
Access control for Data Spaces
Nikos Fotiou,∗ Vasilios A. Siris,∗† George C. Polyzos∗†‡

∗ ExcID P.C., 11362 Athens, Greece
† Department of Informatics, School of Information Sciences and Technology,

Athens University of Economics and Business, 10434 Athens, Greece
‡ School of Data Science, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, China

Abstract—Data spaces represent an emerging paradigm that
facilitates secure and trusted data exchange through foundational
elements of data interoperability, sovereignty, and trust. Within
a data space, data items, potentially owned by different entities,
can be interconnected. Concurrently, data consumers can execute
advanced data lookup operations and subscribe to data-driven
events. Achieving fine-grained access control without compromis-
ing functionality presents a significant challenge. In this paper,
we design and implement an access control mechanism that
ensures continuous evaluation of access control policies, is data
semantics aware, and supports subscriptions to data events. We
present a construction where access control policies are stored in
a centralized location, which we extend to allow data owners to
maintain their own Policy Administration Points. This extension
builds upon W3C Verifiable Credentials.

Index Terms—Interoperability, Verifiable Credentials, sub-
scriptions, semantics, decentralization, sovereignty, NGSI-LD

I. INTRODUCTION

Data spaces are emerging as a new form of digital platform
aiming at eliminating silos and enabling data-driven inno-
vations and shape the digital transformation [1]. A growing
number of reports by commercial entities and governmental
bodies highlight the business potential and the possible societal
impact that can be achieved by embracing data spaces (see for
example [2]). A data space is composed of building blocks
that enable semantic interoperability of data, uniform data
access methods, as well as increased data sovereignty and
trust. Nevertheless, data usage policies and access control still
remain a challenge for data spaces [3], [4]. Data owners do not
want to lose control and sovereignty over their data; data users
want to safeguard against low-quality or malicious data [5].

We use a data space for exchanging data generated by IoT
devices as a motivating use case. This data space consists of
IoT device owners who wish to share data generated by their
devices, acting as data suppliers, data consumers who seek to
access the provided data through a client application, and data
intermediaries that offer a data context broker that implements
the corresponding data management and access APIs.

A context broker maintains digital objects, which in our
use case are digital twins of the corresponding IoT devices.
Each such object is uniquely identifiable and serialized using
JSON for Linked Data (JSON-LD) [6]. An object has a type
and attributes. Accordingly, a type can be associated with
many objects and an object may have multiple attributes. For

example, a data space may include objects of type smart lamp,
with identities such as lamp1 and lamp2, and attributes such
as consumption, status, and color.

A context broker implements the ETSI standard Next Gen-
eration Service Interfaces Linked Data (NGSI-LD) API [7],
which allows HTTP-based operations to digital objects stored
in the broker, as well as subscriptions to events related to these
objects. This API simultaneously allows fine-grained data
access, e.g., a consumer may request only specific attributes of
an object, as well as coarse-grained access, e.g., a consumer
may request attributes of all objects of a specific type.

A. Access control

A context broker should be protected by an access control
mechanism that allows access to stored data only by authorized
data consumers. An access control solution should achieve:

• Attack surface reduction: An access control solution
should strive to minimize potential security threats. The
amount of security-sensitive information managed by data
consumers should be minimal. Similarly, access verifica-
tion should be simple and not prone to errors.

• Usage control: Access rights of a consumer should be
re-evaluated, even after a consumer has been initially au-
thorized by a data intermediary. For example, a consumer
that has successfully subscribed to receive notifications
about an object should stop receiving new notifications if
its corresponding access rights are revoked.

• Enhanced privacy: An access control solution should
prevent tracking of data consumers not only by third
parties, but also by participants of the data space (e.g.,
by data intermediaries and owners).

• Availability: An access control solution should not de-
pend on (Internet) connectivity, instead it should function
correctly even if some of its components are unreachable.

B. Contributions

In this paper, we present the design and evaluation of an
access control solution tailored to data spaces, making the
following key contributions: (i) we introduce access control
policies that are aware of data semantics (e.g., a consumer
can be authorized to access all objects of a certain type);
(ii) we enable continuous monitoring and re-evaluation of
consumer access rights, supporting long-term operations such

ar
X

iv
:2

50
4.

13
76

7v
1

 [
cs

.C
R

]
 1

8
A

pr
 2

02
5

as event subscriptions; (iii) we facilitate distributed deploy-
ments, allowing each data owner to maintain their own Policy
Administration Point, thereby enhancing owner sovereignty.

In the remainder of this paper, we detail our design in
Section II, present its implementation and evaluation in Section
III, and our conclusions and future work in Section IV.

II. DESIGN

A. Underlay Data Space

In the considered data space, data owners create new objects
and assign policies specifying the operations a data consumer
can perform on an object. Objects and types are uniquely
identified using a URL denoted by URLobject and URLtype,
respectively. Similarly, object attributes are identified by a
URLattr, which has the form URLobject/attributename.
Consumers are also identified by an identifier denoted by
ConsumerId. Consumers can request access to all objects of
a certain type, or to specific objects. Additionally, consumers
can provide filters specifying which attributes they wish to
access. Consumers can perform read, write, and subscription
operations over stored objects using the ETSI NGSI-LD API
and the corresponding endpoint of the context broker.

Broker

Idp

PDP PIP

PAP

PEP

Client
application

Intermediary

3

2

1

4

4

5

6

7

Owner

Fig. 1. High level overview of the authorization process.

B. Components and interactions

Our access control solution is composed of the following
components:

a) Identity Provider (IdP): A registry of consumer identi-
fiers. This registry is maintained by a party trusted by owners,
intermediaries, and consumers; this can be a Trusted Third
Party or any of these three entities.

b) Policy Administration Point (PAP): A registry where
owners can store access control policies that define the access
rights of each consumer.

c) Policy Enforcement Point (PEP): A transparent HTTP
proxy that intercepts API calls from consumers to the context
broker. If a request originates from a consumer with the

appropriate access rights it is forwarded to the (context) broker,
otherwise it is rejected.

d) Policy Decision Point (PDP): A component that de-
cides whether or not a request originates from an authorized
consumer.

e) Policy Information Point (PIP): A component that
provides supplementary information used by a PDP to make an
access control decision. Specifically, this component provides
details about the attributes and type of an object.

From a high-level perspective, authorization using our so-
lution is implemented as follows (see also Fig. 1). The IdP
is configured with consumer identifiers, e.g., through a client
registration process. Similarly, an owner configures the PAP
with the appropriate access control policies. A consumer
initially, through its client application, identifies itself to the
IdP and receives an identity token (step 1), i.e., a token signed
by the IdP that includes a proof of the consumer’s identifier.
Then it makes an NGSI-LD API call, including the received
token in an HTTP header (step 2). The request is intercepted by
the PEP, which forwards it to the PDP that makes the access
control decision (step 3). The PDP collects the consumer’s
access rights from the PAP and, if necessary, information
related to the requested object from the PIP (step 4). Using
the retrieved information, the PDP makes an access control
decision that it forwards to the PEP (step 5). Finally, if the
consumer is authorized, the PEP forwards the request to the
context broker (step 6) and relays its response back to the
consumer (step 7).

C. Policies and enforcement

Our system implements capabilities-based access control,
where an access control policy specifies the operations (i.e.,
Read, Write, Subscribe) that a consumer can perform on
specific object types, and/or on specific objects, and/or on
specific object attributes. For example, a consumer can be
allowed to Read all objects of type “smart lamp”, and
Write the attribute “energy consumption” of the objects with
identifiers “smart lamp1” and “smart lamp2”. More for-
mally, we define an access control policy p as the tuple
[Consumerid, operation, URL], where operation can be
Read, Write, or Subscribe, and URL can be a URLtype or
URLobject or URLattr. We define an access control decision
as the following function:

Decide(Consumerid, operation, URL) → {true, false}

In order to enable access control decisions we define the
URLA ⊇ URLB operation which outputs true if one of the
following conditions hold:

• URLA = URLB

• URLA is a URLtype and URLB a URLobject of an
object of type URLA

• URLA is a URLtype and URLB a URLattr of an
attribute of an object of type URLA

• URLA is a URLobject and URLB a URLattr of an
attribute of object URLA

The access control decision is implemented using Algo-
rithm 1. Its semantics denote that if a consumer is authorized
to perform an operation on a type, it can perform the same
operation on all objects of this type and their attributes.
Similarly, if a consumer is authorized to perform an operation
on an object, it is authorized to perform the same operation
on all its attributes.

Algorithm 1 Access control decision algorithm
Let P the set of all policies
procedure DECIDE(Consumerid, operation, URL)

for all p ∈ P do
if p[Consumerid] = Consumerid AND

p[operation] = operation AND
p[URL] ⊇ URL then
return true

end if
end for
return false

end procedure

In many cases, for the PDP to make an access control
decision the type of the requested object must be known:
this type inference functionality is provided by the PIP . For
example, assume that consumer C has received authorization
for the Read operation on object type T (e.g., authorization
to Read all objects of type “smart lamp”). C makes a Read
request for attribute A of object O1 (e.g., a request to Read
the “status” of “smart lamp 1”). For the PDP to make an
access control decision it needs to infer the type of O1. This is
achieved using the PIP, which communicates with the context
broker and obtains the type of O1 using the corresponding
NGSI-LD API call. Then, the PDP uses this information to
make a decision, i.e., if O1 is of type T the request is accepted.

Finally, our solution provides Automatic un-subscription.
Specifically, the PDP maintains a list of active subscriptions
and automatically un-subscribes (invoking an API call) con-
sumers that are no longer authorized to receive notifications
(e.g., the access rights have expired or were revoked).

D. Distributed PAPs

We now present an extension allowing PAPs to be managed
by the corresponding owners and provides increased security
and improved sovereignty for data owners. We leverage W3C
Verifiable Credentials (VCs) to enable intermediary’s access
control components to learn the capabilities of a consumer.

A VC is a W3C recommendation that allows an issuer
to assert some claims about an entity, referred to as the
VC subject. A VC includes information about the issuer, the
subject, the asserted claims, as well as possible constraints
(e.g., expiration date) [8]. This information is encoded in

a machine readable format (e.g., as a JSON object in our
system). Then, a VC holder (usually, the VC subject itself) can
prove to a verifier that it owns one or more VCs with certain
characteristics. This is achieved by binding VCs to a subject
identifier (e.g., a public key) that can be used for generating a
Verifiable Presentation (VP) of the VC(s). A VP is an object
(a JSON object in our system) that includes one or more VCs
and it is signed in a way that can be verified using the subject
identifier (specified in the included VC(s)). VP verification
does not require communication with the issuer.

Owner Intermediary

PAP Data Consumer Idp PEP PDP

Auth Request

Consumer Id

VC

Request

Nonce

Create VP

POST VP

Decide

Validate VP

Decision

Fig. 2. Authorization using Verifiable Credentials.

In our data space solution, a VC can be used as a means for
communicating consumer capabilities (see also Fig. 2). In this
case, a VC is issued by a PAP to a consumer and is serialized
as a JSON object that includes the consumer access rights
and a public key provided by the consumer; this JSON object
is digitally signed by the PAP. VC issuance is implemented
using OpenID for Verifiable Credential Issuance [9]. Using
this protocol a consumer authenticates to the PAP (acting as
the VC issuer) using the IdP and OpenID connect. Then, the
PAP issues the corresponding credential.

Data consumer authorization is implemented using OpenID
for Verifiable Presentation [10] and involves the following
steps: First, a consumer sends an unauthorized request and
receives a nonce. Then, the consumer creates and submits a
Verifiable Presentation (VP). The VP includes a valid VC, the
received nonce, and the HTTP URL of the intermediary, and is
signed using the private key of the consumer identifier. Then,
the PDP endpoint performs the following validations:

• It verifies that the VC has been issued by a trusted PAP.

• It verifies the correctness and the validity of the VC by
validating its digital signature, its issuance and expiration
time, and by querying for its revocation status (see the
following section.)

• It validates the VP proof using the consumer’s public key
included in the VC, and verifies that it includes a valid
nonce and intermediary URL.

E. Usage control

Consumer capabilities are serialized using VCs that include
an expiration time. Capabilities can be cached by the PEP
up until their expiration time for two reasons: (i) to avoid
consumer re-authorization, and (ii) to enable access control
on subscriptions. However, while they are cached, capabilities
may be revoked, thus a PDP needs to be able to verify their
validity periodically, which is challenging when PAPs are dis-
tributed. For this reason our solution supports VC revocation.
Specifically, we rely on a recent W3C draft [11] that defines an
efficient revocation mechanism. To support revocation a PAP
maintains a revocation list that covers all non-expired VCs
that it has issued. This list is a simple bit string and each VC
is associated with a position in the list. Consequently, each
VC includes a property named credentialStatus that specifies
the position of that VC in the revocation list, as well as a
URL that can be used for retrieving the revocation list. A
VC is simply revoked by setting the corresponding bit in the
revocation list to 1. Since the list includes only non-expired
VCs, its size is tolerable for most use cases. Similarly, since
this list is expected to include many 0s and few 1s it can
be efficiently compressed. A revocation list is included in a
VC, issued by the PAP, which is periodically downloaded
by the PDP. Nevertheless, since a revocation list covers all
non-expired VCs issued by the PAP, the frequency at which
a PDP downloads this list does not depend on the number
of stored capabilities. On the other hand, this approach does
not allow capability updates, neither fine-grained capabilities-
management: once a VC is revoked, all consumer capabilities
stored by the PDP are removed.

III. IMPLEMENTATION

We implemented a prototype of our data space for sharing
smart building IoT device data. Data are stored in the back-
ends of two companies (acting as the data suppliers). They
are serialized using JSON-LD and stored in a context broker
implemented using FIWARE Orion [12].

As an IdP we used keycloack.1 A PAP has also been
implemented following the iSHARE trust framework2. Using
this framework, owners can specify access control policies
that define the access rights of each data consumer using
the iSHARE policy definition language,3 which is inspired

1https://www.keycloak.org/
2https://ishare.eu/
3https://dev.ishare.eu/delegation/policy-sets.html

by XACML. A policy defines the operations that a consumer
can perform over a set of object types, and/or a set of object
identifiers, and/or a set of object attributes. The corresponding
PDP and PIP have been implemented as custom applications.
Finally, for the PEP we rely on Ory Oathkeeper.4

A. Security evaluation
We now evaluate the security properties of our solution

focusing on the distributed version by revisiting the security
requirements defined in Section 1. Our solution makes the
following security assumptions. The communication of all
entities in our system takes place over secure communication
channels; similarly, all cryptographic operations are secure.
Furthermore, it is assumed that IdPs and PAPs are trusted, as
well as legitimate intermediaries operate as expected. Finally,
it is assumed that all secrets are properly secured.

1) Attack surface reduction: The W3C VC data model
is a W3C recommendation, for which there are not many
implementations available. In our VC-based approach, a data
consumer needs to protect a secret used for authenticating to
the IdP, as well as the private key used for signing VPs. Since
a VC is received from a data consumer (and not from the PAP
directly), a PDP needs to verify its integrity by validating its
signature, which has been generated by the PAP.

Our threat model considers malicious entities trying to gain
unauthorized access to a data space. These entities operate
as (malicious) intermediaries and their goal is to gain access
to a data space provided by another (legitimate) intermediary.
More formally, let Auth(C, I, o) → true if consumer C is
authorized to access an object o in a data space provided by
intermediary I . Additionally, let Ileg , Imal, C1, and o1 be a
legitimate intermediary, a malicious intermediary, a consumer,
and an object respectively. Supposedly,

Auth(C, Ileg, o) → true Auth(C, Imal, o) → true

The goal of Imal is to achieve Auth(Imal, Ileg, o) → true.
Due to the second assumption, Imal has access to a VP
generated by C. In order to achieve its goals it should be able
to use them in a request towards Ileg . However, a VP includes
the URL of Imal and since Imal cannot modify them, they
will be rejected by Ileg.

2) Usage Control: Usage control is implemented using
revocation lists. In this case some overhead is introduced.

a) Initial authorization overhead: VC issuance and au-
thorization using a VP are asynchronous processes, therefore
the PDP must verify the revocation status of a VC immediately
after a VP has been received. This introduces additional delay
the first time a consumer tries to interact with the data space.

b) Authorization modification overhead: In case the ca-
pabilities of a consumer are modified, old consumer capabili-
ties should be revoked in order for the PDP to request a new
VC from the consumer. Alternatively, a consumer can pro-
actively “refresh” its VCs; this is left as future work.

4https://www.ory.sh/oathkeeper/

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Si
ze

 in
 K

b

Percentage of revoked VCs

Fig. 3. Size of a VC revocation list with 1M VCs, as a function of the
percentage of the revoked VCs.

c) Communication overhead: The communication over-
head imposed to a PDP due to the usage control mechanisms
of our solution depends on the number of PAPs that have
issued the VCs included in the stored VPs. Particularly, if
a PDP has stored the capabilities of |C| consumers whose
authorizations are provided by |P | PAPs, the PDP has to send
|P | requests. Additionally, the size of the PAP response (i.e.,
the revocation list) depends on the number of VCs the PAP
has issued (in general) and the percentage of the revoked VCs.
Fig. 3 illustrates the size of a VC revocation list, provided
by a single PAP, that includes 106 VCs, as a function of the
percentage of the revoked VCs. The figure shows that, because
the list is compressed, a smaller number of revoked VCs yields
a smaller list size.

3) Privacy: A consumer has to communicate only once
with the PAP in order to obtain a VC; in all subsequent
requests the PAP is not involved. Even during VC revocation
status verification, a PAP cannot distinguish which specific
VC a revocation status check concerns, since the revocation
list includes information about all non-expired VCs.

4) Availability: Our VC-based approach does not require
any communication with the PAP during consumer authoriza-
tion. Although the PDP needs access to the revocation list,
this does not have to be provided directly by the PAP. Since
the revocation list is included in a VC signed by the PAP, it
can be provided by other entities or even the consumer. In that
case, the PDP should verify that the list is “adequately fresh”
and that it has been signed by the appropriate PAP.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an access control solution tai-
lored for Data Spaces. Our approach is Data Space API-aware
and considers data semantics, enabling fine-grained policies.
Furthermore, our Policy Enforcement Points are implemented
as transparent HTTP proxies, making the protected resources
oblivious to the access control mechanisms in place. This
design ensures our solution can protect any Data Space system.
We also presented a distributed approach that allows data

owners to manage Policy Administration Points, enhancing
security and increasing data owner sovereignty.

Our solution leverages iSHARE’s authorization model to
implement capabilities-based access control. Future work will
explore other access control paradigms, such as relation-based
access control, and will integrate additional frameworks like
the Open Policy Agent. We aim to extend our PEPs to apply
access control policies to outgoing data, such as filtering
based on user capabilities. Furthermore, our solution currently
uses public keys to bind tokens and verifiable credentials to
consumers; future research will investigate alternative identifi-
cation methods, such as Decentralized Identifiers [13]. Finally,
we plan to enhance our solution to provide trustless PEPs by
encrypting data with keys bound to access control policies,
such as Attribute-Based Access Control (ABAC).

ACKNOWLEDGMENT

This work has been funded in part by EU’s Horizon 2020
Programme, through the subgrant “A real-time AI-enabled
worker safety preservation system” (MILESTONE) of project
Trialsnet, under grant agreement No. 10109587.

REFERENCES

[1] D. Beverungen, T. Hess, A. Köster, and C. Lehrer, “From private
digital platforms to public data spaces: implications for the digital
transformation,” Electronic Markets, vol. 32, no. 2, pp. 493–501, 2022.

[2] S. Scerri, T. Tuikka, I. L. de Vallejo, and E. Curry, “Common euro-
pean data spaces: Challenges and opportunities,” Data Spaces: Design,
Deployment and Future Directions, pp. 337–357, 2022.

[3] J. Gelhaar and B. Otto, “Challenges in the emergence of data ecosys-
tems,” in Proc. PACIS, 2020.

[4] K. Schmidt, G. Munilla Garrido, A. Mühle, and C. Meinel, “Mitigating
sovereign data exchange challenges: A mapping to apply privacy- and
authenticity-enhancing technologies,” in Trust, Privacy and Security in
Digital Business, 2022.

[5] M. de Reuver, H. Ofe, W. Agahari, A. E. Abbas, and A. Zuiderwijk,
“The openness of data platforms: A research agenda,” in Proc. 1st Intl.
Workshop on Data Economy, 2022.

[6] M. Sporny et al., “JSON-LD 1.1, A JSON-based Serialization for Linked
Data,” W3C Recommendation, 2020.

[7] Context Information Management (CIM) ETSI ISG, “NGSI-LD API,”
ETSI, Group Specification CIM-009v161, 2022.

[8] M. Sporny et al., “Verifiable credentials data model v1.1,” W3C
Recommendation, 2022. [Online]. Available: https://www.w3.org/TR/
verifiable-claims-data-model/

[9] T. Lodderstedt, K. Yasuda, and T. Looker, “OpenID for Verifiable
Credential Issuance,” OpenID Connect WG, Internet draft, 2023, https:
//openid.net/specs/openid-4-verifiable-credential-issuance-1 0.

[10] O. Terbu, T. Lodderstedt, K. Yasuda, and T. Looker, “OpenID for Verifi-
able Presentations - draft 18,” OpenID Connect WG, Internet draft, 2023,
https://openid.net/specs/openid-4-verifiable-presentations-1 0.html.

[11] M. Sporny et al., “Verifiable credentials status list v2021,” W3C Draft
Community Group Report, 2023, https://www.w3.org/TR/vc-status-list/.

[12] U. Ahle and J. J. Hierro, “FIWARE for data spaces,” Designing Data
Spaces, 2022.

[13] W3C Credentials Community Group. (2020) A Primer for Decentralized
Identifiers. [Online]. Available: https://w3c-ccg.github.io/did-primer/

https://www.w3.org/TR/verifiable-claims-data-model/
https://www.w3.org/TR/verifiable-claims-data-model/
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://www.w3.org/TR/vc-status-list/
https://w3c-ccg.github.io/did-primer/

	Introduction
	Access control
	Contributions

	Design
	Underlay Data Space
	Components and interactions
	Policies and enforcement
	Distributed PAPs
	Usage control

	Implementation
	Security evaluation
	Attack surface reduction
	Usage Control
	Privacy
	Availability

	Conclusions and Future Work
	References

