
ar
X

iv
:2

50
4.

13
39

8v
2

 [
cs

.C
R

]
 8

 J
un

 2
02

5

Insecurity Through Obscurity: Veiled Vulnerabilities in Closed-Source Contracts

Sen Yang∗†, Kaihua Qin∗†‡§, Aviv Yaish∗†, Fan Zhang∗†
∗Yale University, †IC3, ‡UC Berkeley RDI, §Decentralized Intelligence AG

sen.yang@yale.edu, kaihua@qin.ac, a@yai.sh, f.zhang@yale.edu

Abstract—Most blockchains cannot hide the binary code of
programs (i.e., smart contracts) running on them. To conceal
proprietary business logic and to potentially deter attacks,
many smart contracts are closed-source and in many cases
exhibit code obfuscation, either intentionally introduced to hide
internal logic or unintentionally produced by optimizations.
However, we demonstrate that such obfuscation can obscure
critical vulnerabilities rather than enhance security, a phe-
nomenon we term insecurity through obscurity. To systemati-
cally analyze these risks on a large scale, we present SKANF,
a novel EVM bytecode analysis tool tailored for closed-source
and obfuscated contracts. SKANF combines control-flow deob-
fuscation, symbolic execution, and concolic execution based on
historical transactions to identify and exploit asset manage-
ment vulnerabilities. Our evaluation on real-world Maximal
Extractable Value (MEV) bots reveals that SKANF detects
vulnerabilities in 1,030 contracts and successfully generates
exploits for 394 of them, with potential losses of $10.6M.
Additionally, we uncover 104 real-world MEV bot attacks that
collectively resulted in $2.76M in losses.

1. Introduction

On public blockchains like Ethereum, all smart contracts
are deployed as bytecode, publicly visible and accessible to
anyone. While transparency is a core feature, it also allows
a contract’s logic to be examined, reverse-engineered, or
copied. As a result, many developers choose not to publish
the source code of their smart contracts, either to protect
proprietary strategies, reduce the risk of attacks, or simply to
raise the barrier of reverse engineering. Furthermore, byte-
code obfuscation is commonly observed, either intentionally
introduced or as a result of optimization [1]–[4].

A prominent example is the Maximal Extractable Value
(MEV) bot — an optimized smart contract deployed by
MEV searchers to perform arbitrage, sandwich attacks and
other on-chain actions to extract MEV [5]. We identify
6,554 closed-source MEV bots as of the time of writing;
Six of the top 10, ranked by the number of transaction
bundles they sent [6], exhibit some form of obfuscation.
There are several plausible reasons along the lines of “secu-
rity through obscurity,” including hiding proprietary MEV
extraction strategies and deterring frontrunning attacks, that
are deemed “essential” by some practitioners [3].

However, our analysis of the recent “Destroyer Inu”
incident (detailed in Sec. A) reveals that obfuscation can

also introduce insecurity. In this case (detailed in Sec. A), 22
ETH (worth $51,056 at the time) were stolen from a closed-
source smart contract equipped with layers of obfuscation.

The attack exploits a well-known vulnerable pattern
(misuse of tx.origin [7] followed by improper asset man-
agement), but existing tools could not detect the full exploit
because of control flow obfuscation. E.g., Mythril [8] recog-
nizes the superficial misuse of tx.origin but misses the much
more severe asset management vulnerability, only reporting
a “low” risk. In this case, obscurity arguably renders the
contract less secure by hindering analysis, making this a
prime instance of insecurity through obscurity [9]1.
This work. Due to the lack of effective analysis tools,
little is known about the security of closed-source smart
contracts, particularly those handling large volumes of assets
and attractive to attackers. In this paper, we aim to develop
effective code analysis techniques to address this gap.

We focus on a broad class of security vulnerabilities that
we refer to as asset management vulnerabilities, issues that
allow an adversary to manipulate a smart contract’s logic to
steal assets (i.e., transferring tokens from the victim to the
attacker herself). While our techniques are general, we use
MEV bots as a real-world testbed to evaluate the efficacy
of our tool and as concrete examples to study the security
of closed-source smart contracts in the wild.

Our goals can be summarized as the following three
research questions (RQs):
• RQ1: How to effectively deobfuscate the control flow

given smart contract bytecode? Vulnerability detection is
only possible if this can be accomplished.

• RQ2: Can we detect asset management vulnerabilities
in closed-source contracts? Even after deobfuscation, de-
tecting such vulnerabilities can be challenging, given the
complexity of MEV bots. Existing tools often timeout
when applied to MEV bots, even without obfuscation.

• RQ3: How many MEV bot contracts have been exploited
in practice, and how much did they lose? Answering
this question helps in understanding the severity of asset
management vulnerabilities and estimating how much loss
could be reduced if SKANF were used by searchers.

We answer these questions using the following methods.
First, we analyze notable attacks on closed-source contracts,

1. Compare this with modern cryptographic schemes following Ker-
ckhoffs’s principle that a system’s security should not be compromised
if adversaries uncover its method of operation [10], or, in the words of
Shannon: “the enemy knows the system” [11].

https://arxiv.org/abs/2504.13398v2

and distill the vulnerabilities that allowed them and the
methods used to execute them. Then, we use our new-
found understanding to devise a novel deobfuscator that
successfully uncovers crucial parts of closed-source con-
tracts which are opaque to established tools. Making use
of our deobfuscator and insights, we build a vulnerability
inspector and an automatic attack generator. We combine our
deobfuscator, vulnerability inspector and attack generator
into a tool we call SKANF. 2. By applying SKANF to closed-
source contracts we collect, we count the number of closed-
source contracts that have potential security vulnerabilities
and automatically synthesize the exploits against them. We
further estimate a lower bound of the amount of funds that
can be taken from them using historical Ethereum data.

1.1. Challenges

Numerous tools [8], [12]–[15] are available to identify
and exploit smart contract bugs. To illustrate the challenges
in answering our research questions, we highlight three core
limitations that render existing tools inefficient for our tasks.
Control-flow obfuscation. Languages like Solidity and
Vyper rely on jump tables with static jump destinations
to manage function dispatch and control flow. However,
contracts may employ “indirect” jumps to make the control
flow dependent on runtime values to achieve obfuscation.

To the best of our knowledge, no existing tool effectively
handles control flow obfuscation. State-of-the-art static anal-
ysis tools, such as Gigahorse [15]–[17], classify basic blocks
as unreachable when a contract relies on indirect jumps to
determine control flow. Decompilation tools such as Dedaub,
which claims to “successfully decompile over 99.98% of
deployed contracts on the Ethereum blockchain” [12], fail
to function effectively when facing control flow obfuscation.
For instance, Dedaub can only analyze 4% of code in the
top-2 obfuscated MEV bots. Symbolic execution tools like
Mythril [8], ETHBMC [13], and Greed [14], [18] raise
errors when jump destinations are symbolic.
Lack of fine-grained analysis. Correctly detecting asset
management vulnerabilities requires a fine-grained analysis
of a smart contract’s logic, and simple pattern matching as
done by existing tools does not suffice. E.g., JACKAL [14]
flags CALL instructions with a fixed function selector as
safe, overlooking vulnerabilities where function parameters
are manipulated (instead of the function selector). As an-
other example, one may flag tx.origin-based authen-
tication as insecure (as it appears similar to tx.origin
phishing [7]), but later steps may rectify the problem.
Performance due to complex logic. In addition to asset
management, the contracts we focus on also involve trading,
flash loans, swaps on different DEXs, and other operations
and interactions. This complexity leads to performance is-
sues in static analysis, as the tools must analyze many
control-flow paths and resolve intricate data-flow dependen-
cies, increasing both processing time and memory usage.

2. The name SKANF stands for Sen, Kaihua, Aviv ’n Fan.

Moreover, the rapid growth of execution paths and the
complexity of constraints make symbolic execution ineffi-
cient due to path explosion and the high computational cost
of constraint solving. While some tools support concolic
execution [8], generating high-quality seed input remains a
manual process that does not scale.

1.2. Our Methods

Recovering control flow. We propose a method to de-
obfuscate control flows exploiting the following EVM fea-
ture: Unlike traditional instruction sets such as x86-64 or
ARM64, where jump instructions can target any executable
address, the EVM requires all valid jump destinations to
be explicitly marked with a JUMPDEST instruction [19].
This allows us to determine the boundaries of basic blocks
directly from the bytecode and reconstruct jump tables,
even when jump destinations are determined dynamically
at runtime. Our tool can instrument the bytecode with a
reconstructed jump table to improve the code coverage of
subsequent analysis, which is crucial for efficacy.

Detecting asset management vulnerabilities. To not
rely on a specific pattern for detecting asset management
vulnerabilities, we broadly look for vulnerable calls in the
bytecode of a smart contract that an adversary can trigger
with adversarial parameters. As a naive example, if a smart
contract exposes a CALL instruction where the adversary
can set the target function as well as its input, the adversary
can call WETH.transfer with the “to” parameter set to
itself to drain the victim’s WETH. Many attacks, however,
do not require the adversary to control all inputs.

Our approach draws inspiration from traditional program
vulnerability detection, where the combination of symbolic
execution and taint analysis has been used to address similar
problems [20]. To detect asset management vulnerability,
we first use symbolic execution to identify execution paths
leading to a CALL statement. Then, we apply taint analysis
to examine whether the inputs to the CALL statement can
be controlled by an adversary. Attacks are possible even
if the adversary cannot control the entirety of the inputs,
so we carefully enumerate cases where an adversary can
manipulate critical parameters, such as the recipient address
for approve or transfer.

Concolic execution based on historical transactions. As
mentioned above, symbolic execution by itself does not
scale to handle real-world smart contracts of interest. Con-
colic execution solves this issue by combining concrete
and symbolic execution to mitigate path explosion [21]. By
leveraging concrete seed inputs to guide path exploration
and simplify constraint solving, concolic execution can re-
duce the search space, improving efficiency. The “quality” of
the seed input is critical, but there are no general algorithms
to generate high-quality ones.

We observe, however, that high-quality inputs are readily
available on the blockchain: historical transactions are pub-
lic, and many of them invoke CALL instructions through

various paths. This allows us to automatically extract high-
quality seed inputs from external and internal transactions
recorded on the blockchain, significantly improving runtime
performance and the efficacy of vulnerability detection.

1.3. Implementation and Evaluation of SKANF

Putting these ideas together, we developed SKANF based
on Gigahorse [15] and Greed [14], [18]. At a high level,
SKANF takes the bytecode and the historical transactions of
a given smart contract as the input and outputs exploits if
the smart contract is vulnerable.

The workflow of SKANF consists of three stages. First, it
performs static analysis to detect indirect jumps and attempts
to deobfuscate the control flow by inserting a branch table
that converts all indirect jumps into direct jumps. Second,
SKANF parses the contract’s historical transactions as con-
crete seed input for concolic execution and identifies asset
management vulnerabilities during the execution. For each
identified vulnerability, SKANF synthesizes exploits using
constraint-solving, with adversary-controlled parameters —
such as the ERC-20 token address and transfer amount — as
constraints. The exploit is then validated and reported.
Evaluation results. To evaluate the efficacy of SKANF
against real-world smart contracts, we compile a dataset of
6,554 MEV bot contracts and assess SKANF alongside three
state-of-the-art tools. For each tool, we limit the execution
time to 10 minutes and count the number of vulnerable smart
contracts it can detect. Our evaluation shows that SKANF
outperforms the other tools: it detects 1,030 vulnerable smart
contracts and successfully generates exploits for 394 of
them. If exploited, the potential losses of these vulner-
abilities would exceed 10.6 million USD. In comparison,
ETHBMC [13], JACKAL [14], and Mythril detected 0, 18,
and 89 vulnerable contracts, respectively.

To understand if SKANF can flag attacks that already
happened, we conduct an empirical study on MEV bot
attacks in the wild. We discovered 104 exploits targeting
37 MEV bot contracts, resulting in a total loss of $2.76M.
This confirms that asset management vulnerabilities pose
a serious threat to bot security. 28 of the exploited con-
tracts are flagged by SKANF—had SKANF been available
to developers, a total loss of $2.45M could have been
prevented. Even after these attacks occurred, only three
had been previously reported, probably because no tool was
available to automatically scan for such exploits.

Contributions

To summarize, we make the following contributions:
• We propose a novel deobfuscation method to remove

control flow obfuscation and enable further analysis.
• We propose a concolic execution approach that uses his-

torical transactions of a contract as concrete inputs to
identify potential vulnerabilities in smart contracts.

• Building on these two techniques, we implement SKANF.
We plan to release the code publicly.

• We evaluate the efficacy of SKANF against real-world
closed-source and obfuscated smart contracts. SKANF
identifies 1,030 vulnerable contracts and automatically
exploits 394 of them. The potential losses of these vul-
nerabilities exceed $10.6M.

• We discover 104 real-world attacks targeting MEV bots,
which we categorize as MEV phishing attacks. These
attacks have resulted in an estimated loss of $2.76M. Of
the attacked smart contracts, 28 are flagged by SKANF.

Responsible Disclosure. As our exploits can readily com-
promise existing smart contracts, we responsibly disclosed
them to the affected parties through a dedicated blockchain
messaging service (Blockscan Chat by Etherscan [22]),
following the same disclosure practice adopted by prior
research [23]. Moreover, we adhere to several additional
responsible practices. All exploits are tested on a local
replica of the Ethereum blockchain, isolated from the public
network. Unless the attacks have occurred in the wild and
the vulnerabilities are publicly known, we do not disclose
the specific addresses of vulnerable contracts in the paper.

2. Preliminaries

2.1. Ethereum and Smart Contracts

Ethereum. Ethereum [19] is the second-most popu-
lar blockchain, and the foremost smart contract-enabled
blockchain. It relies on a Proof-of-Stake (PoS) mechanism,
wherein actors can become part of the set of validators oper-
ating the blockchain by staking (i.e., depositing) Ethereum’s
native token, ETH. Ethereum’s mechanism sequentially as-
signs one validator to propose a block, i.e., a batch of
transactions, every 12 seconds. The validator chosen to act
as a proposer has a free hand in constructing its block.
MEV supply chain. Today’s Ethereum block construction
pipeline involves several specialized entities. At one end,
we have searchers who identify profitable opportunities,
e.g., transactions that can be front-run [24], and assemble
transaction bundles that exploit them. These bundles are then
sent to builders, who specialize in constructing profitable
blocks, and who compete in an auction-esque process to
have their blocks chosen by upcoming proposers.
Smart contract. Smart contracts are computer programs
stored and executed on the blockchain. Once deployed, con-
tracts can be invoked and interacted with using transactions.
Ethereum contracts are specified in EVM bytecode, but can
be written using high-level languages like Solidity [25] and
then compiled for deployment [19]. Sophisticated developers
can optimize contracts–e.g., to reduce gas costs–by directly
writing bytecode or using low-level languages like Huff [1].
While Ethereum smart contracts are stored on-chain using
low-level EVM bytecode, developers can open-source their
contracts’ high-level code on platforms like Etherscan [26].

The Application Binary Interface (ABI) specifies how to
encode function calls and decode responses when interacting
with a smart contract on Ethereum. If a contract is open-
sourced, its ABI becomes publicly accessible; otherwise, the

ABI is unavailable, making it difficult for the public to know
how to interact with the contract.

The EVM is the execution environment for Ethereum
smart contracts. The EVM is stack-based, meaning oper-
ations are performed by manipulating data on a last-in-
first-out (LIFO) stack rather than via registers. Contracts
are specified using low-level EVM bytecode composed of
opcodes such as CALL, JUMP, and JUMPI. Control flow is
handled by JUMP and JUMPI, which provide unconditional
and conditional branching, respectively.
Indirect jump. In the EVM, an indirect jump occurs
when a jump instruction (JUMP/JUMPI) is executed and
the top stack value (i.e., the jump destination) is not a
statically known constant, but rather a runtime-computed
value. Obfuscation techniques often rely on indirect jumps to
hide control flow, making it difficult to statically determine
which path may be executed.
External call. During execution, a smart contract can
invoke another contract or externally owned account
(EOA) using one of four opcodes: CALL, CALLCODE,
DELEGATECALL, and STATICCALL. These opcodes en-
able the caller to pass along Ether (value), execution gas, and
input data (calldata), facilitating inter-contract interactions.
They differ in how the execution context is propagated,
particularly with respect to msg.sender, tx.origin,
and storage access. In this paper, we focus on the CALL in-
struction, which underlies common patterns such as calling
an ERC-20 token’s transfer function; we refer to such
invocations as external calls.

The EVM provides two global variables to track the
source of a call: tx.origin and msg.sender (ac-
cessed via ORIGIN and CALLER opcodes). The variable
tx.origin always refers to the original EOA that initi-
ated the transaction, remaining constant across the entire
call chain. In contrast, msg.sender refers to the im-
mediate caller of the current function, which may be an
EOA or another contract, and it changes with each external
call. For clarity, we refer to tx.origin as origin and
msg.sender as caller throughout the rest of this paper.

We refer to the target contract that an external call aims
to invoke as the target address. The calldata consists of
two parts: the first four bytes, named function selector,
which identify the target function to be executed in the
target contract; and the remaining bytes, which specify the
arguments passed to that function.
Asset management. In this paper, we focus on ERC-20
token assets held by smart contracts. The ERC-20 standard
defines two methods for transferring tokens [27]. An account
can invoke transfer on an ERC-20 token contract to send
tokens directly to another account. Alternatively, it can use
approve to authorize another account to transfer tokens
from its balance using transferFrom.

2.2. Smart Contract Obfuscation

Several obfuscation techniques have been proposed, in-
cluding layout obfuscation [28], [29], data flow obfusca-

tion [28], [29], control flow obfuscation [4], [28], and pre-
ventive transformations [28]. We focus on tackling control
flow obfuscation because it prevents existing detection tools
from functioning correctly, and it is commonly present
among MEV bots (see [4] for empirical evidence).

We confirmed that the layout and data flow obfusca-
tion do not interfere with existing analysis tools. We use
the state-of-the-art obfuscator, BiAn [29] to apply layout
and data flow obfuscation to 67 vulnerable smart contracts
collected from the Smart Contract Weakness Classification
registry [30]. Mythril can still detect vulnerabilities in all of
the obfuscated contracts. In the interest of space, we relegate
details to Sec. B. Preventive transformations, such as self-
destructing after execution to make bytecode unavailable,
are also less concerning due to blockchain’s transparency
and immutability; even a self-destructed smart contract’s
deployment transaction remains permanently recorded and
publicly available for analysis.

2.3. Threat Model

Our adversary model captures the ability of a typical
attacker targeting smart contracts. They can create trans-
actions, deploy smart contracts, and interact with deployed
contracts but cannot access the private keys of other ac-
counts, breach the integrity of the blockchain, or manipulate
the block-building process.
Asset management vulnerability. Our focus is on asset
management vulnerabilities, i.e., vulnerabilities that would
allow an adversary to transfer tokens from the contract’s
account to the adversary’s. In particular, weak adversaries
such as our own can do so when a smart contract relies
on obfuscation to hide its lack of access control checks.
Another possibility is if the smart contract verifies that a
token transfer is allowed by checking if the invoking transac-
tion originated from a white-listed address; then, adversaries
can employ phishing attacks wherein searchers attempt to
interact with a seemingly innocent contract, which then
performs the malicious transfer on the adversaries’ behalf.

3. The design of SKANF

3.1. Overview

The inputs to SKANF are the bytecode of a given smart
contract, and, if they exist, historical transactions can also
be provided to improve performance. Fig. 1 provides an
overview of our system, which consists of several stages:
1) Control flow deobfuscation. First, SKANF identifies and

eliminates control flow obfuscation by reconstructing the
branch table of an input contract to remove indirect
jumps, resulting in cleaner bytecode that allows code
analysis tools to operate correctly.

2) Concolic execution powered by historical transac-
tions. Smart contracts of interest have complex logic and
dependencies, requiring concolic execution to speed up
vulnerability discovery. Unlike tools that rely on manual

Smart Contract
historical transactions

Seed Input
Extraction

Indirect Jumps
Identification

Indirect Jumps
Removal

Vulnerability
Detection

Automatic
Exploit

Generation

Exploit
Validation

bytecode

Exploits

vulnerability
5 64321

(deobfuscated) bytecodeStage a Stage b Stage c

Figure 1. Overview of SKANF. The input consists of the smart contract’s bytecode and historical transactions, while the output is the verified exploit. In
the first stage (a⃝), we identify the obfuscated smart contracts (➀) and recover their control flow information (➁). In the second stage (b⃝), SKANF parses
historical transactions as inputs for concolic execution (➂). Then it identifies potential vulnerabilities within the contract and labels adversary-controllable
parameters (➃). Finally, in the last stage (c⃝), SKANF generates potential exploits for the identified vulnerabilities (➄), which are then validated in ➅.

input [8], SKANF automatically identifies high-quality
data from historical transactions to efficiently guide its
exploration of the input contract’s possibly large number
of logic paths. This stage’s output is a list of potential
vulnerabilities, i.e., insufficiently protected invocations of
CALL that could be exploited to steal assets.

3) Exploit generation and validation. To exploit vulnera-
bilities identified in the previous stage, SKANF crafts for
each one a transaction that triggers the vulnerable CALL
with specific adversarial inputs. A key challenge in this
stage is that an exploit should succeed in executing code
after the said vulnerable CALL. To ensure that exploits
are valid, SKANF executes them in a local environment.

3.2. Control Flow Deobfuscation

In SKANF’s first stage, our goal is to deobfuscate the
target smart contract, thus facilitating further analysis. Tech-
nically, we need to identify indirect jumps (i.e., whose
destinations are determined at runtime) and convert them
to direct ones (whose destinations are statically specified)
to make the control flow explicit and statically analyzable.
Identifying indirect jumps. We begin by scouring the
input bytecode for indirect jumps. A notable difficulty that
is faced when “cleaning up” obfuscated control flow logic
is that the destination of an indirect jump may be based on
dynamic inputs such as calldata. To identify such jumps,
we extract all jump instructions (JUMP and JUMPI) and
build a control flow graph (CFG). We then analyze whether
each jump’s destination depends on dynamic inputs (i.e.,
calldata, value, memory, and storage). Indirect
jumps are recorded in a set J = {(j1, d1), . . . , (jn, dn)},
where ji is the PC of the jump instruction and di is the stack
variable that determines the jump destination at runtime
(e.g., v58, v158 in Fig. 2).

If J is empty, the contract does not use control flow
obfuscation, and SKANF continues to the second stage.
Otherwise, we proceed to deobfuscate the indirect jumps.
Deobfuscation. The EVM’s specification requires that
every valid jump destination must be explicitly marked
with a JUMPDEST instruction [19]. This property allows
us to statically scan the disassembled bytecode, collect all
legal jump destinations, and instrument the bytecode with a

[PC]: [INST]
//...
0x0054: CHAINID
0x0055: CALLDATALOAD
0x0056: PUSH1 0xf0
0x0058: SHR
0x0059: JUMP
//...
0x0155: CALLDATALOAD
0x0156: PUSH1 0xf0
0x0158: SHR
0x0159: JUMPI
//...
0x0a00: JUMPDEST
//...

v58 represents the destination

value on the stack, which is

derived from CALLDATA

Original Code

indirect jump

[PC]: [INST]
//...
0x0054: CHAINID
0x0055: CALLDATALOAD
0x0056: PUSH1 0xf0
0x0058: SHR
 : PUSH 0xe000
0x0059: JUMP
//...
0x0155: CALLDATALOAD
0x0156: PUSH1 0xf0
0x0158: SHR
 : SWAP1 // swap the condition
 : PUSH 0xe000
0x0159: JUMPI
 : POP // clear the stack
//...
0x0a00: JUMPDEST
//...

// Branch table
0xe000: JUMPDEST
0xe001: DUP1 // copy the target destination
0xe002: PUSH2 0x0a00 // the first destination
0xe005: EQ // check if they are equal
0xe006: PUSH2 0xf000
0xe009: JUMPI // jump to 0xf000 if true
0xe00a: DUP1 // otherwise, compare the second
//...

// Intermediate
0xf000: JUMPDEST // intermediate for 0x0a00
0xf001: POP
0xf002: PUSH2 0x0a00
0xf005: JUMP
// ... intermediates for other destinations

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

direct jump

Deobfuscated Code

Handle JUMPI
+
+

+

Handle JUMP

(0x0059, v58)

(0x0159, v158)

direct

jump

direct

jump

Figure 2. Assembly code for the obfuscated smart contract and how to
rewrite the indirect jump as a direct jump by inserting a crafted branch
table. The added lines do not carry a PC value, nor do they affect the PC
of existing ones, as explained in Sec. 3.2.

branch table that replaces indirect jumps with direct jumps
to restore analyzable control flow. This transformation pre-
serves the original control flow while ensuring that jump
destinations are constants encoded in the bytecode.

The idea is best illustrated with an example. Suppose
the original contract contains an indirect jump to an address
stored in variable v. Most static analysis tools struggle to
handle this since there are too many possible branches. Our
idea is to rewrite the code as follows:

1 if v == 0x0a00 : jump 0x0a00
2 else if v == 0x0b00 : jump 0x0b00
3 else if v == ...

where 0x0a00, 0x0b00, and so on, are jump destinations
extracted from the bytecode. The number of branches is
exactly the number of valid jump destinations.

Replacing every jump instruction with a copy of the
above code is inefficient, so we reuse the code by adding
a branch table. A branch table is a structure commonly
used to implement multi-way branching based on a runtime
value. We implement the table as a sequence of conditional
checks against the variable that the input code uses to hold
jump destination addresses (e.g., v58 in Fig. 2). For each
valid destination address, we populate the table with an
entry that jumps to the address if the variable is equal to
it; otherwise, it proceeds to the next entry. In doing so, we
take the contract’s “implicit” and opaque control flow where
destinations are “tucked away” in a variable, and make
it explicit: all possible valid destinations are now clearly
enumerated in the text. To ensure that the added code does
not interfere with existing logic, we cleverly rely on the
24KB (0x6000 bytes) size limit of contract bytecode [31],
and insert our tables at PC 0xe000. Note that any position
after 0x6000 could work.

If the original jump instruction is JUMPI, special han-
dling is required because it involves two stack values: the
jump destination (on top of the stack) and the condition
(just below it). To preserve the original semantics when
redirecting execution to the branch table, we must maintain
the correct stack layout. Before inserting the new jump
destination, we insert a SWAP1 to move the condition to the
top of the stack. This ensures that when the rewritten JUMPI
executes, it evaluates the condition correctly while using the
branch table entry as the destination. We also insert a POP
immediately after JUMPI to remove the unused destination
value from the stack in case the condition is false and the
jump does not occur, thereby avoiding stack imbalance.

To appreciate the subtleties in replacing indirect jumps
in a seamless fashion, we need to dive into the technicalities
involved. For illustration, we refer at each step to the corre-
sponding lines in a corresponding example given in Fig. 2.
For every indirect jump instruction at PC j ∈ J , we
“redirect” the jump destination to our table by rewriting the
bytecode to push 0xe000 onto the stack. Each table entry is
implemented in a manner which accounts for the stack-based
semantics of the EVM: First, the runtime value is duplicated
(see PC 0xe001), and a known destination is pushed (e.g.,
0x0a00 in Fig. 2), allowing us to compare the two using the

EQ instruction (PC 0xe005). If both are equal, the program
jumps to an intermediate “gadget” which cleans up the stack
and performs the final jump (see PC 0xf000–0xf005).
This intermediate step is necessary because the comparison
only consumes the duplicated value, leaving the original
runtime value on the stack. If the comparison fails, execution
continues to the next table entry (e.g., at PC 0xe00a),
which repeats the process for another possible destination.
This continues until a matching entry is found.

In order to prevent bytecode offset shifts, we do not
directly modify the raw bytecode when instructions need
to be injected in PC values lower than 0xe000 (e.g.,
consider the PUSH instruction between PC values 0x0058
and 0x0059). Instead, we apply such changes only when
the analysis of the program operates on a CFG rather than
concrete bytecode offsets. As a result, injected instructions
do not carry PC values. In addition, the branch table includes
all possible jump destinations within the contract. Although
some destinations may not be used at runtime, the evaluation
in Sec. 4.2 shows that this does not introduce significant
overhead.

After this transformation, all jump targets in the contract
are encoded as immediate values, and the control flow
becomes fully explicit and statically analyzable.

3.3. Vulnerability Detection

In this stage, we identify potential asset management
vulnerabilities in the smart contract — specifically, oppor-
tunities for an adversary to steal assets. We define a vulner-
ability oracle that flags any vulnerable CALL instruction as
one that is (1) reachable from a public entry point and (2)
accepts inputs that are either adversary-controlled or fixed
but risky (e.g., a known ERC-20 token address).

Note that a vulnerability does not guarantee a successful
exploit. Akin to traditional vulnerabilities like buffer over-
flows, where a flaw alone does not guarantee arbitrary code
execution, as additional conditions may be required. In this
paper, we define an exploit as a transaction that transfers
assets from the victim contract to the adversary’s account.

We detect vulnerabilities in this stage and generate ex-
ploits in the next. To this end, we first extract concrete
seed inputs from historical transactions to perform concolic
execution, thereby speeding up the exploration. Additionally,
we perform taint analysis during the path exploration leading
to a vulnerable CALL instruction. The taint analysis results
are then used to determine whether the reachable CALL
instruction is one of the vulnerabilities of interest.
Extracting seed input from historical transactions. A
key challenge in analyzing real-world smart contracts lies
in their complex logic, especially when involving multiple
CALL instructions to interact with other smart contracts,
such as DEXs, NFTs, and lending protocols. To efficiently
explore such code, we adopt concolic execution [21], a
hybrid analysis technique that uses concrete seed inputs
to guide path exploration and simplify constraint solving,
thereby reducing the search space and improving efficiency.

In our setting, an ideal seed input is a set of parameters
that trigger an external call to transfer assets out of the smart
contract. This prioritizes the exploration of “high-risk” paths
involving asset transfers. Crafting seed inputs for closed-
source smart contracts is hard because their ABI (Applica-
tion Binary Interface) is unknown. Randomly generated seed
inputs lack insight into the code’s logic, and thus may have
a low probability of reaching vulnerable paths. Fortunately,
high-quality seed inputs are already readily available on-
chain in historical transactions. Given a target contract,
we retrieve the associated transactions that are executed
successfully and extract the relevant inputs, which serve as
concrete seeds for concolic execution.

Focusing on asset-transferring paths may introduce false
negatives, since not all potentially vulnerable paths are
explored. However, this trade-off is acceptable — discov-
ering even a single asset management vulnerability suffices
to demonstrate that the contract’s assets are at risk. As
shown in Sec. 4.3, this approach allows us to uncover more
vulnerabilities than existing tools.

Specifically, we collect historical transactions of a given
contract C and extract external calls that involve ERC-20
transfers by inspecting standardized transfer event logs [27].
For relevant transactions, we extract all associated external
calls, keeping those where the target is C. We further filter
out calls with empty calldata (e.g., plain ETH transfers),
which typically do not involve asset management logic.
Concolic execution. From the parsed historical transac-
tions, we extract all external calls to the target contract,
including the origin, caller, calldata, and value. These, along
with the block number which reflects the correct blockchain
state, are used as concrete inputs for concolic execution.

While concolic execution can help identify reachable
CALL instructions, further analysis is required to determine
whether the inputs to these instructions are vulnerable. Dur-
ing concolic execution, we perform on-the-fly taint propaga-
tion with byte-level granularity to trace how tainted calldata
bytes, representing adversarial inputs, propagate to critical
input to CALL instructions. Specifically, we decompose the
input to the CALL instruction into different parameters,
including the target address, the function selector, and indi-
vidual function arguments.

Taint propagation is initiated when calldata is accessed
(e.g., via CALLDATALOAD or CALLDATACOPY) and pro-
ceeds dynamically through the EVM’s stack, memory, and
storage. Our policy is conservative: taint is propagated
through all arithmetic, logical, and data copy instructions.
For each such instruction, if any operand is tainted, the
resulting value is also marked as tainted. We treat external
calls as taint sinks and examine if the target address, function
selector, or any arguments are influenced by tainted data.

When concolic execution encounters a CALL, it per-
forms two key operations. First, we inspect the instruction’s
parameters to determine whether it represents a potential
asset management vulnerability. Then, based on taint anal-
ysis, we selectively replace calldata bytes that influence the
CALL parameters with symbolic variables, while preserving
concrete values for all other bytes. In stage c⃝, we generate

exploits by restarting concolic execution with these modified
calldata bytes, which allows us to construct an exploit based
on the values specified by the adversary.

Identifying asset management vulnerability. After the
taint analysis, SKANF identifies CALL parameters that can be
determined by the adversary via their input. We refer to such
parameters as adversary-controllable. However, even when
some parameters are fixed (thus cannot be changed by an
adversary), the CALL instruction may still be vulnerable. For
example, the function selector (0xa9059cbb, corresponding
to transfer) is fixed, yet the adversary still controls the
target address of the call and can construct the calldata
to transfer all WETH to their account. Therefore, we also
analyze fixed parameters to assess whether they pose a risk.

In the context of asset management vulnerabilities, a
fixed target address may still be problematic if it corresponds
to an ERC-20 token contract (e.g., WETH). Similarly, a
fixed function selector may be risky if it maps to functions
like transfer or approve. We refer to such parameters
as risky, since they can still lead to asset loss even without
full adversarial control.

Once we determine that both the target address and func-
tion selector of the vulnerable CALL instruction are either
adversary-controllable or risky, we examine if bytes 5 to 36
of its calldata, which are interpreted as the first argument
if the function is transfer or approve, can be arbitrarily
set by the adversary, noting that if the function selector is
controllable, the adversary can choose transfer or approve.
If this is the case, we classify the corresponding CALL
instruction as a potential asset management vulnerability.
Additionally, we record whether the second argument (i.e.,
the transfer amount) is fixed or under adversarial control.

Fallback mode. Given that not all contracts are highly
active and may lack sufficient historical transactions, we
incorporate symbolic execution as a fallback when con-
colic execution fails to identify potential vulnerabilities.
In fallback mode, SKANF conducts a broader analysis to
identify all potentially vulnerable CALL instructions and
assess their reachability. Specifically, we first enumerate all
CALL instructions in the contract. For each instruction, we
use the call graph to identify functions that are reachable
from public entry points, and the CFG to determine whether
those functions can eventually reach the CALL instruction. If
such a path is found, we initiate symbolic execution from the
corresponding public function using a symbolic byte string
as calldata.

As symbolic execution progresses, we keep track of
symbolic expressions for all values in the EVM stack, mem-
ory, and storage. These symbolic values are updated with
each instruction to reflect how they depend on input vari-
ables. When the execution encounters a conditional branch
(i.e., JUMPI), we fork the execution into two paths — one
for each possible outcome — and add the corresponding
condition to the path constraints. To manage complexity,
we prune infeasible paths. This can happen in two cases:
either the accumulated constraints become unsatisfiable (i.e.,
no input could result in that path), or the CFG shows that

1 {"caller": "0xdead...beef",
2 "origin":"0xdead...beef",
3 "blockNumber":20000000,
4 "callPC":"0xac5", // PC of the vulnerable CALL
5 "calldata":"12345678SS...", // SS represents the

symbolic data
6 "targetAddress":"*", // target address is adversary-

controllable
7 "functionSelector":"0xa9059cbb", // fixed but risky
8 "destination":"*",
9 "amount":"*"}

Figure 3. Example output of SKANF for a vulnerability.

the path cannot reach the target CALL instruction. Handling
access control checks — like those involving msg.sender or
tx.origin — can be particularly tricky. To improve the chance
of passing these checks, we employ two configurations.
First, we set both the caller and the origin to a predefined
adversary address. If that fails (for instance, if the contract
requires a specific tx.origin), we try again with the origin set
to the one recorded from a previously observed transaction
during concolic execution.

Once symbolic execution discovers a feasible path to
a CALL instruction, we analyze it using the same criteria
as in concolic execution — checking whether any of its
parameters are adversary-controllable or otherwise risky —
to determine whether it constitutes a vulnerability.

Preliminary validation. For each vulnerability, we per-
form a preliminary validation step before attempting to
exploit it, as concrete exploit generation requires additional
constraints to be satisfied. This validation is worthwhile
because symbolic execution may incorrectly identify vul-
nerabilities even when these cannot be exploited, due to
imprecise modeling of external calls and incomplete repre-
sentations of storage or execution context [14]. For instance,
a CALL instruction may appear reachable in symbolic anal-
ysis but cannot be triggered under any concrete execution.

Our preliminary validation is done using a local
blockchain instance to simulate a concrete execution en-
vironment. We supply concrete calldata, solved from any
symbolic constraints, as well as caller and origin addresses
to verify whether the CALL instruction is actually executed.
Unlike exploit generation, we do not require the transac-
tion to succeed or result in asset transfer; we only check
whether the vulnerable CALL is triggered. This is sufficient
to confirm the vulnerability’s existence.

At the end of this stage, SKANF produces a “vulnerability
report” (an example is given in Fig. 3), recording the PC of
the CALL instruction, the risky or adversary-controllable pa-
rameters, and other contextual information such as the caller,
origin, block height, and the concrete calldata used. This is
then forwarded to the next stage for exploit generation.

3.4. Exploit Generation and Validation

At the final stage, SKANF attempts to synthesize and
validate a concrete exploit for each identified vulnerability.

Automatic exploit generation. Given a vulnerability iden-
tified in the previous stage, SKANF attempts to construct a
transaction that successfully exploits it. The transaction is
built at the specific block height where the vulnerability is
observed. The “to” address is set to the victim contract. The
“gas” and “gas price” fields are configured to exceed the
minimum requirements to ensure execution and inclusion in
a block. For the “value” field, if any value is acceptable, we
set it to zero; otherwise, we use the required amount. The
“from” address is set to either the adversary’s address (if no
constraints are specified) or to a specific origin address if one
was recorded during vulnerability detection. The latter case
is typically caused by tx.origin-based authorization, which
can be bypassed through phishing attacks, as is the case
with the Destroyer Inu attack. Given how easy such phishing
attacks are in practice (see Sec. 4.4 for real-world evidence),
we conservatively assume that the attacker can always set
the “from” value to the required one.

The key step in exploit generation is constructing the
correct calldata to ensure the transaction executes success-
fully. Recall from stage b⃝ that for each vulnerability, we
record which CALL parameters — the target address, func-
tion selector, and arguments — are adversary-controllable.
If the target address is controllable, we constrain it to the
address of an ERC-20 token held by the victim contract with
a non-zero balance. By repeating the attack with different
addresses, we can systematically target each token. Simi-
larly, if the function selector and arguments are controllable,
we constrain them to values that mimic a realistic attack:
we set the selector to transfer, the recipient (to) to the
adversary’s address. For the transfer amount, we query the
token balance of the victim contract at the specified block
height and set this balance as the transfer amount, aiming to
steal the maximum possible amount as an adversary would.

According to the EVM specification [19], a transaction
is considered successful only if execution halts at a valid
stop instruction such as STOP or RETURN. To ensure this
condition is met, we resume concolic execution from the
vulnerable CALL and symbolically execute forward until
a stop instruction is reached. This introduces additional
path constraints, which are solved to adjust the synthesized
calldata and complete exploit generation.

Exploit validation. Finally, SKANF validates the exploit
in a local execution environment to ensure that it executes
successfully and produces the expected behavior.

To do this, we simulate the blockchain environment
at the block height specified in the exploit. This includes
loading the contract code, account balances, and persistent
storage state. We then execute the synthesized transaction.

Finally, we check whether the transaction succeeded,
and further assess exploit success by inspecting the emitted
event logs: for ERC-20 exploits, we verify the presence of
a Transfer or Approval event consistent with the ex-
pected asset movement, following the ERC-20 standard [27].
If both checks pass, SKANF confirms the exploit as valid.

4. Evaluation

4.1. Experimental Setup

Implementation. We implement SKANF on top of Gi-
gahorse [15], [16] and Greed [14], [18], comprising 2.2K
lines of Python code and 210 lines of Soufflé code. In
more technical detail, we develop a plugin for Gigahorse to
analyze bytecode and recover the control flow of obfuscated
contracts. We then use Gigahorse to lift the (deobfuscated)
bytecode to its register-based Intermediate Representation
(IR). Vulnerability detection and exploit generation are im-
plemented based on Greed, which attempts to automatically
synthesize exploits through constraint solving given the fol-
lowing inputs: the register-based IR of a contract along with
the CFG and call graph generated by Gigahorse. For a given
contract, we fetch its recent transactions using Etherscan’s
API [26]. To validate exploits, we simulate their execution
using the Python implementation of the EVM [32], [33].
Dataset. We use real-world MEV bots as the target to
evaluate the efficacy and performance of SKANF. We first
compile a dataset of the addresses of a total of 6,554 MEV
bots from multiple sources, including existing works [34]–
[36], public dashboards [6], [37], and results from MEV
analysis tools such as MEV inspect [38].
Testbed. We perform our experiments on Ubuntu 22.04,
with an Intel Xeon Platinum 8380 (80 cores), 128GB RAM
and 8TB SSD.

4.2. RQ1: Deobfuscation Effectiveness

The effectiveness of SKANF in addressing control-flow
obfuscation is measured using the code coverage metric.
Specifically, a tool’s coverage of a given smart contract is
the fraction of reachable code blocks. Low code coverage
indicates that a significant portion of the smart contract
cannot be analyzed by the tool.

We compare Gigahorse’s coverage with and without
deobfuscation for all smart contracts in our dataset. To zoom
in on real-world obfuscation practices used by major actors,
we repeat the comparison on the top 10 and top 100 most
active MEV bots since the Merge (ranked by the number
of bundles they sent), as reported by the “libMEV” online
dashboard [6]. We choose these bots because sophisticated
MEV searchers who remain active are strongly motivated to
keep their business logic private, making them more likely
to adopt control flow obfuscation in their code.

Fig. 4 presents the cumulative distribution function
(CDF) of the code coverage for the top 10, top 100, and
all smart contracts in the dataset, respectively. Dashed lines
represent Gigahorse, and solid lines represent SKANF. We
observe that among the top 10 MEV bots, six are highly
obfuscated (with code coverage below 10%), and SKANF
successfully increases the code coverage to 100% for five
of them. Note that SKANF fails on one bot contract be-
cause it relies on the preliminary output from Gigahorse for
bytecode analysis. Although Gigahorse generally produces

0 20 40 60 80 100
Code Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Top 10 (Gigahorse)
Top 100 (Gigahorse)
All (Gigahorse)

Top 10 (SKANF)
Top 100 (SKANF)
All (SKANF)

Top 10 (Gigahorse)
Top 100 (Gigahorse)
All (Gigahorse)

Top 10 (SKANF)
Top 100 (SKANF)
All (SKANF)

Figure 4. Cumulative Distribution Function (CDF) of the code coverage of
smart contracts in our dataset for both Gigahorse and our tool, SKANF. As
can be observed, SKANF’s CDF is concentrated near 100%, while that of
Gigahorse is spread out and is consistently higher (i.e., worse) than SKANF,
indicating that SKANF outperforms Gigahorse.

preliminary output even for highly obfuscated contracts, in
this particular case, it fails to do so, which prevents SKANF
from proceeding. Comparing the code coverage of three
MEV bot groups (top 10, top 100, and all bots), we find that
control flow obfuscation is more prevalent among the most
active MEV bots, underscoring our approach’s importance.

For all bots, we observe that for 5% of the smart con-
tracts, the original code coverage is below 50%. In contrast,
fewer than 0.4% of smart contracts have deobfuscated code
coverage below 50%. This comparison highlights the effec-
tiveness of SKANF in mitigating obfuscation. For the small
fraction (0.4%) of contracts where deobfuscation does not
significantly improve code coverage, our manual analysis
reveals two reasons: either Gigahorse fails to produce any
preliminary output before deobfuscation, or some blocks
within the contracts appear to be unreachable, rather than
hidden by control flow obfuscation.

Answer to RQ-1

SKANF effectively addresses control flow obfuscation in
smart contracts, for 90% of contracts with an initial
coverage below 50%, we can successfully increase their
code coverage.

4.3. RQ2: Vulnerability Detection Effectiveness

We now evaluate the effectiveness of SKANF in detect-
ing vulnerabilities in smart contracts, as measured by the
number of identified vulnerabilities. To benchmark our tool,
we conduct a comparative evaluation against three state-
of-the-art bytecode-based symbolic execution tools: Mythril
(commit:9e9ee39) [8], ETHBMC (commit: e887f33) [13],
and JACKAL (commit: 3993e5c) [14]. In the comparative
evaluation, we run each tool for a maximum of 10 minutes
per contract and impose a memory limit of 20 GB.

4.3.1. Vulnerability detection by SKANF. To illustrate how
concolic execution enhances the effectiveness of vulnera-
bility detection, we conduct an ablation study by running

SKANF in full symbolic execution mode without any con-
crete inputs, which we refer to as the baseline mode. In our
evaluation, SKANF detects 721 vulnerable smart contracts
in the baseline mode. When executed in concolic mode,
the number of detected vulnerable smart contracts increases
to 1,030. 54% of the unique vulnerable contracts identified
by concolic execution timed out in the baseline mode. In
the remaining cases where symbolic execution fails, we
find that the corresponding path constraints are incorrectly
deemed unsatisfiable. In contrast, concolic execution, guided
by concrete inputs, can avoid this limitation and successfully
explore the vulnerable paths. This highlights a significant
improvement in vulnerability detection achieved through
concolic execution, which simplifies constraint solving and
prioritizes exploration of the vulnerable CALL instruction
within the limited time.
Comparison with state-of-the-art tools. Mythril alerts
when it detects a publicly reachable CALL instruction where
the adversary can control the target address of the CALL.
In the evaluation, Mythril flags 574 potentially vulnerable
smart contracts. We validate these vulnerabilities identified
by Mythril by executing the exploit transaction it generates
in a local blockchain instance, similar to our preliminary
validation for SKANF. Specifically, we check whether the
vulnerable CALL instruction is triggered by the adversary
and whether the adversary can control other parameters to
steal the contract’s assets.

In the end, we only reach the CALL instructions in 89
of the flagged contracts (SKANF identifies 1,030). Among
these, 68 are also covered by SKANF. For the rest not
identified by SKANF, we manually inspect them and find
that identifying vulnerabilities requires an accurate CFG.
However, we construct the CFG using Gigahorse, which
fails on these contracts (e.g., due to out-of-memory errors
during bytecode lifting).

ETHBMC also raises an alert when it detects a CALL
where the adversary controls the target address and transfer
amount [13], [14]. Note that this captures only a subset of
asset management vulnerabilities, as an adversary can still
steal assets even if the target and amount are fixed, as long
as they control the recipient.

However, in our evaluation, ETHBMC did not detect
any vulnerabilities. Our further analysis shows that low code
coverage and timeouts are the two main reasons. For about
36% of the contracts, ETHBMC achieved less than 25%
code coverage during execution. Additionally, for approxi-
mately 27% of the contracts, ETHBMC encountered timeout
errors while solving constraints. These findings indicate lim-
itations in ETHBMC’s ability to analyze obfuscated smart
contracts and identify asset management vulnerabilities in
contracts with complex logic.

JACKAL detects reachable CALL instructions where the
adversary can control the target address and the function se-
lector of the CALL. For the same reason as with ETHBMC,
this pattern represents a subset of asset management vulner-
abilities. In our evaluation, JACKAL detects 18 vulnerable
contracts, all of which are included in the set of 1,030
vulnerable contracts we identified.

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Mythril
EthBMC
JACKAL
Baseline (SKANF)
Concolic (SKANF)

Figure 5. CDF of the time taken by SKANF, Mythril, ETHBMC, and
JACKAL to analyze the smart contract.

4.3.2. Runtime of SKANF. Beyond its effectiveness in iden-
tifying vulnerabilities, we further evaluate SKANF’s runtime.
As shown in Fig. 5, we observe that SKANF achieves shorter
analysis time in the concolic mode than in the baseline
mode — it can analyze about 90% of the dataset’s contracts
within 100 seconds. This demonstrates the effectiveness of
concolic execution. For other tools, our runtime advantage
may result from multiple factors. For example, these tools
were originally designed with different goals, and the ad-
ditional analysis overhead from checking issues such as
unprotected SELFDESTRUCT may affect their performance.

4.3.3. Exploit generation and loss estimation. For each
contract with identified vulnerabilities, we generate and
validate exploits, and compute the loss for realized exploits.

In total, we successfully exploited 394 out of 1,030
vulnerable contracts. We validated all 394 exploits locally.
These results show that SKANF already significantly outper-
forms existing tools; for instance, JACKAL generates only
31 exploits from 529 potentially vulnerable smart contracts.

We manually inspected 100 randomly selected contracts
for which exploit generation failed. In 65 of them, the failure
was due to additional CALL instructions that required more
precise parameter constraints. We leave this for future work.
In the remaining 35 cases, the failure is likely due to a
bug in Greed, which introduces incorrect constraints on the
parameters of CALL instructions.

Among the 394 exploits, 141 require attackers to control
tx.origin (e.g., through phishing attacks), while the
rest have no such requirement. Additionally, 162 of the
exploits target contracts with control flow obfuscation (i.e.,
Gigahorse measures their code coverage as below 50%).

We further calculate a lower bound on the potential
loss if the synthesized exploits were carried out. Since the
balance of the victim contract changes over time, we use
two reference points: the balances at the time of writing
(June 5th, 2025), and the historical high balances (including
vulnerable historical versions; see Sec. C), which represent
a worst-case attack. For simplicity of comparison, we use
the token price on June 5th, 2025, to convert the loss to
USD. We focus on seven major ERC-20 tokens: WETH,
WBTC, USDC, USDT, DAI, UNI, and LINK, so our results

are a lower bound. If a contract’s vulnerability is limited to
specific tokens, we only consider the affected tokens.

The results are shown in Tab. 1. The “current” and “max-
imal” columns refer to the current balances and historical
high balances, respectively. As shown in the table, the total
estimated economic loss caused by the synthesized exploits
amounts to approximately 10.6 million USD. Among them,
WETH accounts for the largest portion, with an estimated
loss of approximately 7.6 million USD. The significant loss
suggests that these profitable MEV bots are vulnerable and
exposed to substantial financial risks.

TABLE 1. A CONSERVATIVE ESTIMATE OF THE POTENTIAL LOSS IF THE
SYNTHESIZED EXPLOITS WERE CARRIED OUT.

Token Current Maximal

Amount Loss ($) Amount Loss ($)

WETH 114.4 299,626.9 2,895.1 7,585,162.0
WBTC 0.2 20209.0 20.0 2,100,000
USDC 55,730.7 55,730.7 296,716.3 296,716.3
USDT 9,441.1 9,441.1 282,295.5 282,295.5
DAI 50,386.6 50,386.6 185,609.3 185,609.3
UNI 16,131.7 101,952.6 16,131.7 101,952.6
LINK 2,076.4 28,799.4 3,061.2 42,458.8

Total — 566,146.3 — 10,594,194.5

Answer to RQ-2

SKANF identifies 1,030 potentially vulnerable MEV bot
contracts and successfully generates effective exploits
for 394 of them, with a potential loss of $10.6M. Its
vulnerability detection outperforms other tools.

In closing, we would like to clarify that the limitations
or bugs in Greed and Gigahorse should be considered sep-
arately from the evaluation of SKANF. SKANF itself can
be implemented on top of any existing tool with some
additional engineering effort. The goal of this evaluation
is to show that existing tools fail to address control flow
obfuscation and suffer from performance issues on complex
contracts. More importantly, they miss a significant number
of asset management vulnerabilities. When integrated with
SKANF, these tools can identify more potential vulnerabili-
ties that would otherwise be missed.

4.4. Attacks in the Wild

Previous evaluation confirms that SKANF can identify
new vulnerabilities not reported or exploited in practice. In
this section, we collected data on real-world attacks and
1) we evaluate whether SKANF can discover vulnerabilities
in attacked smart contracts; 2) we quantify the potential
loss that could have been saved by SKANF; 3) we gain
an understanding of the prevalence of real-world exploits
against closed-source smart contracts.
Detecting attacks. We start with 65,758,934 Ethereum
transactions sent to 6,554 MEV bot contracts from January
2021 to May 2025, from which we aim to identify attack

transactions. We note that our goal is not to conduct a
comprehensive measurement study (in particular, we do not
aim to be exhaustive). Thus, we employ a relatively simple
method supplemented by manual verification.

First, based on how MEV bots work, we observe that
external calls from a strange smart contract that an MEV
bot had no prior interaction with are likely attack attempts.
Thus, we narrow down to transactions that involve strange
callers, followed by ERC-20 asset transfer from the bot’s
account (or approval to transfer), a necessary action to
steal assets. These two rules result in 164,404 attack can-
didates, which are still too numerous to be manually ver-
ified. We further narrow down by looking for a specific
malicious pattern: callbacks from an unintended caller. E.g.,
uniswapV3SwapCallback is intended to be called by
Uniswap, and calls by others are likely an attack attempt.
Finally, this brings the number down to 104.

We manually verify all of them by checking whether the
assets were transferred to the attacker’s accounts, following
a strict rule to determine if an account belongs to the ad-
versary: we consider an account to belong to adversary if it
has no prior interaction with the victim contracts, and almost
all of its transactions are related to the attack, and created
malicious contracts explicitly for the attack. All results have
been cross-validated by multiple authors to ensure accuracy.

We confirmed that all of the 104 detected transactions
were adversarial, involving 51 malicious contracts and 37
victim MEV bot contracts. Our method is tailored to spec-
ified patterns and thus has no false positives, but may miss
certain attacks. Without ground truth, one cannot evaluate
false negatives. Our dataset, nonetheless, is the largest real-
world dataset of phishing-based exploits against asset man-
agement vulnerabilities to the best of our knowledge.
SKANF’s ability to re-discover attacks. We apply SKANF
to victim contracts and find that it successfully identifies 28
as vulnerable. If the searchers had used SKANF, most of the
attacks could have been prevented.

For the nine vulnerable smart contracts not detected by
SKANF, our further investigation shows that four are due
to failures in Gigahorse — similar to the issue described
in Sec. 4.3 — and the remaining five are caused by Greed,
which incorrectly classifies vulnerable paths as infeasible.
These findings suggest that, if Gigahorse and Greed func-
tioned as intended, SKANF could potentially detect all of
these vulnerabilities.

The earliest observed attack occurred in July 2021,
resulting in a loss of 30 ETH ($76K), while the most
recent attack took place in April 2025. The single largest
attack caused a loss of 250 ETH ($636K). The total losses
from these incidents amount to about $2.76M. The losses
are calculated using the token price at the time of each
attack. We notice that only three of these attacks have been
previously reported. Our analysis indicates that $2.45M of
the total loss could have been mitigated if SKANF had been
used by searchers before these incidents. This highlights that
vulnerabilities in asset management smart contracts remain
an ongoing security concern and often go unnoticed by
developers.

Answer to RQ-3

We identify 104 MEV phishing attacks in the wild,
causing about $2.76M in losses to searchers. Only three
of them have been covered in prior analyses and reports.
SKANF detects asset management vulnerabilities in most
of the exploited contracts and could have prevented losses
totaling $2.45M.

These attacks all involve the attacker bypassing tx.origin
checks, supporting the assumption made in Sec. 3.3.

5. New Attack Pattern: MEV Phishing Attack

In this section, we delve into the attacks identified
in Sec. 4.4 to understand how they occurred. Similar to
the “Destroyer Inu” Attack (Sec. A), in all these incidents,
the adversary lures the victim into interacting with their
malicious contract by creating a special MEV opportunity.
Once searchers try to capture this MEV opportunity via their
MEV bot, they fall into the phishing trap, as the malicious
contract is now embedded in their MEV supply chain.

We call these MEV phishing attacks, and further catego-
rize them into two types based on the attack vectors: token-
based and pool-based MEV phishing attacks, comprising
101 and 3 incidents, respectively. A typical example of the
first is the “Destroyer Inu” Attack discussed in Sec. A. For
pool-based attacks, a malicious pool (e.g., 0x0EF...3Fa) can
exploit searchers when a swap occurs within it.

Beyond malicious tokens and pools, the adversary can
also launch attacks from other components in the MEV
supply chain. To investigate the existence of such attacks,
we modified existing heuristics to identify components that,
in theory, should not invoke the bot contract but do so in
practice. This led us to identify the refund address — a
component theoretically supposed to only receive refunds
from searchers in exchange for providing MEV opportuni-
ties [39], and that should not interact with the bot contract.
We refer to this as refund-based attacks.

To provide a better understanding of how real-world
attackers exploit asset management vulnerabilities through
sophisticated MEV phishing strategies, we present a case
study of refund-based attacks. This novel attack vector is
exemplified by a real-world transaction 0x263. . . df0.
Refund-based MEV phishing attack. Most MEV phish-
ing attacks rely on malicious tokens as the attack vectors.
These tokens store specially crafted calldata associated with
specific target accounts. When a transaction originates from
that targeted account, the token automatically triggers the
attack against the MEV bot contract using the prepared
calldata. However, this method has a key limitation: after
repeated targeting, searchers may detect the issue and adopt
countermeasures, such as validating that tokens strictly fol-
low the ERC-20 standard. A recent variant departs from
using malicious tokens and instead exploits the mechanics of
MEV refund services. The attack flow is illustrated in Fig. 6.

The attacker first deploys a malicious contract to serve
as the refund address (①) and then creates an MEV op-

Searcher (S)Attacker (A)

DEX

Refund
Address

MToken (M)

WETH

BackRunMe

MEV Bot

1

2

3

Attacker workflow
Searcher workflow

a

b

c

Figure 6. The workflow of refund-based MEV phishing attack.

portunity, involving a swap, which is submitted to the
BackRunMe service [39] (②). The tokens used in the swap
follow the ERC-20 standard, avoiding detection mechanisms
targeting non-compliant tokens.

A searcher receives the opportunity information via
BackRunMe (a⃝) and invokes its MEV bot to extract it
(b⃝). As part of the BackRunMe protocol, the searcher must
send a refund to the attacker-specified address (c⃝). Upon
receiving the refund, the malicious contract is triggered and
calls the MEV bot contract using crafted calldata (③). Since
the transaction originates from the searcher, it bypasses
origin-based access control and enables unauthorized token
transfers to the attacker.

6. Related Works

Static analysis. Static analysis is a method of examin-
ing code without executing it to detect vulnerabilities in
software. Static analysis tools for smart contracts, such as
Vandal [40], Securify [41], MadMax [42], Slither [43], and
Ethainter [44], typically aim for completeness but often
produce false positives, requiring manual effort to verify
warnings. Moreover, a well-known challenge for static anal-
ysis is control flow obfuscation [45], which often prevents
them from constructing accurate control flow graphs, thus
reducing their effectiveness. Specifically, potentially vulner-
able logic may be treated as unreachable, leading to false
negatives. The deobfuscation technique in SKANF comple-
ments these tools by improving accuracy and efficiency.

Symbolic execution. Symbolic execution explores pro-
gram execution paths by treating inputs as symbolic
variables rather than concrete values. Symbolic execu-
tion tools for smart contracts, such as Oyente [46],
Mythril [8], teEther [47], Manticore [48], ETHBMC [13],
and Greed [14], [18], systematically explore possible paths
to identify issues like reentrancy and integer overflows.
However, like static analysis, symbolic execution struggles
with symbolic jump destinations caused by control flow
obfuscation. SKANF extends Greed with a de-obfuscation
module, enabling it to handle control flow obfuscation
and detect vulnerabilities in obfuscated contracts. Although
JACKAL [14] and CRUSH [18] are also built on Greed, they
target different types of vulnerabilities — confused deputy

https://etherscan.io/address/0x0EF9fA37Ff64F8e08a408f0885f1Fa083F5873Fa
https://etherscan.io/tx/0x26361798094d7532c0b8dfbed4c857265c66391040eef07f91fafcd420d47df0

and storage collision, respectively. In contrast, SKANF tar-
gets asset management vulnerabilities in closed-source con-
tracts and improves performance by guiding concolic exe-
cution with historical transactions.

Fuzzing. Fuzzing is a dynamic testing technique that
mutates inputs to uncover software vulnerabilities. For smart
contracts, fuzzing applies random and unexpected inputs,
such as crafted calldata and reentrant calls, to test contract
behavior. Tools developed for EVM smart contracts include
ContractFuzzer [49], Echidna [50], Smartian [51], Con-
fuzzius [52], ItyFuzz [53], and MAU [54]. However, while
state-of-the-art fuzzing tools have improved the mutation
efficiency, they remain insufficient for our problem. The
vulnerability logic we focus on is often triggered only by
specifically crafted calldata, which differs across contracts.
As a result, fuzzers may treat these inputs as arbitrary byte
mutations, making the exploration process highly inefficient.

Attacks against searchers. When searchers send trans-
actions to the public mempool, their transactions and ex-
ecution logic become visible to adversaries, enabling real-
time imitation and front-running. Qin et al. [23] generalize
this attack through Ape, a framework that uses dynamic
program analysis to automatically generate adversarial con-
tracts. Interestingly, the same technique can defend against
malicious searchers. Zhang et al. propose STING, a de-
fense mechanism that identifies attacking transactions and
instantly synthesizes counterattack smart contracts [55].

However, as private mempools become more com-
mon [34], [56], previous solutions lose effectiveness because
searchers’ pending transactions are invisible when sent to
a private mempool. Various works attempt to circumvent
these limitations. The GhostTX attack by Yaish et al. [57]
tricks searchers into bundling adversarial transactions that
appear profitable but are invalid, lowering their standing in
reputation-based private mempools. Shou et al. [58] intro-
duce BACKRUNNER, which exploits (1) the delay between
exploit deployment and execution, and (2) incomplete asset
drainage, enabling backrunning to recover funds. These
works target searchers by analyzing their logic and compet-
ing for the same MEV. In contrast, we exploit vulnerabilities
within searchers’ contracts directly.

MEV attacks and defenses. Although MEV searchers are
considered victims in this paper, prior work often considers
them attackers. They perform various MEV activities to
extract profit [5], [59]–[61], including front-running [62],
sandwiching [63], liquidations [64], and arbitrages [36],
[65]–[67]. Some of these activities, notably front-running
and sandwich attacks, constitute direct attacks on users
by manipulating their transaction order to extract value.
To mitigate the negative effects of MEV on users, both
academia and industry have proposed various countermea-
sures, including private transaction channels [34], [68], time-
based order fairness protocols [69]–[71], and front-running-
resistant AMM designs [72]–[74].

7. Discussion

7.1. Tradeoff Between Cost and Security

Unlike traditional programs, computation on EVMs is
expensive: users must pay high fees for complex trans-
actions. This implies that, if rigorously enforced, access
control can be costly. To illustrate this, we show in Fig. 10
(in Sec. D) how access control for a Uniswap V3 pool
requires computing the expected address of the pool ac-
cording to the CREATE2 specification [75], consuming 449
gas per interaction. Assume that each transaction sent to
the MEV bot involves an interaction with a Uniswap V3
pool, requiring one verification. If a searcher sends 10K
transactions to the MEV bot contract per month, the total
gas usage amounts to 4.5M. In contrast, if the contract
employs an incorrect but cheap verification by checking
tx.origin, the total gas usage is reduced to 80K.

The cost could even be zero if the contract does not
employ any access control mechanism. For example, SKANF
also identified an 1inch contract does not implement any ac-
cess control to protect its asset management logic, allowing
any account to transfer ERC-20 tokens from its account.
We disclosed this issue to the 1inch team. Their response
indicated that the contract only holds residual tokens from
executed transactions and does not affect user-owned assets.
In this case, the cost of a rigorous access control mechanism
seems less justified, considering that the exploit only extracts
residual tokens. It may be more reasonable to save gas for
legitimate users of the contract.

This raises an interesting question: What is the best
tradeoff between cost and security? Many smart contracts
that are driven by economic profits may be sensitive to cost,
while a rigorous approach would definitely increase their
transaction costs. Therefore, a promising research direction
would be to propose designs that provide good security
guarantees while keeping costs low.

7.2. SKANF as Defense Mechanism

The evaluation in Sec. 4 shows that SKANF can detect
vulnerable smart contracts and thus prevent attacks. In this
section, we further discuss how SKANF serves as a defense,
with developers benefiting more from it than attackers.

Developers can run SKANF before deployment to detect
vulnerabilities in the bytecode, even if the code is written
directly in low-level languages and employs control flow
obfuscation. In particular, they can craft transactions to
leverage SKANF’s concolic execution. Even after deploy-
ment, SKANF can be used before each new interaction with
the contract by first passing new transactions to verify the
relevant code paths they use, before broadcasting them to
the network. In contrast, the attackers can only leverage the
limited on-chain transactions, which limits their ability to
utilize SKANF effectively.

https://etherscan.io/address/0x64F2095CC11e4726078F4A64d4279c7e7fB7e6Ec

8. Conclusion

We have presented SKANF, an EVM bytecode analysis
tool optimized for closed-source smart contracts such as
MEV bots. SKANF can effectively deobfuscate the control
flow and identify asset management vulnerabilities, an abil-
ity that existing tools do not offer. SKANF also employs
concolic execution to improve efficacy. We evaluated SKANF
against real-world MEV bots, using historical transactions
to facilitate concolic execution. Among 6,554 MEV bots we
studied, SKANF detects vulnerabilities in 1,030 of them. Fur-
ther, SKANF automatically generates exploits against 394 of
them, with a potential loss exceeding $10.6M. Furthermore,
we discovered 104 attacks in the wild that exploited asset
management vulnerabilities against 37 MEV bots, resulting
in a total loss of $2.76M.

References

[1] H. Team, “Huff language,” https://huff.sh, 2025, accessed: 2025-03-
13.

[2] DeGatchi, “Smart contract obfuscation techniques,” February 2023,
accessed: 2025-04-22. [Online]. Available: https://degatchi.com/
articles/smart-contract-obfuscation

[3] DeGatchi, “Swimming safely in the public mempool: Mev
smart contract obfuscation techniques,” January 2024, accessed:
2025-04-22. [Online]. Available: https://degatchi.com/articles/
mev-smart-contract-obfuscation

[4] Z. Ma, M. Jiang, F. Luo, X. Luo, and Y. Zhou, “Surviving in
dark forest: Towards evading the attacks from front-running bots in
application layer,” in 34th USENIX Security Symposium. Seattle,
WA, USA: USENIX Association, 2025.

[5] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breiden-
bach, and A. Juels, “Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability,” in
2020 IEEE symposium on security and privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society, 2020, pp. 910–927.

[6] libMEV, “libMEV Leaderboard,” https://libmev.com/leaderboard,
2025, accessed: 2025-03-05.

[7] S. by Example, “Phishing with tx.origin,” 2025, accessed: 2025-
02-19. [Online]. Available: https://solidity-by-example.org/hacks/
phishing-with-tx-origin

[8] ConsenSys, “Mythril: A security analysis tool for evm bytecode,”
2025, accessed: 2025-02-22. [Online]. Available: https://github.com/
ConsenSys/mythril

[9] P. Meunier, “Cwe-656: Reliance on security through obscurity,”
Common Weakness Enumeration, Jan. 2008. [Online]. Available:
https://cwe.mitre.org/data/definitions/656.html

[10] F. A. P. Petitcolas, Kerckhoffs’ Principle. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2019, ch. K, pp. 1–2.

[11] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[12] Dedaub, “Bytecode decompiler,” 2025. [Online]. Available: https:
//dedaub.com/feature/bytecode-decompiler

[13] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded
model checker for smart contracts,” in 29th USENIX Security
Symposium (USENIX Security). Boston, MA, USA: USENIX
Association, 8 2020, pp. 2757–2774. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/frank

[14] F. Gritti, N. Ruaro, R. McLaughlin, P. Bose, D. Das, I. Grishchenko,
C. Kruegel, and G. Vigna, “Confusum Contractum: Confused Deputy
Vulnerabilities in Ethereum Smart Contracts,” in 32nd USENIX
Security Symposium (USENIX Security). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 1793–1810. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/gritti

[15] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse:
Thorough, declarative decompilation of smart contracts,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). Montreal, QC, Canada: IEEE, May 2019, pp. 1176–1186.

[16] N. Grech, S. Lagouvardos, I. Tsatiris, and Y. Smaragdakis, “Elipmoc:
Advanced decompilation of ethereum smart contracts,” Proceedings
of the ACM on Programming Languages, vol. 6, no. OOPSLA1, pp.
1–27, 2022.

[17] S. Lagouvardos, Y. Bollanos, N. Grech, and Y. Smaragdakis, “The
incredible shrinking context... in a decompiler near you,” 2024.

[18] N. Ruaro, F. Gritti, R. McLaughlin, I. Grishchenko,
C. Kruegel, and G. Vigna, “Not your type! detecting
storage collision vulnerabilities in ethereum smart contracts,”
in 31st Annual Network and Distributed System Security
Symposium (NDSS). Reston, VA: The Internet Society, 2024.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
not-your-type-detecting-storage-collision-vulnerabilities-in-ethereum-smart-contracts/

[19] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” 2014. [Online]. Available: https://ethereum.
github.io/yellowpaper/paper.pdf

[20] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in 2010 IEEE Symposium on
Security and Privacy. San Jose, CA, USA: IEEE, 2010, pp. 317–331.

[21] K. Sen, “Concolic testing,” in Proceedings of the 22nd IEEE/ACM
international conference on Automated software engineering. New
York, NY, USA: Association for Computing Machinery, 2007, pp.
571–572.

[22] Etherscan Team, “Blockscan chat: Wallet-to-wallet messaging for
web3,” https://chat.blockscan.com, 2023, accessed: 2025-04-14.

[23] K. Qin, S. Chaliasos, L. Zhou, B. Livshits, D. Song, and
A. Gervais, “The blockchain imitation game,” in 32nd USENIX
Security Symposium (USENIX Security). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 3961–3978. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/qin

[24] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “ SoK:
Decentralized Finance (DeFi) Attacks ,” in 2023 IEEE Symposium
on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, May 2023, pp. 2444–2461. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179435

[25] S. Team, “Solidity programming language,” 2025, accessed: 2025-
03-13. [Online]. Available: https://soliditylang.org

[26] Etherscan, “Etherscan api documentation,” https://docs.etherscan.io,
2025, accessed: 2025-03-08.

[27] Ethereum Foundation, “ERC-20 Token Standard,” 2025, accessed:
2025-02-27. [Online]. Available: https://ethereum.org/en/developers/
docs/standards/tokens/erc-20

[28] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscat-
ing transformations,” 1997.

[29] P. Zhang, Q. Yu, Y. Xiao, H. Dong, X. Luo, X. Wang, and M. Zhang,
“Bian: Smart contract source code obfuscation,” IEEE Transactions
on Software Engineering, vol. 49, no. 9, pp. 4456–4476, 2023.

[30] Software Carpentry, “Smart Contract Weakness Classification
(SWC),” https://swcregistry.io, 2024, accessed: 2025-06-01.

[31] V. Buterin, “EIP-170: Contract code size limit,” November 2016,
accessed: 2025-02-27. [Online]. Available: https://eips.ethereum.org/
EIPS/eip-170

https://huff.sh
https://degatchi.com/articles/smart-contract-obfuscation
https://degatchi.com/articles/smart-contract-obfuscation
https://degatchi.com/articles/mev-smart-contract-obfuscation
https://degatchi.com/articles/mev-smart-contract-obfuscation
https://libmev.com/leaderboard
https://solidity-by-example.org/hacks/phishing-with-tx-origin
https://solidity-by-example.org/hacks/phishing-with-tx-origin
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://cwe.mitre.org/data/definitions/656.html
https://dedaub.com/feature/bytecode-decompiler
https://dedaub.com/feature/bytecode-decompiler
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity23/presentation/gritti
https://www.usenix.org/conference/usenixsecurity23/presentation/gritti
https://www.ndss-symposium.org/ndss-paper/not-your-type-detecting-storage-collision-vulnerabilities-in-ethereum-smart-contracts/
https://www.ndss-symposium.org/ndss-paper/not-your-type-detecting-storage-collision-vulnerabilities-in-ethereum-smart-contracts/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://chat.blockscan.com
https://www.usenix.org/conference/usenixsecurity23/presentation/qin
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179435
https://soliditylang.org
https://docs.etherscan.io
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://swcregistry.io
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170

[32] E. Foundation, “Py-evm: A python implementation of the ethereum
virtual machine,” 2025, accessed: 2025-02-27. [Online]. Available:
https://github.com/ethereum/py-evm

[33] ethpwn, “ethpwn: The swiss army knife for smart contract
hacking,” 2025, accessed: 2025-02-27. [Online]. Available: https:
//github.com/ethpwn/ethpwn

[34] S. Yang, K. Nayak, and F. Zhang, “ Decentralization of Ethereum’s
Builder Market ,” in 2025 IEEE Symposium on Security and Privacy
(SP). Los Alamitos, CA, USA: IEEE Computer Society, 2025, pp.
1456–1474.

[35] B. Öz, D. Sui, T. Thiery, and F. Matthes, “Who Wins Ethereum Block
Building Auctions and Why?” in 6th Conference on Advances in
Financial Technologies (AFT), ser. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 316. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024, pp. 22:1–22:25.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.AFT.2024.22

[36] L. Heimbach, V. Pahari, and E. Schertenleib, “Non-atomic arbitrage in
decentralized finance,” in IEEE Symposium on Security and Privacy
(SP), San Francisco, USA. Los Alamitos, CA, USA: IEEE Computer
Society, 2024, pp. 3866–3884.

[37] Etherscan, “MEV Bot Accounts,” https://etherscan.io/accounts/label/
mev-bot, 2025, accessed: 2025-03-05.

[38] Flashbots, “mev-inspect-py: An mev inspector for ethereum,” https:
//github.com/flashbots/mev-inspect-py, 2024, accessed: 2025-03-08.

[39] bloXroute Labs, “Backrunme api documentation,” 2025,
accessed: 2025-03-12. [Online]. Available: https://docs.bloxroute.
com/evm-networks-bsc-eth/apis/backrunme

[40] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” 2018. [Online]. Available: https:
//arxiv.org/abs/1809.03981

[41] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS). New York,
NY, USA: Association for Computing Machinery, 2018, p. 67–82.
[Online]. Available: https://doi.org/10.1145/3243734.3243780

[42] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–27, 2018.

[43] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WET-
SEB). Los Alamitos, CA, USA: IEEE Computer Society, 2019, pp.
8–15.

[44] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). New
York, NY, USA: Association for Computing Machinery, 2020, pp.
454–469.

[45] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Twenty-Third Annual Computer Security
Applications Conference (ACSAC). Los Alamitos, CA, USA: IEEE
Computer Society, 2007, pp. 421–430.

[46] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). New
York, NY, USA: Association for Computing Machinery, 2016, pp.
254–269.

[47] J. Krupp and C. Rossow, “{teEther}: Gnawing at Ethereum to Au-
tomatically Exploit Smart Contracts,” in 27th USENIX security sym-
posium (USENIX Security). Baltimore, MD: USENIX Association,
2018, pp. 1317–1333.

[48] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). Los Alamitos, CA, USA: IEEE Computer
Society, 2019, pp. 1186–1189.

[49] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACM/IEEE international conference on automated software engineer-
ing. New York, NY, USA: Association for Computing Machinery,
2018, pp. 259–269.

[50] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). New York, NY, USA: Association for
Computing Machinery, 2020, pp. 557–560.

[51] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, “Smar-
tian: Enhancing smart contract fuzzing with static and dynamic data-
flow analyses,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Los Alamitos, CA, USA:
IEEE Computer Society, 2021, pp. 227–239.

[52] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius:
A data dependency-aware hybrid fuzzer for smart contracts,” in 2021
IEEE European Symposium on Security and Privacy (EuroS&P). Los
Alamitos, CA, USA: IEEE Computer Society, 2021, pp. 103–119.

[53] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for
smart contract,” in Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA). New
York, NY, USA: Association for Computing Machinery, 2023, pp.
322–333.

[54] W. Chen, X. Luo, H. Cai, and H. Wang, “Towards smart contract
fuzzing on gpus,” in 2024 IEEE Symposium on Security and Privacy
(SP). Los Alamitos, CA, USA: IEEE Computer Society, 2024, pp.
2255–2272.

[55] Z. Zhang, Z. Lin, M. Morales, X. Zhang, and K. Zhang,
“Your exploit is mine: Instantly synthesizing counterattack
smart contract,” in 32nd USENIX Security Symposium (USENIX
Security). Anaheim, CA: USENIX Association, Aug. 2023, pp.
1757–1774. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/zhang-zhuo-exploit

[56] A. Yaish, M. Dotan, K. Qin, A. Zohar, and A. Gervais, “Suboptimality
in defi,” 2023. [Online]. Available: https://ia.cr/2023/892

[57] A. Yaish, K. Qin, L. Zhou, A. Zohar, and A. Gervais,
“Speculative denial-of-service attacks in ethereum,” in 33rd
USENIX Security Symposium (USENIX Security). Philadelphia,
PA: USENIX Association, 8 2024. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity24/presentation/yaish

[58] C. Shou, Y. Ke, Y. Yang, Q. Su, O. Dadosh, A. Eli, D. Benchimol,
D. Lu, D. Tong, D. Chen et al., “Backrunner: Mitigating smart
contract attacks in the real world,” 2024.

[59] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in 2022 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society,
2022, pp. 198–214.

[60] Z. Li, J. Li, Z. He, X. Luo, T. Wang, X. Ni, W. Yang, X. Chen, and
T. Chen, “Demystifying defi mev activities in flashbots bundle,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS). New York, NY, USA: Association
for Computing Machinery, 2023, pp. 165–179.

[61] C. Ferreira Torres, A. Mamuti, B. Weintraub, C. Nita-Rotaru, and
S. Shinde, “Rolling in the shadows: Analyzing the extraction of mev
across layer-2 rollups,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security (CCS). New
York, NY, USA: Association for Computing Machinery, 2024, pp.
2591–2605.

https://github.com/ethereum/py-evm
https://github.com/ethpwn/ethpwn
https://github.com/ethpwn/ethpwn
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.22
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.22
https://etherscan.io/accounts/label/mev-bot
https://etherscan.io/accounts/label/mev-bot
https://github.com/flashbots/mev-inspect-py
https://github.com/flashbots/mev-inspect-py
https://docs.bloxroute.com/evm-networks-bsc-eth/apis/backrunme
https://docs.bloxroute.com/evm-networks-bsc-eth/apis/backrunme
https://arxiv.org/abs/1809.03981
https://arxiv.org/abs/1809.03981
https://doi.org/10.1145/3243734.3243780
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://ia.cr/2023/892
https://www.usenix.org/conference/usenixsecurity24/presentation/yaish
https://www.usenix.org/conference/usenixsecurity24/presentation/yaish

[62] C. F. Torres, R. Camino, and R. State, “Frontrunner jones
and the raiders of the dark forest: An empirical study of
frontrunning on the ethereum blockchain,” in 30th USENIX
Security Symposium (USENIX Security 21). Online: USENIX
Association, 2021, pp. 1343–1359. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/torres

[63] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-
frequency trading on decentralized on-chain exchanges,” in 2021
IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, 2021, pp. 428–445.

[64] K. Qin, L. Zhou, P. Gamito, P. Jovanovic, and A. Gervais, “An em-
pirical study of defi liquidations: Incentives, risks, and instabilities,”
in Proceedings of the 21st ACM Internet Measurement Conference
(IMC). New York, NY, USA: Association for Computing Machinery,
2021, pp. 336–350.

[65] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-
in-time discovery of profit-generating transactions in defi protocols,”
in 2021 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, 2021, pp. 919–936.

[66] R. McLaughlin, C. Kruegel, and G. Vigna, “A large scale study of the
ethereum arbitrage ecosystem,” in 32nd USENIX Security Symposium
(USENIX Security). Anaheim, CA: USENIX Association, 2023, pp.
3295–3312.

[67] B. Öz, C. F. Torres, J. Gebele, F. Rezabek, B. Mazorra, and F. Matthes,
“Pandora’s box: Cross-chain arbitrages in the realm of blockchain
interoperability,” 2025.

[68] S. Yang, F. Zhang, K. Huang, X. Chen, Y. Yang, and F. Zhu,
“Sok: Mev countermeasures,” in Proceedings of the Workshop on
Decentralized Finance and Security (DeFi). New York, NY, USA:
Association for Computing Machinery, 2024, pp. 21–30.

[69] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness
for byzantine consensus,” in 40th Annual International Cryptology
Conference (CRYPTO). Cham: Springer International Publishing,
2020, pp. 451–480.

[70] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine Or-
dered Consensus without Byzantine Oligarchy,” in 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI).
Online: USENIX Association, 2020, pp. 633–649.

[71] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
Strong Order-Fairness in Byzantine Consensus,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS). New York, NY, USA: Association for Computing
Machinery, 2023, pp. 475–489.

[72] L. Zhou, K. Qin, and A. Gervais, “A2mm: Mitigating frontrunning,
transaction reordering and consensus instability in decentralized ex-
changes,” 2021.

[73] S. Wadhwa, L. Zanolini, A. Asgaonkar, F. D’Amato, C. Fang,
F. Zhang, and K. Nayak, “Data independent order policy enforcement:
Limitations and solutions,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security
(CCS). New York, NY, USA: Association for Computing Machinery,
2024, pp. 378–392.

[74] M. Zhang, S. Yang, and F. Zhang, “Rediswap: Mev redistribution
mechanism for cfmms,” 2024.

[75] V. Buterin, “EIP-1014: Skinny CREATE2,” https://eips.ethereum.org/
EIPS/eip-1014, 2018, accessed: 2025-03-13.

[76] 0xprincess, “One arbitrage bot was drained by a token called
destroyer inu,” 2024, accessed: 2025-02-19. [Online]. Available:
https://twitter.com/0x9212ce55/status/1808233634522095809

[77] PeterBorah, “Remove tx.origin · issue #683 · ethereum/solidity
· github,” 2016. [Online]. Available: https://web.archive.org/web/
20250415170758/https://github.com/ethereum/solidity/issues/683

[78] S. Contributors, “Contract abi specification,” https://docs.soliditylang.
org/en/latest/abi-spec.html, 2025, accessed: 2025-02-19.

[79] Uniswap, “IUniswapV3SwapCallback Interface,” https:
//docs.uniswap.org/contracts/v3/reference/core/interfaces/callback/
IUniswapV3SwapCallback, 2025, accessed: 2025-02-21.

[80] Q. Yu, P. Zhang, H. Dong, Y. Xiao, and S. Ji, “Bytecode obfuscation
for smart contracts,” in 2022 29th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2022, pp. 566–567.

[81] B. Zhang, N. He, X. Hu, K. Ma, and H. Wang, “Following Devils’
Footprint: Towards Real-time Detection of Price Manipulation At-
tacks,” in 34th USENIX Security Symposium. Seattle, WA, USA:
USENIX Association, 2025.

[82] Software Weakness Classification (SWC) Registry, “SWC-110:
Missing Release-Critical Information,” https://swcregistry.io/docs/
SWC-110, 2021, accessed: 2025-06-01.

[83] P. Ma, N. He, Y. Huang, H. Wang, and X. Luo, “Abusing the ethereum
smart contract verification services for fun and profit,” 2023.

[84] Binance, “Binance data collection,” https://data.binance.vision, 2025,
accessed: 2025-06-05.

[85] A. Beregszaszi, P. Bylica, A. Maiboroda, M. Garnett, and
P. Dobaczewski, “EIP-3540: EOF - EVM Object Format v1,” https:
//eips.ethereum.org/EIPS/eip-3540, 2021, accessed: 2025-04-11.

[86] pcaversaccio, Matt, Moody, and Ramana, “EOF: When Com-
plexity Outweighs Necessity,” https://hackmd.io/@pcaversaccio/
eof-when-complexity-outweighs-necessity, 2025, accessed: 2025-04-
11.

Appendix A.
Case Study: the Destroyer Inu Attack

A notable attack on a closed-source smart contract that
relies on external inputs for its operation took place on July
1st, ’24, causing a loss of 22 ETH (worth $51,056 at the
time) [76]. As the attack involves an attacker-created ERC-
20 token called “Destroyer Inu”, we use the same name
for the attack itself. This case study shows that control-flow
obfuscation adopted by the victim contract ends up hiding
vulnerabilities from analysis tools — without stopping real-
world attackers — arguably making contracts less secure.
tx.origin phishing attack. The first issue is a classic vul-
nerability where tx.origin is compared to a hard-coded
trusted address. This vulnerability is known as the tx.origin
phishing attack [7], dating back to at least 2016 [77]. In
such attacks, an attacker tricks the victim into calling a
malicious contract, which then calls the victim’s contract;
since both calls have the same tx.origin, the malicious
smart contract can execute the victim smart contract with
the same privileges as the victim herself.

A more severe issue that follows the incorrect access-
control check is improper asset management. However, ex-
isting tools miss the full exploit because of control-flow
obfuscation. Existing tools such as Mythril flag it only as a
“low-risk” issue. We will discuss the full vulnerability next.
tx.origin phishing attack, obfuscated. In the Destroyer
Inu Attack, the victim contract is obfuscated. We use
pseudo-Yul code to illustrate the smart contract’s logic in
Fig. 7. First, at the entry point of the MEV bot’s smart
contract in lines 3 to 5, it implements an access control
mechanism based on the transaction’s origin to prevent
unauthorized addresses from interacting with the contract.
Then, in lines 7 to 9, the contract proceeds by jumping

https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://eips.ethereum.org/EIPS/eip-1014
https://eips.ethereum.org/EIPS/eip-1014
https://twitter.com/0x9212ce55/status/1808233634522095809
https://web.archive.org/web/20250415170758/https://github.com/ethereum/solidity/issues/683
https://web.archive.org/web/20250415170758/https://github.com/ethereum/solidity/issues/683
https://docs.soliditylang.org/en/latest/abi-spec.html
https://docs.soliditylang.org/en/latest/abi-spec.html
https://docs.uniswap.org/contracts/v3/reference/core/interfaces/callback/IUniswapV3SwapCallback
https://docs.uniswap.org/contracts/v3/reference/core/interfaces/callback/IUniswapV3SwapCallback
https://docs.uniswap.org/contracts/v3/reference/core/interfaces/callback/IUniswapV3SwapCallback
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-110
https://data.binance.vision
https://eips.ethereum.org/EIPS/eip-3540
https://eips.ethereum.org/EIPS/eip-3540
https://hackmd.io/@pcaversaccio/eof-when-complexity-outweighs-necessity
https://hackmd.io/@pcaversaccio/eof-when-complexity-outweighs-necessity

1 assembly {
2 entry 0x0:
3 let from := origin() // tx.origin
4 let expected := 0xdead...beef
5 if iszero(eq(from, expected)) {revert(0, 0)}

// access check
6 // read two bytes from calldata as the jump

destination.
7 let data := calldataload(0x84) // suppose it

’s 0x0a00...
8 let dst := shr(0xf0, data)
9 jump dst // jump 0x0a00

10
11 jumpdest 0x0a00:
12 let token := calldataload(0x86)
13 let to := calldataload(0xa6)
14 let value := calldataload(0xc6)
15 let ptr := mload(0x40)
16 mstore(ptr, 0xa9059cbb) // ERC-20 transfer
17 mstore(add(ptr, 4), to)
18 mstore(add(ptr, 36), value)
19 // call target.transfer(to, value)
20 let success := call(gas(), token, 0, ptr,

68, 0, 0)
21 if iszero(success) { revert(0,0) }
22
23 jumpdest 0x0b00: ...
24 }

Figure 7. Pseudo-Yul MEV bot smart contract. The code starting at
0x0a00 contains a vulnerable function call whose input is determined
by the calldata, allowing an adversary to transfer any amount of ERC-20
tokens from the MEV bot’s account to their own. Note that jump and
jumpdest are not part of Yul syntax but are included for better readability.

to a specific place in code, as determined by the calldata
supplied by the transaction. This is unlike “standard” smart
contracts that match function calls using the so-called func-
tion selector defined as the first 4 bytes of the calldata [78].
In this MEV bot smart contract specifically, when the two
calldata bytes at positions 0x85 and 0x86 are 0x0a00, the
program jumps to the code segment starting at jumpdest
0x0a00. The functionality of this segment is to manage the
transfer of a specific amount of an ERC-20 token to a target
address. Therefore, it loads the address of the ERC-20 token,
the recipient address, and the amount from the calldata (lines
12 to 14). Then, in lines 15 to 21, it constructs the input
based on these parameters and invokes the ERC-20 transfer.

Exploit. To an attacker who can remove control-flow ob-
fuscation, the vulnerability is immediate: the victim contract
allows transferring any amount of any ERC-20 tokens held
by this contract to another address if an attacker can bypass
the tx.origin check via many forms of tx.origin phishing,
which is precisely what happened.

Attack analysis. A direct cause of the Destroyer Inu
attack is that the victim’s contract relies on a vulnerable
comparison to block unintended calls by adversaries. A
strawman mitigation is to use a hard-coded comparison
against msg.sender instead of tx.origin. However,
this solution does not meet real-world requirements when
verifying if the caller is the searcher (the contract’s creator
and owner), as, in practice, the contract may be called by

Searcher (S) MEV Bot DEX

tx.origin = S

swap

uniswapV3Callback

Searcher (S) MEV Bot

tx.origin = S

call

crafted calldata

Phishing
contract

①

②

Figure 8. Two scenarios where an MEV bot contract receives a callback:
a phishing contract (①) and a DEX (②).

other different contracts. For example, Uniswap V3 pools
require any contract that calls their swap function to imple-
ment a function called uniswapV3SwapCallback [79],
which is invoked by pools at the end of executing swap to
ensure that the interacting contract pays the pool the tokens
owed for the swap (as illustrated in Fig. 8, scenario ②)

Other DeFi protocols, such as Uniswap V2, Sushiswap,
and AAVE, also adopt similar callback designs. In these
cases, a hard-coded comparison against msg.sender is
not effective because the caller may be any contract de-
ployed by these protocols. Compared to this, verifying
tx.origin is not restricted by a specific caller and can
prevent direct calls to the contract, but it introduces security
risks. Therefore, more precise protection is needed to pre-
vent potential adversaries, which can be a high requirement
for contracts, as real-world attack incidents have shown.

Appendix B.
Other Obfuscation Techniques

We identify four contract obfuscation techniques based
on previous works [28], [29], [80], [81], summarized as:
• Layout obfuscation typically aims to reduce information

available to a human reader, e.g., by removing comments
and renaming functions and variables [28], [29].

• Data flow obfuscation obscures how data is processed
and accessed within the smart contract [28], [29].

• Control flow obfuscation alters the execution path of
the smart contract to make its logical flow difficult to
follow [4], [28], which is our focus.

• Preventive transformations aim to hinder reverse engi-
neering by exploiting weaknesses in current decompilers
and deobfuscators [28]. E.g., contracts can self-destruct
after execution to render their bytecode unavailable, pre-
venting future inspection [81].

We empirically verified that the layout and data flow
obfuscation do not interfere with existing analysis tools.

Two mature obfuscation tools are available for EVM
smart contracts [81]: BOSC [80] and BiAn [29]. Since
BOSC cannot guarantee that the obfuscated contracts remain
deployable, it is not suitable for our setting. Following prior
work [81], which also only used BiAn due to BOSC’s
limitations, we adopt BiAn for our evaluation.

We collected vulnerable smart contracts from the Smart
Contract Weakness Classification Registry [30] and applied

BiAn to each contract to generate an obfuscated version.
Specifically, we apply two types of obfuscation: layout
obfuscation and data flow obfuscation. We then compile the
original vulnerable contracts and the obfuscated ones, and
apply Mythril to detect their vulnerabilities.

Interestingly, we found that for 65 of the vulnerable
smart contracts, layout and data flow obfuscation do not
prevent the vulnerabilities from being detected; instead,
the obfuscation even introduces new “Assert Violation” is-
sues [82]. For the remaining two contracts, we observed that
Mythril could still detect issues in the obfuscated contracts
at the source code level, but not at the bytecode level. We
speculate this might be related to compiler optimizations. In
summary, our findings indicate that existing analysis tools
like Mythril can still work effectively on smart contracts
with both layout and data flow obfuscation.

Appendix C.
Historical Versions of MEV Bots

Although smart contracts on Ethereum are generally
immutable once deployed, their bytecode at a given address
may change over time through the use of SELFDESTRUCT
and CREATE2 opcodes [19]. Specifically, SELFDESTRUCT
removes the contract code from the state, and CREATE2
allows redeployment of a new contract at the same address
using a fixed deployer address, salt, and modified initializa-
tion code. As a result, a smart contract may have different
bytecode at different points in time [83].

We define a version of a smart contract as the specific
bytecode deployed at a given address during a particular
period. If a contract is destroyed and re-deployed with
different bytecode at the same address, each instance is
considered a distinct version.
Version statistics of MEV bots. To identify all versions
of an MEV bot contract, we analyze the historical trans-
actions associated with its address. Specifically, we parse
transaction traces to check whether the address was the
target of a CREATE or CREATE2 deployment. For each
instance of bytecode deployment at the address, we record
the corresponding version. This allows us to reconstruct the
full sequence of code changes for MEV bot contracts that
may have been redeployed multiple times.

We apply this method to all MEV bots in our dataset. As
shown in Fig. 9, about 96% of them are deployed only once,
indicating no code change over time. Meanwhile, about
0.9% of MEV bots have more than five versions, suggesting
that their code has been repeatedly updated.
Vulnerability detection in historical versions. For MEV
bots with multiple historical versions, we also apply SKANF
to each historical version to identify potential asset man-
agement vulnerabilities and attempt exploit generation. This
analysis allows us to detect vulnerabilities that may exist
only in earlier versions of the MEV bot contract but not in
the current one. In total, we identify 114 vulnerable histor-
ical versions across 44 MEV bot contracts and successfully
generate 41 exploits targeting these versions.

1 2 3 4 5 >5
Number of Versions

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f M
EV

 B
ot

s

95.9

2.1 0.4 0.4 0.3 0.9

Figure 9. Distribution of the number of versions per MEV bot in our dataset.

Loss estimation. To approximate the maximum possible
loss, we analyze the highest ERC-20 token balance held by
each exploitable version of an MEV bot. Specifically, for
each exploitable version, we identify the block range during
which that version was active and observe the maximum
ERC-20 token balance within that range. If the version is
the latest one, we consider the range from its deployment
up to block 22,635,000 (corresponding to June 5th, 2025).

Consistent with the estimation for current loss, if a con-
tract’s vulnerability is limited to a specific ERC-20 token,
we consider only the potential loss associated with that
token. If an MEV bot has multiple exploitable versions, we
report the loss corresponding to the version with the highest
observed ERC-20 balance. To simplify the estimation, we
assume that all tokens were sold on June 5th, 2025. This
allows us to use the token prices on Binance [84] on that
day to estimate the potential loss for seven major tokens:
WETH, WBTC, USDC, USDT, DAI, UNI and LINK.

Appendix D.
Solidity Example of Checking Caller

Fig. 10 shows a Solidity example of how to rigor-
ously check whether the caller is a Uniswap V3 pool.
The verifyPoolAccess function checks whether the
caller is a valid Uniswap V3 pool by reconstructing the
expected pool address using the CREATE2 scheme. It first
computes a salt by hashing the tuple (token0, token1,
fee) with keccak256, consistent with how Uniswap
V3 encodes pool parameters. Then, it derives the expected
pool address using the standard CREATE2 formula, which
combines the factory address, the salt, and the pool’s
initialization code hash. If the derived address matches
msg.sender, the function returns true, confirming that
the caller is a legitimate pool contract created by the
Uniswap V3 factory with the given parameters.

Appendix E.
Implications of EVM Object Format

The EVM Object Format (EOF) [85] is a proposed
redesign of the EVM that introduces structured sections,

1 contract UniswapV3PoolAccessControl {
2 address FACTORY = 0

x1F98431c8aD98523631AE4a59f267346ea31F984;
3 bytes32 POOL_INIT_CODE_HASH =
4 0xe34f36d28c5efcd7c58e2e84af79e2a

dffbe52f705d05dca7e6a181f8a19baf1;
5 function verifyPoolAccess(
6 address token0,
7 address token1,
8 uint24 fee
9) public view returns (bool) {

10 bytes32 salt = keccak256(abi.encode(
token0,token1,fee));

11 address computedAddress = address(uint160
(uint256(

12 keccak256(abi.encodePacked(
13 bytes1(0xff),
14 FACTORY,
15 salt,
16 POOL_INIT_CODE_HASH
17)))));
18 return computedAddress == msg.sender;
19 }
20 }

Figure 10. A Solidity implementation to check if the caller is a Uniswap
V3 pool. It verifies whether a given pool address is valid by deriving its
expected address using CREATE2.

enforces static control flow, and removes dynamic jumps,
aiming to improve analyzability and enable future EVM up-
grades. However, such an upgrade also tends to constrain the
expressiveness of smart contracts and introduces additional
complexity for developers [86]. These concerns have led to
EOF being excluded from the next Ethereum upgrade.

In EOF, indirect jumps and dynamic dispatch are not
allowed [85], making control-flow obfuscation more difficult
to implement, and static analysis easier to perform. Never-
theless, the concolic execution approach we present remains
effective. Even in the absence of control-flow obfuscation,
detecting asset management vulnerabilities requires reason-
ing about attacker-controlled inputs and complex data flows,
tasks that benefit from the techniques used in SKANF.

Moreover, legacy (non-EOF) smart contracts will con-
tinue to exist and interact with new contracts, preserving
the relevance of our techniques. Until EOF adoption is
complete, and perhaps even beyond, tools like SKANF will
remain essential for analyzing the security of deployed
bytecode across formats.

	Introduction
	Challenges
	Our Methods
	Implementation and Evaluation of skanf

	Preliminaries
	Ethereum and Smart Contracts
	Smart Contract Obfuscation
	Threat Model

	The design of skanf
	Overview
	Control Flow Deobfuscation
	Vulnerability Detection
	Exploit Generation and Validation

	Evaluation
	Experimental Setup
	RQ1: Deobfuscation Effectiveness
	RQ2: Vulnerability Detection Effectiveness
	Vulnerability detection by skanf
	Runtime of skanf
	Exploit generation and loss estimation

	Attacks in the Wild

	New Attack Pattern: MEV Phishing Attack
	Related Works
	Discussion
	Tradeoff Between Cost and Security
	skanf as Defense Mechanism

	Conclusion
	References
	Appendix A: Case Study: the Destroyer Inu Attack
	Appendix B: Other Obfuscation Techniques
	Appendix C: Historical Versions of MEV Bots
	Appendix D: Solidity Example of Checking Caller
	Appendix E: Implications of EVM Object Format

