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ABSTRACT
Differentially private (DP) tabular data synthesis generates arti-
ficial data that preserves the statistical properties of private data
while safeguarding individual privacy. The emergence of diverse
algorithms in recent years has introduced challenges in practical
applications, such as inconsistent data processing methods, lack of
in-depth algorithm analysis, and incomplete comparisons due to
overlapping development timelines. These factors create significant
obstacles to selecting appropriate algorithms.

In this paper, we address these challenges by proposing a bench-
mark for evaluating tabular data synthesis methods. We present a
unified evaluation framework that integrates data preprocessing,
feature selection, and synthesis modules, facilitating fair and com-
prehensive comparisons. Our evaluation reveals that a significant
utility-efficiency trade-off exists among current state-of-the-art
methods. Some statistical methods are superior in synthesis utility,
but their efficiency is not as good as most machine learning-based
methods. Furthermore, we conduct an in-depth analysis of each
module with experimental validation, offering theoretical insights
into the strengths and limitations of different strategies.

1 INTRODUCTION
Private tabular data synthesis generates artificial data that preserves
the statistical properties of real data while protecting individual
privacy. This critical problem has a broad range of applications in
practice, extending from healthcare [29, 49] to governmental plan-
ning [4, 11] and beyond. For instance, in healthcare, there is a need
to share patient data for medical treatment while preserving pri-
vacy. Similarly, in government, data analysts must analyze sensitive
personal attributes, such as gender and disability, while ensuring
confidentiality. Addressing this challenge has thus received much
attention and led to a growing research area.

Differentiated privacy (DP) has become the gold standard for
protecting privacy. DP ensures that the inclusion or exclusion of
any single data point does not significantly affect the outcome,
thereby protecting each individual data point within a dataset. A
substantial body of research has been proposed to address the data
synthesis problem with DP. Based on their working principles, they
can be broadly classified into two categories: statistical methods
and machine learning methods. Statistical methods [23, 35, 38, 55,
62, 63, 67, 67, 69] compress data information through statistical
properties, such as low-dimensional data distributions, to achieve
data generation. On the other hand, machine learning methods
leverage deep learning frameworks designed for data generation,
such as generative network [20, 22, 27, 36, 59, 64] and diffusion
model [30, 33, 47].

In addition to these efforts to address this problem, many works
also focus on providing comprehensive benchmarks. For instance,
Du et al. [15] and Tao et al. [57] try to evaluate current methods
under the same setting. But their works do not involve recent

algorithms and thus lack completeness. Some other benchmark
works [16, 25, 65] focus more on making algorithm analysis and
comparison, lacking necessary empirical validation.

In summary, even though several studies have been conducted
in this field, we still face several challenges: (1) Lack of unified eval-
uation settings. Beyond algorithmic strategies, evaluation settings,
such as data preprocessing, play a significant role in determining al-
gorithm performance. However, these settings are often considered
trivial and thus are frequently overlooked in many methods, which
potentially leads to unfair comparisons between methods. (2) Lack
of systematic and in-depth analysis. Current works often focus on
proposing new methods, only providing limited intuition about al-
gorithm analysis. Consequently, certain aspects of in-depth analysis,
such as analysis for individual algorithm modules, remain under-
explored. For example, questions such as how to select marginals
more accurately are insufficiently addressed. However, many gener-
ative algorithms rely entirely on the selection of marginals, making
this result particularly important. (3) Lack of comprehensive com-
parison. Due to various reasons, such as concurrent development or
relatively recent introduction, comparisons between recently pro-
posed methods and existing works remain incomplete, particularly
between some representative methods like Private-GSD [35] and
AIM [39]. Furthermore, current comparisons largely focus on the
overall utility of algorithms, with little attention given to experi-
ments analyzing specific working modules.

In light of the above challenges, we believe proposing a new
benchmark for evaluating tabular data synthesis is necessary. The
contributions of our benchmark work are as follows.
Proposing a Unified Framework for Evaluation.We first pro-
pose a generalized framework and align all methods within this
framework to ensure fair and objective comparisons. The frame-
work consists of a data preprocessing module, a feature selection mod-
ule, and a data synthesis module. Notably, this is the first framework
to explicitly consider the impact of preprocessing on algorithm
comparisons. Moreover, we move forward on the selection and
synthesis modules by categorizing them according to their working
principle, providing a new perspective to understand them better.
Providing Rigorous Analysis for Current Methods. Given our
unified framework, we conduct an in-depth analysis of different
modules. We consider different preprocessing methods and their
drawbacks and advantages. For the feature selection module, we
divide current methods into adaptive methods and non-adaptive
methods based on their working principle and formally prove the
superiority of introducing scale penalty term and adaptive selection
strategy. Finally, we investigate the efficiencies of current synthesis
methods and discuss their potential limitations.
Conducting a Comprehensive Comparison.We include current
state-of-the-art methods [7, 22, 36, 39, 62, 69] under both statis-
tical and machine learning methods, and newly proposed meth-
ods [30, 35] that have not been thoroughly explored. Moreover, our
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evaluation is more fine-grained and helps us understand how each
module of the algorithms functions independently.

We observed some important experimental findings, i.e., (1) A
significant trade-off between utility and efficiency exists among cur-
rent methods. Two statistical methods, AIM [39] and PrivMRF [7],
outperform in utility but show worse time efficiency. Machine
learning-based methods, even though relatively inferior in utility,
are highly efficient. (2) Preprocessing is crucial for improving al-
gorithm efficiency without significant synthesis errors. It is also
algorithm-dependent, with different techniques better suited to
specific synthesis methods. (3) All current synthesis modules ex-
hibit limitations in different ways, such as low efficiency or inferior
utility. Our source code is available on GitHub.1

2 PROBLEM FORMULATION
Differential privacy (DP) has become the de facto standard for data
privacy. It allows aggregated statistical information to be extracted
while limiting the disclosure of information about individuals. More
formally, the definition of DP is given by:

Definition 1 (Differential Privacy). An algorithm A satis-
fies (𝜀, 𝛿)-differential privacy ((𝜀, 𝛿)-DP) if and only if for any two
neighboring datasets 𝐷 and 𝐷′ and any 𝑇 ⊆ Range(A), we have

Pr [A(𝐷) ∈ 𝑇 ] ≤ 𝑒𝜀 Pr
[
A(𝐷′) ∈ 𝑇

]
+ 𝛿.

Here, we say two datasets are neighboring (𝐷 ≃ 𝐷′) when they
differ on one tuple/sample. To achieve DP in different scenarios,
many mechanisms have been employed, such as Gaussian mecha-
nism [41], exponential mechanism [36, 39] and DP-SGD [42]. We
provide a detailed introduction to them in the appendix. In our
work, we use Rényi DP as a tight composition tool, defined as:

Definition 2 (Rényi DP [41]). We say that an algorithmA satis-
fies (𝛼, 𝜀)-Rényi DP ((𝛼, 𝜀)-RDP) if and only if for any two neighboring
datasets 𝐷 and 𝐷′

𝐷𝛼 (A(𝐷) | |A(𝐷′)) ≤ 𝜀,

where 𝐷𝛼 (𝑌 | |𝑁 ) = 1
𝛼−1 lnE𝑥∼𝑁

[
𝑌 (𝑥 )
𝑁 (𝑥 )

]𝛼
.

RDP has composition and post-processing properties [41], which
makes it a suitable choice for complex algorithm design. Moreover,
an (𝛼, 𝜀)-RDP guarantee can easily be converted to a (𝜀′, 𝛿)-DP
guarantee via Theorem 1 [41].

Theorem 1. If 𝑓 is an (𝛼, 𝜀)-RDP mechanism, then it also satisfy(
𝜀 + log 1/𝛿

𝛼−1 , 𝛿

)
-DP for any 0 < 𝛿 < 1.

One promising application of DP is for tabular data synthesis,
wherein an artificial tabular dataset is generated that mirrors the
statistical characteristics of the original dataset without compro-
mising individual privacy. More formally, assuming that we have
a dataset 𝐷 composed of 𝑛 records {𝑥1, · · · , 𝑥𝑛}, and each record
has 𝑑 attributes {𝐴1, · · · , 𝐴𝑑 }, we want to generate a dataset 𝐷𝑠

similar to𝐷 . The two datasets are considered similar based on some
similarity metric, such as the ℓ1 distance or the performance under
a downstream task (e.g., answering a range query or training a
classification task). We give more concrete metrics in Section 8.
1https://github.com/KaiChen9909/tab_bench

3 EXISTINGWORK
This section examines existing DP tabular synthesis methods and
identifies shortcomings in current benchmarks. These limitations
inspire the development of our new benchmark.

3.1 Existing Algorithms
Broadly, existing DP tabular data synthesis methods can be divided
into two categories, which are statistical methods and machine
learning methods.
Statistical Methods. The exploration of statistical methods started
earlier. Shortly after the development of DP, researchers began in-
vestigating the data generation problem under the DP. MWEM [23]
and DualQuery [18] both release data by repeatedly improving an
approximated distribution usingMultiplicativeWeight approach [24].
Another notable line of research involves Bayesian networks, such
as PrivBayes [67] and BSG [5]. In addition, Li et al. [32] try to utilize
Copula functions for data generation.

In 2018 and 2020, NIST [45, 46] hosted challenges about DP data
synthesis. Among the competing algorithms, PrivBayes, MST [38],
and DPSyn [34] exhibited the best performance. All of these meth-
ods attempt to privately identify and answer highly correlated low-
dimensional marginals. Their main differences lie in their method-
ology for selecting these low-dimensional marginals and in how
they represent the data distribution from these noisy marginals.
For example, MST synthesizes data using probabilistic graphical
models (PGMs) [40], PrivBayes uses a Bayesian model, and PrivSyn
iteratively updates an initialized dataset using an algorithm they
call GUM.

After these NIST challenges, more advanced statistical methods
were proposed. Zhang et al. proposed PrivSyn [69] by organiz-
ing and refining DPSyn. Cai et al. introduced PrivMRF [7], and
McKenna et al. proposed AIM [39], both of which dynamically se-
lect low-dimensional marginals and employ PGMs for synthesis.
Moreover, methods such as FEM [63] and RAP/RAP++ [3, 62] treat
synthesis as an optimization problem, utilizing FTPL [28, 54, 56] and
relaxed projection [44], respectively, to refine initialized datasets
using adaptively selected marginals. More recently, Liu et al. [35]
proposed Private-GSD, which can apply genetic algorithms to ad-
just datasets based on any selected marginals iteratively.
Machine Learning Methods. In addition to statistical methods,
machine learning models have been widely explored for DP tab-
ular data synthesis. In NIST 2018, there was an effort to utilize
GANs to generate data. However, this method, called DP-GAN [64],
did not demonstrate a good performance. Further attempts on
generative adversarial networks (GANs), such as DP-GAN [64],
DP-WGAN [51], DP-CGAN [59], PATE-GAN [27], and DP-CTGAN
[17] also demonstrated limited performance before. Therefore, we
omit the comparison of this class of methods.

More recent machine learning approaches, including GEM [36]
and DP-MERF [22], represent generative network-based advance-
ments. GEM combines generative networks with adaptive marginal
selection mechanisms, while DP-MERF employs random Fourier
feature loss to train generative networks. Besides, TabDDPM [30]
leverages diffusion models’ representational power to fit target data
directly. While TabDDPM was not originally designed for DP, it
achieves state-of-the-art performance among non-DP methods and
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Table 1: Summary of benchmarked algorithms.Wematch different algorithms within our framework and summarize/categorize
their working pipelines. Here, ‘unspecified’ means that related information is not mentioned or does not have a deterministic
setting in the original paper. The original baselines column lists some other well-received baseline algorithms.

Category Method Data Preprocessing Feature Selection Data Synthesis Original Baselines

Statistical
Method

RAP [3] Unspecified Adaptive Relaxed Projection FEM [63],HDMM [37]
PrivSyn [69] Categorical Preprocessing Non-adaptive GUM PrivBayes [67], DualQuery [18],PGM [40]
PrivMRF [7] Unspecified Adaptive PGM PrivBayes, BSG [5], DP-WGAN [51], DP-Copula [32]
RAP++ [62] Unspecified Adaptive Relaxed Projection RAP, DP-MERF, DP-CTGAN [17], PGM
AIM [39] Unspecified Adaptive PGM PrivMRF, RAP, MST [38], MWEM [23]

Private-GSD [35] Unspecified Unspecified Genetic Algorithm GEM, RAP++, PGM [40]

Machine Learning
Method

GEM [36] Unspecified Adaptive Generative Network RAP, MWEM, DualQuery
DP-MERF [22] Unspecified Non-adaptive Generative Network DP-GAN [64], DP-CGAN [59]
TabDDPM [30] Unspecified - Diffusion Model -

(1) Data Preprocessing (2) Feature Selection

Numerical Discretization

Categorical Merging

Non-adaptive Selection

Adaptive Selection

FeaturesData MeasurementProcessed
Data

SelectMeasure

Large Marginal Small Marginal
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Data-fitting Synthesis
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Fitting Synthetic Data

(3) Data Synthesis Intermediate Result

Figure 1: The proposed unified framework. The dataset is
first preprocessed and then represented by some selected
features. Finally, using the selected features, the synthesis
algorithm generates data as the output of the workflow.

can be adapted for DP synthesis using DP-SGD [15]. Consequently,
we include TabDDPM in our analysis.

Our work focuses on recently proposed methods that have not
been well compared previously and those representing the cur-
rent state-of-the-art, as summarized in Table 1. Here, we must
emphasize that specifically, we don’t consider some LLM-based
methods [48, 60]. That is because LLMs are trained on extensive
public datasets, which will introduce evaluation bias and affect our
further comparison of algorithm modules.

3.2 Existing Benchmark Works
In addition to the proposed algorithms, there are several benchmark
studies [15, 16, 25, 57, 65] that investigate the problem of DP data
synthesis. However, previous works all have some weaknesses,
summarized as follows.
• Lack of unified comparison setting. Du et al. [15] have made
an experimental evaluation of current works but ignore the im-
portance of a unified setting (e.g., preprocessing), which may
significantly influence the comparison fairness.

• Not include recent advanced works. Du et al. [15] and Tao et
al. [57] focus on utility evaluation, but they both lack investigation
for some advanced methods, such as RAP++ and Private-GSD.
Fan et al.’s work [16] only focuses on GAN-based methods.

• Lack of deep analysis. Yang et al. [65] provide a survey of
many methods and further investigate distributed data synthesis.
However, they do not delve deep into these algorithms’ working
principles. Du et al.’s work and Tao et al.’s work also have a similar
weakness in lacking deep algorithm analysis.

• Lack of comprehensive experiments. Hu et al. [25] provide
analysis for a wide range of DP synthesis algorithms, not only
about tabular data synthesis but also trajectory data and graph
data. This work, though trying to make an in-depth analysis, lacks
comprehensive experiments.

Except for these works, there are other “benchmark-like" works
on different aspects of this problem. For instance, Ganev et al. [19]
discuss the importance of discretization in tabular data synthesis.
Moreover, Stadler et al. [52] focus more on the quantitative evalua-
tion of privacy gain. These works provide in-depth research from
different perspectives but lack a more comprehensive viewpoint.

Realizing the weaknesses of current research, our work aims to
address these issues by proposing a standardized algorithmic frame-
work (Section 4), providing rigorous analysis (Section 5, Section 6
and Section 7), and conducting detailed experiments (Section 9).

4 FRAMEWORK OVERVIEW
Some previous works [25, 36, 38] have identified that current meth-
ods have several common working patterns and proposed unify-
ing algorithmic frameworks, focusing primarily on feature selec-
tion and dataset synthesis. However, when dealing with a complex
dataset, preprocessing it into a more manageable form should also
be a necessary part of the algorithm. As presented Figure 1, our
framework extends these approaches by incorporating a data pre-
processing module. This section gives an overview of our frame-
work and presents how modules work together to form a complete
and cohesive data synthesis pipeline.
Preprocessing. As observed in our evaluation, many datasets con-
tain attributes with large domain sizes (e.g., exceeding 105 in Loan
dataset [2]), which pose significant challenges for data synthe-
sis. For statistical methods, large attribute domains lead to expan-
sive, low-dimensional marginals, which will introduce excessive
DP noise during synthesis and degrade performance. For machine
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learning-based methods, a large domain requires a synthesizer with
a substantial model size to learn the relationship between different
attributes, leading to slower training and higher resource demands.
Additionally, larger model sizes require a higher scale of DP noise
under the same privacy budget compared to smaller synthesizers,
degrading synthetic performance [21].

Therefore, preprocessing is important and non-negligible in algo-
rithmworkflows, which can reduce the dimensionality of marginals
by effectively merging those with similar characteristics and com-
pressing the domains of the attributes. However, as shown in Table 1,
preprocessing is often overlooked by prior works [3, 7, 22, 30, 35, 36,
39]. This omission in the algorithm pipeline may affect the fairness
of comparisons between methods.
Feature Selection. Even after effective preprocessing, the do-
main of the whole dataset increases exponentially with the num-
ber of attributes, making methods that rely on a histogram rep-
resentation computationally infeasible. A practical approach is
to utilize some representative local data features, such as low-
dimensional marginals, to approximate the full joint data distri-
bution [7, 35, 39, 69]. Therefore, the second step in the framework
is to measure the representativeness of the features and select nec-
essary features. To further analyze how to better select features in
Section 6, we will categorize existing strategies into two categories:
• Non-adaptive Feature Selection. A straightforward approach
to this step involves performing one-shot feature selection. Some
methods, such as DP-MERF and Private-GSD, predefine a fixed set
of features without selection. While others, like PrivSyn, measure
and select features in one step.

• Adaptive Feature Selection. Adaptive methods incorporate
iterative calibration to refine the selection process. Typically,
these methods begin with an initial feature selection, and then
iteratively update the selected features based on intermediate
feedback from previous selection steps.

Data Synthesis. The third step in the framework is to synthesize
data that aligns well with the features selected in the feature se-
lection step. Current methods apply a wide range of algorithms
to achieve this synthesis step. Broadly, there are two approaches:
fitting the dataset or fitting the model.

PrivSyn manually adjusts data records to match the marginals,
while Private-GSD achieves this by genetic algorithm [53]. RAP
and RAP++ use the relaxed projection mechanism to optimize the
records of an initialized dataset. These methods are constructed
by adjusting records. Some other methods fit models for data gen-
eration. PGM [40] is a classical graphical model for tabular data
synthesis, which utilizes a tree-like model to represent the distribu-
tion of data. Machine learning models such as generative networks
and diffusion models have also been applied here.

It is also notable that this division is not mutually exclusive. We
can regard an initialized dataset as a model where each data record
is a model parameter, so adjusting data can also be regarded as
fitting a model. Our characterization is primarily for explaining
algorithm intuition.

5 PREPROCESSING
As mentioned in Section 3, when synthesizing complex datasets,
we may encounter attributes with high cardinality. For example, an

Algorithm 1: DP Rare Category Merge
Input: dataset 𝐷 , merge threshold parameter 𝜃 , unique

value threshold 𝛽 , DP parameter 𝜌2
Output: preprocessed dataset 𝐷

1 𝑉𝑐 ← categorical variables with domain size ≥ 𝛽 ;
2 𝜌′ ← 𝜌2/|𝑉𝑐 |;
3 for 𝑗 ∈ 𝑉𝑐 do
4 𝑏 ← 1-way marginal of attribute 𝐴 𝑗 ;
5 𝑏 = 𝑏 + N

(
0, 1

2𝜌 ′
)
;

6 for 𝑖 = 1 : |𝑏 | do
7 𝜃 ′ ← max

{
𝜃 ·∑𝑏, 3𝜎

}
; ⊲ Merging threshold

8 if 𝑏 [𝑖] < 𝜃 ′ then
9 replace 𝑏 [𝑖] with the rare encoding value;

10 end
11 end
12 end
13 return 𝐷

address or income attribute can have thousands of distinct values.
Conducting statistics on such attributes is infeasible due to the
high memory requirements and long execution times. Therefore,
a preprocessing step is necessary for algorithm comparison. We
surveyed some previous works [19, 38, 69] and summarized the
data types requiring preprocessing into two types: categorical and
numerical. Before introducing this section, we need to clarify a basic
assumption: domain information is considered public knowledge.
This assumption is reasonable in many cases. For example, the
domains of personal attributes in census data are well documented
on the IPUMS website [26].

5.1 Categorical Attributes Preprocessing
Some prior works [38, 69] have proposed a 3𝜎 merging strategy
to preprocess categorical variables, where categories with counts
below 3𝜎 (where 𝜎 represents the DP noise standard deviation in
the counting process) are combined.

By controlling each category’s frequency to be large enough
(larger than 3𝜎), this approach helps mitigate the impact of noise.
However, this method has limitations: when we have a large pri-
vacy budget, 3𝜎 could be a small value. If we continue using 3𝜎 as
the threshold for combining, we may be able to achieve high accu-
racy, but we cannot reduce the attributes’ domain size to ensure
algorithm efficiency.

In response to these limitations, we improve the 3𝜎 merging
method, as shown in Algorithm 1, by applying a dual merging
threshold max{3𝜎, 𝑛̂𝜃 }. Here 𝑛̂ is the privately measured number
of records in the dataset and 𝜃 is the threshold parameter. By intro-
ducing a fixed threshold, we can avoid the case when 𝜎 is too small
to reduce the attribute’s domain complexity.

5.2 Numerical Attributes Preprocessing
Continuous numerical variables often exhibit dense distributions
within specific intervals, with numerous unique values. Different
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Algorithm 2: PrivTree Binning
Input: dataset 𝐷 , unique value threshold 𝛽 , divide

parameter 𝜃 , privacy parameter 𝜌1
Output: preprocessed dataset 𝐷

1 Set 𝑇 = ∅
2 𝑉𝑛 ← numerical variables with domain size ≥ 𝛽
3 𝛽0 ← 2

4 𝜆′ ← 2𝛽0−1
𝛽0−1 ·

√︃
|𝑉𝑛 |
2𝜌1

5 𝛿 ′ ← 𝜆′ · ln 𝛽0
6 for 𝑗 ∈ 𝑉𝑛 do
7 T ← PrivTree(𝐷 [ 𝑗], 𝜆′, 𝛿 ′, 𝜃 )
8 Append T to 𝑇
9 end

10 Apply 𝑇 to discretize dataset 𝐷
11 return 𝐷

from categorical attributes, these unique values have numerical cor-
relation, making value combining (like what we do for categorical
attributes) impossible. Thus, discretization is a proper preprocess-
ing method for numerical attributes. Here, we outline two potential
discretization approaches:
Uniform Binning. Some previous works [12, 19] use uniform bin-
ning for continuous data preprocessing. It partitions an attribute’s
domain into equal-length intervals, relying only on the attribute’s
domain range and a predefined number of bins. Formally, this
method can be expressed as Uniform Bin(𝑥) =

⌊ 𝑥−𝑥ℓ
ℎ

⌋
, where 𝑥ℓ

is the lower bound of the attribute’s domain, and ℎ is the length of
the uniform interval determined by the bin number.

Uniform binning is advantageous because it requires no detailed
data information, avoiding the need for additional privacy budget
allocation. However, it has significant drawbacks, particularly for
attributes with uneven distributions. For example, when data is
highly concentrated around specific values, uniform binning can
lead to inefficient binning, as it may allocate unnecessary bins to
sparsely populated areas.
PrivTree. A limitation of uniform binning is its reliance on a prede-
termined number of bins, which introduces concerns about hyperpa-
rameter selection. To address this, PrivTree decomposition [57, 68]
can be used as a self-adaptive discretization method.

PrivTree employs a tree structure to iteratively divide the do-
main of an attribute, with splits continuing until intervals contain
only a small number of records. However, since PrivTree utilizes
sensitive data for domain division, it requires a fraction of the pri-
vacy budget to guarantee differential privacy. We use PrivTree on
multiple attributes whose domain size is larger than a threshold,
with algorithm details in Algorithm 2. We provide the proof of DP
guarantee of this algorithm in the appendix.

6 FEATURE SELECTION
Selecting features determines the performance of many algorithms.
Similar to preprocessing methods, it is important for statistical
methods, while some machine learning methods can automatically
learn the characteristics of the dataset by training models. In this

section, we will briefly introduce the currently proposed selection
methods and analyze them.

6.1 Existing Selection Methods
Non-adaptive Feature Selection. Non-adaptive methods perform
all feature computations and operations at the beginning of the
algorithm based on the characteristics of themarginals. The selected
features will then be delivered to the synthesis modules without
any further refinement.

Some algorithms directly predefine a set of features instead of
paying attention to selecting representative features. DP-MERF [22]
leverages random Fourier features to capture correlations among
numerical variables, while employing 2-way marginals for categor-
ical variables. In addition, some methods with strong fitting ability
can work on all two-way marginals. For example, Liu et al. [35]
conduct experiments on all two-way marginals to demonstrate the
performance of Private-GSD.

Instead of predefining some features, PrivSyn [69] selects the
most highly correlated marginals while respecting the privacy
budget in one round. They measure each marginal using metric
InDif𝑖, 𝑗 =

��𝑀𝑖, 𝑗 −𝑀𝑖 ×𝑀𝑗

��, where 𝑀 denotes the attribute mar-
ginal. The selection process involves minimizing the expected error∑︁

𝑖

(𝑁𝑖𝑥𝑖 + InDif𝑖 (1 − 𝑥𝑖 )) ,

where 𝑥𝑖 ∈ {0, 1} denotes the selection decision and 𝑁𝑖 is DP noise.
Adaptive Feature Selection. Different from non-adaptive meth-
ods, adaptive methods continuously update feature selection with
feedback from the previous selection steps. In each synthesis round,
adaptive feature selection conducts many queries on the current
estimation, and the features with large errors are selected. These fea-
tures will be used for the selection of future rounds. This strategy is
used by methods like RAP [3], RAP++ [62], GEM [36], PrivMRF [7]
and AIM [39]. These methods differ in several key aspects:
• First, in terms of initialization, PrivMRF uses a carefully designed
criterion to select a small set of features as the starting point,
while AIM initializes with all 1-way marginals. In contrast, RAP,
RAP++ and GEM do not specify any initialization.

• Secondly, the selection criteria also differ among these methods.
Both AIM and PrivMRF’s marginal selection criteria include a
punishment term proportional to the marginal scale, allowing
for a balance between noise level and feature representativeness.
Other methods measure the features without a penalty term,
which is one-sided and potentially introduces more errors.

• Finally, the selection mechanism varies: AIM and GEM utilize the
exponential mechanism [8], whereas RAP and RAP++ employ
the Gumbel mechanism [3], allowing them to select more than
one feature in each round; PrivMRF takes a different approach, di-
rectly adding Gaussian noise to the selection criteria for selection
and select the largest one.
Compared to the non-adaptive methods, the adaptive methods

require multiple rounds of data synthesis or computation during the
feature selection. Therefore, the efficiency of non-adaptive methods
heavily depends on the efficiency of the data synthesis algorithms.
Then, a natural question arises: which selection methods are theo-
retically better in utility? Or do the non-adaptive methods, which
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come at the cost of higher computational complexity, ensure contin-
uous optimization in the correct direction during feature selection?
We will discuss this in detail in the next section.

6.2 Analysis for Selection Algorithms
Some previous studies [7, 36, 39] have discussed the important
properties of a good selection mechanism. In this subsection, we
formally investigate some aspects of it. Since all methods, except
for DP-MERF, which predefines features without selection, focus
on marginal selection, we only discuss marginal selection here.
Importance of Scale Penalty Term. For any marginal 𝑀 , we
have two choices: choose and privatize it or do not choose it. Let
the marginal estimated by available information be 𝑀0, and the
privatized marginal be 𝑀̂ . We have 𝑀̂ = 𝑀 + N(0, 𝜎), where 𝜎 is
known privacy budget. The expected error can be derived as,{

Selection error: ∥𝑀 − 𝑀̂ ∥1 = 𝑛𝜎
√︁
2/𝜋

Unselection error: ∥𝑀 −𝑀0∥1 .

Therefore, we can compare these two errors, denoted as ∥𝑀−𝑀0∥1−
𝑛𝜎

√︃
2
𝜋 , to determine the selection result, which demonstrates the

importance of scale penalty term. This equation is also how some
selection criteria involve the scale penalty term.
Superiority of Adaptive Selection. Without loss of general-
ity, we consider the case of selecting 2-way marginals. Assuming
that before selecting (𝐴𝑖 , 𝐴 𝑗 ), we have already fitted marginals
(𝐴𝑖 , 𝐴1, · · · , 𝐴𝑘 ) and (𝐴 𝑗 , 𝐴1, · · · , 𝐴𝑘 ), so that we can use this in-
termediate knowledge to estimate the distribution of (𝐴𝑖 , 𝐴 𝑗 ) as

P̂r[𝐴𝑖 , 𝐴 𝑗 ] =
∑︁

Pr[𝐴1, · · · , 𝐴𝑘 ]·
Pr[𝐴𝑖 |𝐴1, · · · , 𝐴𝑘 ] Pr[𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ] .

(1)

Before selecting themarginal (𝐴𝑖 , 𝐴 𝑗 ), the non-adaptivemethods
do not use intermediate results and can only use independent 1-
way marginals to measure its representativeness. This independent
measurement can be written as DKL

(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



 Pr[𝐴𝑖 ] Pr[𝐴 𝑗 ]
)
,

where DKL is the KL Divergence [31]. The adaptive methods, be-
cause they select features based on intermediate synthesis results,
will have a conditional estimation asDKL

(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



 P̂r[𝐴𝑖 , 𝐴 𝑗 ]
)
,

which is the true KL divergence when choosing marginal (𝐴𝑖 , 𝐴 𝑗 ).
Here P̂r[𝐴𝑖 , 𝐴 𝑗 ] is defined in Equation (1). Now we give the follow-
ing theorem to prove the superiority of adaptive selection.

Theorem 2. For any pair of attributes (𝐴𝑖 , 𝐴 𝑗 ), the KL divergence
error of conditional estimation is always no larger than that of inde-
pendent estimation. Formally, we have

DKL

(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



 P̂r[𝐴𝑖 , 𝐴 𝑗 ]
)
≤ DKL

(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



 Pr[𝐴𝑖 ] Pr[𝐴 𝑗 ]
)

Here P̂r[𝐴𝑖 , 𝐴 𝑗 ] is defined in Equation (1).

The proof of Theorem 2 is deferred to the appendix. In essence,
this theorem demonstrates that non-adaptive methods tend to over-
estimate the representativeness of features under KL divergence,
whereas adaptive methods can correct this error by leveraging
intermediate results.

7 DATA SYNTHESIS MODULE COMPARISON
Previous sections have shown that current solutions utilize various
techniques to generate data on selected features. This raises critical
questions about their utility and efficiency. Thus, we will analyze
this problem in this section. For data-fitting methods, there are
GUM, Genetic algorithm, and Relaxed Projection. For the model-
fitting type, we consider PGM and (deep) generative network.
GUM. GUM, used by PrivSyn, is an iterative adjustment method
that modifies values in the initial dataset to align with the selected
marginals. We assume that GUM merges marginals to 𝑘 cliques of
sizes {𝑐1, · · · , 𝑐𝑘 }. Since the maximum number of operations to fit
each value in the marginals is no more than the size of the synthetic
dataset, the time complexity of GUM is O

(∑𝑘
𝑖=1𝑇𝑐𝑖𝑛

)
, where 𝑇 is

the number of update iterations, 𝑛 represents the synthetic dataset
size, respectively. Because GUM strictly controls the clique size 𝑐𝑖 ,
ensuring we have small cliques and simplifying the update process
(e.g., we can choose a small 𝑇 to reach convergence). This guar-
antees the efficiency of GUM. However, it fits marginals one by
one, overlooking overall correlations within the dataset, which may
limit its utility.
Genetic Algorithm. Genetic algorithms [53] use mutation and
crossover operations to adjust datasets. The complexity depends on
the number of mutations and crossovers per iteration. For instance,
the algorithm by Liu et al. [35] has a complexity of O (𝑇 (𝑃𝑚 + 𝑃𝑐 )),
where 𝑇 is the number of iterations, and 𝑃𝑚 and 𝑃𝑐 represent mu-
tations and crossovers per iteration, respectively. The execution
time of genetic algorithms is strongly influenced by the number of
tuning rounds, which often exceeds the dataset size when handling
complex datasets with diverse values.
Relaxed Projection. Relaxed projection mechanism [3, 62] treats
the dataset as a trainable model, optimizing it to match marginals.
Given 𝑇 optimization rounds, synthetic data size 𝑛, and data di-
mension 𝑑 , the time complexity is O(𝑇𝑛𝑑). This method can be
regarded as both a model-fitting and data-adjusting approach. The
complexity is driven by the size of the synthetic data and the num-
ber of optimization rounds. High-dimensional datasets with large
attribute domains can result in an inflated encoded data dimension,
making optimization difficult to converge and more time-intensive.
PGM. PGM [40] constructs a junction tree of marginal cliques
𝐶1,𝐶2, · · · ,𝐶𝑘 , ensuring that the intersection set 𝑆𝑖 of any two
cliques appears only in those marginals. The overall distribution is
approximated as:

Pr[𝐴1, · · · , 𝐴𝑑 ] ≈ Pr[𝐶1] ·
𝑘∏
𝑖=2

Pr[𝐶𝑖 \ 𝑆𝑖 | 𝑆𝑖 ] . (2)

Let 𝑇 be the number of training iterations, and let 𝑘 cliques have
sizes {𝑐1, · · · , 𝑐𝑘 }. The total complexity isO

(∑𝑘
𝑖=1𝑇𝑐𝑖 + 𝑛𝑘

)
, which

includes model training and data genration complexity. PGM’s
efficiency depends on constructing reasonable cliques, which are
automatically determined by the junction tree. Densely selected
marginals can lead to large cliques, greatly increasing time costs.
Generative Network. Generative networks [36] rely on parame-
ters𝑚, batch size 𝑏, and training iterations 𝑇 . The training com-
plexity is O(𝑇𝑚𝑏). Generating 𝑛 synthetic records results in a total
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complexity of O(𝑇𝑚𝑏 +𝑚𝑛). The efficiency is affected by network
design and training hyperparameters, which can be challenging for
high-dimensional datasets.

In summary, we find that model-fitting type methods heavily
depend on the construction of the generative model. While this
approach can achieve high efficiency, it also risks encountering the
curse of dimensionality. In contrast, data-fitting methods are often
limited by the complexity of the data itself, which can significantly
impact algorithm efficiency.

8 EXPERIMENTAL SETUP
Our evaluations aim to (1) compare all well-established methods
within our unified framework; (2) explore and verify the impor-
tance of preprocessing in DP tabular synthesis tasks; (3) investigate
feature selection and synthesis modules of these methods for a
more fine-grained comparison. The comparison results can vali-
date previous theoretical analysis and guide method selection for
different modules within the framework.

To achieve this, we design three main experiments as follows, (1)
Overall Evaluation: We evaluate method performance across metrics
and datasets; (2) Preprocessing Investigation: These experiments fo-
cus on the preprocessing investigation by comparing preprocessed
datasets with raw ones; (3) Module Comparison: We evaluate the
effectiveness of different feature selection and synthesis modules
by reconstructing algorithms using them.

8.1 Datasets
The selection of datasets is crucial in comparison. Tomake a compre-
hensive comparison, we would expect that (1) the datasets should
vary in record size, attributes’ domain sizes, and attribute distribu-
tion to better demonstrate the capacity of methods in synthesizing
datasets of different complexity; (2) the proportion of numerical
attributes and categorical attributes should be different to evaluate
different preprocessing methods better. Therefore, we choose five
datasets used in previous work [30, 35, 39, 69] as our datasets, which
are ACSincome (INC), ACSemploy (EMP), Bank (BK), Higgs-small
(HIG) and Loan (LN). The detailed information about these datasets
is provided in the appendix.

8.2 Implementations
In our experiments, we consider PrivSyn, PrivMRF, RAP++, AIM,
Private-GSD, GEM, DP-MERF, and TabDDPM. We do not include
RAP in the experiments because RAP++ directly improves upon
it. Moreover, notice that Private-GSD is a synthesis algorithm, we
use its one-shot 2-way marginal version in the overall evaluation,
which is also used in their original work, and pay more attention to
its performance in module comparison. Finally, we train TabDDPM
under DP-GSD by opacus [66]. We repeat all evaluations five times
and report the average results. The DP parameter 𝛿 is set to be 10−5
by default. PrivSyn and AIM are executed on CPUs, while the other
methods are executed with GPUs. We by default employ uniform
binning and rare category merging preprocessing methods. The
detailed hyperparameters setting of studied methods, including
preprocessing algorithms, is provided in the appendix.

8.3 Evaluation Metrics
Various evaluation approaches have been proposed [15, 39, 69].
However, most current works focus on comparing synthesis util-
ity, or how similar synthetic data is to real data. While utility is
important, algorithm efficiency is also a critical factor in algorithm
selection. Therefore, we mainly consider the following metrics.
Machine Learning Efficiency (higher is better). A widely ac-
cepted metric for evaluating generated data is its performance on
downstream tasks. A common approach involves training Machine
Learning (ML) models on the generated data and assessing their
performance on test data.

The previous works [15, 30, 69] typically select one or more ML
models as downstream tasks. It’s important to note that a large
number of models do not necessarily lead to a fairer evaluation. Gen-
erally, simpler models have weaker data-fitting capabilities, which
cannot reach fair conclusions. In our comparison, we therefore se-
lected four machine learning models known for strong performance
across various datasets: MLP, CatBoost, XGBoost, and Random For-
est. We report the average F1 score on held-out test data as our
metric value, and other related metrics, such as AUC and accuracy,
are provided in the appendix.

Another justification is that we use the test dataset instead of the
training dataset for evaluation for this and the remaining metrics.
While both approaches have been employed in previous works, we
opt to use test data for evaluation due to the belief that it better
reflects an algorithm’s generalization ability.
Query Error (lower is better). Making queries [9] is a commonly
used data analysis technique, which can also be conducted to mea-
sure relatively high-dimensional similarity due to its high efficiency.
Here, we consider using the 3-way marginal query method em-
ployed by Du et al. and Mckenna et al. [15, 40], which utilizes the
statistical ℓ1 error of frequency query result to reflect the magni-
tude of the error. Formally, the query error can be expressed as,
E𝑟 ∈𝑅

��𝑞𝑟 (𝐷𝑠𝑦𝑛) − 𝑞𝑟 (𝐷𝑡𝑒𝑠𝑡 )
�� ,where 𝑞𝑟 refers to the query function,

which is a combination of range query (for numerical attributes)
and point query (for categorical attributes). E is the mathematical
expectation, and 𝑅 refers to the set of all 3-way marginals.
Fidelity Error (lower is better). Marginal Fidelity is precise in
evaluating low-dimensional similarity, such as average 2-way mar-
ginal discrepancy. For example, the work by Du et al. [15] suggests
using Wasserstein distance as the fidelity measurement, but this
method can be infeasible in terms of computation time when deal-
ing with complex data. Alternatively, total variation distance (TVD)
can be used for measurement, which has also been utilized in some
studies [57, 60]. We define the TVD as 1

2
∑
1≤𝑖≤ 𝑗≤𝑑

���𝑀syn
𝑖, 𝑗
−𝑀 test

𝑖, 𝑗

��� ,
where𝑀syn

𝑖, 𝑗
and𝑀 test

𝑖, 𝑗
are the real 2-way marginals determined by

the synthetic dataset and test dataset, respectively.
Running Time (lower is better). A straightforward measurement
of algorithm efficiency is the execution time when generating the
same amount of data. The running time does not include the pre-
processing step and only counts the time spent in feature selection
and data synthesis modules.

In addition to our primary evaluation criteria, we also use some
secondary metrics, such as marginal size. These metrics are simple
enough, so we omit the discussion of them here.
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Table 2: Overall utility of synthetic data under different methods. The results with the best performance are highlighted in
bold (due to the limited number of digits displayed, some data may appear equal in the table, but there is actually an order in
their values). Ground Truth is obtained by comparing real data with test data.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML Efficiency ↑ 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.38 0.39 0.41 0.42 0.43 0.39 0.47 0.47 0.47 0.40 0.43 0.43 0.25 0.26 0.26
PrivMRF 0.73 0.78 0.78 0.72 0.80 0.81 0.62 0.69 0.71 0.50 0.64 0.64 0.52 0.52 0.52
RAP++ 0.66 0.73 0.77 0.74 0.77 0.80 0.65 0.69 0.67 0.52 0.53 0.54 0.45 0.42 0.43
AIM 0.76 0.78 0.78 0.78 0.80 0.81 0.67 0.71 0.71 0.63 0.64 0.67 0.52 0.52 0.52
Private-GSD 0.76 0.77 0.77 0.72 0.73 0.72 0.47 0.48 0.49 0.48 0.47 0.49 0.25 0.24 0.25
GEM 0.70 0.68 0.66 0.67 0.70 0.69 0.51 0.56 0.53 0.51 0.52 0.52 0.50 0.49 0.51
DP-MERF 0.65 0.67 0.71 0.58 0.71 0.66 0.60 0.57 0.55 0.53 0.56 0.57 0.32 0.18 0.18
TabDDPM 0.41 0.41 0.39 0.48 0.42 0.51 0.47 0.47 0.47 0.36 0.35 0.34 0.24 0.24 0.24
Ground Truth 0.79 0.79 0.79 0.81 0.81 0.81 0.76 0.76 0.76 0.72 0.72 0.72 0.54 0.54 0.54

Query Error ↓ 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.003 0.002 0.002 0.006 0.004 0.004 0.007 0.004 0.003 0.009 0.004 0.003 0.006 0.005 0.004
PrivMRF 0.002 0.001 0.001 0.004 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.003 0.005 0.005 0.004
RAP++ 0.019 0.005 0.003 0.029 0.009 0.003 0.014 0.006 0.005 0.035 0.029 0.028 0.020 0.014 0.011
AIM 0.002 0.001 0.001 0.004 0.002 0.001 0.007 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.004
Private-GSD 0.004 0.003 0.002 0.026 0.026 0.026 0.044 0.044 0.043 0.044 0.044 0.044 0.038 0.037 0.036
GEM 0.014 0.017 0.016 0.010 0.006 0.006 0.118 0.021 0.022 0.066 0.065 0.065 0.030 0.030 0.029
DP-MERF 0.019 0.018 0.024 0.039 0.037 0.036 0.038 0.035 0.036 0.039 0.035 0.034 0.006 0.006 0.006
TabDDPM 0.066 0.064 0.060 0.088 0.067 0.079 0.074 0.071 0.088 0.106 0.106 0.107 0.067 0.066 0.070
Ground Truth 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Fidelity Error ↓ 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.15 0.12 0.12 0.12 0.09 0.09 0.24 0.10 0.21 0.29 0.20 0.15 0.34 0.35 0.36
PrivMRF 0.11 0.07 0.05 0.07 0.04 0.03 0.13 0.07 0.06 0.21 0.16 0.16 0.31 0.24 0.23
RAP++ 0.52 0.24 0.19 0.30 0.13 0.07 0.43 0.36 0.36 0.69 0.65 0.65 0.66 0.58 0.55
AIM 0.09 0.06 0.05 0.05 0.03 0.02 0.11 0.09 0.09 0.19 0.17 0.14 0.35 0.32 0.29
Private-GSD 0.23 0.21 0.20 0.22 0.22 0.22 0.52 0.52 0.52 0.65 0.65 0.65 0.67 0.66 0.66
GEM 0.26 0.28 0.27 0.15 0.08 0.09 0.76 0.21 0.23 0.57 0.57 0.36 0.53 0.52 0.52
DP-MERF 0.52 0.51 0.50 0.34 0.34 0.32 0.47 0.48 0.48 0.60 0.56 0.54 0.91 0.92 0.93
TabDDPM 0.78 0.77 0.71 0.60 0.51 0.57 0.79 0.78 0.82 0.70 0.81 0.88 0.95 0.95 0.94
Ground Truth 0.05 0.05 0.05 0.02 0.02 0.02 0.03 0.03 0.03 0.12 0.12 0.12 0.10 0.10 0.10

9 EXPERIMENTAL RESULTS
9.1 Overall Evaluation
Utility Comparison. Table 2 shows the detailed utility metrics of
different methods respectively. To make the result more straight-
forward, we utilize the t-SNE [61], a dimensionality reduction tech-
nique, to visualize the synthesis results of all methods on the Bank
dataset in Figure 2. By reducing the dimensionality of the dataset
with t-SNE technique and plotting the scatter distribution, these
visualizations reveal the distribution overlap between synthetic
and real data, demonstrating synthesizers’ ability to generate data
resembling the original.

The first clear conclusion is that PrivMRF and AIM achieve the
best utility metrics among all methods. Another straightforward
finding is that statistical methods generally perform better than ma-
chine learning approaches. Both AIM and PrivMRF rely on graph-
ical models, and the quantitative evaluations of GEM, DP-MERF,
and TabDDPM are worse than most other statistical methods in
some metrics, such as RAP++ and PrivSyn in fidelity error.
Utility & Efficiency Trade-off.We present the relationship be-
tween utility and efficiency on different algorithms in Figure 3.
Although AIM and PrivMRF exhibit excellent utility performance,
they require more execution time, representing a trade-off in utility.

PrivMRF is slightly more efficient than AIM because it involves ini-
tialized marginal selection, which reduces the number of selection
rounds and accelerates the algorithm. Additionally, all machine
learning-based methods, despite having lower generation utility,
demonstrate high efficiency, partly due to the use of GPUs in the
model-fitting steps.
TabDDPMhas aweakperformance in synthesis utility.Among
all the methods, TabDDPM performs poorly in all three dimensions,
and in Figure 2, the visualization of the synthesis result does not
match the real data distribution. We track the training loss with
DP-SGD and compare it with the loss without DP-SGD. In Figure 4a,
we can observe that the loss under DP-SGD does not converge well
when training. This raises our suspicion of DP-SGD’s efficiency.
However, the diffusion model still demonstrates excellent perfor-
mance when generating images [14, 33] under DP-SGD. Therefore,
we believe the failure of TabDDPM is potentially caused by its
unsuitability for tabular data synthesis due to tabular data’s high
sensitivity to exact attribute values and the relation between records
(e.g., overall distribution), which is hard to achieve under DP-SGD.
Two GAN-based methods, DP-MERF and GEM, perform dif-
ferently. Even though GEM and DP-MERF both use deep gen-
erative networks for synthesizing, compared to GEM, DP-MERF
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Figure 2: T-SNE scatter plots of synthesis results on Bank dataset under 𝜀 = 1.0

0.2 0.4 0.6 0.8 1.0
Average Utility

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e E

ffi
cie

nc
y

AIM
DP-MERF
GEM
PrivMRF

PrivSyn
Private-GSD
RAP++
TabDDPM

Figure 3: Scaled average utility and efficiency of different
algorithms. Utility is obtained by the average performance
of three utility metrics and efficiency is measured by average
logarithmic running time. All measurements are scaled to
[0, 1], and the higher value means better performance.

performs poorly regarding query and fidelity error. One key reason
lies in the construction of features. Firstly, random Fourier fea-
tures embedding, used by DP-MERF, is still approximating the joint
distribution of numerical attributes, which inherently introduces
approximation error. Furthermore, when dealing with categorical
variables, DP-MERF focuses solely on the marginal distributions
between categorical variables and the label variable, which over-
looks other marginals. While GEM employs an adaptive marginal
selection strategy, continuously adjusting the fitting target.

To verify our hypothesis, we track the fitting errors of differ-
ent categories of marginals in Figure 4b and Figure 4c. During the
DP-MERF training process, the total variation distance (TVD) of
mostmarginals, except those for “categorical-categorical”marginals,
does not effectively converge. This, to some extent, supports our
thinking. By comparison, GEM achieves better convergence across

marginals. Moreover, in Figure 2g, we observe that the data points
generated by DP-MERF concentrate in several areas, which we be-
lieve is caused by unbalanced feature construction. In contrast, as
shown in Figure 2f, the data distribution of GEM is better aligned
with the target dataset.
PrivSyn works poorly on machine learning efficiency. An-
other finding is that PrivSyn performs well on range query error
and fidelity error metrics, but underperforms in terms of machine
learning efficiency. This scenario aligns with our previous analysis
in Section 7, which expresses the concern that GUM focuses more
on local marginal cliques and may ignore global relevance. The
experiments on reconstructed algorithms in Section 9.3 can also
support this statement.

9.2 Preprocessing Investigation
In this Section, we will explore the influence of preprocessing on al-
gorithms’ performance, and how different preprocessing strategies
will influence the quality of synthesis data.
Influence of Preprocessing on Dataset Information. Directly
comparing the algorithms’ performances with and without prepro-
cessing is difficult because running algorithms on raw datasets is
often too time-consuming and computationally complex (e.g., some
methods even require more than 24 hours to run on raw datasets).
Therefore, we consider comparing the marginal sizes and utility
metrics calculated on preprocessed and raw datasets. The detailed
results are shown in Figure 5.

A straightforward finding is that preprocessing decreases the
complexity of data, with the introduction of only a small error. In
Figure 5, the average marginal size significantly decreases after
preprocessing (from 108 to 103 in Higgs-small and Loan datasets).
Meanwhile, its negative influences on utility are small enough
(change on query error < 0.003, TVD < 0.1). We infer this is because
binning can preserve most numerical characteristics, and the low-
frequency categorical values only contribute a small proportion of
the overall correlation between attributes in the dataset.
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Figure 4: Figures for analyzing different methods in Section 9.1
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Figure 5: Metrics under different preprocessing settings. These metrics are obtained by comparing preprocessed raw data
with test data. Numerical preprocess means only conducting numerical discretization, and categorical preprocess means only
conducting categorical rare merging. By default, the results are under the setting that 𝜀 = 1.0 and 10% of the budget is used for
preprocessing (if needed).

Table 3: Preprocessed numerical attributes’ domain sizes un-
der different discretization algorithms. The result is obtained
on Higgs-small dataset and under setting 𝜀 = 1.0.

Dataset Min Domain Size Max Domain Size
Raw PrivTree Uniform Raw PrivTree Uniform

Bank 505 25 100 6024 28 100
Higgs-small 4870 6 100 60696 18 100
Loan 101 9 100 93995 32 100

Numerical Discretization Ablation. Firstly, we summarize the
domain sizes under different discretization results in Table 3. It is
obvious that PrivTree always generates significantly fewer bins
to represent numerical attributes, even for attributes with highly
complex value distributions. This approach not only reduces noise
in feature measurements but also simplifies the features, raising
concerns about losing information. To better demonstrate the in-
fluence of discretization, we conduct the ablation study on Higgs-
small dataset, which contains the most complex numerical variables
among all datasets. For this ablation, we focus on 𝜀 = 1.0, as is stan-
dard practice [15, 57]. The results are shown in Table 4.

In most cases, PrivTree performs better on machine learning
tasks but is slightly worse in query errors and fidelity errors com-
pared with uniform binning. We believe fewer bins help capture

overall correlations by introducing less noise, which benefits ma-
chine learning tasks. However, query tasks and fidelity are more
sensitive to exact values, and more bins lead to higher accuracy.
Two exceptions are Private-GSD and GEM, where PrivTree out-
performs uniform binning. We hypothesize that this is because
PrivTree reduces the dimensionality of variables, thereby facilitat-
ing network training and improving the convergence of the genetic
algorithm.

These results do not completely align with observations in Tao
et al.’s work [57]. We would propose three possible reasons. Firstly,
Higgs-small dataset is more value-rich than the datasets used in
their work, which can lead to high sensitivity to binning methods.
Secondly, the evaluationmetrics are different, while ours focusmore
on measurements on higher-dimensional marginals (e.g., 3-way
marginals). This can influence the results. Finally, the investigated
algorithms vary in the two works, which may lead to different
comparison conclusions. Another unusual finding is that under
PrivTree binning, AIM shows a significantly worse runtime. We
believe this is because smaller domain sizes will cause AIM to
allocate budget to more marginals. This may lead to large cliques,
slowing down the execution speed of PGM.

We can conclude that different discretization methods have their
own advantages and weaknesses. It is important to choose an ap-
propriate method for different algorithms. For example, for those
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Table 4: Marginal-based methods’ performance based on dif-
ferent discretization methods. The result is obtained on the
Higgs-small dataset and under 𝜀 = 1.0.

Method ML Efficiency ↑ Query Error ↓ Fidelity Error ↓ Running Time ↓
PrivTree Uniform PrivTree Uniform PrivTree Uniform PrivTree Uniform

PrivSyn 0.43 0.43 0.005 0.004 0.19 0.20 2min 6 min
PrivMRF 0.65 0.64 0.005 0.003 0.19 0.16 15 min 7min
AIM 0.67 0.65 0.005 0.003 0.20 0.19 690 min 18 min
RAP++ 0.55 0.53 0.030 0.029 0.55 0.65 71 min 37 min
Private-GSD 0.50 0.47 0.043 0.044 0.57 0.65 57 min 57 min
GEM 0.56 0.54 0.019 0.061 0.29 0.55 0.4 min 6 min

methods based on generative networks, PrivTree could be a po-
tentially better preprocessing method because it can significantly
decrease the dimension of models by reducing domain complexity.
For PGM and GUM, uniform binning could be a better choice due
to their stronger ability to fit marginals with large domains.
Category Merging Ablation. Finally, we briefly discuss the ne-
cessity of introducing a fixed merging threshold. We compare the
maximum domain size of preprocessed categorical attributes under
different fixed merging thresholds in Figure 6. We can conclude
that domain size cannot be reduced efficiently under large 𝜀 if we
do not apply a fixed merging threshold (0.0%). Furthermore, we
may over-merge categories if this threshold is large (e.g., 1%), which
may cause potential synthesis errors.

9.3 Module Comparison
In this subsection, we decompose our experiments into two parts:
one focusing on different feature selection algorithms and the other
on different synthesis modules. In other words, we fix either the
selection or the synthesis approach and then evaluate how dif-
ferent algorithms perform under that fixed condition. Since some
features are not compatible with other synthesis methods (e.g., ran-
dom Fourier features), we only focus on marginal-based methods,
namely PrivSyn, RAP++, Private-GSD, AIM, PrivMRF, and GEM.

To make clearer comparisons, we divide the datasets into two
groups. The first group, ACSincome and ACSemploy, is relatively
low-dimensional with moderately sized attributes’ domains. We
call them “small datasets” for description simplicity. The second
group, Bank, Higgs-small, and Loan, is higher-dimensional or has
larger attribute domains, which are called “large datasets”. To make
a better comparison, we scale each metric and display the average
performance on these two groups of datasets under different 𝜀.
Comparison of Feature Selection Modules. Since some algo-
rithms use the same or similar marginal selection methods, or have
not specified them, we consider four marginal selection methods
included in previous work. They are: PrivSyn selection, PrivMRF
selection, RAP++ selection, and AIM selection. The synthesis pro-
cesses for these four selection methods are all set to PGM. Figure 7
show the average scaled performances.

Among the selection methods, PrivSyn and RAP++ showweaker
fitting utility, consistent with our analysis. PrivSyn fails to use
intermediate information during selection, reducing its ability to
capture necessary data features and leading to excessive selections.
This also overwhelms PGM on larger datasets due to high memory
demands. Similarly, RAP++ employs the Gumbel mechanism to
select multiple marginals per iteration, without fully accounting
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Figure 6: Themaximumattribute domain size of Loan dataset
under fixed merging thresholds and different 𝜀. In the figure,
“0.0%” means no fixed threshold (merge only by 3𝜎 criteria),
and “None” means no merging preprocessing (raw data).

for intermediate results. It also decreases the number of synthesis
rounds required, thereby accelerating the algorithm’s execution.
Moreover, its selection criterion focuses solely on marginal query
error, ignoring noise error, which is unbalanced and potentially
influences the algorithm’s performance.

The utility performances of AIM and PrivMRF, are very similar
since both perform a single marginal refinement after updating the
intermediate information. A notable observation is that PrivMRF
has a shorter running time than AIM. We attribute this to the well-
designed initial marginal set in PrivMRF, which decreases the need
for further refinement and speeds up the total algorithm.
Comparison of Synthesis Modules. We compare the synthesis
algorithms of all six algorithms: GUM, PGM, relaxed projection
(RP), genetic algorithm (GA), and generative network (GN). PGM
is employed by both AIM and PrivMRF. To avoid multiple fitting
steps from adaptive selection and control the running time, we use
the PrivSyn selection algorithm as the common marginal selector.
The results are shown in Figure 8. GUM and PGM are conducted
on CPUs, and the remaining works are on GPUs.

Among these methods, PGM and the generative network achieve
the best overall accuracy and stability in fitting features on small
datasets. PGM benefits from its expressive structure, which, as
indicated by Equation (2), infers marginals without refitting existing
ones, thus minimizing compounding errors. However, the PGM’s
fitting process is quite slow, due to the densely selectedmarginals by
PrivSyn, causing it to fail to deal with large datasets. Indeed, PGM
is most efficient when coupled with a marginal selection procedure
that is designed to make the resulting graphical model “tree-like” [7,
38, 39]. The generative network’s strong representational capacity
also supports accurate feature fitting on small datasets. However,
when it turns to larger and more complex datasets, its superiority in
efficiency and utility will be diminished due to the greater difficulty
of training high-dimensional models.

In contrast, GUM, the genetic algorithm, and relaxed projection
demonstrate weaker fitting capabilities. GUM refines marginals
individually, overlooking global correlations. However, it shows a
superiority in running time, aligning with our analysis. The genetic
algorithm’s reliance on randomness makes it unsuitable for com-
plex, high-dimensional datasets with large attribute domains under
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time constraints, leading to poor performance on large datasets.
Relaxed projection suffers similarly. In high-dimensional spaces
with extensive attributes’ domains, the encoded data dimension
becomes excessively large, complicating optimization and making
it harder to converge to the optimal point, and finally resulting in
poor performance.

10 CONCLUSION AND DISCUSSION
Data synthesis under differential privacy remains a critical and ac-
tive area of research. Despite a growing number of methods being
proposed, the field still lacks a fair and comprehensive comparative
analysis. In this paper, we conduct analysis, comparison, and eval-
uation of several methods on a unified framework. The primary
findings of our study are as follows:
• A significant trade-off exists between utility and efficiency, resulting
in no single algorithm dominating the others. Machine learning-
based methods, though highly efficient, generally exhibit infe-
rior performance compared to traditional statistical methods.
Nonetheless, some statistical methods, such as AIM and PrivMRF,
are often time-consuming because of their heavy computation
requirement, which is a trade-off for superior utility.

• Data preprocessing strategy is important but algorithm-dependent.
Data preprocessing is crucial in reducing algorithm complexity

without introducing too much error. The choice of data prepro-
cessing methods should align with the working principles of the
algorithm. Appropriate preprocessing techniques can enhance
both the efficiency and effectiveness of the algorithms, whereas
unsuitable methods may hinder their performance.

• Improvement on data synthesis module remains a promising direc-
tion.We find that some feature selection methods outperform oth-
ers, but existing synthesis modules exhibit significant drawbacks
in different ways. For example, PGM, even though demonstrates
outstanding utility, cannot work on densely selected marginals
(due to high memory requests and long execution time), while
generative networks face significant challenges when dealing
with high-dimensional data. There remains substantial room for
improvement in developing algorithms that can efficiently, reli-
ably, and accurately generate data.

Our work not only sheds light on the strengths and limitations
of current methods but also identifies several promising directions
for future research. These include tailoring preprocessing strategies
to algorithmic needs, developing more effective feature selection
techniques, and improving the utility of machine learning models or
the efficiency of some statistical methods under differential privacy.
Addressing these issues and challenges can help advance this field
and better support differential private data analysis.
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A DP PRELIMINARIES
A.1 RDP Properties
We briefly introduce RDP composition and post-processing proper-
ties in Theorem 3 and Theorem 4.

Theorem 3 (Composition). Let 𝑓 : D → R1 be (𝛼, 𝜀1)-RDP and
𝑔 : R1 × D → R2 be (𝛼, 𝜀2)-RDP respectively. Then the mechanism
defined as (𝑋,𝑌 ), where 𝑋 ∼ 𝑓 (𝐷) and 𝑌 ∼ (𝐷, 𝑓 (𝐷)), satisfies
(𝛼, 𝜀1 + 𝜀2)-RDP.

Theorem 4 (Post-Processing). Let 𝑓 : D → R1 is (𝛼, 𝜀)-RDP,
and 𝑔 : R1 → R2 is an arbitrary randomized mapping. Then 𝑔 ◦ 𝑓 is
also (𝛼, 𝜀)-RDP.

A.2 DP Mechanism
Before introducing DP mechanisms, a key quantity needed to be
defined is the sensitivity:

Definition 3 (Sensitivity). Let 𝑓 : D → R𝑘 be a vector-valued
function of the input data, then the ℓ2 sensitivity of 𝑓 is defined as

Δ𝑓 = max
𝐷≃𝐷 ′



𝑓 (𝐷) − 𝑓 (𝐷′)

2
Gaussian Mechanism. Gaussian Mechanism (GM) [41], which
adds noise sampled from Gaussian distribution, has widely been
used to achieve (𝛼, 𝜀)-RDP. Specifically, Let 𝑓 be a vector-valued
function of the input data. The Gaussian Mechanism adds i.i.d.
Gaussian noise with scale 𝜎Δ𝑓 to each entry of 𝑓 .

A(𝐷) = 𝑓 (𝐷) + 𝜎Δ𝑓N (0, I) , (3)

whereN refers to Gaussian distribution. The RDP guarantee of GM
is given by the Theorem 5.

Theorem 5. The Gaussian Mechanism defined above satisfies(
𝛼, 𝛼

2𝜎2

)
-RDP.

Exponential Mechanism. Let 𝑞𝑟 be a score function for all 𝑟 ∈ R.
Then the exponential mechanism (EM) [36, 39] outputs a candidate
𝑟 according to the following distribution:

Pr[A(𝐷) = 𝑟 ] ∝ exp
( 𝜖
2Δ · 𝑞𝑟 (𝐷)

)
, (4)

where Δ = max𝑟 ∈R Δ(𝑞𝑟 ). The RDP guarantee of EM is provided
by Theorem 6

Theorem 6. The Exponential Mechanism defined above satisfies(
𝛼, 𝛼𝜖

2
8

)
-RDP for ∀𝛼 > 1.

Gumbel Noise. Reporting noise max with Gumbel noise is a deriva-
tive mechanism from the exponential mechanism used for marginal
query selection by some previous work [62, 63]. Specifically, it
outputs 𝑖∗ = argmax𝑖∈[𝑚] {|𝑞𝑖 (𝐷) − 𝑎𝑖 | + 𝑍𝑖 }, where 𝑞𝑖 is the mar-
ginal query function defined in [62, 63]; 𝑎𝑖 is the query answer and
𝑍𝑖 ∼ Gumbel(1/𝑛√2𝜌). This mechanism has been proven to satisfy
(𝛼, 𝛼𝜌)-RDP for ∀𝛼 > 1.
DP-SGD. Differential private stochastic gradient descent (DP-SGD)
is the most popular way to train the model to satisfy DP. In the
training process, we assume that L is the loss function, and we

have a clipping function defined by Clip𝐶 (𝑔) = min
{
1, 𝐶
∥𝑔∥2

}
𝑔 and

a Gaussian noise level 𝜎 [42]. The DP-SGD can be expressed as

𝜃 ← 𝜃 − 𝜂
(
1
|𝑏 |

∑︁
𝑖∈𝑏

Clip𝐶 (∇L(𝜃, 𝑥𝑖 )) +𝐶N(0, 𝜎2I)
)

Here 𝜂 is the learning rate, ∇L(𝜃, 𝑥𝑖 ) is the gradient of the loss
function L in relation to model parameters 𝜃 and data point 𝑥𝑖 in
sample batch 𝑏. By clipping the gradient, we control the sensitivity
and thus can apply the Gaussian mechanism to guarantee DP.

B DP GUARANTEE OF PREPROCESSING
ALGORITHMS

B.1 PrivTree Binning
The privacy guarantee is given by the following lemma.

Lemma 1. For any 𝛼 > 1, Algorithm 2 satisfy (𝛼, 𝛼𝜌1)-Rényi
differential privacy.

This proof is organized by two steps: firstly we proof that for each
attribute, AlgorithmAlgorithm 2 can achieve a (𝛼, 𝛼𝜌1/𝐾)-Rényi
DP, then by composition theorem, we can draw the conclusion that
AlgorithmAlgorithm 2 can achieve (𝛼, 𝛼𝜌1)-Rényi DP totally.

By the privacy proof of PrivTree in Zhang et al.’s work [68], we
have that if

𝜆′ ≥ 2𝛽 − 1
𝛽 − 1 ·

1
𝜀

and
𝛿 ′ = 𝜆′ · ln 𝛽

single PrivTree algorithm satisfies 𝜀-DP. Replacing 𝜀 and 𝛽 by the
definition in AlgorithmAlgorithm 2, we have that each round of
PrivTree binning satisfies 2𝜌1

|𝑉𝑛 | -DP
Then referring to Bun et al.’s work [6], we have that if a mech-

anism satisfies 𝜀-DP, it also satisfies (𝛼, 12𝜀
2𝛼-RDP. Therefore we

obtain that PrivTree is (𝛼, 𝜌1
|𝑉𝑛 | 𝛼)-RDP. Because we need to conduct

PrivTree binning for |𝑉𝑛 | rounds, by composition theorem of RDP,
we have that AlgorithmAlgorithm 2 satisfies (𝛼, 𝜌1𝛼)-RDP.

B.2 Rare Category Merging
For each attribute that needs preprocessing, we equally divide the
privacy budget and use it to determine those categories whose
frequency is lower than the threshold. These categories will be
replaced by the same encoding category. The privacy guarantee
can be formalized in the following lemma.

Lemma 2. For any 𝛼 > 1, Algorithm 1 satisfies (𝛼, 𝛼𝜌2)-Rényi
differential privacy.

The proof of this lemma can be easily obtained by the property
of the Gaussian mechanism. Referring to Theorem 5, we know that
adding Gaussian noise with 𝜎 =

√︃
1
2𝜌 ′ satisfying (𝛼, 𝛼𝜌

′)-Rényi
differential privacy for any 𝛼 > 1. Then by combining the fact that
𝜌′ = 𝜌2/|𝑉𝑐 | and the composition property of RDP, we have that
the total algorithm satisfies (𝛼, 𝛼𝜌2)-Rényi differential privacy for
any 𝛼 > 1.

15



C MISSING PROOF
In this section, we provide the proof of Theorem 2. Before we prove
this theorem, we give a lemma as follows.

Lemma 3. Assuming that

𝑃1 (𝑧) =
∑︁
𝑥

𝑝 (𝑥)𝑃1 (𝑧 |𝑥) and 𝑃2 (𝑧) =
∑︁
𝑥

𝑝 (𝑥)𝑃2 (𝑧 |𝑥),

we have

DKL (𝑃1 (𝑧) ∥ 𝑃2 (𝑧)) ≤
∑︁
𝑥

𝑝 (𝑥)DKL (𝑃1 (𝑧 |𝑥) ∥ 𝑃2 (𝑧 |𝑥))

Firstly, we have

ln
(
𝑃1 (𝑧)
𝑃2 (𝑧)

)
= ln

(∑
𝑥 𝑝 (𝑥)𝑃1 (𝑧 |𝑥)∑
𝑥 𝑝 (𝑥)𝑃2 (𝑧 |𝑥)

)
.

We already have “log-sum” inequality [10], which can be expressed
as

𝑛∑︁
𝑖=1

𝑥𝑖 log
(
𝑥𝑖

𝑦𝑖

)
≥

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
log

(∑𝑛
𝑖=1 𝑥𝑖∑𝑛
𝑖=1 𝑦𝑖

)
.

Let 𝛼𝑥 (𝑧) = 𝑝 (𝑥 )𝑃1 (𝑧 |𝑥 )
𝑃1 (𝑧 ) , by “log-sum” inequality, we have

ln
(
𝑃1 (𝑧)
𝑃2 (𝑧)

)
≤

∑︁
𝑥

𝛼𝑥 (𝑧) ln
(
𝑝 (𝑥)𝑃1 (𝑧 |𝑥)
𝑝 (𝑥)𝑃2 (𝑧 |𝑥)

)
=

∑︁
𝑥

𝛼𝑥 (𝑧) ln
(
𝑃1 (𝑧 |𝑥)
𝑃2 (𝑧 |𝑥)

)
Taking mathematical expectations, we have

E𝑧∼𝑃1

[
ln

(
𝑃1 (𝑧)
𝑃2 (𝑧)

)]
≤ E𝑧∼𝑃1

[∑︁
𝑥

𝛼𝑥 (𝑧) ln
(
𝑃1 (𝑧 |𝑥)
𝑃2 (𝑧 |𝑥)

)]
Notice that 𝛼𝑥 (𝑧) = 𝑃 (𝑥 |𝑧), we can rewrite the right-hand side of
the above inequality as∑︁

𝑥

E𝑥,𝑧∼𝑝 (𝑥 ),𝑃1 (𝑧 |𝑥 )

[
I(𝑋 = 𝑥) ln

(
𝑃1 (𝑧 |𝑥)
𝑃2 (𝑧 |𝑥)

)]
=
∑︁
𝑥

𝑝 (𝑥)DKL (𝑃1 (𝑧 |𝑥) ∥ 𝑃2 (𝑧 |𝑥))

Combining all above, we have proved that

DKL (𝑃1 (𝑧) ∥ 𝑃2 (𝑧)) ≤
∑︁
𝑥

𝑝 (𝑥)DKL (𝑃1 (𝑧 |𝑥) ∥ 𝑃2 (𝑧 |𝑥)) .

Now we give the proof of Theorem 2. For the left-hand side of
Equation (2), we have

DKL
(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



 Pr[𝐴𝑖 ] Pr[𝐴 𝑗 ]
)
= 𝐼

(
𝐴𝑖 , 𝐴 𝑗

)
, (5)

where 𝐼 refers to mutual information [50]. For the right-hand side
of Equation (2), applying Lemma 3, we have the following property:

DKL
(
Pr[𝐴𝑖 , 𝐴 𝑗 ]



∑︁
𝐴1,· · · ,𝐴𝑘

Pr[𝐴1, · · · , 𝐴𝑘 ] · Pr[𝐴𝑖 |𝐴1, · · · , 𝐴𝑘 ] Pr[𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ])

=DKL
©­«

∑︁
𝐴1,· · · ,𝐴𝑘

Pr[𝐴1, · · · , 𝐴𝑘 ] Pr[𝐴𝑖 , 𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ]







∑︁
𝐴1,· · · ,𝐴𝑘

Pr[𝐴1, · · · , 𝐴𝑘 ] · Pr[𝐴𝑖 |𝐴1, · · · , 𝐴𝑘 ] Pr[𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ]
ª®¬

≤
∑︁

𝐴1,· · · ,𝐴𝑘

Pr[𝐴1, · · · , 𝐴𝑘 ] · DKL
(
Pr[𝐴𝑖 , 𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ]




Pr[𝐴𝑖 |𝐴1, · · · , 𝐴𝑘 ] Pr[𝐴 𝑗 |𝐴1, · · · , 𝐴𝑘 ]

)
=𝐼

(
𝐴𝑖 , 𝐴 𝑗 | 𝐴1, · · · , 𝐴𝑘

)
(6)

where 𝐼 (· | ·) is the conditional mutual information. Then by prop-
erty of mutual information [58], we have

𝐼
(
𝐴𝑖 , 𝐴 𝑗 | 𝐴1, · · · , 𝐴𝑘

)
≤ 𝐼

(
𝐴𝑖 , 𝐴 𝑗

)
. (7)

Combining Equation (5), Equation (6) and Equation (7), we can
prove Theorem 2.

D MISSING EXPERIMENTAL SETTINGS
D.1 Dataset information
ACSincome and ACSemploy [13] are both drawn from 2018 na-
tional census data. The Bank dataset is on the UCI open dataset
website [43], which is related to direct marketing campaigns of a
Portuguese banking institution. Higgs-small [1] dataset was pro-
duced using Monte Carlo simulations, which include different fea-
tures of particles in the accelerator. Loan dataset [2] was derived
from data LendingClub issued through 2007-2014.

We make a summary of these datasets’ basic statistics in Table 5.
In this table, we represent the number of records, number of at-
tributes/numerical attributes/categorical attributes, and attributes’
domain size range of these datasets. All of these datasets have been
processed to ensure that there are no missing values.

Table 5: Summary of investigated datasets.

Name #Records #Attr #Num #Cat Min/Max
Domain

ACSincome (INC) [13] 55320 10 2 8 2∼93
ACSemploy (EMP) [13] 37881 17 1 16 2∼92
Bank (BK) [43] 45211 16 6 10 2∼6024
Higgs-small (HIG) [1] 98049 28 28 1 2∼73715
Loan (LN) [2] 134658 42 25 17 2∼93995

D.2 Hyperparameters for Preprocessing
algorithms

We apply uniform discretization and rare category merging for all
algorithms as the default aligned preprocessing methods. Moreover,
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as shown in Table 5, some attributes only contain a few unique val-
ues, which are simple enough to handle without additional prepro-
cessing. Applying preprocessing to such attributes is unnecessary
and may introduce more errors. Therefore, we preprocess attributes
only when their domain size exceeds 100. By default, the number
of bins is set to 100, the fixed merging threshold 𝜃 to 0.2%, and the
privacy budget proportion allocated to the preprocessing step to
10%.

D.3 Hyperparameters for Full Algorithms
We list the algorithms’ hyperparameters in Section 9.1. From here
on out, unless otherwise specified, INC refers to the ACSincome
dataset; EMP refers to the ACSemploy dataset; BK refers to the
Bank dataset; HIG refers to the Higgs-small dataset; LN refers to
the Loan dataset.

Table 6: PrivSyn Hyperparameters

Hyperparameter INC EMP BK HIG LN

Consistent iteration 501 501 501 501 501
Max update iteration 50 50 50 50 50

Table 7: AIM Hyperparameters

Hyperparameter INC EMP BK HIG LN

Max model size 100 100 100 100 100
Max iteration 1000 1000 1000 1000 1000
Max marginal size 2.5𝑒 + 5 2.5𝑒 + 5 2.5𝑒 + 5 2.5𝑒 + 5 2.5𝑒 + 5

Table 8: Private-GSD Hyperparameters

Hyperparameter INC EMP BK HIG LN

Mutation number 50 50 50 50 50
Crossover number 50 50 50 50 50
Upsample number 1𝑒 + 5 1𝑒 + 5 1𝑒 + 5 1𝑒 + 5 1𝑒 + 5
Genetic iteration 1𝑒 + 6 1𝑒 + 6 1𝑒 + 6 1𝑒 + 6 1𝑒 + 6

Table 9: PrivMRF Hyperparameters

Hyperparameter INC EMP BK HIG LN

Graph construction parameter 𝜃 6 6 6 6 6
Sample size 𝑘 400 400 400 400 400
Estimation iteration 3000 3000 3000 3000 3000
Size penalty 1𝑒 − 8 1𝑒 − 8 1𝑒 − 8 1𝑒 − 8 1𝑒 − 8
Max marginal attributes number 6 6 6 6 6
Max clique size 1𝑒 + 7 1𝑒 + 7 1𝑒 + 7 1𝑒 + 7 1𝑒 + 7

Table 10: GEM Hyperparameters

Hyperparameter INC EMP BK HIG LN

Synthesis size 1024 1024 1024 1024 1024
Learning rate 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3
Max iteration 500 500 500 500 500
Max selection round 50 85 80 140 210

Table 11: RAP++ Hyperparameters

Hyperparameter INC EMP BK HIG LN

Random projection number 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6
Categorical optimization rate 3𝑒 − 3 3𝑒 − 3 3𝑒 − 3 3𝑒 − 3 3𝑒 − 3
Numerical optimization rate 6𝑒 − 3 6𝑒 − 3 6𝑒 − 3 6𝑒 − 3 6𝑒 − 3
Top q 5 5 5 5 5
Categorical optimization step 1 1 1 1 1
Numerical optimization step 3 3 3 3 3
Upsample rate 10 10 20 20 40

Table 12: DP-MERF Hyperparameters

Hyperparameter INC EMP BK HIG LN

Random feature dimension 2𝑒 + 3 2𝑒 + 3 2𝑒 + 3 2𝑒 + 3 2𝑒 + 3
Mini batch rate 5𝑒 − 2 5𝑒 − 2 5𝑒 − 2 5𝑒 − 2 5𝑒 − 2
Epoch number 1𝑒 + 3 1𝑒 + 3 1𝑒 + 3 1𝑒 + 3 1𝑒 + 3
Learning rate 1𝑒 − 2 1𝑒 − 2 1𝑒 − 2 1𝑒 − 2 1𝑒 − 2

Table 13: TabDDPM Hyperparameters

Hyperparameter INC EMP BK HIG LN

Denoiser layer dimension 256 256 256 256 1024
Denoiser layer number 2 2 2 2 2
Epoch number 50 100 100 100 100
Batch size 512 512 512 1024 1024
Learning rate 2𝑒 − 2 1𝑒 − 2 5𝑒 − 3 5𝑒 − 2 5𝑒 − 4
Diffusion steps 100 100 100 1000 100

D.4 Hyperparameters for Different Feature
Selection Algorithms

The PrivMRF and AIM selection algorithms are set to completely
the same as the original work in PrivMRF and AIM, respectively.
Therefore, we omit the description of them here and provide the
detailed hyperparameter setting of RAP++ selection and PrivSyn
selection.

Table 15: RAP++ Selection Hyperparameters

Hyperparameter INC EMP BK HIG LN

Top q 3 3 3 3 3
Selection step 4 6 6 7 10
Selection budget rate 0.5 0.5 0.5 0.5 0.5
Marginal budget rate 0.5 0.5 0.5 0.5 0.5

Table 16: PrivSyn Selection Hyperparameters

Hyperparameter INC EMP BK HIG LN

Selection budget rate 0.1 0.1 0.1 0.1 0.1
1-way marginal budget rate 0.1 0.1 0.1 0.1 0.1
2-way marginal budget rate 0.8 0.8 0.8 0.8 0.8
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Table 14: Supplementary overall results of synthetic data under different methods. ML AUC and ML Accuracy are metrics
obtained by downstream ML tasks. Running time is the total average execution time of the algorithm. Because Loan dataset is
a multi-classification problem, thus it does not have AUC result.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML AUC 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.53 0.50 0.51 0.47 0.47 0.42 0.44 0.52 0.49 0.50 0.50 0.50 - - -
PrivMRF 0.82 0.87 0.87 0.80 0.86 0.89 0.71 0.90 0.92 0.53 0.71 0.70 - - -
RAP++ 0.75 0.82 0.85 0.81 0.84 0.87 0.75 0.85 0.88 0.54 0.56 0.56 - - -
AIM 0.85 0.87 0.87 0.85 0.88 0.88 0.87 0.89 0.91 0.68 0.72 0.74 - - -
Private-GSD 0.85 0.85 0.85 0.78 0.80 0.79 0.68 0.67 0.67 0.52 0.52 0.52 - - -
GEM 0.77 0.73 0.72 0.75 0.77 0.77 0.59 0.68 0.69 0.55 0.57 0.59 - - -
DP-MERF 0.75 0.78 0.79 0.73 0.78 0.74 0.72 0.64 0.65 0.54 0.60 0.60 - - -
TabDDPM 0.54 0.49 0.53 0.56 0.56 0.55 0.48 0.51 0.45 0.51 0.53 0.53 - - -

ML Accuracy 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.59 0.58 0.59 0.52 0.49 0.49 0.88 0.88 0.88 0.53 0.52 0.52 0.54 0.54 0.54
PrivMRF 0.75 0.79 0.79 0.72 0.79 0.81 0.89 0.90 0.90 0.53 0.65 0.64 0.76 0.75 0.76
RAP++ 0.68 0.75 0.78 0.74 0.78 0.80 0.85 0.88 0.89 0.53 0.55 0.55 0.62 0.64 0.65
AIM 0.78 0.79 0.79 0.78 0.80 0.81 0.90 0.90 0.90 0.63 0.65 0.67 0.75 0.75 0.75
Private-GSD 0.77 0.77 0.78 0.71 0.73 0.71 0.87 0.87 0.88 0.51 0.51 0.52 0.54 0.54 0.54
GEM 0.71 0.69 0.66 0.68 0.70 0.69 0.86 0.86 0.87 0.55 0.55 0.56 0.71 0.68 0.72
DP-MERF 0.69 0.70 0.72 0.64 0.71 0.67 0.84 0.79 0.74 0.53 0.58 0.58 0.35 0.37 0.37
TabDDPM 0.57 0.59 0.59 0.55 0.54 0.53 0.88 0.88 0.88 0.50 0.53 0.51 0.55 0.55 0.55

Running Time (min) 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn 0.28 0.16 0.18 0.30 0.25 0.34 0.57 0.53 0.55 5.39 5.95 4.54 13.29 14.04 13.44
PrivMRF 1.26 0.89 1.40 5.59 5.80 4.76 3.06 4.48 3.24 5.06 7.10 6.25 7.12 13.34 12.62
RAP++ 25.86 24.95 25.72 26.28 27.04 28.30 24.40 23.94 23.27 37.79 36.66 35.88 544.25 2348.59 1761.60
AIM 1.96 6.29 126.89 5.37 10.59 443.70 3.60 10.23 23.57 12.62 18.46 184.57 31.03 187.27 645.13
Private-GSD 22.33 24.86 26.17 10.89 11.12 11.11 19.38 20.01 19.99 54.35 57.49 57.93 304.42 306.04 311.63
GEM 0.26 0.10 0.09 0.12 0.12 0.12 0.27 0.25 0.25 6.05 6.09 10.75 9.82 9.47 9.82
DP-MERF 0.40 0.07 0.06 0.30 0.06 0.06 0.09 0.06 0.06 0.09 0.06 0.06 0.39 0.83 0.34
TabDDPM 4.34 4.12 3.73 4.52 4.50 13.31 8.25 4.40 3.87 4.74 6.34 4.78 27.54 31.93 33.34

D.5 Hyperparameters for Different Synthesis
Algorithms

Most synthesis algorithms we used are set to be the same as their
original works, while relaxed projection and generative network
methods need hyperparameter tuning to guarantee performance.

Table 17: Relaxed Projection Hyperparameters

Hyperparameter INC EMP BK HIG LN

Random projection number 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6 2𝑒 + 6
Optimization rate 5𝑒 − 3 5𝑒 − 3 5𝑒 − 3 5𝑒 − 3 5𝑒 − 3
Optimization step 100 170 160 280 420

Table 18: Generative Network Hyperparameters

Hyperparameter INC EMP BK HIG LN

Learning rate 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3 1𝑒 − 3
Synthesis size 1024 1024 1024 1024 1024
Max training iteration 50 50 100 100 1500

E SUPPLEMENTARY EXPERIMENT RESULTS
E.1 More Results of Algorithm Comparison
We have provided some important metric results of algorithm utility
in Section 9.1. Here we list some other detailed evaluations such as

AUC, accuracy for machine learning efficiency and running time for
time efficiency. Notably, these results do not necessarily influence
our conclusion, thus we present them in the appendix.

E.2 Detailed Results of Preprocessing Influence
The detailed results of different preprocessing methods (used to
plot Figure 5) are shown in Table 19. Similar to other experiments,
these metrics are calculated by comparing preprocessed datasets
with test datasets to demonstrate the error caused by preprocessing.

E.3 Detailed Results of Reconstruction
Experiment

The detailed results of different preprocessing methods (used to
plot Figure 7 and Figure 8) are shown in Table 20 andTable 21. Here,
there are some “-” in the table. This is because PrivSyn tends to
select as many marginals as possible, which will form large cliques.
This will cause the size of the graphical model to be too large,
requiring extremely large memory.
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Table 19: Influences of preprocessing on different datasets. By default, the results are obtained under the setting that 𝜀 = 1.0 and
10% of the budget is used for preprocessing.

Preprocessing Method Marginal Size ML Efficiency Query Error Fidelity Error
Bank Higgs-small Loan Bank Higgs-small Loan Bank Higgs-small Loan Bank Higgs-small Loan

Raw 1.05𝑒 + 5 4.24𝑒 + 8 2.88𝑒 + 8 0.76 0.72 0.54 0.001 0.001 0.001 0.003 0.001 0.001
Numerical preprocessing 6.48𝑒 + 2 5.05𝑒 + 3 1.14𝑒 + 6 0.76 0.71 0.53 0.002 0.002 0.003 0.006 0.002 0.003
Categorical Preprocessing 1.05𝑒 + 5 4.24𝑒 + 8 2.31𝑒 + 8 0.76 0.72 0.54 0.001 0.001 0.001 0.003 0.001 0.001
Full Preprocessing 6.48𝑒 + 2 5.05𝑒 + 3 3.14𝑒 + 3 0.76 0.71 0.53 0.002 0.002 0.003 0.006 0.002 0.003

Table 20: Results of synthetic data under different feature selection methods. By default, we use PGM as the synthesis method.
In this table, “-” means unable to execute due to time or memory limitation.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML efficiency 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn selection 0.67 0.65 0.68 0.67 0.80 0.75 − − − − − − − − −
PrivMRF selection 0.73 0.78 0.78 0.81 0.80 0.81 0.62 0.70 0.71 0.50 0.64 0.64 0.52 0.52 0.52
RAP++ selection 0.62 0.74 0.74 0.74 0.78 0.79 0.51 0.51 0.47 0.49 0.49 0.50 0.30 0.26 0.26
AIM selection 0.76 0.78 0.78 0.78 0.80 0.81 0.67 0.71 0.70 0.63 0.65 0.67 0.52 0.52 0.52

Query Error 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn selection 0.003 0.001 0.001 0.003 0.002 0.003 − − − − − − − − −
PrivMRF selection 0.002 0.001 0.001 0.003 0.002 0.002 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.005 0.004
RAP++ selection 0.006 0.003 0.002 0.008 0.005 0.004 0.012 0.005 0.003 0.047 0.016 0.006 0.015 0.009 0.008
AIM selection 0.002 0.001 0.001 0.003 0.002 0.001 0.007 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.004

Fidelity Error 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
PrivSyn selection 0.14 0.08 0.07 0.07 0.04 0.04 − − − − − − − − −
PrivMRF selection 0.11 0.07 0.05 0.07 0.04 0.03 0.13 0.06 0.04 0.36 0.19 0.19 0.31 0.24 0.23
RAP++ selection 0.17 0.09 0.08 0.04 0.04 0.04 0.14 0.09 0.08 0.42 0.23 0.17 0.32 0.26 0.25
AIM selection 0.09 0.06 0.05 0.05 0.03 0.02 0.11 0.09 0.06 0.21 0.16 0.16 0.35 0.32 0.29

Table 21: Results of synthetic data under different synthesis methods. By default, we use PrivSyn’s InDif selection as the
selection method. In this table, “-” means unable to execute due to time or memory limitation.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML efficiency 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
GUM 0.39 0.40 0.42 0.45 0.45 0.40 0.47 0.47 0.47 0.40 0.43 0.43 0.25 0.26 0.26
PGM 0.76 0.64 0.67 0.68 0.80 0.75 − − − − − − − − −
Relaxed Projection 0.39 0.59 0.58 0.51 0.69 0.67 0.47 0.47 0.47 0.47 0.44 0.42 0.25 0.25 0.25
Genetic Algorithm 0.67 0.63 0.58 0.62 0.58 0.62 0.61 0.57 0.52 0.59 0.58 0.62 0.35 0.36 0.26
Generative Network 0.74 0.77 0.76 0.72 0.70 0.69 0.66 0.63 0.62 0.63 0.53 0.59 0.46 0.41 0.36

Query Error 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
GUM 0.003 0.002 0.002 0.006 0.004 0.004 0.007 0.004 0.003 0.009 0.004 0.003 0.006 0.005 0.004
PGM 0.003 0.001 0.001 0.003 0.002 0.003 − − − − − − − − −
Relaxed Projection 0.040 0.028 0.023 0.081 0.025 0.022 0.047 0.013 0.014 0.026 0.013 0.012 0.020 0.009 0.008
Genetic Algorithm 0.053 0.047 0.050 0.039 0.040 0.036 0.009 0.005 0.003 0.027 0.018 0.016 0.039 0.037 0.039
Generative Network 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004

Fidelity Error 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5 𝜀 = 0.2 𝜀 = 1 𝜀 = 5
GUM 0.15 0.12 0.12 0.12 0.09 0.09 0.24 0.10 0.21 0.29 0.20 0.20 0.34 0.35 0.36
PGM 0.13 0.08 0.07 0.07 0.04 0.04 − − − − − − − − −
Relaxed Projection 0.61 0.52 0.41 0.51 0.26 0.21 0.41 0.16 0.16 0.31 0.22 0.21 0.41 0.29 0.28
Genetic Algorithm 0.59 0.59 0.56 0.30 0.30 0.30 0.13 0.09 0.08 0.35 0.28 0.27 0.56 0.55 0.55
Generative Network 0.08 0.08 0.08 0.06 0.07 0.06 0.16 0.16 0.15 0.24 0.23 0.23 0.47 0.38 0.27
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