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Abstract—Ethereum, the leading platform for decentralized
applications, faces challenges in maintaining decentralization
due to the significant hardware requirements for validators
to store Ethereum’s entire state. To address this, the concept
of stateless clients is under exploration, enabling validators to
verify transactions using cryptographic witnesses rather than the
full state. This paper compares two approaches currently being
discussed for achieving statelessness: Verkle trees utilizing vector
commitments and binary Merkle trees combined with SNARKs.
Benchmarks are performed to evaluate proving time, witness
size, and verification time. The results reveal that the Verkle
tree implementation used for benchmarking offers proving and
verification times on the order of seconds and proof sizes on
the order of one MB. The SNARK-based Merkle trees exhibit
slow proof generation times, while offering constant and fast
verification time. Overall, the results indicate for Verkle trees
to provide a more practical solution for Ethereum’s stateless
future, but both methods offer valuable insights into reducing
the state burden on Ethereum nodes. We make the code used for
benchmarking available on GitHub.

Index Terms—block chain, verkle tree, ethereum

I. INTRODUCTION

Since its launch in 2015, Ethereum has become the lead-
ing platform for decentralized applications [21]. Built on a
blockchain that supports smart contracts, Ethereum has revo-
lutionized how applications are built and executed in a decen-
tralized manner. Having transitioned from a Proof of Work to a
Proof of Stake consensus mechanism, Ethereum has separated
block producers from consensus nodes. The latter vote on the
validity of a block for the network to reach consensus on the
current state of the blockchain. With consensus being a core
mechanism for the security of Ethereum, decentralization of
consensus nodes is very much desirable. However, as all nodes
currently are required to store the entire state, decentralization
is hindered by high hardware requirements such as access to
significantly large, fast memory.

To address this issue, the implementation of weak state-
lessness is included in the current Ethereum roadmap [8].
Here, weak statelessness refers to a consensus node not being
required to store the entire state to attest on proposed blocks.
Instead, a witness of the validity of the block is included in the

block itself which can be used by the consensus node—and
anyone else interested—to verify the block’s correctness.

Currently, Ethereum’s state is stored in a Merkle Patricia
Trie (MPT) [20]. The hashes of all account states in Ethereum
make up the leaves of the trie and inner nodes hold the hash
of their children nodes. Two MPTs therefore represent the
same state if they have the same root hash. Furthermore, a
proof about a specific leaf being included in the trie at a
given position (e.g. the specific state of an account) can be
constructed by providing all the sibling nodes on the path
from the leaf to the root node. Such a Merkle proof can be
verified by hashing the leaf data and iteratively calculating the
values of the inner nodes using the provided sibling nodes all
the way from the leaf to the root. Comparing the resulting root
hash and the root hash referenced in the block concludes the
proof. The list of sibling nodes therefore represents a witness
for the proof that said leaf is included in the state tree at the
said position.

To provide a witness of the correct transaction execution
of all transactions in one block, a naive approach would be
to provide such a witness for every account involved in a
transaction, before and after executing the transactions. This
ensures that the states of all accounts involved in transac-
tions have changed correctly. All accounts not involved in a
transaction are part of a subtree whose root is a sibling node
in some Merkle proof. Changes of uninvolved account states
can therefore be detected by checking whether sibling nodes
that represent such a root don’t change between the states of
before and after applying the transactions. In conclusion, the
collection of witnesses for the Merkle proofs forms one overall
witness attesting to the change in state being in accordance to
the transactions included in the block.

This naive approach has a size complexity of

O(TBk logk N) (1)

where T is the number of transactions per block (TPB),
B is the size of an inner node in the tree, k is the arity of
the tree, and N is the number of accounts. Note that the size

ar
X

iv
:2

50
4.

14
06

9v
1 

 [
cs

.C
R

] 
 1

8 
A

pr
 2

02
5

https://github.com/JanIsHacking/verkle-vs-binary-bench


scales linearly with k, as all sibling nodes have to be provided
for all the levels logk N . With a few thousand TPB, 256-bit
hashes, the MPTs being hexary trees, and hundreds of millions
of accounts, a block witness is in the tens of Megabytes (MBs)
large. Including a witness of this size into a block is therefore
infeasible.

This motivates exploring alternative data structures and
proof compression techniques to reduce the witness size. The
main avenue currently being followed by the Ethereum core
developers are Verkle trees, first introduced by Kuszmaul in
[14]. The idea of applying Verkle trees in Ethereum was
developed by Buterin in [3] and consolidated in Ethereum Im-
provement Proposal 6800 [4]. The use of vector commitments
removes the need to provide sibling nodes in the witness and
a constant size proof can be generated over the internal nodes
due to the additively homomorphic properties of polynomial
commitments. The structure of Verkle trees, what a witness
looks like, and theoretical estimates of the witness sizes are
described in Section III-A.

Another approach investigated in this work is the use of
binary Merkle trees. Switching to a unified binary Merkle
tree for Ethereum’s state representation was first introduced
by Ballet and Buterin in [1]. In [3], Buterin touches on using
Succinct Non-Interactive Arguments of Knowledge (SNARKs)
to reduce witness sizes and allow for stateless clients. With the
size of the used SNARKs being constant, the size complexity
of the block witness is reduced to O(T ). This results in a
witness only a few MBs large. Details on the generation of
the witnesses and the size estimation are described in Section
III-C.

The goal of this work is twofold:
1) Consolidate the knowledge on Verkle trees and binary

Merkle trees with SNARKs for enabling stateless clients
in Ethereum.

2) Provide benchmark results that contribute to informed
decisions for future developments.

In the first step, related work on benchmarking Verkle trees
and binary Merkle trees with SNARKs is presented in Section
II, along with an explanation of their fundamentals in Section
III. Subsequently, the methodology and implementation of the
benchmarks are outlined in Section IV and V respectively. The
results of the benchmarks measuring proving times, witness
sizes, and verification times for both approaches are presented
in Section VI. In Section VII, the results and their implications
are discussed along with their limitations. Finally, a conclusion
is drawn and an outlook on future work is presented in Section
VIII.

II. RELATED WORK

The literature on the application of both Verkle trees and
binary trees with SNARKs for state representation in Ethereum
is very sparse. Relevant publications are divided by their
relationship to the respective approach and presented in the
following.

Verkle Trees. Our literature review could not reveal any
publications benchmarking Verkle trees. While there exist a

handful of implementations of Verkle trees (e.g. [2], [13],
[5]) written in Go and Rust, none of them have published
benchmarking results. The only public results could be found
in a benchmarking framework by Hagopian [12], providing
measurements on proving and verifying a variable number of
keys given a tree of 1,000,000 leaves.

Binary Trees with SNARKs. To the best of our knowledge,
the only publication that uses proof systems to reduce witness
sizes for Merkle trees is [15]. The authors investigate the use of
Scalable Transparent Arguments of Knowledge (STARKs) as
well as SNARKs, and apply them to real and synthetic state
data. For STARKs, measurements of proving times, witness
sizes, and verification times are presented. For proofs using
SNARKs, no measurements are provided, leaving a research
gap.

Although El-Hajj and Roelink’s work does not directly
apply to Merkle proofs, it provides insights into proof sys-
tems [7]. The authors benchmark different implementations of
SNARK, STARK, and Bulletproof schemes across a varying
number of MiMC hash evaluations. They find that while
STARKs produce the largest proofs, they are the fastest to
generate and verify.

Research Questions. Given the lack of benchmarks of
Verkle trees and binary Merkle trees using SNARKs in the
literature, the following research questions arise:

1) How do existing implementations of Verkle trees and
binary trees with SNARKs perform in terms of proving
time, witness size, and verification time?

2) How do both approaches compare?
The research questions are addressed in this work by

providing a benchmarking framework for both approaches and
running the benchmarks for different tree sizes on two different
machines.

III. FUNDAMENTALS

The following section assumes general familiarity with the
Ethereum protocol. For an introduction to Merkle trees in the
context of blockchain systems, refer to [16].

First, the structure of Verkle trees is introduced along with
a witness size estimation. An overview of SNARK proof
schemes is given subsequently and the Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of
Knowledge (PLONK) scheme is described in more detail. A
witness size estimation applying SNARKs to binary Merkle
trees is provided as well. For the witness size estimates, a
worst case of 5,000 keys to prove per block is assumed.

A. Verkle Trees

Verkle trees are a cryptographic data structure designed to
optimize the storage and witness sizes of Ethereum’s state,
serving as a more efficient alternative to MPTs. They provide a
trade-off between witness size and computational overhead for
witness generation. Like Merkle trees, Verkle trees structure
data hierarchically, allowing for compact proofs about the
inclusion of specific data in the tree. However, instead of
relying solely on cryptographic hash functions, Verkle trees



leverage polynomial commitment schemes to achieve much
smaller witness sizes, making them highly attractive for state-
less clients.

At a high level, Verkle trees are similar to Merkle trees in
that they allow the construction of a proof of inclusion for a
given piece of data by traversing the tree from the leaf node
(where the data resides) to the root node. However, unlike
Merkle trees, which use hash functions to commit to data
at each level, Verkle trees use vector commitments. Vector
commitments are a type of cryptographic primitive that allow
the commitment to a large vector of data (such as a tree’s child
nodes) while enabling efficient proofs about any individual
element within that vector. Polynomial commitments, a type
of vector commitment, enable the prover to create compact,
constant-sized proofs that allow for the verification of multiple
tree nodes’ integrity.

The core advantage of Verkle trees lies in the ability to
aggregate multiple proofs into a single, compact multiproof,
which significantly reduces the size of the witness required
for validation [9]. In contrast to the logarithmic-size Merkle
proofs, the witness sizes in Verkle trees are therefore much
smaller and independent of the tree depth.

Verkle Witness Size. A Verkle witness consists of three
main components [11]:

1) The leaves to be proven, representing the specific data
entries in the state.

2) The intermediate vector commitments from the leaf to
the root, representing the paths in the tree.

3) A multiproof over all parent-child relationships between
the intermediate node commitments, ensuring the in-
tegrity of the proof.

The witness size for Verkle trees can be estimated by
considering the size of each component. A key benefit of
Verkle trees is that only the commitments, rather than all the
siblings on the paths, need to be provided, drastically reducing
the overall witness size.

The total witness size for an Ethereum block can be
estimated using the following equation:

2× 5000× 32 Bytes + 10000× 48 Bytes + 200 Bytes =∼ 0.8 MBs
(2)

Each part of this equation corresponds to a different com-
ponent of the witness:

• 2 × 5000 × 32 Bytes: This term accounts for the leaves
to be proven. Each leaf consists of a key and a value of
size 32 Bytes.

• 10000× 48 Bytes: This term represents the intermediate
node commitments that must be included in the proof,
assuming a tree with 232 leaves. On the first level is the
root. On the second level, all 256 commitments will be
included. On the third level is a bit of redundancy in
the commitments and on the fourth level are the 5,000
leaves, equating to an estimate of 10,000 intermediate
commitments. Each vector commitment is 48 Bytes in
size.

• 200 Bytes: The multiproof ensuring the correctness of
all parent-child relationships between the intermediate
commitments is of constant size.

In total, this gives a witness size of approximately 0.8 MBs
per block. This is a significant improvement over the tens of
MBs required by MPTs.

B. SNARKs

Succinct Non-interactive Arguments of Knowledge
(SNARKs) are a powerful cryptographic tool that enables the
creation of short, efficient proofs for complex computations.
A SNARK allows a prover to convince a verifier that
they know the result of an arbitrary computation, without
revealing the details of the computation itself. The main
feature of SNARKs is that the resulting proof size is succinct,
meaning the proof is at least exponentially smaller than
the computation being proven, while still being efficiently
verifiable.

At the core of SNARKs is the concept of arithmetic cir-
cuits. Instead of directly encoding a program or computation,
SNARKs require the computation to be expressed as a series
of simple arithmetic operations such as addition and multipli-
cation over a finite field. These operations are arranged into
an arithmetic circuit, where each gate in the circuit performs
one of the above mentioned operations. The prover has to
transform the calculation they want to prove into an arithmetic
circuit. Given this circuit, the prover can generate a SNARK
that convinces the verifier that they know the correct output of
a computation, which is represented by the arithmetic circuit.
The prover provides the input and output of the computation
to the verifier, along with public parameters that the SNARK
scheme participants generated in a so-called setup ceremony.

The witness in a SNARK therefore consists of two compo-
nents: (1) the inputs, which represent the public data required
for verification (such as the leaves and Merkle roots in state
proofs), and (2) the proof, which ensures the computation was
performed correctly. The witness enables the verifier to quickly
check whether the result of the computation is correct, without
needing to re-execute the computation itself.

The PLONK SNARK Scheme. PLONK is a state-of-
the-art SNARK scheme [10]. One of its key features is its
updatable, universal trusted setup, which makes it reusable
across different computations. Unlike earlier SNARKs that
required a trusted setup for every arithmetic circuit, PLONK
only requires one universal trusted setup. This setup can then
be used for multiple computations without needing to be
repeated.

Another important property of PLONK is that it supports
efficient proving and constant-sized proofs, regardless of the
size or complexity of the underlying computation. This is
made possible through its use of custom gates and permutation
arguments, which allow the SNARK to be applied to more
general computations. Furthermore, PLONK achieves constant
verification time, meaning that no matter how large the circuit
is, the time required for verification remains fixed.



C. Applying SNARKs to Binary Merkle Tree Proofs

Binary Merkle trees are widely used to represent and verify
the state of data structures in blockchain systems [16]. When
using SNARKs for proving Merkle branches, the structure of
the Merkle branch as well as the computation of the hash
values themselves need to be encoded into arithmetic circuits.

To prove the inclusion of N keys in a binary Merkle tree,
one usually must provide N Merkle proofs, leading to unfea-
sibly large witness sizes. SNARKs offer an elegant solution
to this problem by allowing the prover to generate a single,
succinct proof for each Merkle branch. In this approach, each
Merkle branch is transformed into its own arithmetic circuit as
described earlier, which the prover can then use to generate the
SNARK. The verifier no longer needs to verify each individual
branch separately but can instead verify the individual SNARK
proofs, which attest to the correctness of each branch.

The witness size for proving 5,000 Merkle branches with
SNARKs can be estimated as:

2× 5000× (192 + 2× 32) Bytes =∼ 2.6 MBs (3)

The estimated witness consists of 2×5000 Merkle branches
per block, one for each leaf to prove before and after the
transaction executions. Each Merkle proof witness consists of
the SNARK, 192 Bytes in size, and the leaf’s key-value pair.

This yields a total witness size of approximately 2.6 MBs,
including the leaf data and the SNARK proofs. Although larger
than the witness for Verkle trees, this SNARK-based proof
allows each of the 5,000 Merkle branches to be verified with
individual, constant-sized SNARK proofs, regardless of the
tree depth.

IV. METHODOLOGY

To assess the potential of Verkle trees and binary Merkle
trees for Ethereum state representation and their suitability
for enabling stateless clients, the benchmarks presented in this
work focus on three key metrics: proving time, proof size, and
verification time. Both Verkle and binary Merkle trees were
evaluated across varying tree sizes, starting at 25 leaves and
increasing them until either 232 is reached or benchmarking
becomes infeasible due to the system running out of main
memory. Starting at 214, every second power of two is used
for the number of leaves in the tree. For each tree size, the
metrics are averaged over ten runs to account for the possible
variance in runtime. Additionally, the number of keys to prove
per tree is set to 5,000. For trees with less than 5,000 keys,
all of them are proven.

The benchmarking experiments were conducted on two
different machines to account for hardware variability. Their
specifications are displayed in Table I.

V. IMPLEMENTATION

The implementation was done in Rust, making use of
existing libraries for the required data structures and proving
schemes.

For the Verkle trees, the implementation of the tree was
taken from the Rust library ”rust-verkle” [19]. It is worth

TABLE I
THE TWO MACHINES ON WHICH THE BENCHMARKS WERE PERFORMED.

# Operating System CPU RAM
1 Windows 10 22H2 Intel i5-4690K 22 GiB
2 Ubuntu 23.10 AMD Ryzen 5975WX 32-Core 125 GiB

noting that this implementation relies on main memory and
does not store any data on disc. The interface of the tree
was augmented to allow for proof size measurements and was
integrated into the benchmarking framework measuring the
metrics described above.

For the binary Merkle trees, the tree implementation using
the Poseidon hash function was taken from the ”poseidon-
merkle” library [18]. The implementation was adapted to
accommodate a tree arity of two.

For the SNARK-based proof system, we utilized the
PLONK SNARK scheme from the ”dusk-plonk” library [6].
This provided an efficient mechanism for generating and
verifying SNARK-based proofs. As with the Verkle trees, the
aforementioned data structures and schemes were integrated
into the benchmarking framework presented in this work to
align with the methodology described in Section IV.

None of the libraries mentioned above, including the one
for Verkle trees, are parallelized. The benchmarking runs for
Verkle trees are parallelized, while parallelizing the binary
Merkle tree benchmarks was not possible without modifying
the library’s code. The code used for the benchmarks, along
with all measurements and a short guide on how to run them,
is publicly available on GitHub [17].

VI. RESULTS

The measured proving times, witness sizes, and verification
times for Verkle trees and binary trees with SNARKs on the
machines listed in Table I are displayed in Figures 1 and 2.

A. Verkle Trees

For better readability, only the measurements for trees of
size 214 and larger are displayed in the graphs. The maximum
number of leaves measured are 224 and 225 for Machines 1
and 2 respectively. The execution of benchmarks with larger
tree sizes was killed by the operating system due to insufficient
available main memory.

Generally, the measurements for Verkle trees are not surpris-
ing. As displayed in Figure 1, the proof time grows slowly over
the exponentially increasing number of keys in the trees. The
witness sizes and verification times increase logarithmically
with the number of keys in the tree. While the absolute values
of proving and verification times are lower for Machine 2, the
trends observable in the data are similar for both machines.
However, it is worth noting that the high main memory usage
for the largest trees leads to outliers in the proof generation
time. This can possibly explained by the operating system
writing data to the disc to free up main memory leading longer
latencies.



Fig. 1. Measured proving times, proof sizes, and verification times for Verkle
trees on Machine 1 (top) and Machine 2 (bottom) averaged over ten runs.

B. Binary Trees

The results of the binary tree benchmarks are displayed in
Figure 2.

Proving takes several minutes on both machines for small
tree sizes. The experiments were aborted for trees larger than
27, as proving times of that length are not usable in practice.
Compared to the proving times, the verification times are fast
on the order of seconds. In general, SNARK proofs that utilize
the PLONK scheme exhibit a constant size. The increase in
proof size can be explained by the program always trying to
prove 5,000 keys as explained in Section IV. Hence, for trees
with less than 5,000 leaves, all leaves are included in the proof.
Consequently, the overall witness size is contingent upon the
number of keys being proven, leading to an increase in size
during benchmarks involving binary trees. For trees with 5,000
or more leaves, the proof size is expected to be constant.

VII. DISCUSSION & LIMITATIONS

The main limitation for drawing a conclusion on the com-
parison of Verkle trees and binary Merkle trees is the more
optimized implementation of Verkle trees. While the results
of the Verkle trees look promising for the application as state
representation in Ethereum, the binary tree implementation
does not scale due to its naive implementation. For each

Fig. 2. Measured proving times, proof sizes, and verification times for binary
trees with SNARKs on Machine 1 (top) and Machine 2 (bottom) averaged
over ten runs.

Merkle branch, a separate SNARK is generated, leading to
higher witness sizes and more computational overhead.

As the tree sizes are also limited for Verkle trees due
to their pure in-memory implementation, the results are not
completely conclusive on the applicability of Verkle trees in
Ethereum. The benchmarks could be extended with a database
implementation of Verkle trees or by proving synthetic Verkle
branches without explicitly storing the entire tree.

It is worth noting that for the absolute values of the proof
generation time, the results on the more powerful Machine 2
are more conclusive, as the hardware requirements for execu-
tion clients would remain unchanged if Ethereum becomes
stateless. In contrast, consensus clients should be able to
verify the proofs on much less powerful hardware, hence the
measurements on Machine 1 can be considered to be more
meaningful.

Since the PLONK SNARK scheme is used for generating
the proofs for the binary Merkle trees, a universal trusted
setup between the participants is required. This can present
a security risk to the proving scheme and must be evaluated
carefully.

Both Verkle and binary tree state representations propose
a unification of the account state tree and storage trees into
one overall state tree. Therefore, determining the exact worst
case number of key updates in the state tree is hard. However,



we recognize that proving 5,000 keys per block may be an
overestimate. The measurements presented in Section VI are
therefore likely to represent upper bounds to proving times,
witness sizes, and verification times.

VIII. CONCLUSION & OUTLOOK

The results indicate that Verkle trees represent a viable
choice for enabling stateless clients in Ethereum due to their
scalability, small witness sizes, and fast verification times.
However, no definitive conclusions can be drawn about the
practicality of binary Merkle trees with SNARKs, as the
implementation used in this study lacks necessary optimiza-
tions. The significantly longer proving times for binary trees
may not accurately reflect their potential performance with
further development. Therefore, while Verkle trees appear
more suitable for realizing stateless clients in Ethereum, future
work is required on the optimization of the implementation.

When considering an alternative tree structure to the current
MPT, other performance metrics such as access and update
times of tree data need to be taken into account. To fully grasp
the effects of changing Ethereum’s data structure for storing
state, further research on this is required.

Both Verkle trees and SNARKs rely on elliptic curve
cryptography, which is vulnerable to quantum attacks. As
quantum computing is expected to advance significantly in the
coming decade, long-term quantum-resistant alternatives need
to be explored (e.g. STARKed Merkle proofs).
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