechanism (McSherry & Talwar, 2007) to select similar datasets
(or combinations of datasets), if such a metric had low sensitivity with respect to the private dataset.

Several additional DP auxiliary tasks remain unexplored in our study, such as using public data for seeding
synthetic data generation (Swanberg et al., 2025) and assessing the success rate of privacy attacks as a
function of ε (Cummings et al., 2024b). We leave these avenues for future research.

We propose three approaches to improve the quality of surrogate data produced by Agent-based methods,
making it more closely resemble private data. First, subject matter experts can review and refine the generated
SCM to better encode experts’ domain knowledge. Second, Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) could be beneficial to surface specific knowledge from scientific literature, enabling the model
to incorporate both accurate causal relationships and their quantitative parameters as established in peer-
reviewed research. Third, recent advancements in reasoning LLMs (Sun et al., 2023; Jaech et al., 2024;
DeepSeek-AI et al., 2025) may enhance LLMs’ ability to consider causal relationships.

Finally, some recent work on Sequence Driven Structural Causal Models (SD-SCMs) shows how to simulate
counterfactual outcomes and treatment scenarios that are often inaccessible in sensitive datasets (by allowing
an LLM to specify structural equations implicitly, given a topological order and a specific prompting structure)
Bynum & Cho (2024). Similarly to the surrogate public data approaches explored in this paper, the SD-SCM
approach does not require access to a downstream private dataset of interest; instead, it only requires a
schema over the data to be generated, and a user to specify the prompting structure and topological order
over variables (which could be generated e.g., by the first few steps of the Agent procedure given in Figure 12).
There may be many potential uses for SD-SCM generated surrogate public data for private causal algorithms;
for example, we believe that future work could explore how it can be used to improve the performance of
hyperparameter tuning for private causal effect estimators.
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A Details of Surrogate Public Data Generation

Algorithm 1 Random Bayesian network generation for the arbitrary dataset.
1: procedure GenerateRandomBN(S, dmax, α)

Input:
S = {(v1,D1), . . . , (vn,Dn)}: Schema where vi is a variable and Di is its domain of possible values
dmax: Maximum parent degree
α: Dirichlet concentration parameter
Output:
Bayesian network B = (G, Θ) where:
G = (V, E): Directed acyclic graph with nodes V and edges E
Θ = {θv|Πv

: v ∈ V}: Set of conditional probability distributions, where θv|Πv
represents

the distribution of v given its parent set Πv

Initialization:
2: Extract variables V = {v1, . . . , vn} from schema S
3: Define indexing function ϕv : Dv → {1, . . . , |Dv|} for each v ∈ V

Network Structure Generation:
4: Randomly permute the ordering of variables in V
5: Initialize edge set E ← ∅
6: Initialize parameter set Θ← ∅
7: for i = 1 to n do
8: Define candidate parent set Ci = {v1, . . . , vi−1}
9: Select Πi ⊆ Ci randomly with |Πi| ≤ min(dmax, i− 1)
10: Add edges {(u, vi) : u ∈ Πi} to E

Parameter Generation:
11: Let ΩΠi

be the set of all configurations of Πi where each configuration π ∈ ΩΠi
is a tuple of values

12: Let ki = |Dvi
| be the cardinality of variable vi’s domain

13: if Πi = ∅ then
14: θvi

∼ Dir(α · 1ki
) ▷ Sample from Dirichlet with symmetric α parameter

15: else
16: for all π ∈ ΩΠi do
17: θvi|π ∼ Dir(α ·1ki

) ▷ Conditional probability distribution of vi given parent configuration π
18: end for
19: end if
20: Θ← Θ ∪ {θvi|Πi

}
21: end for
22: return B = ((V, E), Θ)
23: end procedure
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{
. . .
"RELACT" : {

" desc r ip t i on " : "Main labour market a c t i v i t y s t a tu s " ,
" dtype " : " in t 64 " ,
" values " : {

" 1 " : "Employed " ,
" 2 " : "Unemployed " ,
" 3 " : " Ret i red " ,
" 4 " : " Student " ,
" 5 " : " Unable to work " ,
" 6 " : "Doing unpaid s o c i a l work or cha r i t a b l e a c t i v i t i e s " ,
" 7 " : " Other i n a c t i v e person "

}
} ,
"CERTIG " : {

" desc r ip t i on " : " Degree of d i s a b i l i t y " ,
" dtype " : " in t 64 " ,
" values " : {

" 1 " : "0−32%" ,
" 2 " : "33−44%" ,
" 3 " : "45−64%" ,
" 4 " : "65−74%" ,
" 5 " : "75% or more " ,
" 6 " : "Not known"

}
} ,
"AUDI_7_1 " : {

" des c r ip t i on " : "Has s i g n i f i c a n t d i f f i c u l t y hearing a conversat ion
↪→ with severa l people without a hearing aid " ,

" dtype " : " in t 64 " ,
" values " : {

" 1 " : " Yes " ,
" 2 " : "No"

}
} ,
. . .

}

Figure 10: Excerpt from the schema of the EDAD dataset (Spanish disability, autonomy, and dependency
survey) (Instituto Nacional de Estadística, 2024).
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System : You are an expert in {domain} who generates syn the t i c data tha t
↪→ c l o s e l y mirrors rea l−world {domain} data . Your goal i s to c r ea t e
↪→ data tha t would be ind i s t i ngu i shab l e from rea l {domain} records .

Follow exac t l y these ru l e s :
1 . Only output the CSV data with no add i t i ona l t e x t or explanat ions
2 . Always include a header row matching the schema exac t l y
3 . S t r i c t l y adhere to the provided schema ’ s data types and poss ib l e

↪→ values fo r a l l f i e l d s
4 . Use comma as the separa tor
5 . Ensure a l l values and r e l a t i on sh ip s between f i e l d s are r e a l i s t i c and

↪→ s t a t i s t i c a l l y p l aus ib l e
6 . Generate diverse data while maintaining rea l−world pa t t e rns and

↪→ con s t r a i n t s
7 . Include occas iona l edge cases a t r e a l i s t i c f requenc ies

User : Generate {num_rows} rows of data with these f i e l d s :

{schema}

Figure 11: The prompt template used for CSV generation with an LLM.
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Figure 12: State machine for the SCM Agent showing state transitions. Each state can transition to itself upon
failure or advance to the next state upon success, following a zigzag pattern.
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B Details of Evaluation Framework

Category Metric Description

Marginals Total Variation Distance Distance between the joint distributions of the original
and synthetic datasets.

Max 3-Way Marginal Error Maximum absolute difference error for 3-way
marginals between original and synthetic datasets,
normalized by dataset size.

Avg. 3-Way Marginal Error Average absolute difference error for 3-way marginals
between original and synthetic datasets, normalized
by dataset size and query count.

Max Binarized Marginal Error Maximum absolute difference error for 3-way
marginals after thresholding continuous variables to
binary values, normalized by dataset size.

Avg. Binarized Marginal Error Average absolute difference error for 3-way marginals
after thresholding continuous variables to binary val-
ues, normalized by dataset size and query count.

Correlations Max Pearson Correlation Diff Maximum absolute difference between Pearson corre-
lation coefficients of original and synthetic datasets.

Avg. Pearson Correlation Diff Average absolute difference between Pearson correla-
tion coefficients of original and synthetic datasets.

Max Cramer’s V Diff Maximum absolute difference between Cramer’s V cor-
relation coefficients of original and synthetic datasets.

Avg. Cramer’s V Diff Average absolute difference between Cramer’s V cor-
relation coefficients of original and synthetic datasets.

Classification Error Rate Diff Difference in classification error rates between models
trained on original vs. synthetic data and evaluated
on the same test set.

AUC Diff Difference in Area Under the ROC Curve (AUC) be-
tween models trained on original vs. synthetic data
and evaluated on the same test set.

Table 17: Overview of quality evaluation metrics for a synthetic dataset against the original dataset. All
metrics range from 0 to 1, with lower values indicating better synthetic data quality.

B.1 Datasets
B.1.1 ACS

The ACS data excerpt was released by the US Census Bureau in September 2020 and provided by the NIST
CRC to assess synthetic data generation methods. We designated the “National” dataset (27,254 records) as
the private split and the “Massachusetts” dataset (7,634 records) as the public split. Since the differential
privacy synthetic data generators assessed in this project are primarily designed for categorical data, we used
the “demographic” subset containing 7 categorical features provided by NIST CRC. After removing records
with missing values, we retained 23,006 and 6,514 records for the private and public splits, respectively. The
public split was up-sampled to match the size of the private split. For a complete description of the dataset
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and its curation, refer to its documentation (Task et al., 2023).

B.1.2 EDAD

The EDAD (Survey on Disability, Personal Autonomy and Dependency Situations) datasets were released
by the Spanish National Statistics Institute (INE) in April 2022 and April 2024, containing responses from
their 2020 (164,254 records) and 2023 (12,518 records) surveys respectively. We designated the 2023 survey
responses as the private split and the 2020 survey responses as the public split. Since our synthetic data
generators are primarily designed for categorical data, we used a subset of 11 categorical features from both
surveys. After removing records with missing values, we retained 8,922 and 1,469 records for the private
and public splits, respectively. The private split was down-sampled to match the size of the public split.
For a complete description of the datasets and their curation, refer to the documentation given by Instituto
Nacional de Estadística (2024).

B.1.3 WE

The Workplace Equity Survey datasets (WE) consist of responses from two global surveys conducted in 2018
(released December 2019) and 2023 (released April 2024) by the Coalition for Diversity and Inclusion in
Scholarly Communications C4DISC). We designated the 2023 survey responses (1,755 records) as the private
split and the 2018 survey responses (1,182 records) as the public split. Since our synthetic data generators
are primarily designed for categorical data, we used a subset of 12 categorical features from both surveys. In
this dataset, we kept the missing values as another category. We retained 837 and 1,400 records for the public
and private splits, respectively, and no upsampling or downsampling was done. The slight reduction in
records is due to filtering response with high levels of missingness and only using respondents from the top
10 most common country affiliations in the survey (to reduce dimensionality). For a complete description of
the datasets and their curation, refer to their documentation (Spilka et al., 2020; Lemieux et al., 2024).

B.1.4 Dataset Memorization by the LLMs

Recent research has highlighted growing concerns that, because LLMs are exposed to benchmark data from
the internet during training, their performance those and other benchmarks may be inflated when assessing
performance post-training (Magar & Schwartz, 2022; Golchin & Surdeanu, 2024; Roberts et al., 2024; Xu
et al., 2024; Dong et al., 2024). For example, it is well known that LLMs have a large capacity for training
data memorization (Carlini et al., 2021; Kandpal et al., 2022; Carlini et al., 2023); this is one mechanism by
which they could “hack” existing benchmarks, by simply memorizing the examples and their answers. This
memorization consideration is particularly relevant for our experimental setup, where we utilize LLMs to
generate records both directly and indirectly. Thus, any prior exposure to our evaluation datasets (ACS,
EDAD, and WE) could significantly impact model performance in our evaluations (of particular concern is
exposure to the split of these datasets that we consider private in our evaluations, e.g., the national version of
the ACS dataset). We address this memorization concern through two mitigation strategies.

First, we considered the temporal relationship between dataset releases and model knowledge cutoff dates when
selecting two of our datasets for evaluation. Namely, the private splits of EDAD and WE were released
in April 2024, which is later than the knowledge cutoff dates of most models used in our study (Table 1):
GPT-4o (October 2023), Llama 3.3 70B (December 2023), and Claude 3.5 Sonnet (April 2024). While there is
a one-month overlap with Claude, the analysis of Cheng et al. (2024) suggests that the effective knowledge
cutoff dates of LLMs typically precede their reported dates.

Second, we executed the LLM memorization assessment methodology proposed by Bordt et al. (2024); they
provide an extensive package & benchmark for LLM memorization detection specific to tabular data. We ran
their assessment across all private and public splits. In the data generation tests from Bordt et al. (2024) – the
most relevant to our setting – both header tests (generating the first few rows) and row completion tests
(generating random-location rows) indicated no evidence of record-level memorization by any of the three
LLMs across all datasets. Refer to Figure 13 for an example of the header test results for the ACS dataset with
Claude 3.5 Sonnet.
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Additional tests examining an LLM’s metadata knowledge of tabular datasets, rather than record generation
capabilities, revealed varying levels of dataset familiarity. The models unsurprisingly demonstrated strong
familiarity with ACS, but limited knowledge of EDAD and minimal recognition of WE. This pattern aligns
with the relative public visibility of these datasets: ACS is a core and official product of the US Census, EDAD
is an official product of the Spanish National Statistics Institute, and WE is a small-scale survey conducted by
a coalition of professional and trade organizations.

When provided with header columns and the first few rows, all models successfully identified the name
of the ACS dataset, and sometimes could identify the EDAD dataset name (where the 2020 public split
consists of multiple raw files). However, for the WE dataset, even when given headers and first rows, no
model generated the correct dataset name – instead, they provided thematically related names such as
“work-life-and-career-survey” and “publishing-industry-diversity-survey.” We hypothesize that this pattern
emerges from the survey questions themselves serving as column names, which inherently reveal the overall
topic of the survey (e.g., “How long have you worked in publishing and/or related industries?”).

We observed similar patterns regarding column name completion. When given the dataset name and the
first few features, all models failed to generate the correct column names for both EDAD and WE datasets.
For ACS, the models could generate some of the column names, but not in the correct order. We hypothesize
that this is due to the fact that the ACS datasets we used were sub-sampled, modified, and adopted from the
US Census release by NIST.

PUMA,AGEP,SEX,MSP,HISP,RAC1P,NOC,NPF,HOUSING_TYPE,OWN_RENT,DENSITY,INDP,INDP_CAT,
EDU,PINCP,PINCP_DECILE,POVPIP,DVET,DREM,DPHY,DEYE,DEAR,PWGTP,WGTP

01-01301,18,2,6,0,9,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,79,0
01-01301,27,1,6,0,1,N,N,3,0,2731.2,3291,4,7,15400.0,4,116,N,2,2,2,2,5,0
01-01301,74,2,3,0,2,N,N,2,0,2731.2,N,N,9,12900.0,3,N,N,2,1,2,2,19,0
01-01301,22,1,6,0,1,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,10,0
01-01301,18,2,6,0,1,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,15,0
01-01301,52,2,1,0,1,N,N,1,1,2731.2,7860,8,10,52000.0,8,433,N,2,2,2,2,25,0
01-01301,54,1,1,0,1,N,N,1,1,2731.2,7860,8,10,55000.0,8,458,N,2,2,2,2,25,0
01-01301,20,2,6,0,1,N,N,3,0,2731.2,N,N,7,35400.0,0,N,N,2,2,2,2,12,0
01-01301,48,2,1,0,1,N,N,1,1,2731.2,8680,9,10,45000.0,7,375,N,2,2,2,2,20,0
01-01301,49,1,1,0,1,N,N,1,1,2731.2,7860,8,9,48000.0,7,400,N,2,2,2,2,20,0
01-01301,15,1,6,0,1,N,N,3,0,2731.2,N,N,6,9300.0,0,N,N,2,2,2,2,18,0
01-01301,45,2,1,0,1,N,N,1,1,2731.2,N,N,5,27860.0,8,N,N,2,1,0,2,1420
01-01.01,27,1,350,1,N,2,2,2,27,1.8,0

Figure 13: The header test output on the ACS dataset on Claude 3.5 Sonnet. The LLM is prompted with the
column names as well as a few first rows of the dataset (black), and its completion is presented. The output is
colored according to its Levenshtein string distance compared to the original records: correct, incorrect, and
missing. We observe that the LLM failed to reproduce the header, as many errors occur within columns with
variability.

B.2 Private Mechanisms
B.2.1 Classification

Differentially private pretraining is usually conducted in domains where strong, publicly available priors
with matching data-dimensionality are available (e.g., text or image data). In these fields, neural transformer
models dominate (Wolf et al., 2020; Khan et al., 2022).

For an adequate analog to this space in the tabular setting, we consider an FTTransformer model (Gorish-
niy et al., 2021), which is a transformer based architecture for tabular data classification. FTTransformer
has demonstrated strong performance against established powerful gradient boosting approaches such
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as XGBoost (Chen & Guestrin, 2016). Its effectiveness stems from specialized data transformations that
mitigate information loss in transformer-based attention layers (Gorishniy et al., 2022). Prior work shows
how simple it can be to adapt FTTransformer to the private setting (Rosenblatt et al., 2024b) by making minor
modifications to its architecture to support DP-SGD (Abadi et al., 2016). Importantly, it can also be easily
pre-trained with public data through standard gradient updates before private training. The differentially
private variant of FTTransformer is (ε, δ)-DP, for which we set δ = 10−5.

B.2.2 Data Synthesis

We considered three representative state-of-the-art private data release methods: PrivBayes (Zhang et al.,
2014), GEM (Liu et al., 2021c) and AIM (McKenna et al., 2022). Each of these synthesizers follows the
“Select-Measure-Project” paradigm, in that they privately select statistical queries (marginals or correlations)
to run on a sensitive distribution, privately measure these queries, and then as post-processing project these
measurements onto a synthetic distribution (from which we can draw arbitrary samples) that approximates
the original, sensitive distribution.

PrivBayes builds a Bayesian network (BN) and adds noise to all k-way correlations to ensure differential
privacy. Despite having been published in 2017, PrivBayes is still considered state-of-the-art andwas chosen to
produce the differentially private release of the IsraelNational Live Birth Registry (Hod&Canetti, 2025). GEM
parameterizes a neural model to represent a synthetic distribution that approximates the true distribution by
minimizing a linear query error based loss (with linear queries implemented as k-way marginals, where
by default k = 3). AIM relies on the Private-PGM graphical model (McKenna et al., 2021) to parameterize
the underlying distribution, and utilizes an iterative process to take advantage of higher values of ε. Both
AIM and GEM are considered the state-of-the-art approaches to generating private synthetic data (Tao et al.,
2021; Rosenblatt et al., 2023). Outside of these methods, we acknowledge that many other methods exist for
generating DP data (Dwork et al., 2009; Hardt et al., 2012; Vietri et al., 2020; McKenna et al., 2023; Xu et al.,
2019; Rosenblatt et al., 2020; Aydöre et al., 2021; Cai et al., 2021), but we believe that PrivBayes, GEM and
AIM are a representative set of what can be currently considered state-of-the-art.

PrivBayes and GEM are ε-DP, whereas AIM is (ε, δ)-DP, for which we set δ = 10−9. All three methods come
with hyperparameters that need to be tuned. Detailed lists of hyperparameters per-synthetic data generator,
and their associated values, are given in Appendix B.3.
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B.3 Hyperparameter Spaces

Table 18: Hyperparameters for FTTransformer Classifier

Hyperparameter Description Values

pre_num_epochs Number of epochs for pre-training {1, 9}
pre_batch_size Batch size for pre-training {32, 128}
pre_lr Learning rate for pre-training {3 × 10−4, 3 × 10−5}

dp_num_epochs Number of epochs for differential private fine-tuning 20
dp_batch_size Batch size for differential private fine-tuning 128
dp_lr Learning rate for differential private fine-tuning {3 × 10−3, 3 × 10−4}

Table 19: Hyperparameters for GEM

Hyperparameter Description Values

k Maximum degree of measured marginals {2, 3}
T Number of iterations {50, 100}
alpha Learning rate {0.1, 0.5}
ema_weights_beta EMA weights coefficient {0.1, 0.9}

Table 20: Hyperparameters for AIM

Hyperparameter Description Values

degree Maximum degree of measured marginals {2, 3}
rounds Number of iterations {20, 40}

Table 21: Hyperparameters for PrivBayes

Hyperparameter Description Values

theta SNR heuristic to set max node degree {2, 8, 32, 64}
epsilon_split Prop. of privacy budget allocated to structure learning {0.1, 0.5, 0.75}
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C Details of Results
In this section, we present the detailed results of our evaluation framework (Section 5 and Appendix B) for
the following DP auxiliary tasks: pretraining, hyperparameter tuning, and estimating the privacy-utility
trade-off.

C.1 Results for Task 1: Private Pretraining for Classification
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Figure 14: Mean AUC Advantage of the DP model after pretraining, grouped by generation method. The
mean is calculated across the hyperparameter space, with 10 runs per hyperparameter configuration.
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Figure 15: Mean AUC Advantage of the DP model after pretraining, grouped by generation method for the
sub-sampled ACS dataset. The mean is calculated across the DP finetuning hyperparameter space when best
pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs per hyperparameter
configuration.
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Table 22: Mean AUC Advantage (AUC in parentheses) of the DP model after pretraining, grouped by
generationmethod. Themean is calculated across the hyperparameter space, with 10 runs per hyperparameter
configuration.

(a) ACS

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

Public .01 (.75) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

Baseline (Domain) -.03 (.71) -.02 (.72) -.01 (.73) -.01 (.74) -.01 (.74)
Baseline (Univariate) -.02 (.72) -.02 (.73) -.01 (.73) -.01 (.74) -.01 (.74)

Arbitrary .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

CSV (Claude 3.5 Sonnet) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
CSV (GPT-4o) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
CSV (Llama 3.3 70B) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

Agent (Claude 3.5 Sonnet, Unif.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (Claude 3.5 Sonnet, Max Cov.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Unif.) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Max Cov.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Unif.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Max Cov.) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (Allm Unif.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (All, Max Cov.) .00 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)

(b) EDAD

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.65) .00 (.69) .00 (.71) .00 (.74) .00 (.76)

Public .11 (.76) .09 (.78) .07 (.79) .06 (.80) .06 (.82)

Baseline (Domain) -.02 (.63) -.01 (.67) -.02 (.69) -.02 (.73) -.01 (.75)
Baseline (Univariate) -.03 (.62) -.01 (.68) -.02 (.70) -.03 (.71) -.02 (.74)

Arbitrary .01 (.66) .01 (.69) .00 (.71) -.01 (.74) .01 (.77)

CSV (Claude 3.5 Sonnet) .11 (.76) .09 (.78) .08 (.79) .07 (.81) .06 (.82)
CSV (GPT-4o) .09 (.74) .08 (.77) .06 (.78) .06 (.80) .05 (.81)
CSV (Llama 3.3 70B) .11 (.76) .09 (.78) .08 (.79) .07 (.81) .05 (.81)

Agent (Claude 3.5 Sonnet, Unif.) .08 (.73) .07 (.76) .06 (.77) .05 (.80) .04 (.81)
Agent (Claude 3.5 Sonnet, Max Cov.) .09 (.74) .07 (.76) .06 (.78) .04 (.79) .05 (.81)
Agent (GPT-4o, Unif.) .07 (.72) .06 (.74) .05 (.77) .04 (.78) .04 (.80)
Agent (GPT-4o, Max Cov.) .07 (.72) .06 (.75) .04 (.76) .04 (.79) .04 (.80)
Agent (All, Unif.) .08 (.73) .07 (.75) .05 (.77) .05 (.79) .04 (.81)
Agent (All, Max Cov.) .09 (.74) .07 (.76) .06 (.78) .05 (.79) .05 (.81)

(c) WE

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16
Without pretraining .00 (.53) .00 (.55) .00 (.58) .00 (.63) .00 (.66)

Public .06 (.59) .06 (.61) .05 (.63) .03 (.66) .03 (.69)

Baseline (Domain) -.02 (.51) -.03 (.52) -.02 (.56) -.04 (.59) -.04 (.62)
Baseline (Univariate) .00 (.53) -.01 (.55) .01 (.58) -.02 (.61) -.03 (.63)

Arbitrary .00 (.53) .01 (.56) .00 (.58) .00 (.63) -.01 (.65)

CSV (Claude 3.5 Sonnet) .06 (.59) .06 (.61) .06 (.64) .03 (.66) .02 (.68)
CSV (GPT-4o) .04 (.58) .05 (.60) .04 (.62) .03 (.66) .02 (.67)
CSV (Llama 3.3 70B) .00 (.53) .00 (.56) .02 (.59) -.01 (.62) -.02 (.64)

Agent (Claude 3.5 Sonnet, Unif.) .10 (.64) .10 (.65) .10 (.68) .06 (.69) .05 (.71)
Agent (Claude 3.5 Sonnet, Max Cov.) .11 (.64) .11 (.66) .09 (.67) .07 (.70) .05 (.71)
Agent (GPT-4o, Unif.) -.01 (.53) .00 (.55) .01 (.59) -.01 (.62) -.02 (.64)
Agent (GPT-4o, Max Cov.) -.04 (.49) -.03 (.52) -.03 (.55) -.03 (.60) -.03 (.62)
Agent (Llama 3.3 70B, Unif.) .00 (.53) .01 (.56) .02 (.60) .00 (.63) -.01 (.65)
Agent (Llama 3.3 70B, Max Cov.) -.01 (.52) -.01 (.55) .01 (.59) -.01 (.62) -.02 (.64)
Agent (All, Unif.) .06 (.59) .06 (.61) .06 (.64) .03 (.66) .02 (.68)
Agent (All, Max Cov.) .03 (.56) .03 (.59) .05 (.63) .01 (.64) .01 (.67)
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C.2 Results for Task 2: Hyperparameter Tuning for Private Synthetic Data

0 2 4 6
Avg. Abs. Degradation

Univariate (Baseline)

Domain (Baseline)Public

Agent (A
ll, M

ax Cov.)

Agent (G
PT-4

o, M
ax Cov.)

Agent (L
lama 3.3 70B, M

ax Cov.)Arbitra
ry

Agent (A
ll, U

nif.)

Agent (C
laude 3.5 Sonnet, M

ax Cov.)

Agent (G
PT-4

o, U
nif.)

CSV (Llama 3.3 70B)

Agent (C
laude 3.5 Sonnet, U

nif.)

Agent (L
lama 3.3 70B, U

nif.)

CSV (C
laude 3.5 Sonnet)

CSV (G
PT-4

o)Private

Classification

0 50 100
Avg. % DegradationDomain (Baseline)

Univariate (Baseline)

Agent (C
laude 3.5 Sonnet, M

ax Cov.)

Agent (A
ll, U

nif.)

Agent (G
PT-4

o, U
nif.)

Agent (G
PT-4

o, M
ax Cov.)Arbitra

ry

Agent (C
laude 3.5 Sonnet, U

nif.)

Agent (A
ll, M

ax Cov.)
CSV (G

PT-4
o)

Agent (L
lama 3.3 70B, M

ax Cov.)Public

Agent (L
lama 3.3 70B, U

nif.)

CSV (Llama 3.3 70B)

CSV (C
laude 3.5 Sonnet)Private

Correlation

0 25 50 75 100
Avg. % Degradation

Univariate (Baseline)

Domain (Baseline)

Agent (C
laude 3.5 Sonnet, U

nif.)Arbitra
ry

Agent (G
PT-4

o, M
ax Cov.)

Agent (G
PT-4

o, U
nif.)

Agent (C
laude 3.5 Sonnet, M

ax Cov.)

CSV (C
laude 3.5 Sonnet)

Agent (A
ll, M

ax Cov.)
CSV (G

PT-4
o)

Agent (L
lama 3.3 70B, M

ax Cov.)Public

Agent (L
lama 3.3 70B, U

nif.)

Agent (A
ll, U

nif.)

CSV (Llama 3.3 70B)Private

Marginals

Figure 16: Granular hyperparameter tuning results for ACS on PrivBayes. Note the poor relative performances
of the Baselines relative to the other methods; encoding relationships between variables is clearly very
important to tuning hyperparameters on the PrivBayes Classifier.
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Figure 17: Granular hyperparameter tuning results for EDADon PrivBayes. Note that the agent-basedmethod
Agent (Claude, Unif.) leads in classification (0.004) while CSV (Claude) dominates the correlationmetric
(0.046); meanwhile, real public data yields the best marginal consistency (0.097).
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Figure 18: Granular hyperparameter tuning results for WE on PrivBayes. Observe that although the
Arbitrary baseline excels in marginal consistency (0.056) and is competitive on correlation (0.052), Agent-
based approaches (e.g., All, Max Cov. and Claude, Unif.) offer improvement in classification perfor-
mance (0.016–0.019).
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Figure 19: Granular hyperparameter tuning results for ACS on the AIM synthesizer. Here, Agent (Claude,
Unif.) outperforms on both classification (0.004) and marginal consistency (0.024), while CSV (Claude) is
best on correlation (0.002).
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Figure 20: Granular hyperparameter tuning results for EDAD on the AIM synthesizer. Several agent-based
methods, such as Agent (All, Unif.), deliver strong classification performance (0.001), with the Pareto
frontier defined by a mix of CSV and agent-based approaches (correlation metrics ranging from 0.014 to
0.019).
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Figure 21: Granular hyperparameter tuning results for WE on the AIM synthesizer. Exclusively agent-based
methods dominate, with Agent (Claude, Unif.) leading in classification (0.016), Agent (GPT, Unif.)
achieving the best correlation (0.007), and Agent (GPT, Max Cov.) strong marginal consistency (0.025).
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Figure 22: Granular hyperparameter tuning results for ACS on the GEM synthesizer. The Agent (Claude,
Max Cov.) method, alongside the Arbitrary baseline that directly encodes variable relationships, is domi-
nant – reinforcing that structure in the data is beneficial.
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Figure 23: Granular hyperparameter tuning results for EDAD on the GEM synthesizer. As in ACS, both the
agent-based approach and the Arbitrary baseline perform competitively.
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Figure 24: Granular hyperparameter tuning results for WE on the GEM synthesizer. The trends mirror those
in ACS, with the Arbitrary baseline maintaining strong performance and Agent-based methods showing
similar competitiveness.
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C.3 Results for Task 3: Estimating the Privacy/Utility Tradeoff
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Figure 25: Privacy/utility tradeoff estimation results in terms of ℓ1 distance from the true sensitive data
tradeoff. Note the relatively consistent performance across synthesizers for each dataset between some
methods (e.g., poor privacy/utility tradeoff estimation for CSV on WE), while other methods have higher
variance (e.g., Agent (Claude 3.5 Sonnet, Max Cov. on ACS, between GEM and AIM).
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Figure 26: Privacy/utility tradeoff estimation results in terms of ℓ2 distance from the true sensitive data
tradeoff. These results largelymirror the ℓ1 distance results, although the increased sensitivity to outliers leads
to some interchanges of ranking (e.g., Agent (Claude 3.5 Sonnet, Unif.) and CSV (GPT-4o) interchange
places on ACS PrivBayes).
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Figure 27: To provide intuition for exactly what the ℓ1 and ℓ2 scores in Figures 25 and 26 attempt to capture,
we plot the average performance across epsilon that constitutes each vector, relative to the true performance
of the sensitive data (which, in these plots, is the black dotted line). Ideally, for privacy/utility estimation,
any public data (surrogate or otherwise) would match the performance of the private data across privacy
loss budget parameters. This would allow a practitioner to, say, choose the correct ϵ based on a performance
threshold in absolute terms. Clearly, given the noisiness of the lines (which generally cluster around, but
inconsistently track, the black dotted line for private data performance), this is a difficult estimation problem.
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D Details of Dataset Similarity
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Figure 28: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets
based on the ACS data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by
100, and rounded to a single digit.
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Figure 29: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between
the datasets based on the ACS data. The metric is in range [0, 1], inverted to represent similarity (1− x), and
scaled by 100, and rounded to a single digit.
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Figure 30: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets
based on the EDAD data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by
100, and rounded to a single digit.

52



Pu
bl
ic

B
as
el
in
e 
(D

om
ai
n)

B
as
el
in
e 
(U

ni
va

ria
te
)

A
rb

itr
ar
y

C
SV

 (
C
la
ud

e 
3.
5 
So

nn
et
)

C
SV

 (
G
PT

-4
o)

C
SV

 (
Ll
am

a 
3.
3 
70

B
)

A
ge

nt
 (
C
la
ud

e 
3.
5 
So

nn
et
, U

ni
f.)

A
ge

nt
 (
C
la
ud

e 
3.
5 
So

nn
et
, M

ax
 C

ov
.)

A
ge

nt
 (
G
PT

-4
o,
 U

ni
f.)

A
ge

nt
 (
G
PT

-4
o,
 M

ax
 C

ov
.)

A
ge

nt
 (
Ll
am

a 
3.
3 
70

B
, U

ni
f.)

A
ge

nt
 (
Ll
am

a 
3.
3 
70

B
, M

ax
 C

ov
.)

A
ge

nt
 (
U
ni
f.)

A
ge

nt
 (
M
ax

 C
ov

.)

Private

Public

Baseline (Domain)

Baseline (Univariate)

Arbitrary

CSV (Claude 3.5 Sonnet)

CSV (GPT-4o)

CSV (Llama 3.3 70B)

Agent (Claude 3.5 Sonnet, Unif.)

Agent (Claude 3.5 Sonnet, Max Cov.)

Agent (GPT-4o, Unif.)

Agent (GPT-4o, Max Cov.)

Agent (Llama 3.3 70B, Unif.)

Agent (Llama 3.3 70B, Max Cov.)

Agent (Unif.)

26.1 0 66.7 0 0 11.5 0 5.5 6.8 7.2 6.9 0 0 0 0

0 23.7 0 0 9.8 0 24.6 27.3 34.6 32.3 0 0 23.1 21.4

0 21.4 0 5.1 4.5 20.5 18.8 32.3 33.8 0 0 16.2 16.4

0 0 5.5 0 5.5 6.6 8.5 8.1 0 0 0 0

0 0 0 0 0 1.5 2.6 0 0 0 0

0 0 0 0 0 0 0 0 0 0

18.7 26.5 27.6 21.6 21.5 0 0 12.9 14.3

16.4 17 12.1 11.8 0 0 4.3 6.9

75.5 37 36.8 0 0 36.1 54.1

38.8 37.4 0 0 37.7 50.6

72.5 0 0 50.4 39

0 0 46.9 36.7

78.5 12.8 0

12.4 0

62.9

0

20

40

60

80

100

Figure 31: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between
the datasets based on the EDAD data. The metric is in range [0, 1], inverted to represent similarity (1− x),
and scaled by 100, and rounded to a single digit.
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Figure 32: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets
based on the WE data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100,
and rounded to a single digit.
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Figure 33: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between
the datasets based on the WE data. The metric is in range [0, 1], inverted to represent similarity (1− x), and
scaled by 100, and rounded to a single digit.
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E Compute and Resources
Benchmarking DP synthesizers and training models for differentially private tasks is computationally inten-
sive (Rosenblatt et al., 2023). We executed our experiments on a combination of high-performance GPU and
CPU clusters hosted on AWS EC2. Specifically, we utilized three g4dn.12xlarge instances – each equipped
with NVIDIA T4 GPUs – for approximately 17.3 days of continuous up-time per instance, amounting to
roughly 52 GPU-days in total (although it is hard to assess the true GPU utilization). In addition to local
compute, we used LLM APIs provided by OpenAI, Anthropic, and TogetherAI (for the Llama 3 model) for
both our direct CSV generation and multi-step Agent-based approaches. We conducted substantial inference
for our experiments; as an example, during January, our queries to Claude alone amounted to a total of
38,092,225 input tokens and produced 7,099,403 output tokens, in February, we recorded 11,922,046 input
tokens and 226,998 output tokens, and in March, 9,027,827 input tokens and 124,484 output tokens were
consumed (imbalance between input output due to re-inputting previously generated tokens as context on
each call in the state machine for the Agent). These resources allowed for extensive hyperparameter searches,
multiple runs per privacy setting, and a comprehensive evaluation across DP auxiliary tasks.
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