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Abstract. The security of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) depends on the uniqueness and secrecy of the nonce,
which is used in each signature. While it is well understood that nonce k

reuse across two distinct messages can leak the private key, we show that
even if a distinct value is used for k2, where an affine relationship exists
in the form of: km = a · kn + b, we can also recover the private key. Our
method requires only two signatures (even over the same message) and
relies purely on algebra, with no need for lattice reduction or brute-force
search(if the relationship, or offset, is known). To our knowledge, this
is the first closed-form derivation of the ECDSA private key from only
two signatures over the same message, under a known affine relationship
between nonces.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) method has been
around for over two decades and was first proposed in [1]. It is a widely used
cryptographic method for generating digital signatures. It plays a crucial role in
ensuring the authenticity, integrity, and non-repudiation of digital messages or
transactions. Based on elliptic curve cryptography (ECC), ECDSA offers strong
security with relatively small key sizes, making it more efficient than traditional
algorithms like RSA in terms of speed and resource usage.

ECDSA is popularly used in a variety of modern digital systems where se-
curity and efficiency are critical. In the world of cryptocurrencies, it is used
to secure Bitcoin and Ethereum transactions by allowing users to sign trans-
actions with their private keys, proving ownership without revealing sensitive
information. ECDSA is also used in secure communication protocols such as
TLS (Transport Layer Security), which underpins HTTPS and ensures safe web
browsing by verifying the authenticity of websites. Additionally, it is employed
in secure email systems through standards like S/MIME, passkey authentica-
tion protocols such as FIDO2, and in mobile authentication, particularly within
modern smartphones and IoT devices, where its lightweight nature is ideal for
constrained environments.

ECDSA was standardised by the National Institute of Standards and Tech-
nology (NIST) in 2000 and has since remained a widely used digital signature
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scheme. Alongside, RSA (Rivest, Shamir, Adleman) and EdDSA (Edwards-
Curve Digital Signature Algorithm), ECDSA is standardised in FIPS 186-5 [2].
However, it poses several challenges for inexperienced implementers, most no-
tably the risk of nonce reuse attacks, which can compromise the security of the
private key if not properly mitigated.

In this paper, we begin with an overview of the mathematics behind ECC and
ECDSA. We then proceed to outline a novel method for private key recovery,
where only two signatures are needed(even over the same message) when we
know there was an affine relationship between any two or more nonces used
during independent signatures.

2 Background

This section outlines some of the core theory related to elliptic curves.

2.1 Finite integer fields and modular arithmetic

Elliptic curve cryptography takes place over a finite integer field (also called a
Galois field) of prime order. Given a prime number p, we take the set of all
integers from 0 to p − 1, and use addition and multiplication modulo p for our
calculations. In mathematics, this is denoted by Fp.

Modular multiplication and addition are associative, distributive, and com-
mutative. This is extremely helpful for developers because it means that, pro-
vided your programming language implements arithmetic in a manner that sup-
ports large enough numbers, you can apply the modulo operations at any con-
venient point (provided you also remember to apply them at the end of your
calculations).

Associativity

(a mod p+ b mod p) mod p = (a+ b) mod p

(a mod p · b mod p) mod p = (a · b) mod p

Commutativity

a mod p+ b mod p = b mod p+ a mod p

a mod p · b mod p = b mod p · a mod p

Distributivity

(a mod p+ b mod p) · c mod p = (a · c+ b · c) mod p

c mod p · (a mod p+ b mod p) = (c · a+ c · b) mod p

In the text that follows, it should be understood that the numbers we are
working with are all integers in the range {0, ..., p−1}, and all operations are con-
ducted modulo the order of the finite field over which mathematical operations
take place.
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2.2 Elliptic curves

Elliptic curves are the subject of a wide and complicated branch of mathematics,
finding uses in all sorts of unexpected areas, such as Andrew Wiles’s proof of
Fermat’s Last Theorem and, importantly, cryptography. The Elliptic Curve’s
application to cryptography was first proposed in the mid-1980s by Neal Koblitz
and Victor Miller [3] [4]

Fortunately, implementing ECC doesn’t require a developer to select optimal
curves and parameters from scratch themselves. Standards have emerged which
recognise certain elliptic curves with carefully vetted cryptographic properties,
which are then used in publicly available software libraries. A list of well-tested
elliptic curves and their commonly used parameters can be found at [5]. For
example, Bitcoin and Ethereum use an elliptic curve identified as secp256k1,
and FIDO2 uses secp256r1.

An elliptic curve is the set of solutions (x, y) to an equation of the form:

y2 = x3 + ax+ b (1)

For ECC, we require a definition of scalar multiplication of a point on the
curve.

Given two points P and Q on the curve, adding P to Q produces a new point
R, also on the curve, using the following definition:

Let P = (x1, y1), Q = (x2, y2), and R = P ⊕Q = (x3, y3)

Operation Formula (mod p)

P 6= Q m = y2−y1

x2−x1

P = Q m =
3x2

1
+a

2y1

Resulting Point x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1

This allows us to define the scalar multiplication × of a point P by a scalar
value n:

n · P = P ⊕ P ⊕ · · · ⊕ P
︸ ︷︷ ︸

n times

(2)

In cryptographic libraries, scalar multiplication of curve points is imple-
mented using techniques to improve performance, such as with the Montgomery
Ladder method [6]. We need to make sure the multiplication is performed se-
curely and constantly timed to prevent side-channel attacks that could reveal
information about the values of the operation, such as for constant time com-
putation [7]. As we will be using private keys in the scalar multiplication of a
specific curve point called the Generator Point, this is important.

The Generator PointG is a point on the elliptic curve (an x and y coordinate)
which is chosen as the starting point for the point addition. This Generator
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Point is consistent for any given Elliptic Curve; that is, anyone using the same
curve(such as secp256k1, secp256r1, and so on) will also use the same Generator
point, as these are part of the standard.

Scalar multiplication on elliptic curves is what provides the cryptographic
hardness behind ECC. Given a private key scalar priv and the generator point
G, we can compute the public key as:

pub = priv ·G (3)

This operation is straightforward to perform using repeated point addition, as
we described earlier. However, if we wanted to reverse this(to go back to the
private key), that is, given G and pub, attempting to recover priv is known as
the Elliptic Curve Discrete Logarithm Problem (ECDLP), which is considered
computationally infeasible for sufficiently large fields and secure curves.

Unlike multiplication over integers, scalar multiplication on an elliptic curve
does not have a simple inverse operation. There is no efficient algorithm known
that can derive priv from pub = priv · G without performing a brute-force
search. This ”one-way” nature is what makes ECC secure because you can safely
share your public key without revealing your private key, even though they are
mathematically linked.

2.3 Digital signing

To produce an ECDSA signature, we sign a message M using a private key priv

and a randomly generated value k, called a nonce. The value priv is randomly
selected from the underlying set of Fp and kept secret, but is reused. For every
signature, a new value of k is also randomly selected from the set but is never
reused, for reasons that will become apparent.

We prove the signature with the public key pub derived from the private key
priv using the one-way function shown below.

pub = priv ×G (4)

Thus, the public key is a pair of numbers, as it is a point on the elliptic curve.
As the elliptic curve is symmetric about the x-axis, to store the public key value,
we only need to store the x value of the key and the sign of the y value. We can
then compute the y value from the elliptic curve equation using x and the sign
when needed.

Equation 4 is a one-way function, also called a trapdoor function. It turns out
that calculating pub from priv and G is relatively simple, but reversing the func-
tion and deriving priv from pub is infeasible with currently known techniques.
This is what allows us to keep the private key secret while revealing the public
key.

Each time we sign a new message, a new random nonce value must be used,
producing a different (but verifiable) signature. Overall, the signer only has to
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reveal the elements of the signature and their public key, and not the nonce
value.

An ECDSA signature consists of a pair of numbers, (r, s), which are produced
as follows:

r = k ·G (5)

s = k−1(H(M) + r · priv) (6)

The value r is the x-coordinate of the point k ·G, and H(M) is the SHA-256
hash of the message (M) converted into an integer value.

3 Related work

Many of the pitfalls that exist in ECDSA due to improper nonce handling have
been well documented. [8] provides a comprehensive breakdown of the most sig-
nificant attack vectors. With the revealed nonce attack, an exposure of a
single nonce can lead to direct private key recovery [9]. If the signer accidentally
exposes even a single nonce, an attacker can then directly compute the private
key using algebra. For the fault attack we only require two signatures, and
where one is produced without a fault (r, s), and the other has a fault (rf , sf ).
From these, we can generate the private key [10,11]. For a Weak nonce at-
tack we can simplify the computation to a discrete logarithm problem with the
Lenstra–Lenstra–Lovász (LLL) method [12] [13]. For the nonce reuse attack,
it is well-known that simply keeping the selected nonce secret is not enough to
secure the private key [14]. If a nonce is used to sign a first message to produce
a first signature (s1) and is then reused to sign a second message to produce
a second signature (s2), then s1 and s2 will have the same r value, and it is
possible to derive the private key (priv) from the two signatures.

A related research effort is presented by Macchetti [15], which explores the
case of related nonces, through an unknown algebraic recurrence, potentially of
high degree, such as for linear congruential, quadratic or cubic. The method used
by Macchetti expresses each nonce as a function of the message hash and sig-
nature components, and then recursively eliminates unknown coefficients. The
result is a univariate polynomial of the private key, where the private key is
then recovered as a root of this polynomial. This technique is powerful(and gen-
eral), but requires multiple distinct signatures(typically 4 or more), and symbolic
solving over finite fields.

In contrast, the method we present focuses on the specific case where two
nonces are affinely related with known coefficients, a scenario found in flawed
implementations using counters, or other linearly based PRNGS. Under this as-
sumption, we show that the private key can be derived directly(in closed form)
using only two signatures and pure algebraic manipulation. In our method, there
is no need for symbolic tools, lattice reduction, or brute force search(if the rela-
tion is known).
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Further, Macchetti’s technique assumes that all signatures are over distinct
messages. If the message hashes are identical across signatures, the resulting ex-
pressions will become structurally dependent, causing the recurrence resolution
to fail. Our approach, however, remains valid even when the same message is
signed multiple times, with affinely related nonces. This allows our attack to
apply to a broader set of flawed systems, which include those where repeated
signing of identical payloads occurs.

The focus of this paper is to explore a lesser-known misuse of the nonce value
in ECDSA, a Linear relationships between nonces

4 Affine relationships between nonces

What is less well-known is that even if two distinct values for k are used for
producing two different signatures(even over the same message) with the same
private key, if there is a known affine relationship between the two values, then
the private key can also be extracted.

Consider the situation where Bob generates an initial random value for k,
and subsequent values are produced using a linear equation of the form:

kn+1 = akn + b (7)

For example, if a = 1 and b = 1, Bob is using a simple counter for gener-
ating values of k. Even if the initial nonce is selected randomly, knowing the
relationship, we can retrieve the private key.

Once again, we start with two hashes of two messages, h1 and h2, and two
nonces, k1 and k2 (where k2 = ak1 + b), resulting in two signatures, (r1, s1) and
(r2, s2). Using the ECDSA signature equation:

s = k−1(h+ r · priv) mod n (8)

where we can then rearrange it to express k in terms of known quantities:

k1 =
h1 + r1 · priv

s1
(9)

k2 =
h2 + r2 · priv

s2
(10)

We then substitute the affine relation k2 = ak1 + b into equation (10) :

h2 + r2 · priv

s2
= a ·

h1 + r1 · priv

s1
+ b (11)

Multiply both sides by s2, then expand:

h2 + r2 · priv =
as2

s1
(h1 + r1 · priv) + bs2 (12)
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Move all priv terms to one side:

r2 · priv −
as2r1 · priv

s1
=

as2h1

s1
+ bs2 − h2 (13)

Factor out priv

priv ·

(

r2 −
as2r1

s1

)

=
as2h1

s1
+ bs2 − h2 (14)

Finally, we can solve for the private key:

priv =
as2h1 − h2s1 + bs1s2

r2s1 − ar1s2
mod n (15)

The equation allows for the recovery of the private key using only two signa-
tures, the message hashes and knowledge of the affine relationship of the nonces
used during signing. Importantly, this works even if the messages are identical.

4.1 Brute-forcing nonce relationships

Although software implementations of ECDSA should be made open source to
allow third parties to detect vulnerabilities, in practice, it is not possible to
determine which software package or application was used to generate signatures
when viewing them raw. For example, the Bitcoin blockchain is full of ECDSA
signatures, but we have no way of knowing which blockchain wallet(vendor or
software version) was used for signing.

In the case where a known relationship between nonces is not explicitly
known, an attacker can attempt a brute-force approach by iterating through
candidate values for a and b, testing whether the resulting private key is valid.
This technique is computationally more expensive but still feasible when the
relationship uses small constants or predictable patterns.

5 Conclusionx

The main focus of this paper has been to outline how an affine relationship
between nonces used in two ECDSA signatures can be exploited to derive the
private key. However, we wonder whether this can be extended further, where we
can solve for relationships that can be considered quadratic or in higher order.
(e.g., k2 = k21 + c). We believe that this can form the basis of a further research
paper.

This paper has demonstrated that the security assumptions of ECDSA col-
lapse whenever two distinct nonces are linked by a known affine relation k2 =
ak1 + b. Unlike previous related nonce attacks which require four or more signa-
tures, our derivation shows that only two signatures, even over the same message,
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are sufficient to recover the private key in closed form. The attack relies on noth-
ing more than modular arithmetic and modular inversion, making it suitable for
deployment, once the coefficients a and b are known(or guessed)

Although we focused on first-degree affine relations, the algebraic approach
invites several possible extensions: Exploring quadratic or higher-order corre-
lations, partial-information scenarios where only one coefficient is known, and
hybrid lattice-plus-algebra methods all constitute potential future research. This
work reinforces the need for proper nonce generation in ECDSA (either using
CSPRNG or with RFC 6979).

6 Appendix

6.1 Exploiting a Known Affine Relationship

In this section, we will demonstrate how an adversary can recover the private
key when the nonces used across two signatures are linearly related as:

k2 = a · k1 + b, (16)

and both signatures (r1, s1) and (r2, s2) are available (either for the same
message or different messages), it is possible to derive the private key using only
algebra.

This situation may occur when a flawed implementation uses predictable
nonces, such as those generated via a counter or a simple linear recurrence, even
if the original(initial) nonce was random.

The following code samples illustrate both the generation of such signatures
and the recovery of the private key under the known affine relationship.

Listing 1.1. ECDSA key generation using SECP256k1

from ecdsa import SigningKey, SECP256k1

sk = SigningKey.generate(curve=SECP256k1)

vk = sk.verifying_key

priv = sk.privkey.secret_multiplier

# 33 byte public key

x = vk.pubkey.point.x()

prefix = b’\x02’ if vk.pubkey.point.y() % 2 == 0 else b’\x03’

compressed = prefix + x.to_bytes(32, ’big’)

print(f"PRIVATE_KEY: {priv}")

print(f"PUBLIC_KEY_COMPRESSED: {compressed.hex()}")
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Listing 1.2. Generating two signatures with affinely related nonces

import sys, hashlib

from ecdsa import SECP256k1

# CLI: python sign_with_offset.py <priv> <a> <b>

priv = int(sys.argv[1])

a = int(sys.argv[2])

b = int(sys.argv[3])

# Base nonce k1

k1 = 34346754854893457289357283057230582930523052375835723057

k2 = (a * k1 + b) # General affine relation

curve = SECP256k1

G = curve.generator

n = curve.order

# Messages (can be same or different)

m1 = b"Affinely related nonces are insecure"

m2 = b"Affinely related nonces are insecure"

# Hash the messages

z1 = int.from_bytes(hashlib.sha256(m1).digest(), ’big’) % n

z2 = int.from_bytes(hashlib.sha256(m2).digest(), ’big’) % n

# r values (x-coordinate of k*G)

r1 = (k1 * G).x() % n

r2 = (k2 * G).x() % n

# Signature components

s1 = (pow(k1, -1, n) * (z1 + r1 * priv)) % n

s2 = (pow(k2, -1, n) * (z2 + r2 * priv)) % n

# Output values to feed into recover_key.py

print(f"z1={z1}")

print(f"r1={r1}")

print(f"s1={s1}")

print(f"z2={z2}")

print(f"r2={r2}")

print(f"s2={s2}")

print(f"a={a}")

print(f"b={b}")

Listing 1.3. Recovering the private key from known affine nonce relationship

import sys
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# CLI: python recover_key.py <z1> <r1> <s1> <z2> <r2> <s2> <a> <b>

z1 = int(sys.argv[1])

r1 = int(sys.argv[2])

s1 = int(sys.argv[3])

z2 = int(sys.argv[4])

r2 = int(sys.argv[5])

s2 = int(sys.argv[6])

a = int(sys.argv[7])

b = int(sys.argv[8])

# Curve order for secp256k1

n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

# Equation (7)

numerator = (a * s2 * z1 - s1 * z2 + b * s1 * s2) % n

denominator = (r2 * s1 - a * r1 * s2) % n

priv = (pow(denominator, -1, n) * numerator) % n

print(f"[+] Recovered private key: {priv}")
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