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Abstract
Android applications (apps) integrate reusable and well-tested third-
party libraries (TPLs) to enhance functionality and shorten devel-
opment cycles. However, recent research reveals that TPLs have
become the largest attack surface for Android apps, where the use
of insecure TPLs can compromise both developer and user interests.
To mitigate such threats, researchers have proposed various tools
to detect TPLs used by apps, supporting further security analyses
such as vulnerable TPLs identification.

Although existing tools achieve notable library-level TPL detec-
tion performance in the presence of obfuscation, they struggle with
version-level TPL detection due to a lack of sensitivity to differences
between versions. This limitation results in a high version-level
false positive rate, significantly increasing the manual workload
for security analysts. To resolve this issue, we propose SAD, a TPL
detection tool with high version-level detection performance. SAD
generates a candidate app class list for each TPL class based on
the feature of nodes in class dependency graphs (CDGs). It then
identifies the unique corresponding app class for each TPL class
by performing class matching based on the similarity of their class
summaries. Finally, SAD identifies TPL versions by evaluating the
structural similarity of the sub-graph formed by matched classes
within the CDGs of the TPL and the app. Extensive evaluation on
three datasets demonstrates the effectiveness of SAD and its com-
ponents. SAD achieves F1 scores of 97.64% and 84.82% for library-
level and version-level detection on obfuscated apps, respectively,
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surpassing existing state-of-the-art tools. The version-level false
positives reported by the best tool is 1.61 times that of SAD. We fur-
ther evaluate the degree to which TPLs identified by detection tools
correspond to actual TPL classes. Experimental results show that
SAD achieves a class-level F1 score of 94.12%, 11% higher than the
best tool, demonstrating the reliability of SAD and better supporting
downstream tasks that rely on specific code.

CCS Concepts
• Software and its engineering→ Software libraries and repos-
itories; Software reverse engineering; • Security and privacy→
Software security engineering.
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1 Introduction
Third-party libraries (TPLs) in Android offer a wide range of pre-
implemented functionalities, enabling developers to avoid rein-
venting the wheel [33]. This greatly simplifies the development
process for Android apps and significantly shortens the app de-
velopment and delivery cycle [32]. However, research [26, 29, 37]
indicates that TPLs have become the largest attack surface within
apps, and the integration of numerous TPLs introduces various
security and compliance issues. Specifically, when TPLs contain-
ing vulnerabilities, malicious code, or license conflicts with other
TPLs are integrated into apps, they may harm developers’ interests
and jeopardize user privacy and security. Many studies have been
proposed to evaluate and mitigate these threats. For instance, some
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researchers propose reducing risks posed by TPLs through permis-
sion downgrading [16, 17] or process isolation [29, 44].Wu et al. [38]
employ function summaries to detect flaws in TPLs. Other works
focus on extracting TPLs to identify and analyze malicious behav-
iors [4, 6, 7, 23], analyzing fraudulent activities in ad TPLs [12, 13],
examining privacy leakage issues associated with TPLs [26, 30],
and identifying and analyzing vulnerable TPLs [3, 35].

A prerequisite task for aforementioned works is detecting
TPLs in apps. The TPL detection supports downstream reliable
and effective security and compliance analysis by identifying the
TPLs and their versions used in apps [3, 19, 34, 39, 40, 42]. Due
to the importance of TPL detection, it has become a core tech-
nology in many commercial software composition analysis (SCA)
products [8, 15, 24]. Nevertheless, although existing advanced TPL
detection tools [19, 39, 40, 45] achieve library-level F1 scores ex-
ceeding 95%, their performance in version-level detection, which is
crucial for many downstream tasks, remains suboptimal. This can
be attributed primarily to the following two reasons.R#1: Reliance
on features susceptible to obfuscation. Existing tools rely on
code features that are vulnerable to obfuscation, making it more
challenging to detect TPLs in obfuscated apps. This leads to more
false negatives and degrades detection recall at both the library-
and version-level. R#2: Unable to capture differences across
versions. Existing TPL detection tools independently process each
TPL without capturing the differences between different versions
of TPLs, which leads to scenarios where, at the version-level, dif-
ferent versions are detected as being within the app, particularly
when the differences are minimal, resulting in a significant number
of version-level false positives. Notably, although existing stud-
ies [39, 40] have evaluated the version-level detection performance
of TPL detection tools, we argue that their precision calculation
methods are overly relaxed and fail to effectively reflect a more
realistic version-level detection performance.

In order to address the aforementioned issues, we propose SAD,
which utilizes class structural similairty and summaries of class
functionality for the TPL detection. Specifically, to deal with issue
R#1, SAD first leverages the similarity of node features, integrating
CDG structural information, to construct a candidate app class list
for each TPL class. It then generates class functionality summaries
based on field operations for class matching. Regarding issue R#2,
SAD extracts fine-grained features of different TPL versions, fil-
ters erroneous versions based on the number of high-confidence
matched classes, and conducts cross-version comparisons to iden-
tify subtle differences, ultimately determining the precise version.

Specifically, SAD first extracts class-level features and inter-class
relationships from the input TPL and app to construct CDGs, and
then generates feature for each class node through the operation of
neighbor feature aggregation. Then, SAD generates a candidate app
class list for every TPL class by calculating the similarity between
the feature of nodes in the CDGs of the TPL and app. Subsequently,
SAD performs reliable class matching based on the candidate lists of
TPL classes. SAD categorizes classes into two types: stateful classes
and stateless classes, referring to classes with and without non-static
fields, respectively. Given a pair of classes from the TPL and the app,
SAD requires their types to be consistent, categorizing them into
stateful or stateless pairs. For stateful pairs, SAD establishes corre-
spondences between the methods and fields of TPL and app classes,

then summarizes class functionality by translating lengthy method
code into field operation representations, leveraging intra-class
method invocation sequences. Class matching is then conducted
based on the similarity of these summaries. For stateless pairs, SAD
matches methods using field read/write operations and method
opcodes, and performs class matching based on opcodes match-
ing ratio. Finally, SAD determines the TPL version based on the
structural similarity of the sub-graph formed by the matched nodes
within the CDGs associated with the TPL and the app.

We evaluated the effectiveness of SAD on three datasets com-
posed of 1123 apps, and 562 TPLs. The results show that SAD out-
performs existing tools on obfuscated dataset at both the library-
and version-level [39], achieving F1 scores of 97.64% and 95.35%,
respectively. Particularly, SAD scores 84.82% in version†-level that
we propose, which is 10% higher than the best TPL detection tool.
Overall, our contributions are as follows:

• We propose a version-level TPL detection tool SAD, utilizing class
structural similarity between TPLs and apps for TPL detection.
• We propose a stricter calculation method for version-level false
positives. This adjustment reduces the overestimation of F1 scores
and provides a more realistic measurement of tool effectiveness.
• We evaluate the TPL detection performance of different tools on
three datasets. SAD achieves 97.64% accuracy at the librar-level,
comparable to state-of-the-art tools. For version-level detection,
it achieves the highest F1 score of 84.82% among all tools.

2 Background and Related Work
2.1 Code Obfuscation
Code obfuscation techniques are widely employed to protect app
code from threats such as piracy and reverse engineering. By ap-
plying semantically equivalent transformations, these techniques
make code more difficult to understand and analyze, thereby achiev-
ing the goal of safeguarding apps. However, the widespread use
of obfuscation techniques poses significant challenges to TPL de-
tection task, making external security audits and research more
difficult. As a result, researchers have proposed various methods for
detecting obfuscation to guide further analysis. IREA [20] is a tool
that employs pattern matching and API recognition to statically
detect obfuscations, including identifier renaming, reflection, and
data encryption. Mirzaei et al. [27] introduced AndrODet, which
defines heuristic rules for statically detecting three types of ob-
fuscation: identifier renaming, string encryption, and control flow
obfuscation. Jiang et al. [9] extract control flow graphs (CFGs) and
leverage a hybrid model combining graph convolutional network
and long short-term memory network to detect string encryption,
identifier renaming, and control flow obfuscation at the function
level. In addition to obfuscation detection, some studies have fo-
cused on directly deobfuscating obfuscated apps. DeGuard [5] is a
tool designed to address identifier renaming obfuscation by learn-
ing a probabilistic model from thousands of unobfuscated apps
and applying the model to restore identifier names in obfuscated
apps. Yoo et al. [41] proposed a dynamic code extraction-based
approach to retrieve decrypted strings from apps affected by string
encryption obfuscation.
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Given the limited scope of existing obfuscation detection and
deobfuscation methods, which restrict their ability to serve as pre-
processing steps for TPL detection, an increasing number of TPL
detection tools have been designed to account for the impact of code
obfuscation [19, 39, 40, 42]. Notably, as technology advances, novel
obfuscation techniques continue to emerge [2], making it highly
challenging to develop a tool that is resilient to all obfuscation
techniques. Therefore, we primarily focus on commonly used ob-
fuscation techniques in widely adopted obfuscation tools [1, 14, 28].

2.2 TPL Detection Tools
Existing TPL detection tools can be mainly categorized into two
types based on theirmethodologies [43]: machine learning-based [21,
25], and similarity comparison-based [19, 39, 40, 42, 45]. Tools based
on machine learning can be further categorized into classification-
based and clustering-based tools. Classification-based tools are pri-
marily designed to distinguish between ad TPLs and non-ad TPLs,
but their applicability is limited. Clustering-based tools utilize a
large number of apps as input to extract code features for clustering
purposes, grouping similar TPLs together. The underlying princi-
ple is that popular TPLs are utilized by numerous apps. However,
the limitation of such methods lies in the necessity of acquiring a
substantial number of apps, which consequently restricts detection
to widely used TPLs, thereby neglecting newer or less common
ones. The majority of tools are feature similarity comparison-based,
which do not require a large number of apps. Instead, they neces-
sitate the construction of a feature database for TPLs, extracting
features from the input apps and comparing them with those in the
database to identify TPLs within the apps. This method requires
pairwise comparisons, which is often time-consuming, yet it offers
superior detection performance.

LibScan [39] builds potential class correspondences through fin-
gerprint code features and then detects in-app TPLs using two
fine-grained stages of method opcodes similarity and call chain
opcode similarity, achieving excellent efficiency and effectiveness.
LibHunter [40], building upon the foundation of LibScan, takes into
account the effects of optimizations.It utilizes an enhanced class
signature matching approach to address call site optimizations
for constructing class correspondence relationships. Subsequently,
method matching is performed using the opcodes and strings of the
methods, and method inlining optimizations are processed through
simulating method inlining strategies. It has demonstrated out-
standing performance on optimized apps. LIBLOOM [19] converts
TPL detection into a set inclusion problem, using two-stage bloom
filter to extract candidate TPLs and compute similarity scores for
detection, and employs a novel entropy-based metric to specifically
handle apps obfuscated by repackaging and package flattening,
significantly improving scalability while ensuring effectiveness.
LibPecker [45] matches TPLs by generating signatures based on
class dependencies for both TPL classes and app classes and in-
troduces adaptive class similarity thresholds and weighted class
similarity scores when computing TPL similarities, which makes it
more resilient to obfuscations.

Although these tools have been proven to be resilient to obfusca-
tions, the evaluation metrics at the version-level are overly relaxed,
leading to overestimated performance of TPL detection tools. As a

result, their performance in downstream tasks reliant on specific
TPL versions is suboptimal. This motivates the development of a
TPL detection tool with superior performance under more accurate
and stricter version-level detection metric, thereby supporting a
broader range of downstream tasks.

3 Methodology
In this section, we describe the functionality of the various modules
of SAD. As shown in Figure 1, the overall framework of SAD consists
of three modules. In the preprocessing module, SAD first parses
the app and the TPL to extract their CDGs. It then constructs a
list of candidate app classes for each TPL class based on the fea-
ture of nodes in the CDGs associated with the TPL and the app.
Subsequently, SAD performs class matching by iterating over the
candidate list for each TPL class using the similarity of class func-
tionality summary. Finally, SAD validates the structural similairty
of the sub-graph formed by the matched classes to detect TPLs.

3.1 Pre-processing
SAD parses the input app and TPL to extract class features and de-
pendency relationships, subsequently constructing their respective
CDGs. It then generates a list of candidate app classes for each TPL
class based on the similarity of node features between the app and
TPL CDGs. By leveraging rich class-level structural information
and the resilience of CDGs to obfuscation, SAD minimizes potential
omissions in identifying class correspondences during candidate
list generation.

Table 1: Types of CDG edges and features of CDG nodes.

Element Node/Edge Type Feature

Node

static inner class static
abstract class abstract
other class default
interface interface

Edge
extends extends
implements implements

3.1.1 Class Dependency Graph. Class dependency relationships,
due to their robustness compared to package structures and their
incorporation of semantic and structural information of the code,
are utilized by many TPL detection tools [42, 45]. However, ex-
isting tools, in an effort to enhance the feature distinguishability
among classes, integrate more granular method and field infor-
mation within the utilized class dependency relationships, which
consequently diminishes their resilience to obfuscation. To address
this issue, SAD constructs CDGs for the app and TPL, wherein classes
serve as nodes, as illustrated in Table 1. CDG is a directed graph
in which types of edge include inheritance and implementa-
tion relationships and types of node include class and interface.
Within a complete functional module, these two types of depen-
dencies exhibit resilience against most of obfuscation techniques.
The nodes in the CDG are characterized by class modifiers; to en-
hance resilience against obfuscation, we only consider four types
of modifiers: default, abstract, static, and interface.
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Figure 1: The overview of SAD, which includes three main modules, preprocessing, class matching and TPL detection.

3.1.2 Candidate Class List Generation. Inspired by the message
passing concept in graph neural networks, SAD fully leverages the
structural information of CDGs to generate a candidate app class
list for each TPL class. As shown in Algorithm 1, SAD generates
features for each node in the CDG (lines 4-9), then calculates the
similarity of node features between the app and TPL CDGs (lines
14-17), considering the app class 𝑛𝑎𝑝𝑝 as a candidate for the TPL
class 𝑛𝑙𝑖𝑏 when the similarity score of the pair ⟨𝑛𝑎𝑝𝑝 , 𝑛𝑙𝑖𝑏⟩ exceeds
the threshold𝑇𝑐 . Specifically, SAD generates a feature for each node
𝑛 through the following procedure: (1) iteratively aggregating the
features of the neighboring nodes of 𝑛; (2) sorting the aggregated
features, concatenating them with the feature of 𝑛; and (3) apply-
ing locality-sensitive hashing (LSH) to generate the node feature.
The feature generating process for nodes in the CDGs of the app
and TPL iterates Diameter(𝐺𝑙𝑖𝑏 ) times. The key insight#1 here
is that the feature propagation between the most distant nodes in
the TPL’s CDG requires exactly as many iterations as the diame-
ter of 𝐺𝑙𝑖𝑏 . Fewer iterations may fail to propagate features to all
nodes in the CDG, underutilizing the structural information, while
more iterations introduce additional computational overhead. This
configuration effectively mitigates the impact of graph size differ-
ences between the TPL and the app, ensuring a consistent feature
generation process and enhancing the reliability of candidate lists
generated based on node features.

It is worth noting that SAD aggregates only the features of the
dependent nodes for each node, meaning that the propagation of
features occurs in a direction opposite to that of the edges in CDG.
The insight#2 here is that the class dependencies within the app
flow from the main program to TPLs. Therefore, the direction of
feature propagation described above can mitigate the influence of
the main program on feature generation. SAD calculates the cosine
similarity of features for each node pair ⟨𝑛𝑎𝑝𝑝 , 𝑛𝑙𝑖𝑏⟩ in the CDGs
of app and TPL. Potential candidates are established for pairs with
similarity exceeding the threshold 𝑇𝑐 . The output of preprocessing
module of SAD are the candidate app class lists for all TPL classes
M and CDGs of the app and TPL.

3.2 Class Matching
Based on the candidate class listsM, SAD further conducts fine-
grained pairwise matching between app class and TPL class to
eliminate false positive candidates. Class matching is the process

of examining the syntactic and semantic consistency between each
candidate app class 𝑐𝑎 and TPL class 𝑐𝑙 inM.

SAD categorizes classes into stateful classes and stateless classes
based on the presence of non-static fields. Stateful classes con-
tain non-static fields, allowing changes in field values to directly
reflect the object’s state; conversely, stateless classes lack fields,
making state changes less perceptible. Based on this distinction,
SAD processes stateful and stateless classes separately, leveraging
code syntactics and semantics for effective class matching. SAD
first verifies whether the pair ⟨𝑐𝑎, 𝑐𝑙 ⟩ exhibits consistent categories,
terminating the matching process if the categories differ.
Slice-based Member Matching. To mitigate the impact of fine-
grained code obfuscation (e.g., control flow flattening), SAD per-
forms taint analysis using the method parameters as the source and
the method exit as the sink. SAD slices the instructions based on
data flows from source to sink, extracting the opcodes of the sliced
instructions as the method’s functional representation. For methods
without parameters, SAD extracts the opcodes of all instructions. For

Algorithm 1: Candidate Class List Generation Algorithm
Input: 𝐶𝐷𝐺𝑎𝑝𝑝 (𝑉𝑎𝑝𝑝 , 𝐸𝑎𝑝𝑝 ), 𝐶𝐷𝐺𝑙𝑖𝑏 (𝑉𝑙𝑖𝑏 , 𝐸𝑙𝑖𝑏 ), 𝑇𝑐 .
Output: The TPL candidate nodes of app nodeM.

1 Function GenNodesFeature(𝐺 ,𝑚𝑖𝑡𝑒𝑟):
2 𝐿 ← {𝑣 : LSH(𝑣) | ∀𝑣 ∈ 𝑉 }
3 for 𝑖𝑡𝑒𝑟 ← 1 :𝑚𝑖𝑡𝑒𝑟 do
4 for each node 𝑢 ∈ 𝑉 do
5 S ← ∅ ⊲ Initialized with emptymultiset.
6 for each neighbor 𝑣 that (𝑢, 𝑣) ∈ 𝐸 do
7 S ← S ∪ 𝐿[𝑣] ⊲ Add label of 𝑣 .
8 𝑙 ← 𝐿[𝑢] ⊕ Sort(S) ⊲ ⊕: concatenate.
9 𝐿[𝑢] ← LSH(𝑙)

10 Return 𝐿
11 M ← {}
12 L𝑎𝑝𝑝 = GenNodesFeature(𝐶𝐷𝐺𝑎𝑝𝑝 , Diameter(𝐶𝐷𝐺𝑙𝑖𝑏 ))
13 L𝑙𝑖𝑏 = GenNodesFeature(𝐶𝐷𝐺𝑙𝑖𝑏 , Diameter(𝐶𝐷𝐺𝑙𝑖𝑏 ))
14 for 𝑐𝑙 ∈ L𝑙𝑖𝑏 do
15 for 𝑐𝑎 ∈ L𝑎𝑝𝑝 do
16 if Sim(L𝑙𝑖𝑏 [𝑐𝑙 ],L𝑎𝑝𝑝 [𝑐𝑎]) > 𝑇𝑐 then
17 M[𝑐𝑙 ] ← M[𝑐𝑙 ] ∪ 𝑐𝑎
18 ReturnM
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class pair ⟨𝑐𝑎, 𝑐𝑙 ⟩, SAD calculates the opcodes overlap rate between
the method𝑚𝑎 ∈ 𝑐𝑎 in the app and the method𝑚𝑙 ∈ 𝑐𝑙 in the TPL
using the following formula:

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑚𝑎,𝑚𝑙
=
|𝑂𝑝 (𝑚𝑎) ∩𝑂𝑝 (𝑚𝑙 ) |

|𝑂𝑝 (𝑚𝑙 ) |
, (1)

where 𝑂𝑝 (·) denotes the set of opcodes associated with the input
method, and | · | represents the cardinality of the set. SAD extracts
all method pairs that satisfy𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑚𝑎,𝑚𝑙

> 𝑇 and share the same
method fuzzy signature [39], prioritizing the establishment of cor-
respondences between pairs with the highest overlap rate, while
ensuring that each method is matched at most once. Note that this
process does not guarantee the successful matching of all methods
in 𝑐𝑎 and 𝑐𝑙 . In the presence of method additions or deletions, which
may result from obfuscations, the correspondence may diminish.
SAD approach disregards the unmatched methods, thereby focus-
ing on the matched methods and mitigating the impact of such
obfuscations.

For stateless pairs, SAD calculates the proportion 𝑅𝑚 of matched
methods among all methods in 𝑐𝑙 , and the proportion 𝑅𝑜 of opcodes
of matched methods to the total opcodes in 𝑐𝑙 to determine the
confidence score of matching:

𝐶𝑀𝑆𝑐𝑎, 𝑐𝑙 =
𝑅𝑚 + 𝑅𝑜

2
, (2)

Class 𝑐𝑎 and class 𝑐𝑙 are considered matched when𝐶𝑀𝑆 (𝑐𝑎, 𝑐𝑙 ) > 𝑇 .
The class matching confidence is determined by integrating both
ratios, thus mitigating the uneven distribution of opcodes within
methods due to obfuscation. For instance, if a obfuscator inserts a
string decryption method in a simple app class, which constitutes
a large proportion of the opcodes in the class, but no matching
method exists in the corresponding TPL class, considering opcode
matching alone could result in a false negative.

Stateful classes can be more complex, and similar functionalities
or operation patterns may lead to similar opcode sets, but the fields
involved may differ, resulting in cases of similar syntax but different
semantics. To further eliminate false positives, SAD matches fields
using field read and write operations from the matched method
pairs, provided that 𝐶𝑀𝑆 (𝑐𝑎, 𝑐𝑙 ) > 𝑇 . Based on the type and fre-
quency of field-related operations, SAD performs field matching. If
the match fails, it indicates a false positive in method matching,
and the method match is discarded. This step allows SAD to lever-
age field information to eliminate method matching false positives
while enabling field matching, thereby providing a foundation for
deeper semantic analysis.
Functionality Summary-based Class Matching. Existing re-
search [39] utilize the opcodes of call chains to further mitigate
false positives in method matching. However, the extensive code
introduced by call chains may weaken the distinction between the
opcode sets of app method and TPL method, and the generation
and traversal of call graphs incur substantial runtime overhead. In
contrast, SAD eliminates false positives in class matching by gen-
erating method call sequences within classes to construct diverse
contexts for semantic consistency verification. Subsequently, SAD
traverses these sequences to generate summaries representing class
functionality, using similarity measures to assess the semantic con-
sistency between the two classes ⟨𝑐𝑎, 𝑐𝑙 ⟩. The method call sequence
𝐶𝑆𝑐 = {𝑚1,𝑚2, ...,𝑚𝑛} of a class 𝑐 is an ordered list composed of 𝑛

methods within the class. SAD simulates actual usage scenarios to
generate method call sequences 𝐶𝑆𝑐𝑙 of TPL class 𝑐𝑙 . Initially, SAD
simulates object instantiation by randomly selecting a constructor
<init> of 𝑐𝑙 to add to the sequence. Furthermore, SAD randomly
selects methods in the 𝑐𝑙 , excluding constructors, to include in the
call sequence, repeating this process 𝑆 times to simulate object
usage. Based on the matched methods, SAD constructs the method
call sequence 𝐶𝑆𝑐𝑎 for the corresponding app class 𝑐𝑎 .

To mitigate the impact of noise introduced by obfuscation, SAD
distills code of each method call sequence into field operations that
reflects the state changes of the object created and used through the
method call sequence. Specifically, SAD identifies three types of field
operations through static code analysis: initialization, assignment,
and method invocation. For each field operation, SAD extracts used
key elements, including the names and fuzzy types of matched
fields, as well as the positions and fuzzy types of method parameters.
Therefore, each method call sequence 𝐶𝑆 forms a corresponding
field operation sequence 𝐹𝑂𝑆 .

Since classes retain the same semantics despite obfuscation, the
field operation sequence 𝐹𝑂𝑆 should also exhibit similarity before
and after obfuscation (insight#3). Therefore, SAD first replaces field
names in the field operation sequence with unique number to elim-
inate the impact of identifier obfuscation, then computes locality
sensitive hashing of field operations to generate class functional
summaries 𝐹𝑆 . To address potential disruptions in field operation
order caused by control flow obfuscation, SAD applies the Hun-
garian algorithm [36] (H(·)) to maximize matches between the
summaries of app class 𝐹𝑆𝑐𝑎 and TPL class 𝐹𝑆𝑐𝑙 . The proportion
of these maximum matches |H (𝐹𝑆𝑐𝑎 , 𝐹𝑆𝑐𝑙 ) | to the total number
of summaries |𝐹𝑆𝑐𝑙 | is used as the semantic similarity score for
the method call sequences 𝐶𝑆𝑐𝑎 and 𝐶𝑆𝑐𝑙 . To avoid false positives
caused by random method selection, SAD generates 𝐾 method call
sequences to construct diverse code context, and the average of the
semantic matching scores of all call sequences is used as the class
matching confidence score 𝐶𝑀𝑆 .

𝐶𝑀𝑆𝑐𝑎,𝑐𝑙 =
1
𝐾

𝐾∑︁
𝑖=1

|H (𝐹𝑆𝑖𝑐𝑎 , 𝐹𝑆
𝑖
𝑐𝑙
) |

|𝐹𝑆𝑖𝑐𝑙 |
(3)

SAD regards pairs with matching confidence scores exceeding
𝑇 as matches. Specifically, nodes with confidence score 𝐶𝑀𝑆𝑐𝑎,𝑐𝑙
greater than𝑇ℎ (𝑇ℎ > 𝑇 ) are identified ashigh-confidencematches
and are excluded from subsequent matching processes.

3.3 TPL Detection
To capture the differences between different versions of TPLs, SAD
performs an analysis across all versions of the given TPL. Since
the class matching module considers only intra-class information,
it can incorrectly yield high matching confidence scores for struc-
turally dissimilar classes in scenarios such as code reuse or code
cloning. To address this issue, SAD leverages the structural simi-
larity between CDGs to verify whether matched classes remain
structurally consistent. However, identifying a small graph (TPL)
within a larger graph (app) is fundamentally a subgraph isomor-
phism problem, which is one of NP problems and computationally
expensive [11, 31], and obfuscation may compromise isomorphism.
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We observe that when an app utilizes the TPL class 𝑐𝑙 , to ensure
functional integrity, the classes on which 𝑐𝑙 depends must also be
incorporated into the app. This dependency relationship recursively
extends until encountering dependency-free classes (i.e., terminal
nodes with an out-degree of 0 in the CDG), naturally forming a
functional module of the TPL. Therefore, to eliminate potential
false positives, SAD inspects whether the matched classes of TPL
form at least one path 𝑃𝑙𝑖𝑏 to the terminal nodes in the CDG. If
𝑃𝑙𝑖𝑏 exists, SAD then examines whether the corresponding set of
app nodes 𝑁𝑃𝑙𝑖𝑏𝑎𝑝𝑝 also forms an identical path 𝑃𝑎𝑝𝑝 in the app’s
CDG, where an identical path denotes passing through edges with
identical features in the same order. If 𝑃𝑙𝑖𝑏 and 𝑃𝑎𝑝𝑝 exist and
𝑃𝑙𝑖𝑏 = 𝑃𝑎𝑝𝑝 , SAD considers that the CDGs of the app and TPL have
similar structures.

After preliminarily verifying structural similarity, SAD calculates
a confidence score, 𝑆𝑐𝑜𝑟𝑒𝑎𝑝𝑝,𝑙𝑖𝑏 , to assess the likelihood that a given
TPL is integrated in the app, based on the class matching results
between the app and the TPL. For the sake of clarity in notation,
we define the set of high-confidence matched pairs as 𝐻𝑀𝑎𝑝𝑝,𝑙𝑖𝑏 =

{(𝑐𝑎, 𝑐𝑙 ) |𝑇ℎ ≤ 𝐶𝑀𝑆𝑐𝑎,𝑐𝑙 }, and the set of other matched pairs as
𝑀𝑎𝑝𝑝,𝑙𝑖𝑏 = {(𝑐𝑎, 𝑐𝑙 ) |𝑇 ≤ 𝐶𝑀𝑆𝑐𝑎,𝑐𝑙 < 𝑇ℎ}. SAD uses the following
formula to calculate the confidence score for TPL detection:

𝑆𝑐𝑜𝑟𝑒𝑎𝑝𝑝,𝑙𝑖𝑏 =
|𝑀𝑎𝑝𝑝,𝑙𝑖𝑏 | + 𝛼 × |𝐻𝑀𝑎𝑝𝑝,𝑙𝑖𝑏 |

|M| (4)

where |M| denotes the number of TPL classes annotated with
candidate app classes (§3.1.2). 𝛼 represents the weight of high-
confidence matches, and we set it to 1.5. When 𝑆𝑐𝑜𝑟𝑒𝑎𝑝𝑝,𝑙𝑖𝑏 >

𝑇𝐺 , SAD considers that 𝑙𝑖𝑏 is used by 𝑎𝑝𝑝 . Since slight differences
among versions may result in scores exceeding 𝑇𝐺 , SAD prioritizes
selecting the TPL version with the highest score as the final result. If
multiple versions share the same highest score, SAD further selects
the version with the largest number of high-confidence matched
classes in the TPL’s CDG as the final result. In certain extreme
cases, the differences between various versions of TPL may be
minimal (for instance, merely a change in a version-identifying
string). Therefore, SAD extracts a set of literal to construct feature
set I𝑙𝑖𝑏𝑣𝑖 from the matched classes of different versions 𝑙𝑖𝑏𝑣𝑖 , and
then extracts a set of literal features I𝑎𝑝𝑝 from the matched classes
of the app. Finally, SAD calculates the intersection of the literal
features of the TPL version 𝑙𝑖𝑏𝑣𝑖 and the app, and selecting the
version with the largest intersection as the final version.

4 Experiments
In this section, we conduct experiments which are designed to
answer the following four research questions.

• RQ1 (Effectiveness): Can SAD achieve a higher F1 score com-
pared to state-of-the-art TPL detection tools?
• RQ2 (Reliability): Does SAD outperform existing TPL detection
tools in class-level detection?
• RQ3 (Contribution of Components): Do themain components
of SAD contribute significantly to its performance?
• RQ4 (Efficiency): How does SAD’s efficiency compare with state-
of-the-art TPL detection tools?

4.1 Experimental Setup
Datasets.We utilize the dataset constructed by LibScan [39] to eval-
uate the performance of various TPL detection tools. This dataset
comprises 1,231 apps (#app and #Tuning) and 562 TPL versions as
the TPL database, as presented in Table 2. To better compare the
effectiveness of TPL detection tools across different types of apps,
we divide it into three subsets: the unobfuscated dataset 𝐷1, the ob-
fuscated dataset 𝐷2, and the optimized dataset 𝐷3. The obfuscated
dataset is generated using three obfuscation tools—Allatori, DashO,
and ProGuard—with different configurations. Specifically, DashO
employs four distinct obfuscation levels to produce corresponding
obfuscated apps, including control flow randomization (cfr), pack-
age flattening and identifier renaming (pf-ir), dead code removal
(dcr), and a combination of the three obfuscations (cfr-pf-ir-dcr).
Furthermore, we identified errors in the ground truth of the LibScan
dataset. After manual review and correction, the total ground truth
for 𝐷1 and 𝐷2 increased from 5,956 to 6,168. The optimized dataset
𝐷3 consists of 51 apps compiled with D8 and 51×3 apps compiled
with R8 under different optimization configurations. R8-shrink-opt
enables optimization on top of code shrinking, while R8-shrink-
orlis applies Orlis’s ProGuard configuration to perform repackaging
and renaming obfuscation in addition to code shrinking. The 453
TPL versions in 𝐷1 and 𝐷2 encompass 236 distinct TPLs, with each
TPL averaging ∼2 versions. In 𝐷3, the 109 TPL versions correspond
to 59 unique TPLs, demonstrating a version-to-TPL ratio of 1.85
versions per TPL.

Table 2: Statistic of dataset used to evaluate SAD.

Dataset Category #apps #Tuning #libs
𝐷1 Non-obfus 203 22

453
𝐷2

Allatori 188 22
DashO-cfr 79 9
DashO-pf-ir 79 9
DashO-dcr 79 9

DashO-cfr-pf-ir-dcr 159 22
ProGuard 152 17

𝐷3

D8-compiled 46 5

109
R8-shrink 46 5

R8-shrink-opt 46 5
R8-shrink-orlis 46 5

Metrics.We evaluate the performance of TPL detection tools by
calculating their F1 score. To quantify library-level detection per-
formance, we adopt the same approach as LibScan to count the true
positives (𝑇𝑃𝑙 ), false positives (𝐹𝑃𝑙 ), and false negatives (𝐹𝑁𝑙 ). For
version-level detection, LibScan counts𝑇𝑃𝑣 , 𝐹𝑃𝑣 and 𝐹𝑁𝑣 , ensuring
that 𝑇𝑃𝑙 + 𝐹𝑃𝑙 = 𝑇𝑃𝑣 + 𝐹𝑃𝑣 . This reflects LibScan’s relaxed false
positive statistical method at the version-level. For instance, if a tool
reports gson-2.4 and gson-2.5 in an app, while the actual version
is gson-2.6, LibScan records this as both a false negative and a
false positive at the version-level. In a similar case, if a tool detects
gson-2.4, gson-2.5, and gson-2.6 in an app, LibScan considers
it a true positive and disregards the incorrect versions. We argue
that this statistical approach introduces bias in the assessment of
version-level detection performance for TPL detection tools, as a
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Table 3: Detection performance (%) of TPL detection tools (SAD, LibPecker, LibHunter, LibScan, LIBLOOM) on datasets 𝐷1 and 𝐷2
at library-level, version-level, and version-level†.

Dataset Tools
Library-level Version-level Version-level†

Precision Recall F1 Precision Recall F1 Precision Recall F1

𝐷1

LibPecker 80.86 99.54 89.23 78.82 97.03 86.98 64.73 97.03 77.65
LibHunter 80.26 93.93 86.56 80.03 93.66 86.31 61.96 93.66 74.59
LibScan 96.96 98.88 97.91 96.83 98.75 97.78 68.50 98.75 80.89
LIBLOOM 99.00 98.28 98.64 95.74 95.05 95.40 67.92 95.05 79.23
SAD 97.91 99.14 98.52 97.26 98.48 97.87 79.03 98.48 87.69

𝐷2

LibPecker 73.41 71.49 72.44 66.89 65.14 66.01 56.30 65.14 60.40
LibHunter 80.41 59.89 68.65 79.00 58.84 67.45 61.81 58.84 60.29
LibScan 98.03 95.02 96.50 96.50 93.54 95.00 64.05 93.54 76.04
LIBLOOM 98.74 92.58 95.56 95.86 89.88 92.77 66.49 89.88 76.43
SAD 96.66 98.65 97.64 94.39 96.33 95.35 75.76 96.33 84.82

bold: the highest value, underlined: the second-ranked value.

tool could simply report all gson versions to easily achieve a false
positive rate (FPR) of 0 at the version-level.

To more accurately assess the version-level detection perfor-
mance of TPL detection tools, we propose a new method for count-
ing true positives (𝑇𝑃𝑣† ), false positives (𝐹𝑃𝑣† ), and false negatives
(𝐹𝑁𝑣† ) at the version-level, referred to as version-level† to distin-
guish it from LibScan’s approach. Specifically, if a tool correctly
identifies the actual version among reported versions of the gson
TPL, we count it as one 𝑇𝑃𝑣† , while the remaining incorrect ver-
sions are counted as 𝐹𝑃𝑣† . If the correct version is not included
in the reported list, we count one 𝐹𝑁𝑣† and classify all reported
versions as 𝐹𝑃𝑣† . Consequently, version-level

† detection satisfies
the condition 𝑇𝑃𝑣† + 𝐹𝑃𝑣† ≥ 𝑇𝑃𝑣 + 𝐹𝑃𝑣 .

4.2 Thresholds Tuning
To avoid biases introduced by empirical threshold settings, we
extract 10% of apps from different datasets to construct valida-
tion datasets (shown in Table 2 #Tuning) for thresholds tuning of
SAD and the baseline tools (i.e. LibScan, LIBLOOM, LibHunter, and
LibPecker). Following LibScan’s approach [39], we perform thresh-
olds tuning separately on the obfuscated datasets 𝐷1, 𝐷2 and the
optimized dataset 𝐷3.

Table 4: Thresholds tuning results of different TPL detection
tools.

Tools Obfuscation Optimization

LibPecker 𝑇𝑙𝑖𝑏 = 0.7 𝑇𝑝𝑘𝑔 = 0.5 𝑇𝑙𝑖𝑏 = 0.1 𝑇𝑝𝑘𝑔 = 0.05
LibHunter 𝑇𝑚𝑡𝑑 = 0.3 𝑇𝑙𝑖𝑏 = 0.95 𝑇𝑚𝑡𝑑 = 0.9 𝑇𝑙𝑖𝑏 = 0.2
LibScan 𝑇𝑐𝑙𝑎𝑠𝑠 = 0.7 𝑇𝑙𝑖𝑏 = 0.85 𝑇𝑐𝑙𝑎𝑠𝑠 = 0.7 𝑇𝑙𝑖𝑏 = 0.1
LIBLOOM 𝑇𝑝𝑘𝑔 = 0.05 𝑇𝑙𝑖𝑏 = 0.9 𝑇𝑝𝑘𝑔 = 0.95 𝑇𝑙𝑖𝑏 = 0.15
SAD 𝑇 = 0.7 𝑇𝐺 = 0.85 𝑇 = 0.8 𝑇𝐺 = 0.5

For the threshold 𝑇𝑐 of the candidate list construction, we ini-
tially constructs the ground truth of class correspondences between
the apps and TPLs in the validation set, after which we employs the
candidate class list construction algorithm to check whether the

candidates of TPL classes contains the corresponding app classes
to compute false negative rate (FNR) and false positive rate (FPR).
Starting from 0, 𝑇𝑐 is gradually increased to 1.0 in steps of 0.05.
Eventually, a threshold of 0.85 is set to balance the FNR and FPR.
The threshold𝑇ℎ indicates high-confidence matches, which is fixed
at 0.9, invariant to the dataset. For the class matching threshold 𝑇
and the CDG matching threshold𝑇𝐺 , we perform thresholds tuning
on the validation set using grid search, with each threshold rang-
ing from 0 to 1.0, incremented by steps of 0.05. Subsequently, the
thresholds yielding the highest F1 score are selected for subsequent
experiments. Since the baseline tools also involve two thresholds,
we apply the same grid search procedure to choose the best thresh-
olds. The thresholds tuning results are presented in Table 4.

4.3 RQ1: Effectiveness of SAD
We utilized 𝐷1, 𝐷2 and 𝐷3 to evaluate the performance of SAD in
detecting TPLs and their versions in unobfuscated apps, obfuscated
apps, and optimized apps. The evaluations are conducted at the
library-level, version-level, and version-level†, and results are com-
pared against four state-of-the-art TPL detection tools: LibScan [39],
LIBLOOM [19], LibHunter [40], and LibPecker [45]. Table 3 presents
the detailed detection performance of SAD and baseline tools on
datasets 𝐷1 and 𝐷2. Due to the stricter statistical method of false
positives (§4.1), all tools exhibit a notable performance decline
at the version-level†. We find that SAD achieves detection perfor-
mance comparable to state-of-the-art TPL detection tools at both
the library- and version-level, while significantly outperforming
the baselines at the version-level†. Specifically, SAD achieves an
average improvement in F1 scores at the version-level† of 12.39%
and 25.91% on the unobfuscated dataset 𝐷1 and obfuscated dataset
𝐷2, respectively, reaching 87.69% and 84.82%. This improvement
is primarily attributed to SAD’s ability to significantly reduce the
number of false positive versions while maintaining a low false
negative rate, demonstrating its effectiveness. As described in §4.1,
the relaxed version-level FP evaluation inflates the performance
of detection tools, making it appear comparable to library-level
performance. However, a comparison between version-level and
version-level† FPs reveals that advanced tools such as LibScan and
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LIBLOOM report a substantial number of FP versions, leading to
significant performance discrepancies. In contrast, SAD achieves
FPs at only 58.70% and 68.04% of those reported by LibScan and
LIBLOOM, respectively, while exhibiting the low false negative rate,
resulting in superior performance at version-level†.

Table 5: The F1 score (%) of TPL detection tools on different
obfuscation level (𝐷1 and 𝐷2).

Level Type LibPecker LibHunter LibScan LIBLOOM SAD

Lib

Non-obfus 89.23 86.56 97.91 98.64 98.52
Allatori 75.26 44.05 94.78 93.33 96.74
DashO-cfr 76.67 85.19 98.27 99.43 98.97
DashO-pf-ir 71.90 85.90 98.27 93.56 98.98
DashO-dcr 71.69 84.64 92.53 95.09 95.17
DashO-A 49.04 44.43 97.12 94.69 97.24
ProGuard 87.64 88.38 98.49 99.16 98.45

Ver†

Non-obfus 77.65 74.59 80.89 79.23 87.63
Allatori 60.78 38.39 75.62 72.76 84.24
DashO-cfr 62.08 73.08 76.95 80.72 86.35
DashO-pf-ir 57.56 73.78 76.31 75.73 87.11
DashO-dcr 57.32 72.44 58.40 76.91 85.22
DashO-A 43.69 43.56 75.16 76.53 82.09
ProGuard 75.64 75.55 80.27 79.89 86.85

Lib: Library-level, Ver†: Version-level†, DashO-A: DashO-cfr-pf-ir-dcr.

Resilience to Obfuscations. Comparing the detection perfor-
mance of different TPL detection tools on the obfuscated dataset
𝐷2 in Table 3, we find that LibPecker reports the highest FPs, while
LibHunter reports the most FNs, resulting in poorer F1 score at
library-level and version-level† for both tools. The primary reason
is that LibPecker uses coarse-grained class dependency signatures
for matching, which fail to effectively distinguish between classes
from different TPLs under obfuscation, leading to numerous FPs.
In contrast, LibHunter’s fine-grained features depend on strings,
which cannot be successfully matched under string encryption ob-
fuscation, resulting in a high number of FNs. In comparison, SAD,
LibScan, and LIBLOOM exhibit higher resistance to obfuscation.
SAD achieves the highest F1 score at the library-level, version-level,
and version-level†. Notably, by effectively capturing fine-grained
differences across versions to eliminate FPs, SAD improves the F1
score at version-level† by 10.98% over the best existing tool, LI-
BLOOM, reaching 84.82%, making it the most effective tool. Fur-
thermore, LibScan and LIBLOOM exhibit approximately 15-fold and
11-fold increases in FPs at version-level† compared to version-level,
which are obscured by the more relaxed FP statistical criteria of
version-level. Consequently, their performance deteriorates most
significantly at version-level†, indicating that obfuscation has a
substantial impact on their version identification capabilities.

Under the DashO-cfr configuration, LIBLOOM exhibits supe-
rior F1 performance compared to SAD at the library-level. However,
at the version-level†, it underperforms relative to SAD. This in-
dicates that while coarse-grained features utilized by LIBLOOM
are unaffected by control flow randomization obfuscation, they
struggle to distinguish TPL versions. In contrast, SAD achieves a
more effective balance between obfuscation resilience and version

identification performance. Table 5 presents the F1 scores of TPL
detection tools under different obfuscation levels, highlighting the
varying resilience of these tools to different obfuscation config-
urations. Overall, Allatori and DashO-A are the most impactful
obfuscation configurations, resulting in the lowest F1 scores for
LibPecker, LibHunter, LIBLOOM, and SAD. In contrast, LibScan
achieves the highest F1 score under DashO-A and the lowest under
DashO-dcr. This discrepancy is due to the significant impact of
dead code elimination on the opcode features utilized by LibScan,
while the DashO-A configuration applies weaker dead code elim-
ination on apps. Notably, SAD consistently achieves significantly
higher F1 scores than baseline tools across all obfuscation configu-
rations at the version-level†, demonstrating SAD’s resilience against
obfuscation in version identification.

Table 6: The F1 score (%) of TPL detection tools on different
optimization level (𝐷3).

Level Type LibPecker LibHunter LibScan LIBLOOM SAD

Lib

D8 71.79 65.77 75.28 84.07 71.58
shrink 77.09 74.79 69.06 77.82 69.18
shrink-opt 77.42 57.76 15.14 61.48 47.16
shrink-orlis 70.10 75.21 68.59 72.79 68.94
Overall 73.78 68.84 62.83 75.16 66.04↓9.12

Ver†

D8 63.71 61.40 23.17 71.49 59.96
shrink 49.22 67.57 36.71 54.82 46.71
shrink-opt 40.13 35.21 13.53 44.85 28.57
shrink-orlis 42.68 67.93 37.04 52.10 51.83
Overall 50.10 59.54 27.73 57.54 49.31↓10.23

Lib: Library-level, Ver†: Version-level†.

Resilience to Optimizations. Although SAD is primarily designed
for obfuscated apps, a certain proportion of real-world apps un-
dergo optimization [40]. Therefore, we further evaluate the re-
silience of SAD against optimization using the optimized dataset
𝐷3 constructed by [39]. Table 6 presents the F1 scores of various
TPL detection tools under different optimization levels. LibHunter,
designed for optimized apps, achieves the highest F1 score at the
version-level†, whereas LIBLOOMperforms best at the library-level,
reflecting its high resilience to optimization due to the use of coarse-
grained features for library-level detection. Surprisingly, LibScan
performs the worst at both the library- and version-level†, primar-
ily due to its reliance on fine-grained opcode features, which fail to
handle optimization techniques, particularly under the shrink-opt
configuration.

Overall, SAD experiences a decline in F1 scores, with decreases of
9.12 and 10.23 compared to the best-performing tools at the library-
and version-level†, respectively. Further analysis reveals that the
relatively low F1 score of SAD is mainly attributed to a high num-
ber of FNs. Manual inspection identifies two primary causes: ①

incorrect TPL versions in the ground truth. Since the correct ver-
sions are not included in the TPL database and cannot be accessed,
SAD’s class matching module fails due to version discrepancies, ulti-
mately affecting TPL detection. ② Excessive method reduction and
removal, leading to a high number of method matching failures,
which similarly impact TPL detection performance.
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4.4 RQ2: Class-level Performance
Although SAD demonstrates high performance at the library-level
and version-level† (§4.3) on obfuscated apps, some downstream
tasks, such as TPL removal and isolation [34], require fine-grained
identification of TPL code, thus imposing demands on class-level
detection performance of TPL detection tools. Moreover, due to the
complexity of the obfuscation and optimization, the actual range
of codes relied upon by TPL detection tools when reporting TPLs
remains unknown, leading to a lack of understanding regarding the
reliability of tools. Therefore, we establish a one-to-one mapping
between each class in the TPL and those in the app to construct
the ground truth for evaluating class-level detection performance
of TPL detection tools. Since the class mapping files of apps are
unavailable, we manually analysis the decompiled code of both the
apps and TPLs to construct the ground truth. Given the substantial
workload of manual analysis, we randomly selected 20 pairs of
⟨𝑎𝑝𝑝, 𝑙𝑖𝑏⟩ from the intersection of the TPs reported by different
tools in datasets 𝐷1, 𝐷2, and 𝐷3 for evaluation. As LibPecker does
not explicitly establishmapping between classes, we do not evaluate
its class-level detection performance.

Table 7: Class-level detection performance of different TPL
detection tools.

Metric LibPecker LibHunter LIBLOOM LibScan SAD

Precision - 93.06 91.67 98.59 96.70
Recall - 69.79 68.75 72.92 91.67
F1 - 79.76 78.57 83.83 94.12

As shown in Table 7, LIBLOOM, which performs well in de-
tection on obfuscated and optimized datasets, exhibits the poorest
class-level F1.We find that LIBLOOM’smethod of hashing extracted
features and using bloom filters for TPL detection inevitably leads
to hash collisions, resulting in more false positives and false neg-
atives at the class-level, such as incorrectly matching TPL classes
with app interfaces. The class-level detection performance reflects
the contribution of TPL classes to the tool’s library- and version-
level† detection results. A TPL detection tool with a low class-level
F1 score is likely to report unreliable library- and version-level†
TPs, as the identified TPL classes are not actually part of the TPL.
This may lead to unpredictable detection results for different apps
using the same TPL. SAD’s class-level F1 score outperforms baseline
tools, reflecting its superior reliability. The reason lies in SAD’s fine-
grained handling of stateful classes, which eliminates syntactically
similar but semantically distinct candidate app classes by leveraging
field-related operations and class functionality summaries (§3.2).
Moreover, the class-level recall of SAD significantly outperforms
the baseline tool, enabling it to better support downstream tasks
that rely on specific TPL code.

4.5 RQ3: Contribution of Components
To evaluate the effectiveness of SAD in generating candidate lists for
TPL classes by using structural information of CDGs, we replaced
the candidate app class list generation algorithm with a signature
matching algorithm to implement SAD-f. This algorithm generates

class signature set for each class by extracting fuzzy signatures of its
members [39], then generating a candidate app class list for the TPL
class based on the overlap rate of the signature set. Furthermore,
since many existing tools focus on opcodes for class matching, we
aim to assess whether the class summary-based class matching step
in SAD significantly improves detection performance, determining
its necessity. Therefore, we perform method matching based on the
opcodes of methods and verify the reliability of method matches by
checking field read and write operations to eliminate false positives.
We then compute the ratio of opcodes in matched methods to the
total opcodes of the TPL class as the class matching confidence
score. This baseline removes the step of the SAD class matching
module that generate method call sequences and class functionality
summaries for semantic matching, which is denoted as SAD-s.

As shown in Table 8, SAD markedly outperforms two baselines,
achieving an average F1 score improvement of 22.86% and 25.32%
at library-level and version-level† on three datasets, respectively,
thereby demonstrating the effectiveness of the candidate class list
generation algorithm and semantic matching step in class matching.
By leveraging the structural information of the CDGs, SAD identifies
candidate app classes for each TPL class, reducing the overhead of
fine-grained class matching while effectively capturing structurally
similar classes. In contrast, SAD-f, which adopts a more relaxed
method and suffers from higher false positive rates. SAD-s, after
removing the semantic matching step, fails to distinguish between
different TPLs due to its inability to exploit semantic-level informa-
tion, leading to a notable decline in both library- and version-level†
detection performance.

Table 8: Effectiveness of SAD and baselines on 𝐷1, 𝐷2 and 𝐷3.

Dataset Tools
Library-level Version-level†

P R F1 P R F1

𝐷1

SAD-f 84.00 96.91 90.00 60.82 80.34 69.23
SAD-s 75.89 90.40 82.51 53.32 75.50 62.50
SAD 97.85 99.08 98.46 78.97 98.42 87.63

𝐷2

SAD-f 85.63 75.74 80.38 59.10 59.41 59.25
SAD-s 77.29 66.00 71.20 46.69 50.05 48.31
SAD 96.66 98.65 97.64 75.76 96.33 84.82

𝐷3

SAD-f 64.72 30.85 41.78 47.94 23.83 31.84
SAD-s 84.69 12.13 21.23 70.69 11.99 20.50
SAD 71.24 61.55 66.04 51.60 47.22 49.31

P: Precision, R: Recall.

4.6 RQ4: Efficiency of SAD
We compare the detection time of SAD with other TPL detection
tools on datasets 𝐷1 and 𝐷2. As shown in Table 9, we record the
total processing time for each app by the TPL detection tools, and
we compute the first quartile (Q1), median, third quartile (Q3),
and mean of the detection times. We find that SAD is slower than
LibHunter, LIBLOOM and LibScan. The reason for LIBLOOM’s
superior speed is its use of a two-stage bloom filter, which provides
highly scalable TPL detection by converting extracted features to
hash values, thereby significantly accelerating the matching phase.
LibScan, on the other hand, is somewhat slower than LIBLOOM
due to the time spent in opcode extraction and matching.
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SAD is relatively slower due to two primary reasons. First, SAD
spends considerable time in the candidate app class list generation
step, with the feature propagation and matching of node features
in graph structures being the main time-consuming phases. Second,
SAD’s precise version-level detection introduces additional time
overhead by generating the class summaries of call sequences. De-
spite LibHunter, LibScan and LIBLOOM having less detection times
compared to SAD, they exhibit inferior performance in version-
level† detection performance. Considering the significance of TPL
detection, we deem it reasonable for SAD to achieve better perfor-
mance at the expense of certain efficiency.

Table 9: Average detection efficiency (s) of different tools on
𝐷1 and 𝐷2 (453 TPLs in total).

LibPecker LibHunter LIBLOOM LibScan SAD

Q1 2,270.04 35.00 2.00 45.00 15.39
mean 2,442.74 63.95 5.00 46.05 129.78
median 2,546.37 49.00 2.56 49.00 109.68

Q3 2,779.70 75.00 3.98 55.00 192.24

5 Discussion
Limitations and Future Work. SAD cannot handle all types of ob-
fuscations. For advanced obfuscation techniques such as reflective
invocation, Dex file encryption, code virtualization, and others [2],
the reliability of SAD’s class matching step will be compromised,
resulting in TPL detection failures. Additionally, like previous ap-
proaches, SAD tunes its thresholds separately on different datasets
for evaluation. However, in real-world scenarios where some apps
with mixed obfuscation and optimization statuses coexist, it re-
mains challenging for SAD to identify an optimal threshold setting
to achieve high performance.

LibHunter [40] is specifically designed for optimized apps and
achieves better TPL detection performance on optimized datasets
compared to SAD, but performs worse on obfuscated datasets. In
real-world scenarios, it is often unclear whether the input app
has undergone obfuscation or optimization. Therefore, it is nec-
essary for TPL detection tools to cover obfuscated and optimized
apps. However, as noted in the types of optimization listed by Lib-
Hunter [40], the code changes introduced by optimization may
conflict with the principles of TPL detection tools to handle obfus-
cation. For example, to address dead code removal, SAD tolerates
cases where the code in an app’s class is less than that in the corre-
sponding TPL class, whereas method inlining optimization inflates
the code within app classes. Therefore, finding a balance between
handling obfuscation and optimization is inherently challenging,
and we leave it to future work to address.

Although we believe that SAD achieves a balance between ef-
fectiveness and efficiency, there remains room for improvement
in detection efficiency compared to state-of-the-art baseline tools.
The outstanding scalability of LIBLOOM stems from its reliance
solely on class-level structural features and its efficient detection
mechanism based on bloom filter design, making it suitable for
high-throughput scenarios. However, as shown in §4.4, the hashing

of features inevitably leads to collisions, compromising the class-
level detection performance of LIBLOOM and reducing reliability.
In contrast, both LibScan and LibHunter employ multi-process im-
plementations to fully utilize CPU resources for accelerating the
detection process, offering an effective approach to enhance the
efficiency of SAD.
Threats to validity. SAD leverages the structural information of
CDGs to generate candidate class lists and assesses structural simi-
larity of matched nodes during TPL detection to identify specific
versions. This design exhibits resilience to code obfuscation, as class
dependency relationships within a complete functional module are
typically unaffected by obfuscation. The class matching module,
based on class summary similarity, extracts parameter-relevant
instruction slices for member matching and generates class sum-
maries using field operations, mitigating the impact of obfuscations
like control flow flattening. However, in optimized apps employing
method inlining, the inlined methods (callees) may fail to match,
and the inflated code at the unique invocation site (caller) could
lead to member matching failures, thereby affecting class matching
results. Furthermore, SAD demonstrates limited resilience to more
advanced obfuscation techniques, such as method overloading and
reflection invocations [2]. Nonetheless, the applicability of these
advanced obfuscation techniques is constrained, as they impose sig-
nificant overhead to maintain app functionality and performance.

Furthermore, SAD is intentionally crafted to identify Java libraries
(JAR) as well as Android libraries (AAR). Consequently, its general-
izability to native libraries within apps may be limited, as native
libraries may employ complex obfuscation techniques that SAD
does not account for (e.g., code virtualization [18]). However, code
virtualization inevitably incurs the overhead of virtual machine
interpretation and execution, making it typically used to protect
critical functions. Existing research on deobfuscating virtualized
code [10, 22] may contribute to the detection of native libraries.

6 Conclusion
We proposed SAD, a class structural similarity-based version-level
TPL detection tool. SAD generates candidate app class lists for TPL
classes using the feature similarity of nodes in CDGs associated
with the app and TPL and then performs class matching based on
the similarity of class functionality summary. Finally, SAD achieves
version-level TPL detection by identifying structural similarity be-
tween the sub-graphs formed bymatched classes within the app and
TPL CDG. Experimental results show that SAD outperforms baseline
tools in both library-level and version-level† detection, achieving
F1 scores of 97.64% and 84.82% on obfuscated dataset, respectively,
demonstrating its effectiveness. Additionally, the superior perfor-
mance of SAD in class-level detection underscores its reliability,
making it well-suited for downstream tasks that depend on specific
TPL code. The source code of the SAD and the experimental results
are available at https://zenodo.org/records/15238860.
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