Complexity of Post-Quantum Cryptography in
Embedded Systems and Its Optimization Strategies

Omar Alnaseri*, Yassine Himeur¥, Shadi Atalla¥ and Wathiq Mansoor ¥
*Department of Electrical Engineering, DHBW University, Ravensburg, Germany
YCollege of Engineering and Information Technology, University of Dubai, Dubai, United Arab Emirates

Abstract—With the rapid advancements in quantum com-
Te) puting, traditional cryptographic schemes like Rivest-Shamir-
I\ Adleman (RSA) and elliptic curve cryptography (ECC) are be-
') coming vulnerable, necessitating the development of quantum-
~ resistant algorithms. The National Institute of Standards and
Technology (NIST) has initiated a standardization process for
>~ PQC algorithms, and several candidates, including CRYSTALS-
Kyber and McEliece, have reached the final stages. This
paper first provides a comprehensive analysis of the hardware
complexity of post-quantum cryptography (PQC) in embedded
00) systems, categorizing PQC algorithms into families based on
— their underlying mathematical problems: lattice-based, code-
based, hash-based and multivariate / isogeny-based schemes.
'D_:'Each family presents distinct computational, memory, and
energy profiles, making them suitable for different use cases.
O To address these challenges, this paper discusses optimization
{ strategies such as pipelining, parallelization, and high-level syn-
() thesis (HLS), which can improve the performance and energy ef-
l—ficiency of PQC implementations. Finally, a detailed complexity
analysis of CRYSTALS-Kyber and McEliece, comparing their
key generation, encryption, and decryption processes in terms

= of computational complexity, has been conducted.

Index Terms—Post-Quantum Cryptography, Embedded Sys-
tems, Hardware Complexity

13537

1 I. INTRODUCTION
g Post-quantum cryptography (PQC) aims to develop cryp-
tographic algorithms that are secure against attacks from
(\J quantum computers. With rapid advancements in quantum
L computing, traditional cryptographic schemes such as Rivest-
.— Shamir-Adleman (RSA) and elliptic curve cryptography
>< (ECC) are becoming vulnerable. PQC algorithms are broadly
E categorized into families based on their underlying mathemat-
ical problems, each posing distinct challenges for implemen-
tation in embedded systems. These families include lattice-
based, code-based, hash-based, and multivariate/isogeny-
based schemes, each with unique computational, memory,
and energy profiles.

Lattice-based algorithms derive security from hard prob-
lems like the shortest vector problem (SVP) or learning with
errors (LWE). Schemes such as Kyber (key encapsulation)
and CRYSTALS-Dilithium (digital signatures) rely on poly-
nomial arithmetic and the number theoretic transform (NTT)
for efficient polynomial multiplication. While NTT speeds
up computations, it introduces hardware overhead due to

50

Vv

modular arithmetic and parallel operations. Ducas et al. [[1]
showed NTT optimizations reduce latency by up to 40%
on embedded platforms. However, lattice-based algorithms
still require moderate memory (1-3 kB RAM for keys) and
scalable parameters, making them demanding for limited
devices. Kannwischer et al. [2]] demonstrated Kyber on ARM
Cortex M4, using less than 10 kB RAM, although it is less
energy efficient than hash-based schemes.

Code-based algorithms, such as McEliece and BIKE, rely
on decoding random linear codes. They are computationally
lightweight, using matrix multiplications and sparse linear
algebra, but suffer from large key sizes (often over 1 MB).
Chou et al. [3]] reduced McEliece keys by 50% on STM32
microcontrollers, but compressed keys still overload flash
storage, limiting their use in memory-constrained devices.

Hash-based algorithms, such as SPHINCS+ and XMSS
[4], use cryptographic hash functions (e.g. SHA-3 or
SHAKE-256). They are computationally simple, relying on
iterative hashing, and are lightweight and parallelizable.
Bernstein et al. [S] showed SPHINCS+ runs on 8-bit AVR
microcontrollers with just 2 kB RAM, making it suitable for
energy-constrained IoT devices. However, stateless schemes
like SPHINCS+ produce large signatures (up to 41 KB),
while stateful schemes (e.g., XMSS) require nonvolatile
memory (NVM) for state tracking. Bernstein et al. [6]
noted that parallelizing hash chains improves throughput but
increases area overhead, limiting cost-sensitive applications.

Multivariate and isogeny-based algorithms are niche cate-
gories with limited embedded adoption. Multivariate schemes
like Rainbow involve solving nonlinear polynomial equa-
tions, leading to computationally intensive operations and
large keys (often over 100 kB). Isogeny-based schemes, such
as SIKE [7/]], use complex elliptic curve isogeny computations
that are sequential and hard to accelerate. Koziel et al. [§]
showed that SIDH FPGA implementations require significant
area and power, even with optimizations. Table [[] compares
cryptographic families in computational complexity, memory
footprint, energy efficiency, and flexibility.

The National Institute of Standards and Technology
(NIST) has narrowed the candidates to a few final-
ists,including CRYSTALS-Kyber and McEliece [9]]. Nonethe-
less, embedded systems, characterized by their limited com-

http://arxiv.org/abs/2504.13537v1

TABLE I: Comparison of Cryptographic Families

Family Computational Complexity Memory Footprint Energy Efficiency = Implementation Flexibility
Lattice-Based Medium-High (NTT) Medium (1-3 kB RAM) Medium High (scalable parameters)
Code-Based Low Very High (>1 MB) Low Low (fixed key sizes)
Hash-Based Low Low (<2 kB RAM) Very High Medium (state management)
Multivariate Very High High (100 kB) Very Low Low
Isogeny-Based Very High Medium (10 kB) Very Low Low

putational power and memory, present unique challenges for
PQC implementation. Achieving successful deployment of
these candidates on embedded systems necessitates a com-
prehensive analysis of the hardware complexity associated
with these PQC algorithms. Thus, this paper conducts an
exhaustive examination of the hardware complexity involved
in deploying PQC within such systems, with a particular
emphasis on CRYSTALS-Kyber and McEliece. This paper
makes several key contributions to the field of PQC in
embedded systems:

o Comprehensive analysis: The paper provides a detailed
analysis of the hardware complexity of PQC algo-
rithms, categorizing them into families based on their
underlying mathematical problems, and discussing their
computational, memory, and energy profiles.

o Optimization strategies: The paper explores optimization
strategies such as pipelining, parallelization, and high-
level synthesis (HLS) to improve the performance and
energy efficiency of PQC implementations in embedded
systems.

o Complexity comparison: It offers a detailed complexity
analysis of two leading PQC candidates, CRYSTALS-
Kyber and McEliece, comparing their key generation,
encryption, and decryption processes in terms of com-
putational complexity, memory footprint, and energy
efficiency.

II. OPTIMIZATION STRATEGIES

In this section, we propose optimization strategies that
improve the performance of PQC algorithms in embedded
systems by focusing on techniques that improve computa-
tional efficiency and resource management. We will explore
methods such as pipelining, parallelization, and efficient use
of hardware resources to maximize algorithmic throughput
and reduce execution time.

A. Pipelining and Parallelization

Pipelining involves breaking down a complex task into a
series of smaller tasks, each performed at a different stage
of a pipeline [10]. This allows for parallel processing, where
multiple tasks can be executed simultaneously, reducing the
overall processing time. Pipelining can be applied to various
stages of the cryptographic process, such as key generation,
signature generation, and signature verification [11]. For

example, the CRYSTALS-Dilithium scheme uses a pipelined
processing method to reduce both storage requirements and
processing time [10]]. Similarly, the Picnic digital signature
scheme uses a pipelined approach to optimize its hardware
implementation, resulting in a significant reduction in clock
cycle count and energy consumption [L1].

Parallelization, on the other hand, involves dividing a task
into smaller subtasks that can be executed concurrently by
multiple processing units [12]. This can be achieved using
parallel architectures, such as multi-core processors or spe-
cialized accelerators. For instance, the RISQ-V architecture
[12] integrates tightly coupled accelerators directly into the
processing pipeline to speed up lattice-based cryptography.
The accelerators include an arithmetic unit for vectorized
modular arithmetic and NTT operations, a vectorized mod-
ular multiply accumulate unit, a Keccak accelerator for the
pseudo-random bit generation, and a binomial sampling unit
for the generation of binomially distributed samples.

Pipelining and parallelization can be combined to further
improve performance. For example, the design of the ”coding
for energy reduction with multiple encryption techniques”
(CERMET) architecture incorporates both pipelining and
process parallelization to improve efficiency [13]. The sys-
tem operates fully pipelined, ensuring that no throughput
is lost compared to a conventional cryptographic system,
and maintains throughput despite additional data processing
steps. However, pipelining and parallelization can also intro-
duce additional complexity and overhead. For example, the
polynomial factorization method used in parallel quantum
signal processing can reduce the depth of the query by
a factor O(k), but it comes with an increased number of
measurements O (poly(d)2°*)) [[14], where k is the module
rank.

B. High-Level Synthesis (HLS)

It automates design, creating hardware from algorithm
descriptions. It optimizes post-quantum cryptography (PQC)
for better performance, energy efficiency, and security. A
hybrid HLS strategy combines state-based and performance-
driven approaches, using periodic state machine models for
precise timing and reduced energy use [15]. Another HLS
optimization strategy is the use of a hierarchical post-route
quality of results (QoR) prediction approach. This approach
estimates latency and post-route resource usage from C/C++
programs and uses a graph construction method to represent

the control and data flow graph of source code and the effects
of HLS pragmas. The approach also uses a hierarchical
graph neural network (GNN) training and prediction method
to capture the impact of loop hierarchies [16]. However,
HLS optimizations can also affect the security and relia-
bility of cryptographic implementations. For example, HLS
optimizations can compromise the properties of counter-
measures implemented using HLS, such as masking and
hiding countermeasures. Therefore, secure circuit designers
should be careful when using an HLS flow to integrate SCA
countermeasures [[17].

C. Algorithmic Optimizations

Optimizing the algorithms themselves can also reduce
the hardware complexity. For example, using more efficient
mathematical techniques can help reduce computational and
memory requirements. Difference optimization strategies can
be employed to improve the performance of PQC algorithms,
such as:

1) Hybrid approach: combines quantum key distribution
(QKD) with PQC for authentication purposes [[18]]. This can
be particularly useful for protecting highly loaded communi-
cations links at a distance, where intermediate nodes may not
be necessary. Additionally, standardization processes, such as
those led by the NIST, can help identify and standardize post-
quantum algorithms for stateless digital signatures and key
encapsulation mechanisms/public key encryption.

2) Signature lifting: allows users who failed to migrate
to PQC in time to still use pre-quantum signature schemes
while protecting against quantum attacks [19]. This can be
achieved by lifting a deployed pre-quantum signature scheme
satisfying a certain property to a post-quantum signature
scheme that uses the same keys.

3) Quantum approximations: can also be beneficial for
optimizing PQC algorithms. For example, a quantum mean
value approximation can be used to approximate the density
of the lattice basis, which can be used to improve the
performance of lattice-based cryptography [20].

4) Quantum binary field multiplication: can optimize
PQC operations, which can achieve a Toffoli depth of one
for any field size, making it more efficient for quantum
cryptanalysis of ECC [21]].

Algorithm [Tl summarizes the proposed process to optimize
the implementation of PQC in embedded systems, specif-
ically for the CRYSTALS-Kyber and McEliece schemes.
It consists of key generation, encryption, and decryption.
Kyber constructs a public key using a polynomial matrix,
while McEliece employs a Goppa code with scrambling and
permutation matrices. The encryption and decryption pro-
cesses involve modular arithmetic and error correction. The
algorithm integrates pipelining, high-level synthesis, modular
reduction, and memory optimization to enhance efficiency
while maintaining security in embedded systems.

Pivclini d > executed subsequently
7 Plp elllnipg an > executed concurrently
arallelization > combined both

QoR

& Hybrid HLS

> Hybrid approach
> Signature lifting
> Quantum approximations
~ Quantum binary
field multiplication

Optimization
Strategies

Algorithmic
Optimizations

Fig. 1: Optimization Strategies

III. COMPLEXITY ANALYSIS

A. CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based cryptosystem that
relies on the module learning with errors (Module-LWE)
problem. The security of Kyber is based on the difficulty
of solving the Module-LWE problem, even for quantum
computers, making it a strong candidate for post-quantum
cryptography. The Kyber is a key encapsulation mechanism
(KEM) that is part of the “cryptographic suite for alge-
braic lattices” (CRYSTALS) suite, which is designed to be
secure against quantum computers. It operates in the ring
R, = Zy[X]/(X™ + 1), where ¢ is a prime modulus, n
is the degree of polynomial, typically a power of 2, and
X™ 41 is the irreducible polynomial defining the ring [22].
To analyze the complexity, the operations primarily involve
matrix-vector and vector-vector operations over polynomial
rings. A breakdown of key operations of the kyber and their
complexities is

o The key generation process involves first generate matrix
Ae R’;Xk, where £ is the security parameter, typically
2, 3, or 4. Then generate a secret key vector s € R(’; from
a centered binomial distribution 7. And finally generate
public key t = A - s + e, where ¢ € R} is a small
error vector sampled from the same distribution 1, which
is a discrete Gaussian-like distribution. This operation
has a complexity of O(k? - n), where k is the module
rank, i.e. 2, 3, or 4, and n is the polynomial degree,
e.g. 256. Therefore the FLOPs for this matrix-vector
multiplication is 2k%n.

o The encryption process involves first generate random-
ness r € R’q" from the distribution 7, then compute
ciphertext (u,v), as u = AT -7 + e, and v =
tT . r + €2 + encode(m), where e; € R’; and ez € R,
are small error, and encode(m) is the encoded message
m.Each matrix-vector multiplication in encryption has
a complexity of O(k? - n), which results in a total of
2k2n FLOPs.

o The decryption process involves first recovering the
message m by computing v — s” - u, which should
be close to encode(m) due to small errors. This is

Algorithm 1: Optimized Post-Quantum Cryptogra-
phy Implementation in Embedded Systems

Input: Security parameter k, Polynomial degree n,
PQC scheme (Kyber or McEliece)
Output: Optimized Key Generation, Encryption, and
Decryption

/* Step 1: Key Generation */

if Scheme == Kyber then

Generate random matrix A € R¥*k.

Sample secret key vector s € R?; and error vector
e € Rl

Compute public key: t = A - s + e;

end

else if Scheme == McEliece then

Choose Goppa code parameters (n, k,t);

Generate scrambling matrix S € F5** and
permutation matrix P € F5*"™;

Compute public key: G’ =5 -G - P;

end

/* Step 2: Encryption */

if Scheme == Kyber then

Generate randomness 7 € quC and error terms
€1, €2;

Compute ciphertext: u = AT - r + e,
v =1t 7+ ey + encode(m);

end

else if Scheme == McEliece then

Compute codeword: ¢ = m - G’;

Generate random error vector e € F3 with
Hamming weight < ¢;

Compute ciphertext: y = ¢ + ¢;

end

/* Step 3: Decryption */

if Scheme == Kyber then

| Recover message: m = decode(v — s

end

else if Scheme == McEliece then
Apply permutation: 3’ =y - P~1;
Decode using Goppa decoding algorithm to

T u);

recover c’;
Recover message: m = ¢ - G~1. 571
end
/* Optimization Strategies */

foreach Optimization technique in [Pipelining, HLS,
Modular Reduction, Memory Optimization] do
| Apply technique to relevant PQC operation;

end

return Optimized Key Generation, Encryption, and
Decryption;

an operation of the inner product with a complexity of
O(k.n). This results in 2kn FLOPS.

Overall, Kyber is efficient in terms of key generation and
decryption, with smaller key sizes and lower computational
overhead, making it suitable for constrained environments.

B. McEliece

The McEliece cryptosystem is one of the earliest public-
key cryptosystems, proposed by Robert McEliece in 1978
[23]. It is based on error-correcting codes, specifically binary
Goppa codes, and is considered a strong candidate for post-
quantum cryptography because of its resistance to attacks by
quantum computers. It relies on the hardness of decoding
a random linear code, which is a well-known problem in
coding theory. The key components are: (1) linear codes
C of length n and dimension k£ over a finite field F, are
a subspace k of dimensions of Fj. It can be represented
by a generator matrix G of size k x n. And (2) Goppa
codes, which is a specific class of linear codes with efficient
decoding algorithms. Goppa codes are used in McEliece
because they allow for efficient error correction. The security
of McEliece relies on the fact that decoding a random linear
code is a hard problem, even for quantum computers. To
analyze the complexity of McEliece operations, it involves
matrix multiplications, inversions, and error correction. A
breakdown of its key operations and their complexities is
provided below.

o The key generation process involves first choosing a
Goppa code C with parameters (n, k, t), which are the
length, dimension of the codes, and error correction
ability, respectively. Then generate a random scrambling
matrix S of & x k over Fy, and generate a random
permutation matrix P of n x n. Finally, compute the
transformed generator matrix G’ = S-G- P, so the public
key is (G',t), where ¢ is the error correction capability.
This matrix-matrix multiplication has a complexity of
O(n?), where n is the length of the code. Thus, the
number of FLOPs is 2n3.

o The encryption process involves encrypting a message
m € F% by computing the codeword ¢ = m - G’ and
generating a random error vector e € Fy with Hamming
weight wi(e) < t, and finally the ciphertext is calculated

y = c + e. This matrix vector multiplication has a
complexity of O(n?), therefore the number of FLOPs
is 2n2.

o The decryption process starts with decoding the cipher-
text y applying the permutation 3/ = - P~!, and using
the efficient decoding algorithm for the Goppa code to
correct errors in 3’ and recovering the codeword ¢’ by
computing m’ = ¢ - G, where G~! is the inverse
of the generator matrix GG. Then apply the inverse of
the scrambling matrix m = m’ - S —1 where m is the
decrypted message. This also has a complexity of O(n?)
for efficient decrypting algorithms.

C. Comparison of Complexities

CRYSTALS-Kyber and McEliece differ significantly in
their mathematical foundations and computational complex-
ities. Kyber, based on lattice problems, is more efficient
in terms of key generation and decryption, with smaller
key sizes and lower computational overhead. This makes
it particularly suitable for constrained environments and
applications where key size and computational efficiency are
critical. On the other hand, McEliece, based on coding theory,
is efficient for encryption but suffers from large key sizes
and higher key generation complexity. Based on Table [
McEliece has a higher complexity compared to Kyber by
key generation. This is because McEliece involves matrix-
matrix multiplications, which are more expensive than the
matrix-vector operations in Kyber. In the encryption process,
McEliece is slightly more efficient compared to Kyber, as
it only requires matrix-vector multiplication. Kyber is more
efficient than McEliece for decryption, as it requires only
inner product operations. In terms of parameter sizes, Kyber
typically uses smaller parameters, like n = 256,k = 2, 3,4,
while McEliece uses larger parameters, such as n = 1024.
This makes Kyber more efficient in practice for key sizes and
computational overhead.

TABLE II: Complexity Comparison Between CRYSTALS-
Kyber and McEliece

Operation CRYSTALS-Kyber McEliece
Key Generation O(k2n) O(n3)
Encryption O(k2n) O(n?)
Decryption O(kn) O(n?)

IV. NUMERICAL ANALYSIS COMPARISON

The numerical analysis is conducted employing the pa-
rameters specified in Table [l and Table IVl Kyber is
characterized by three distinct security levels, each associated
with a specific set of parameters. Similarly, McEliece is char-
acterized by a variety of parameter sets that are determined
based on the code length and the error-correcting capability.

TABLE III: Kyber Security Levels and Parameters

Security Module Polynomial Key Size Ciphertext
Level Rank (k) Degree (n) (Bytes) Size (Bytes)
Kyber512 2 256 800 768
Kyber768 3 256 1184 1088
Kyber1024 4 256 1568 1568

TABLE IV: McEliece Security Levels and Parameters

Security Code Error-Correcting Key Size Ciphertext
Level Length (n) Capability (t) (Bytes) Size (Bytes)
348864 3488 64 261,120 128
460896 4608 96 524,160 188
6688128 6688 128 1,044,480 240

Fig. 2| compares the key sizes of CRYSTALS-Kyber and
McEliece across different security levels (128-bit, 192-bit,

256-bit). The key size is a critical metric as it influences
both the storage requirements and transmission overhead
within cryptographic systems. CRY STALS-Kyber has signifi-
cantly smaller key sizes compared to McEliece. For example,
Kyber512 (128-bit security) has a key size of 800 bytes,
while McEliece-348864 (128-bit security) has a key size
of 261,120 bytes. As the security level increases, the key
sizes for both grow. However, the key sizes of McEliece
continue to be several orders of magnitude greater than those
of Kyber. Therefore, Kyber is more suitable for applications
with limited storage or bandwidth, such as IoT devices or
mobile communication.

6
2,000 I I 107 I I

CRYSTALS-Kyber 1,568 N McEliece — |

1,184
5.24-10°
0.5 b

| 800 18 s
500 - 1
0 ' ' ' 0

512 768 1024
(a) Kyber

—
o
=)
S

Key Size (Bytes)
=
(=1
(=]

Key Size (Bytes)

2.61-10°

348864 460896 6688128
(b) McEliece

Fig. 2: Key Size

Fig. compares the computational complexity of
CRYSTALS-Kyber and McEliece in terms of FLOP counts
for key generation, encryption, and decryption. FLOP counts
provide a measure of the computational effort required for
each operation. CRYSTALS-Kyber has much lower FLOP
counts for all operations compared to McEliece. For ex-
ample, Kyber-512 requires 2048 FLOPs for key generation,
while McEliece-348864 requires 8.510'° FLOPs. Encryption
and decryption in Kyber are also significantly faster, with
FLOP counts in the thousands, compared to FLOP counts
of McEliece in the millions or billions. Kyber is more
efficient in terms of computational resources, making it better
suited for resource-constrained environments or real-time
applications.

o
ot
-~

1010 |- JOCRYSTALS-Kyber (Kyber-512) ||
00 McEliece (McEliece-348864)
8 |
10 16.99 16.99
£
=
S
o 1091 h
o)
s}
53
10* y 8.32 A
7.62 6.93
1(]2 | ’7 H |
T
Key Generation Encryption Decryption

Fig. 3: FLOP Count

Fig. d compares the ciphertext sizes of CRYSTALS-Kyber
and McEliece at different security levels. The size of the
cryptotext is important because it affects the amount of data
that must be transmitted during encryption. CRYSTALS-
Kyber has larger ciphertext sizes compared to McEliece.
For example, Kyber512 has a ciphertext size of 768 bytes,
while McEliece-348864 has a ciphertext size of 128 bytes.
However, the difference in ciphertext sizes is much smaller
than the difference in key sizes. Although McEliece has
smaller ciphertexts, its large key sizes and high computational
complexity make it less practical for many applications. The
marginally larger ciphertexts of Kyber are counterbalanced by
its reduced key sizes and diminished computational overhead.

2,000 ! L 300 | |
_ 00 CRYSTALS-Kyber 1568 ~ 00McEliece 210
£ 1,500 |- 42
= 8 200 188 e
5 1,088 o
@ 1,000 &
»n 1, = -
% 768 % 128
8 8
5 5 100 e
S 500 4 &
@) o
0 T T T 0 T T T
512 768 1024 348864 460896 6688128
(a) Kyber (b) McEliece

Fig. 4: Ciphertext Size

V. CONCLUSION

The paper examines the implementation of post-quantum
cryptography (PQC) in embedded systems constrained by
computational power, memory, and energy. It catego-
rizes PQC algorithms into families: lattice-based, code-
based, hash-based, and multivariate/isogeny-based schemes,
each with unique challenges. Lattice-based schemes like
CRYSTALS-Kyber require moderate memory and significant
hardware for polynomial arithmetic. Code-based schemes
like McEliece have large key sizes. Hash-based schemes such
as SPHINCS+ have simple computation but large signatures,
while multivariate/isogeny-based schemes demand too many
resources. Optimization through pipelining, parallelization,
and high-level synthesis can improve performance and energy
efficiency while balancing security. CRYSTALS-Kyber suits
constrained environments for key generation and decryp-
tion, unlike McEliece. Future research should explore new
techniques and memory improvements to reduce hardware
complexity, as quantum computing develops.

REFERENCES

[1] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium algorithm specifications and sup-
porting documentation,” 2017.

[2] M. J. Kannwischer, M. Krausz, R. Petri, and S.-Y. Yang, “pqm4:
Benchmarking nist additional post-quantum signature schemes on
microcontrollers,” Cryptology ePrint Archive, 2024.

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

M.-S. Chen and T. Chou, “Classic mceliece on the arm cortex-
m4,” JIACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 125-148, 2021.

J. A. Buchmann, E. Dahmen, and A. Hiilsing, “Xmss - a practical for-
ward secure signature scheme based on minimal security assumptions,”
IACR Cryptol. ePrint Arch., vol. 2011, p. 484, 2011.

D. J. Bernstein, A. Hiilsing, S. Kolbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The sphincs+ signature framework,” in Proceedings of
the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2129-2146.

D. J. Bernstein, S. Kolbl, S. Lucks, P. M. C. Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo et al.,
“Gimli: a cross-platform permutation,” in Cryptographic Hardware
and Embedded Systems—CHES 2017: 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings. Springer, 2017,
pp- 299-320.

R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Su-
persingular isogeny key encapsulation,” Submission to the NIST Post-
Quantum Standardization project, vol. 152, pp. 154-155, 2017.

B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-
quantum cryptography on fpga based on isogenies on elliptic curves,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 1, pp. 86-99, 2016.

M. Bandaru, S. E. Mathe, and C. Wattanapanich, “Evaluation of
hardware and software implementations for nist finalist and fourth-
round post-quantum cryptography kems,” Computers and Electrical
Engineering, vol. 120, p. 109826, 2024.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu,
S. Yin, S. Wei, and L. Liu, “A compact and high-performance hardware
architecture for crystals-dilithium,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2022, pp. 270-295, 2021.

G. Liu, K. Jia, P. Wei, and L. Ju, “High-performance hardware
implementation of mpcith and picnic3,” JACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2024, pp. 190-214, 2024.

T. Fritzmann, G. Sigl, and M. J. Sepulveda, “Risq-v: Tightly coupled
risc-v accelerators for post-quantum cryptography,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 446, 2020.

J. Woo, V. A. Vasudevan, B. Z. Kim, A. Cohen, R. G. L. D’Oliveira,
T. Stahlbuhk, and M. M’edard, “Cermet: Coding for energy reduction
with multiple encryption techniques - it’s easy being green,” ArXiv,
vol. abs/2308.05063, 2023.

J. M. Martyn, Z. M. Rossi, K. Z. Cheng, Y. Liu, and I. Chuang,
“Parallel quantum signal processing via polynomial factorization,”
2024.

Y. Liao, T. Adegbija, and R. L. Lysecky, “A high-level synthesis
approach for precisely-timed, energy-efficient embedded systems,”
ArXiv, vol. abs/2404.14769, 2022.

M. Gao, J. Zhao, Z. Lin, and M. Guo, “Hierarchical source-to-post-
route qor prediction in high-level synthesis with gnns,” 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.
1-6, 2024.

A.-A. Koufopoulou, K. Xevgeni, A. Papadimitriou, M. Psarakis, and
D. Hély, “Security and reliability evaluation of countermeasures im-
plemented using high-level synthesis,” 2022 IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
pp- 1-8, 2022.

S. E. Yunakovsky, M. Kot, N. O. Pozhar, D. Nabokov, M. A. Kudinov,
A. Guglya, E. O. Kiktenko, E. Kolycheva, A. Borisov, and A. K.
Fedorov, “Towards security recommendations for public-key infras-
tructures for production environments in the post-quantum era,” EPJ
Quantum Technology, vol. 8, 2021.

O. Sattath and S. Wyborski, “Protecting quantum procrastinators
with signature lifting: A case study in cryptocurrencies,” ArXiv, vol.
abs/2303.06754, 2023.

D. Joseph, A. J. Martinez, C. Ling, and F. Mintert, “Quantum mean-
value approximator for hard integer-value problems,” Physical Review
A, 2021.

K. B. Jang, W. Kim, S. Lim, Y. L. Kang, Y. Yang, and H. Seo,
“Quantum binary field multiplication with optimized toffoli depth and

[22]

(23]

extension to quantum inversion,” Sensors (Basel, Switzerland), vol. 23,
2023.

F. R. Ghashghaei, Y. Ahmed, N. Elmrabit, and M. Yousefi, “En-
hancing the security of classical communication with post-quantum
authenticated-encryption schemes for the quantum key distribution,”
Comput., vol. 13, p. 163, 2024.

R. J. McEliece, “A public-key cryptosystem based on algebraic,”
Coding Thv, vol. 4244, pp. 114-116, 1978.

	Introduction
	Optimization Strategies
	Pipelining and Parallelization
	High-Level Synthesis (HLS)
	Algorithmic Optimizations
	Hybrid approach
	Signature lifting
	Quantum approximations
	Quantum binary field multiplication

	Complexity Analysis
	CRYSTALS-Kyber
	McEliece
	Comparison of Complexities

	Numerical Analysis Comparison
	Conclusion
	References

