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Abstract—Over the past few years, traffic congestion has
continuously plagued the nation’s transportation system creating
several negative impacts including longer travel times, increased
pollution rates, and higher collision risks. To overcome these
challenges, Intelligent Transportation Systems (ITS) aim to im-
prove mobility and vehicular systems, ensuring higher levels of
safety by utilizing cutting-edge technologies, sophisticated sensing
capabilities, and innovative algorithms. Drivers’ participatory
sensing, current/future location reporting, and machine learn-
ing algorithms have considerably improved real-time conges-
tion monitoring and future traffic management. However, each
driver’s sensitive spatiotemporal location information can create
serious privacy concerns. To address these challenges, we propose
in this paper a secure, privacy-preserving location reporting and
traffic forecasting system that guarantees privacy protection of
driver data while maintaining high traffic forecasting accuracy.
Our novel k-anonymity scheme utilizes functional encryption to
aggregate encrypted location information submitted by drivers
while ensuring the privacy of driver location data. Additionally,
using the aggregated encrypted location information as input,
this research proposes a deep learning model that incorporates
a Convolutional-Long Short-Term Memory (Conv-LSTM) mod-
ule to capture spatial and short-term temporal features and
a Bidirectional Long Short-Term Memory (Bi-LSTM) module
to recover long-term periodic patterns for traffic forecasting.
With extensive evaluation on real datasets, we demonstrate the
effectiveness of the proposed scheme with less than 10% mean
absolute error for a 60-minute forecasting horizon, all while
protecting driver privacy.

Index Terms—Privacy-preserving, functional encryption, deep
learning, traffic forecasting.

I. INTRODUCTION

TRAFFIC congestion in the transportation system substan-
tially negatively impacts productivity, living standards,

the economy, and the environment. It leads to financial losses,
increased travel time, fuel consumption, operational costs,
and environmental degradation because of excessive carbon
dioxide emissions [1]. According to the Inrix location-based
data analytic report [2], Chicago and Boston were the top-
ranked cities in terms of time and financial losses due to traffic
congestion in 2023, with drivers in each city wasting up to 155
and 134 hours in traffic, respectively. Furthermore, Chicago
drivers lose up to $2,618 per year, while Boston drivers waste
up to $2,270, and similar statistics are seen in other cities [2].
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Thus, governments are investing huge amounts of money to
help reduce traffic congestion. If effective measures are not
implemented promptly, the problem is anticipated to intensify,
given the inability of traditional anti-congestion strategies to
keep pace with the rapid economic growth of major cities.

To address these challenges, Intelligent Transportation Sys-
tems (ITS) play a pivotal role in mitigating the adverse effects
of traffic congestion [3]. One notable facet of ITS is develop-
ing and implementing Vehicular Ad-Hoc Networks (VANETs).
These networks leverage the communication capabilities of ve-
hicles to enhance traffic management, improve road safety, and
optimize overall transportation efficiency [4]. Fig. 1 shows
the Conceptual framework of a VANET architecture. VANET
is a key ITS technology that can be leveraged to alleviate
traffic congestion. VANET vehicles have onboard computing
and communication modules to disseminate critical traffic
information, navigation, and road services updates. Unlike
traditional navigation applications that rely on user reports to
provide real-time traffic conditions, often reacting to conges-
tion after it has occurred, VANET-based traffic management
systems excel by predicting future traffic flow. This proactive
approach leverages reports from drivers about their current
and intended destinations, offering a significant advantage in
anticipating and mitigating potential traffic congestion issues.
The predictive capability of VANETs distinguishes them from
conventional navigation tools, which are not only reactive
but also prone to bias in user-reported traffic conditions.
Thus, contemporary research focuses on designing preventive
techniques that leverage VANET to reduce congestion [5]–[8].
These strategies require each motorist to report his or her
current and future locations (i.e., travel routes) to a traffic
management center or other adjacent vehicles. This real-time
collected information can then be aggregated and analyzed
for traffic patterns, to generate a dynamic traffic density
map (i.e., heat map) pinpointing likely congestion hotspots.
Subsequently, the Traffic Management Center (TMC) recom-
mend alternative routes to drivers via their VANET modules,
alleviating congestion and improving traffic flow.

Despite the need to obtain vehicle location data to forecast
future traffic congestion, it is vital to recognize the high
sensitivity of this data. The temporal route information of each
driver qualifies as a behavioral biometric marker that is as
unique as a fingerprint. It is rare to discover two drivers with
identical temporal route patterns [6]. Knowing this temporal
route information raises privacy concerns since motorists’
identities, movement patterns, and other sensitive information
could be disclosed. Noteworthy is the possibility of third par-
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ties, such as insurance companies and travel brokers, gaining
access to this sensitive data for their advantage. Moreover,
criminals may also utilize this information to determine the
optimum times to commit crimes. Thus, it is of utmost impor-
tance to develop privacy-preserving route reporting schemes
that ensure the confidentiality of the route data of motorists.

Various trials have been explored to minimize urban conges-
tion, such as enhancing transportation infrastructure, charging
traffic fines, offering route information, enforcing traffic regu-
lations, and boosting public transportation [9], [10]. However,
addressing urban congestion while preserving the drivers’
privacy remains a complex and ongoing challenge. Despite
the efforts mentioned above, several factors contribute to
the persistence of congestion in urban areas. These include
rapid population growth, increased vehicle ownership, and the
allure of urban centers for economic opportunities. Short-term
traffic flow forecasting primarily focuses on predicting the
traffic flow condition in a few or hundreds of minutes. It is
currently one of the most prominent research areas in ITS.
Nevertheless, due to the stochastic and dynamic nature of
traffic, traditional short-term traffic flow forecasting methods
often face limitations in accuracy and reliability. For instance,
because of the volatility and fluctuations caused by weather
and the environment, determining the complicated nonlinear
relationship between traffic flow data and time is exceedingly
challenging. Nonetheless, with the advent of Deep Learning
(DL) algorithms for traffic flow prediction, transportation
research has lately seen a resurgence in interest. [11]–[15].
Existing works for estimating traffic flow employing DL
possess certain shortcomings. Some studies employ a rudimen-
tary neural network model, like Stacked Autoencoder (SAE),
Long Short Term Memory (LSTM), or Convolutional Neural
Network (CNN), which can only capture a fraction of the
complicated characteristics of traffic flow. Although several
works propose hybrid DL algorithms that combine distinct
models to capture different features for traffic flow prediction,
including spatial, temporal, and periodic features, they are
frequently handled independently. Additionally, these efforts
do not fully utilize the intricate structures present in traffic flow
data. Furthermore, despite their potential benefits in enhancing
traffic forecasting and management, these endeavors have often
overlooked drivers’ privacy.

To address these concerns, we propose an efficient and
effective privacy-preserving location reporting and traffic fore-
casting scheme that protects the sensitive location information
of drivers. Our proposed scheme divides the traffic manage-
ment area into cells (geographic regions), each assigned a
unique identification number (ID). Drivers must report their
encrypted location information. The encrypted information
is subsequently aggregated by the TMC and employed as
input for a multilayer DL model in traffic flow prediction.
This model identifies and extracts hidden characteristics within
traffic flow data, constructing a traffic density map (i.e., heat
map) that highlights probable regions of congestion. Drivers
can then reroute their journey to avoid these regions. It is
worth noting that the encrypted reports and decryption are
performed utilizing a variety of functional encryption and
decryption keys. Moreover, employing aggregation protects the

temporal location information of each driver while revealing
the bare minimum of information required to generate a traffic
density map. The proposed research bridges a significant gap
in designing an efficient VANET traffic management system,
particularly in major and mid-sized cities experiencing rapid
urbanization and traffic congestion. The primary contributions
of this work are enumerated as follows:

1) We propose a novel privacy-preserving location reporting
scheme for traffic management systems, based on Inner
Product Functional Encryption (IPFE) [16]. This scheme
incorporates advanced functional encryption and decryp-
tion techniques to safeguard the privacy of driver route
information, while allowing access to specific encrypted
data. Consequently, this approach maintains the confiden-
tiality of sensitive data, while facilitating the prediction
of future traffic congestion and enabling the creation of
accurate traffic forecast density maps. This ensures that
privacy is upheld without compromising the effectiveness
of traffic management strategies.

2) We developed a DL-based model for predicting traffic
flow, integrating a hybrid architecture that combines
Conv-LSTM and Bi-LSTM models with a Squeeze-and-
Excitation (SE) module. The Conv-LSTM component
captures spatial and short-term temporal patterns, while
the Bi-LSTM is engineered to extract long-term temporal
features, including daily and weekly cycles, reflecting the
dynamic trends in traffic flow. Additionally, the inclusion
of the Squeeze-and-Excitation (SE) module enhances the
forecast performance by improving feature representation
and discrimination.

3) Our proposed scheme underwent comprehensive evalua-
tion using both synthetic and real-world traffic data. The
evaluation was divided in two parts: the first assessed
the efficacy and overhead associated with the privacy-
preserving route reporting scheme. The second part fo-
cused on measuring the accuracy of the traffic forecast
model, with a comparative analysis of our results against
both historical and contemporary research findings.

This paper is organized as follows in the remaining sections.
We describe in detail all related work in Section II. Then,
in Section III, we outline the system models and the design
objectives. Section IV details several DL models, techniques,
and methods employed in our proposed scheme. Section
V presents a thorough overview of our proposed privacy-
preserving traffic forecast system. The privacy and security
analysis and performance evaluation are provided in sections
VI and VII, respectively. Finally, Section VIII summarizes the
conclusions drawn from our study.

II. RELATED WORK

A. Privacy-Preserving Route Reporting

Recent advancements in literature have introduced a va-
riety of privacy-preserving route reporting mechanisms for
ITS [17]–[21]. Most of these studies utilize pseudonyms,
homomorphic encryption, and k-anonymous algorithms,
further enhanced by blockchain technologies to bolster
data integrity and privacy. These innovations, detailed in
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Fig. 1: Conceptual framework of Vehicular Ad-hoc Networks.

studies [5], [18], [19], [22], aim to enhance data integrity and
privacy. Furthermore, other traffic management techniques
leverage transferable Federated Learning (FL) and Graph Con-
volutional Network (GCN) approaches [21], [23] for crowd-
sensed data, have emerged as cutting-edge solutions for ad-
dressing the challenges of data scarcity and improving traffic
management efficiency while safeguarding the privacy of
crowdsourced data in ITS. While these strategies significantly
contribute to preserving user identity and sensitive informa-
tion protection, they encounter notable limitations including
scalability issues, system complexity, blockchain overhead,
heightened security vulnerabilities, and dependency on internet
connectivity. Moreover, these strategies may incur substantial
costs and present considerable barriers during their adoption
and integration within the existing traffic management infras-
tructure. As such, while promising, these schemes may fall
short in addressing the nuanced demands of dynamic, real-
time traffic management scenarios, underscoring the need for
continued innovation and adaptation in this rapidly evolving
field.

B. Deep Learning for Traffic Forecasting

Traffic flow forecasting initially included three primary
model types: parametric, non-parametric, and hybrid. Paramet-
ric models like ARIMA excel in analyzing time series data for
traffic forecasting on expressways and urban roads [24], [25],
with innovations such as Kohonen-ARIMA (KARIMA) [26]
subset ARIMA [27], and seasonal ARIMA [28] enhancing
their precision for nonlinear data. Non-parametric models,
including K-Nearest Neighbor (KNN) and Support Vector Re-
gression (SVR) [29], adapt well to complex data relationships
but can face optimization hurdles and susceptibility to local
minima.. Hybrid models combine the strengths of both, using
techniques from ARIMA, Empirical Mode Decomposition
(EMD), Singular Value Decomposition (SVD), and Neural
Networks (NNs) to achieve superior accuracy and robust-
ness in predicting traffic flow [30], [31]. DL further advances

traffic flow prediction with Lv et al. [12] showcasing the
effectiveness of Stacked Autoencoders (SAEs) in surpassing
traditional methods like Support Vector Machines (SVMs) and
Feedforward Neural Networks (FNNs) in estimating traffic
flows. DL models in traffic flow forecasting, can be segmented
into short-term, long-term, and hybrid models. For short-
term predictions, DL models incorporating CNNs, GCNs, and
their variants have been effective in capturing spatial-temporal
traffic patterns [13], [32]–[35], yet they struggle with temporal
sequence data, where past information crucially predicts future
outcomes. The introduction of LSTM networks by Tian et
al. [36] highlighted their superiority in capturing temporal dy-
namics, paving the way for subsequent variants [37], [38] that
further illustrate LSTMs’ proficiency in long-term forecasting.
However, these models often overlook the impact of road
network layouts. Hybrid models [15], [39] merging CNNs
for spatial insight and LSTMs for temporal analysis have
markedly improved traffic prediction, merging the strengths
of both to enhance traffic management. Nonetheless, the
success of these sophisticated models hinges on the quality and
availability of traffic data. The process of data collection and
analysis, especially from motorists and connected vehicles,
raises significant user privacy and data security concerns,
necessitating stringent data protection protocols that adds
complexity to these forecasting systems.

Despite the scarcity or limited endeavors in both research
and development to fully address the dual challenges of
ensuring user privacy and data security in traffic data collection
and creating dependable traffic forecasting systems, existing
studies offer promising directions. For instance, Xia et al.
[23] present a system that combines GCN with FL for

modeling traffic patterns. This approach utilizes GCN for
identifying spatial dependencies in traffic data and employs FL
for privacy-preserving collaborative learning without sharing
raw data. Though ingenuous, this innovative system grap-
ples with hurdles, including scalability issues, communication
bottlenecks, susceptibility to adversarial threats, integration
complexities with existing systems, and limited adaptability
across different environments, highlighting the need for further
research. To overcome the limitations identified in existing
research and offer a holistic solution, we introduce a novel,
lightweight privacy-preserving traffic forecasting system. Our
system uniquely leverages functional encryption based on
cryptography for scalable, internet-independent, and efficient
privacy-preserving solution. It enables intricate encryption
and computation on encrypted traffic data, safeguarding data
security and privacy without compromise. Further enriching
our solution, we incorporate a hybrid Conv-LSTM and Bi-
LSTM model with an SE module, enhancing the extraction and
analysis of crucial temporal-spatial dynamics, alongside short-
term and long-term traffic patterns. This approach significantly
boosts the forecast accuracy and precision, setting a new
benchmark for traffic forecasting systems in terms of privacy
preservation and operational efficiency with exceptional fore-
cast reliability.
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III. SYSTEM MODELS AND DESIGN OBJECTIVES

This section provides an overview of the system model,
which includes the network model, threat model, and the
proposed scheme’s design goals.

A. Network Model

As shown in Fig. 2, our considered network model includes
three main entities: the vehicle-side (drivers), traffic manage-
ment center (TMC), and a key distribution center (KDC). The
role of each entity is described below.

• Drivers (D): As primary components of the traffic man-
agement system, each vehicle D sends its encrypted
location information periodically to the TMC. Commu-
nication between drivers and the TMC is either direct or
indirect through a gateway (Roadside unit). A set of D,
D = {Di, 1 ≤ i ≤ |D|}, form the network.

• TMC: As the central control and monitoring hub, the
TMC uses encrypted location information from drivers
for traffic flow analysis, congestion detection, and route
planning in real time.

• KDC: The KDC is a crucial offline entity responsible
for preserving secure communication and data privacy
by providing drivers D and the TMC, respectively, with
unique encryption and functional decryption keys.

B. Threat Model

We assume an honest but curious model for our system in
which the TMC is honest in computing the true traffic condi-
tions. However, it may attempt to learn sensitive information
(i.e., driver identity and movement patterns) from the driver
data it receives to its advantage. We also assume that the TMC
is managed and operated by the Department of Motor Vehicles.
We also assume that all the traffic data sent by the drivers is
anonymized so that no personally identifiable information is
revealed. The anonymization scheme used by the vehicles is
out of the scope of this paper. Our system aims to implement
a privacy policy that clearly outlines how data is collected,
used, and shared. A driver (or group of drivers) may also
be interested in deducing sensitive information about other
drivers for their benefit. Furthermore, external adversaries A
can operate individually or in collusion to launch attacks on
the communication gateway between drivers and the TMC to
gather sensitive information for their gains. Though the TMC
and its communication with drivers are not fully trusted, the
TMC maintains a high level of security and avoids collusion
efforts between it and drivers because it is supervised and
monitored by government organizations.

C. Design Goals

In our proposed scheme, we anticipate achieving the fol-
lowing objectives.

• Privacy Preservation: Our design seeks to develop robust
mechanisms that protect the location and identity of
drivers (via unauthorized access and monitoring preven-
tion) while enabling effective traffic management and
congestion mitigation.

• Real-time Traffic Forecasting: By leveraging advanced
predictive models’ accuracy and real-time traffic fore-
casting capabilities, our system aims to provide reliable
and informed traffic data, enabling proactive congestion
management and efficient route planning.

• Scalability and Efficiency: Our system is designed to be
scalable for real-time deployment and operation under
dynamic traffic conditions. This scalability extends to
accommodating increasing drivers, expanding map sizes,
and handling various network loads, ensuring efficient
performance with minimal latency and computational
overhead.

• Secure Communication: With secure communication
channels, our scheme utilizes secure protocols and cryp-
tography techniques to guarantee the integrity, security,
and confidentiality of data exchanged between system
entities.

IV. PRELIMINARIES

A. Functional Encryption

Functional encryption (FE) refers to a type of cryptography
that allows for the encryption of a message x using a key k to
get Enck(x), as well as the ability of a designated decryptor to
compute the output of a function f on the encrypted message
using a decryption key dk without being able to learn the
message itself (i.e., Decdk(Enck(x)) = f(x)) [40].

Recently, the focus on FE has been increasing, especially on
how to design efficient schemes for limited classes of functions
or polynomials, such as linear [41], [42] or quadratic [43]. In
this paper, we focus on a specific type of functional encryption
known as inner product functional encryption (IPFE) [16],
which allows for the computation of the inner product of
two encrypted vectors. In an IPFE framework, when provided
with the encryption of a vector x and a functional decryption
key linked to a vector y, one can exclusively derive the dot
product result (x · y) by decrypting the encrypted form of
x—all without gaining access to the actual values of x. IPFE
involves three distinct parties, outlined as follows.

• KDC: The KDC produces an encryption key for the en-
cryptor and a functional decryption key for the decryptor.

• Encryptor: The encryptor encrypts the plaintext vector x
into the ciphertext and sends it to the decryptor.

• Decryptor: The decryptor uses the functional decryption
key dky obtained from the KDC to evaluate and access
(x · y), where x and y are the plaintext vector and the
encrypted vector, respectively. The decryptor is obliged
to maintain non-collusion with the KDC.

B. Convolution/ LSTM and Bi-LSTM

CNN and LSTM are powerful deep-learning architectures
widely used in computer vision and natural language pro-
cessing. CNNs use a combination of convolutional layers,
pooling layers, and fully-connected layers to extract features
from an image and then classify the image into one of the
predefined classes. CNNs are particularly suitable for object
recognition, facial recognition, and image segmentation tasks.
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On the other hand, LSTM networks are mainly used for
natural language processing tasks such as language translation,
sentiment analysis, and text generation. LSTM networks are
composed of multiple layers of memory units, which are
responsible for storing information from the past and using it
to make predictions. They are particularly powerful when un-
derstanding data sequences, such as sentences, and predicting
what comes next. A combination of CNN and LSTM, known
as Conv-LSTM, is usually used to improve the performance
of a neural network. The wide adoption of Conv-LSTM is due
to their high accuracy. The purpose of using attention-based
Conv-LSTM is to make the near-future predictions accurate
and timely.

C. Attention Mechanism

An attention mechanism allows deep learning models to
selectively focus on certain parts of the input when making
predictions. It is particularly useful in natural language pro-
cessing and image recognition tasks. In these tasks, the model
must be able to identify and understand specific parts of the
input to make accurate predictions. The attention mechanism
is implemented by adding an attention layer to the neural
network, which learns to assign weights to different input
parts. These weights are then used to create a weighted
sum of the input, which is then passed to the next network
layer. Attention mechanisms have been shown to improve the
performance of neural networks on a wide range of tasks
and are now widely used in many state-of-the-art models. An
attention-based Conv-LSTM combines attention mechanisms
and Conv-LSTMs to provide accurate forecasting.

D. Squeeze-and-excitation

Squeeze-and-excitation (SE) [44] is a type of attention
mechanism that aims to improve the feature representation of a
neural network. It works by first compressing the feature maps’
spatial dimensions, reducing the number of channels. The
resulting feature maps are then passed through an excitation
module, which learns to assign weights to different channels
based on their importance. These weights are then used to
recalibrate the feature maps, improving the network’s overall
feature representation. SE has been shown to improve the
performance of neural networks on various tasks such as image
classification, object detection, and semantic segmentation,
particularly in architectures like CNNs. It can be added to
existing architectures like CNNs or convolutional LSTMs as
a module.

V. PROPOSED SCHEME

As depicted in Figure 2, our proposed framework comprises
two primary components: 1) Privacy-Preserving Location Re-
porting and Aggregation for Drivers, and 2) Traffic Forecasting
through Deep Learning. The first component encompasses
system initialization, driver location reporting, and server-side
aggregation of information for traffic monitoring. The second
component involves a deep learning-based traffic forecasting
algorithm. Our model utilizes Conv-LSTM on aggregated

TABLE I: Main notations.

Notation Description
D Number of drivers

pki Encryption keys of Drivers
L Total number of grid cells

lji [t] Status of cell j reported by driver Di at time t

Cj
i [t] Encrypted status of cell j reported by Di at time t

G, p, g Public parameters for the functional encryption
dk Functional decryption keys

X[ts] Current traffic density over ts − n, ..., ts

X[td] Daily historical traffic density over td − n, ..., td

X[tw] Weekly historical traffic density over tw − n, ..., tw

G[ts] Output from the CNN
H2[ts] The LSTM hidden state indicating the spatial-temporal

feature for time step ts.
C,H Channel and spatial dimensions of the Squeeze operation

G[ts], G
′
[ts] Output of CNN and Squeeze and excitation

Ha[ts] The output of Conv-SE-LSTM at each time step ts

τ Time interval
βk The attention value

driver data to predict short- and long-term traffic patterns while
ensuring driver privacy. Additionally, our model incorporates
an attention mechanism and a squeeze-and-excitation block,
significantly improving performance. The following subsec-
tions explain the details of each building block.

A. Drivers Location Reporting and Aggregation

We assume that the traffic management area is divided into
a set of geographic areas called cells, as illustrated in Figure 3.
Each cell is assigned a unique identifier, similar to zip codes.

• To report their location, each Di ∈ D, where {1 ≤ i ≤
|D|}, employ IPFE scheme [16] to conceal their associ-
ation with a specific cell, denoted as lji [t] = 1, where
1 ≤ j ≤ |L|, and L represents the total number of grid
cells within a given reporting area. Additionally, drivers
encrypt the remaining (k−1) dummy cells with a value of
zero to maintain k-anonymity [45]. The outcome is a set
of k ciphertexts, labeled as C1

i [t] through Ck
i [t], which

are subsequently transmitted to the decryptor (i.e., TMC).
This encryption mechanism safeguards the confidentiality
of the driver’s precise location.

• At every time slot t, the TMC receives encrypted
cell information Cj

i [t] from all drivers and uses the
functional decryption key dk to obtain the aggre-
gated encrypted drivers’ density for each cell j (i.e.,
Decdk([C

j
1 [t], . . . , C

j
|D|[t]]) =

∑|D|
i=1 l

j
i [t], where lji [t] is

the plaintext status of the grid cell j sent by Di at
time slot t). If the TMC receives fewer ciphertexts for
cell j than the total number of drivers |D|, the TMC
adds dummy ciphertexts containing encrypted zeros to
compensate for any missing reports from drivers for a
particular cell.

The main phases of the route report are described as follows.
1) System Initialization: During the system initialization,

the KDC computes and distributes the following: (a) Public
parameters; (b) Driver’s encryption keys; and (c) TMC’s
functional decryption keys.

a) Public Parameters Generation: To generate the public
parameters, the KDC should:
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Fig. 2: Illustration of the Privacy-Preserving Traffic Management System

Table

Fig. 3: A traffic management area partitioned into distinct
geographic zones (i.e., cells).

Setup
(
1λ,FD

)
: The algorithm first generates secure pa-

rameters as G := (G, p, g) ← GroupGen
(
1λ

)
, and then

generates several samples as ai ← RZ1
p,ai := (1, ai)

⊤,∀i ∈
{1, . . . , |D|}, in addition to Wi ←R Z1×2

p , ui ←R Z1
p. Then,

it generates the master public key and master private key as
mpk := (G, [ai]1,Wiai]),msk := (Wi, ui)i∈{1,...,|D|}

b) Drivers’ Encryption Keys Generation: KDC constructs and
distribute |D| encryption keys to the drivers in the network as
follows: pki := (G, [ai] , [Wiai] , ui).

c) TMC’s Functional Decryption Key Generation: The KDC
uses a vector of ones, denoted as y1×|D|, which has a length
equal to the number of drivers in the network, in order to
compute the functional decryption key dk. The purpose of
using this vector is to ensure that when an inner product is
performed with the driver’s report, all drivers for grid cell j

1Note that [x] = gx. In our representation, we adopt the bracket notation
implicitly from [46], which is widely recognized and used as a standard in
the cryptographic community.

and aggregated reports for cell j are obtained. The generation
process for the dk key is outlined below.

The KDC performs the following operation to compute the
functional decryption key dk as:

dk := d⊤
i ← (yiWi)i∈|D| , z ←

∑
i∈|D|

yiui

This equation is equivalent to aggregating the secret keys
from all drivers to generate dk. Then, the KDC sends the dk
to the TMC.

2) Reporting Drivers Locations: For each reporting period
t, driver Di encrypts the cell j information, ∀1 < j < |L|, and
generate the ciphertext Cj

i [t]. This encryption ensures that the
cell information is kept private and only authorized parties
can access it. Each cell information is encrypted separately,
allowing the TMC to compute the aggregated reports for
cell j without learning the individual reports themselves. The
encrypted cell information is generated as follows.
Encrypt

(
pki, l

j
i

)
: The algorithm first generates a random

nonce rji ← RZpj∈{1,...,K} and then computes the ciphertext
as

Cj
i [t] := (

[
tji

]
← [air

j
i ],

[
cji

]
← [lji [t] + ui +Wiair

j
i ]).

It should be noted that the drivers do not need to report
the encryption status for all cells within the reporting area.
Instead, they can employ K-anonymity [45] to selectively
report only a subset of cells, thereby ensuring privacy and
reducing computational overhead. This

3) Aggregating the Drivers Reports: After collecting all
the D’s encrypted locations (ct) at reporting period t, where
ct = [Cj

1 [t], C
j
2 [t], . . . , C

j
|D|[t]], the TMC uses the functional

decryption key dk to obtain the total aggregated location data
for traffic by performing.
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Given the functional decryption key dk and ciphertexts ct,
the TMC can compute:

=

∏
i∈[D]

([
y⊤ci

]
/
[
d⊤
i ti

])
[z]

=

∏
i∈[D]

([
y⊤ci

]
/
[
y⊤Wiair

j
i

])
[z]

=

∏
i∈[D]

([
y⊤(lji [t] + ui +Wiair

j
i )
]
/
[
y⊤Wiair

j
i

])
[z]

=

∏
i∈[D]

[
y⊤lji [t] + y⊤ui + y⊤Wiair

j
i − y⊤Wiair

j
i

]
[z]

=
∏
i∈[D]

[
y⊤lji [t] + y⊤ui + y⊤Wiair

j
i − y⊤Wiair

j
i − y⊤ui

]
=

∏
i∈[D]

y⊤lji [t]

=

|D|∑
i=1

lji [t]

Solving the discrete logarithm is not a challenging task
due to the relatively small value of (

∑|D|
i=1 l

j
i [t]). While many

methods have been introduced to compute the discrete loga-
rithm, such as Shank’s baby-step giant-step algorithm [47], we
resorted to using a lookup table to compute it efficiently in a
light-weight manner.

By performing the above steps, the result (
∑|D|

i=1 l
j
i [t]) is

the summation of the drivers passing through grid cell j at
each reporting period t. After the aggregation, the TMC can
use the encrypted information to forecast traffic conditions,
such as traffic density and congestion, as explained in the next
section.

B. Deep learning-based Traffic Forecasting

Traffic Flow Process Formulation: The process of traffic
flow prediction can be formulated mathematically as the
drivers’ density and congestion patterns within each cell under
the traffic monitoring area. This formulation involves the anal-
ysis of historical density, real-time density, and future density.
As shown in Figure 5, at the current time t, the objective is
to predict the traffic flow of a specific grid cell at the time
interval (t+ h∆) for a given prediction horizon, utilizing the
past traffic status. Let Xj [τ ] denote the traffic flow of the jth

observation route during the τ th time interval. The traffic flow
values Xj [τ ] correspond to τ = t − n∆, . . . , t − ∆, t. Here,
∆ = 5 minutes, n = 15, and h = 1, 3, 6, 12,. This means that
75-minute historical data will be used to predict the traffic
flow of the next 5, 15, 30, and 60 minutes.

We create three spatiotemporal traffic flow matrices to
capture the temporal and spatial aspects of traffic flow. This in-
volves combining historical traffic flow data from neighboring
locations at different time scales, including the current moment
ts, daily patterns td, and weekly trends tw. The matrix X[ts]
specifically represents the current historical traffic density.

It considers a time window spanning from ts − n to ts

where each column of this matrix can be represented as
the status of the reporting area at time ts denoted as X[ts]

=

[
|D|∑
i=1

l1i [t
s],

|D|∑
i=1

l2i [t
s], ...,

|D|∑
i=1

lLi [t
s]

]T

. The following matrix

defines X[ts] with dimensions L×n, where L is the number
of reporting cells, and n is the size of the time window used
for analysis.


X[ts − n]

.

.

.

.
X[ts]



T

=



i=|D|∑
i=1

l1i [t
s − n] ..

i=|D|∑
i=1

l1j [t
s]

i=|D|∑
i=1

l1i [t
s − n] ..

i=|D|∑
i=1

l2j [t
s]

. . ..

. . ..

. . ..
i=|D|∑
i=1

lLi [t
s − n] ..

i=|D|∑
i=1

lLj [t
s]


The next matrix defines the historical traffic densities with

daily periodicity (i.e., in the previous day d) over the same
time period td−n, ..., td, ..., td+n. The traffic data with daily
periodicity can be obtained by considering the previous and
following n time intervals of the same moment as time ts

from the preceding day. This can be represented as the matrix
X[td].


X[td − n]

.

.

.

.
X[td + n]



T

=



i=|D|∑
i=1

l1i [t
d − n] ..

i=|D|∑
i=1

l1j [t
d + n]

i=|D|∑
i=1

l1i [t
d − n] ..

i=|D|∑
i=1

l2j [t
d + n]

. . ..

. . ..

. . ..
i=|D|∑
i=1

lLi [t
d − n] ..

i=|D|∑
i=1

lLj [t
d + n]


Similarly, the next matrix defines the historical traffic den-

sities with weekly periodicity (i.e., in the previous week ′w′)
over the same time period tw−n, ..., tw, ..., tw +n. Historical
traffic flow data is constructed with weekly periodicity by
considering previous and subsequent n time intervals of the
same moment as time ts in the last week as follows X[tw].


X[tw − n]

.

.

.

.
X[tw + n]



T

=



i=|D|∑
i=1

l1i [t
w − n] ...

i=|D|∑
j=L

l1j [t
w + n]

i=|D|∑
i=1

l1i [t
w − n] ...

i=|D|∑
j=L

l2j [t
w + n]

. . ...

. . ...

. . ...
i=|D|∑
i=1

lLi [t
w − n] ...

i=|D|∑
j=L

lLj [t
w + n]


,

Deep Learning-based Forecasting: The traffic forecast-
ing model utilized by TMC is based on an attention-based
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Fig. 4: Architecture of Attention-Based Conv-LSTM Network.
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Fig. 5: The Traffic forecasting time horizon.

Convolutional Sqeeze and Excitation and Long Short-Term
Memory (Conv-SE-LSTM) deep learning architecture. The
model’s structure is depicted in Fig. 4. The Conv-SE-LSTM
module serves as the primary component of the proposed
model, focusing on capturing the spatial-temporal features of
traffic flow. The Conv-SE-LSTM module combines a CNN,
a SE, and an LSTM network, as illustrated in Fig. 4. The
CNN component comprises two convolutional layers, while
the LSTM component comprises two LSTM layers. The
input to the Conv-LSTM module is a spatial-temporal traffic
flow matrix denoted as X[ts], which represents the current
historical traffic flow of the reporting area to be predicted.
The main components of the proposed model are described as
follows.

1) Convolutional Block: To extract spatial features, a two-
dimensional convolution operation is applied to the traffic flow
data X[ts] at time ts. The convolution operation involves a
two-dimensional convolution kernel filter, which slides over
the flow data to acquire the local perceptual domain. The
convolution operation can be expressed as

Y [ts] = σ(Ws ∗X[ts] + bs), (1)

where Ws represents the filter weights, bs is the bias term,
Xs[t] denotes the input traffic flow at time ts, ∗ denotes the
convolution operation, σ represents the activation function, and
Y [ts] is the output of the first convolutional layer. This process
helps in extracting spatial features from the neighboring ob-
servation locations. G[ts] represents the output of the second
convolutional layer.

G[ts] = σ(Ws2 ∗ Y [ts] + bs2) (2)

After processing the current spatiotemporal information
through the two convolutional layers, the output is then
connected to the squeeze and excitation module.

2) Squeeze-and-Excitation (SE): In the SE, convolution
transformation is represented by Ftr, which maps the input

G[ts] to feature mappings V where V ∈ RH×C (see Fig. 6).
The feature mappings V undergo a squeeze operation, which
aggregates the feature maps across their spatial dimensions
(H) to generate a channel descriptor. This descriptor captures
the global distribution of channel-wise feature responses, al-
lowing all network layers to access information from the entire
receptive field. Subsequently, the excitation operation, imple-
mented through a self-gating mechanism, takes the channel
descriptor as input and produces modulation weights specific
to each channel. These weights are then applied to the feature
mappings V , generating the output of the SE block. This
output can be directly fed into subsequent layers of the
network. In our model, one dimensional SE is applied to the
input G[ts] to generate the output is G′[ts], which is input
to the LSTM module. The complete architecture for the SE
module is given in Fig. 7.

3) LSTM: Long-term dependencies within sequential data
can be efficiently captured using the LSTM architecture, mak-
ing it particularly suitable for handling extended sequential
patterns. In our model, we employ multiple LSTM layers
to capture higher-level traffic flow features. The first LSTM
processes the sequence output from the SE module G

′
[ts] =

[G′[ts−n], . . . , G′[ts−1], G[ts]] and calculates the hidden state
for each time step H1[t

s] = [H1[t
s−n], ...,H1[t

s−1], H1[t
s]].

Then the hidden state sequence H1[t
s] is input into the

second LSTM layer to calculate the hidden state H2[t
s] as

the output, which indicates the spatial-temporal feature for
time step ts. LSTM layers are stacked so that each subsequent
layer receives the hidden state of the previous layer. As a
result, the model can capture increasingly complex patterns
and dependencies within the sequential data. The diagram in
Fig. 8 visually represents the used LSTM layers and their
sequential connections.

4) Attention Mechanism: The standard LSTM cannot de-
termine the importance of different parts within a traffic flow
sequence. To address this limitation, an attention mechanism
is introduced. This attention mechanism enables the model
to automatically identify varying levels of importance for
different segments of the traffic flow sequence at different
time steps. The incorporation of the attention mechanism with
the Conv-LSTM module is depicted in Fig. 8, providing a
visual representation of its functionality. The output of Conv-
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Fig. 7: Squeeze-and-Excitation module architecture.

SE-LSTM at each time step ts is computed as a weighted
summation of the output of the LSTM network H2[t

s] follows:

Ha[t
s] =

n+1∑
k=1

βkH2[t
s − (k − 1)] (3)

where n + 1 is the length of flow sequence and βk is the
temporal attention value at time step t− (k−1). The attention
value βk can be computed as

βk =
exp(sk)∑n+1
k=1 exp(sk)

(4)

The scores s = (s1, s2, ..., sn+1)
T indicate the importance

of each part in the traffic flow sequence, which can be obtained
as

st = V T
s tanh(WhsG[ts] +WlsH2[t

s]) (5)

where V T
s ,Whs and Wls are the learnable parameters and

H2[t
s] is the hidden output from the Conv-LSTM network.

5) Bidirectional LSTM (Bi-LSTM): A module based on bi-
directional LSTM networks is employed to extract periodic
features and capture such a temporal dependency from the
daily X[td] and X[tw] weekly densities. The hidden states
of forward and backward passes are combined as the output.
This way, more features from both directions can be captured,
improving the prediction performance. Fig. 10 illustrates the
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Fig. 8: The Conv-SE-LSTM module with an attention mech-
anism.
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Fig. 9: The attention mechanism with Conv-LSTM networks.

overall structure of the bi-directional LSTM module used in
the model.

As shown in Fig. 8, Ha
t can be obtained after the processing

by the attention Conv-LSTM and Bi-LSTM modules, the
spatial-temporal features, the daily periodicity features Hd,f

t ,
Hd,b

t the weekly periodicity features Hw,f
t and Hw,b

t . Then,
all these features are concatenated into a feature vector and
then input by two regression layers to perform forecasting.

As shown in Fig. 8, the spatial-temporal features Ha[t],
the daily periodicity features Hf [t

d], Hb[t
d] and the weekly

periodicity features Hf [t
w] and Hb[t

w] can be obtained after
the processing by the attention Conv-SE-LSTM and Bi-LSTM
modules. Then, these features are concatenated into a feature
vector fed into two regression layers to carry out forecasting.

Architecture Remarks. In our model, we utilize Squeeze-
and-Excitation (SE) layers to enhance the performance of con-
volutional neural networks (CNNs) by adaptively recalibrating
the channel-wise feature responses. The SE layer employs
global pooling to reduce the spatial dimensions of the input
data, generating a channel descriptor for each channel. This
descriptor is then processed through a fully connected layer to
generate channel weights. These weights are utilized to scale
the original feature maps, enabling the network to selectively
emphasize different regions of the input data based on the
specific task at hand.

The attention mechanism is also employed to selectively
focus on specific segments of the input data rather than
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Fig. 10: The structure of Bi-LSTM networks.

processing the entire input indiscriminately. Attention is com-
monly used in sequence-to-sequence models like Recurrent
Neural Networks (RNNs) and Transformer-based models, par-
ticularly when dealing with variable-length input sequences.
The model can assign weights to different parts of the se-
quence by employing attention mechanisms based on their
relative importance for the given task. This allows the model
to effectively allocate its attention and resources to the most
relevant portions of the input sequence.

VI. PRIVACY AND SECURITY ANALYSIS

Proposition 1. Insider and outsider adversaries cannot
gain access to the drivers’ locations.

Proof. In our scheme, we employ an inner product
encryption [16] cryptosystem to protect the drivers’ reported
locations. This encryption technique ensures that without
knowledge of the secret keys, decrypting the ciphertexts is
impossible. Since each driver is assigned a unique key, and
only the TMC (Traffic Management Center) possesses the
decryption key, it is infeasible to decrypt the ciphertexts
using other drivers’ secret keys as well. For the TMC, it
receives K ciphertexts from each driver, each has an encrypted
value of either 0 or 1. It can be shown that there is a
negligible computational probability of distinguishing between
these encrypted values due to K anonymity.

Proposition 2. The encrypted cells of the same drivers
are not linkable under the known ciphertext model.

Proof. During the encryption process, the IPFE [16] em-
ploys a random nonce to ensure that ciphertexts originating
from the same cells and the same driver appear distinct and
remain unlinkable. To be specific, for each driver’s i encrypted
cell j, the driver generates a unique random number by
selecting a random element rji ←R Zp for j ∈ 1, . . . ,K
and uses this value in the encryption process. Furthermore,
the driver employs K-anonymity [45] to report K − 1 other
random encrypted cells to obscure their true location. These
features are crucial in preventing the linking of ciphertexts
corresponding to the same driver who visits different cells.
Prolonged tracking of a driver’s location cannot lead to iden-
tifying that person based on the visited locations. We conclude
that our scheme is secure in the known ciphertext model,
where attackers cannot obtain the secret keys or the plaintext
information using the encrypted cells.

Proposition 3. Each driver is unable to decrypt the
ciphertexts of other drivers since a shared key is not employed;
rather, each driver possesses a unique secret key

Proof. If a driver could decrypt the ciphertexts belonging
to other drivers, it would jeopardize the privacy of locations
visited by those drivers. In our scheme, the encrypted cells
generated by one driver remain inaccessible to others, pri-
marily because each driver utilizes a distinct key denoted
as pki [16]. Despite using different keys by drivers when
reporting their encrypted cells, the TMC can still assess the
density of drivers within each cell by calculating the inner
product of the reported cell encryptions for cell j and the
vector y consisting of ones [16].

VII. PERFORMANCE ANALYSIS

The proposed schemes were implemented in Python on
a Lambda GPU workstation equipped with the following
specifications: 2xQuadro RTX 8000 GPUs, 2-Way NVLink,
Intel i9-9820X CPU (10 Cores), 128 GB of RAM, and a 2
TB NVMe SSD. This workstation came pre-installed with the
latest versions of essential libraries such as CUDA, Jupyter,
Pytorch, Tensorflow, and Keras. For our implementation, we
utilized two datasets:

• SUMO Dataset: To assess the encryption component
of our project, we generated a set of random trips
based on real maps. We started by obtaining a genuine
map of Greensboro, North Carolina, USA, from the
OpenStreetMap project [48]. The traffic management
area covered an 8 km × 8 km region, divided into 40
cells, each measuring 1 km × 1 km. To create real and
random routes, we employed the ”Simulation of Urban
MObility” (SUMO) software [49]. All results presented
are the averages from 30 different runs (See Fig. 11).

• PeMS Dataset: This dataset was sourced from the Perfor-
mance Measurement System (PeMS), supported by Cali-
fornia Department of Transportation (Caltrans) [50]. We
used the PeMS14 dataset, covering traffic data from 2001
to 2023 across California’s major metropolitan areas. The
data, collected from nearly 40,000 sensors, is mostly
recorded at 5-minute intervals, with some available at
30-second intervals for more detailed historical and real-
time traffic analysis. For our study we focused on two
specific scenarios: freeway and urban traffic, training
and evaluating our proposed model with data from 183
sensors in District 10, specifically on Freeway SR99-S,
as well as 12 sensors from District 4 on Street I980
in Oakland. This enabled robust analysis across both
freeway and urban traffic conditions.

We then assess the proposed privacy-preserving traffic man-
agement forecasting system from three perspectives: Compu-
tation Overhead, Communication Overhead, and Traffic Flow
Forecasting.

A. Computation Overhead

The total computation overhead is quantified through two
key metrics: the number of cryptographic keys distributed
to the drivers from the TMC and the size of the encrypted
messages transmitted to the TMC (Dk + Em). For the
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Fig. 11: Synthetic dataset generation using SUMO

first metric (Dk), each driver is assigned a key denoted as
pki := (G, [ai] , [Wiai] , ui). Using the asymmetric pairing
curve BN256 with a size of 256 bits, where each group ele-
ment occupies 32 Bytes, in addition to the public parameters,
each driver requires two group points (64 bytes each) and
one field element (2 bytes in size) to encrypt its location
report. The total key size sent from the TMC (Dk), including
the public parameters, is 66 bytes. For the second metric
(Em), when a driver encrypts a single cell and employs the
asymmetric pairing curve BN256 with a size of 256 bits, where
each group element is 32 Bytes, the resulting encrypted cell
size is composed of two group elements, totaling 64 Bytes.
As drivers employ K-anonymity [45] when reporting their
locations, the overall message size is directly proportional
to the value of ‘k’, where the size of message sent is (64
bytes × k) with ‘k’ being the number cells to be encrypted
by the driver. Thus, for an 80-cell geographical area, drivers
require only 5.12 kilobytes of computational resources to
encrypt their route data prior to transmission to the TMC.
This minimal overhead highlights the efficiency of our scheme,
ensuring that even resource-constrained vehicle modules can
perform encryption seamlessly, enabling secure and rapid data
transmission through existing communication protocols.

B. Communication Overhead

On the driver’s side, overhead is associated with the time
it takes them to calculate, encrypt, and transmit their loca-
tion data. Similarly, the time the Traffic Management Center
(TMC) spent to receive, decrypt, and consolidate location
reports also contributes to overhead. The randomly generated
traffic location data for the Greensboro city area in North
Carolina is encrypted and decrypted using the In-Place Func-
tional Encryption (IPFE) technique [16] implemented in the
Go programming language. We conducted a simulation in
which 100 drivers (represented as D = 200) entered various
cells. Figure 12a depicts the relationship between the number
of cells that a driver needs to encrypt and the total encryption
time in milliseconds. The figure illustrates a direct proportional
relationship between the encryption time and the number of
cells within the millisecond range, which represents a rela-
tively small privacy cost of approximately 50ms for encrypting
an area with 80 cells. Figure 12b illustrates the relationship

TABLE II: Hyper-parameter tuning

Hyper-parameter Value Selected Best
Value

Units 32, . . . , 512 488

Activation relu, tanh,
sigmoid

relu

Dropout True, False True

Learning rate 1× 10−4 to
1× 10−2 0.0003

TABLE III: Different Optimizer comparison

Optimizer MAE MAPE RMSE
SGD 39.45 62.73 45.66

ADADELTA 18.75 19.13 24.09

RMSProp 12.06 14.25 15.67

ADAGRAD 9.80 10.18 13.93

ADAM 7.94 8.50 11.03

between millisecond decryption time and the number of active
drivers entering specific cells. Notably, for a scenario involving
40 drivers, 60 drivers and 80 cells, the decryption process
typically requires less than 600 milliseconds for an 80-cell
area accommodating 200 driver presence. This number un-
derscores the efficiency of the decryption process for such
configurations.

C. Traffic Flow Forecast

This subsection evaluates the traffic forecasting model
(Conv-LSTM) both with and without the squeezing and
excitation algorithms, attention mechanism, and Bi-LSTM. In
order to measure our suggested scheme against comparable
traffic forecasting methods found in the literature, we
selected three commonly used performance indices. These
measures, Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE) assess the accuracy of
predictive models in regression analysis.

• Mean Absolute Error: The MAE is calculated using the
formula

MAE =
1

n

n∑
t=1

|Fp − Ft| (6)

• Mean Absolute Percentage Error: The MAPE is calcu-
lated as follows:

MAPE(%) =
1

n

n∑
t=1

|Fp − Ft

Ft
| × 100 (7)

• Root Mean Square Error: The RMSE is determined by
the formula:

RMSE =

√√√√ 1

n

n∑
t=1

(Fp − Ft)2 (8)
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Fig. 12: Computation Overhead Analysis.s.
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Fig. 13: Error Rate Assessment for Short-Term Traffic Flow Forecasting.

where Fp represents the predicted traffic flow and Ft

represents the true traffic flow.

1) Experimental Data and Evaluation: Using the PeMS
dataset, the hyperparameters of the forecasting Conv-
LSTM model are fine-tuned utilizing the Tensorflow
Keras Tuner. The tuning process involved exploring a
range of hyperparameter values, including unit limits
for feed-forward layers ranging from 32 to a maximum
of 512, likewise exploring various activation functions
ranging ReLU, Sigmoid, and Tanh. Lastly, we
investigated different learning rates within 1 × 10−4

to 1 × 10−2. Table II contains the tuning process
outcomes and the optimal hyperparameter values.
Additionally, we performed a comparative analysis
on adopting five different optimizers for our model.
The optimizers used were Stochastic Gradient Descent
(SGD), ADADELTA, Root Mean Square Propagation
(RMSProp), Adaptive Gradient (ADAGRAD), and

Adaptive Moment Estimation (ADAM). The analysis
results are presented in Table III, where the ADAM
consistently outperforms other optimizers regarding error
reduction. Consequently, we selected ADAM as the
optimizer for our final model.

2) Forecast Performance Evaluation: Here, we demon-
strate the efficacy of our proposed hybrid model for traffic
flow prediction at a particular Point of Interest (POI) on
Street I980 in Oakland, District 4, by utilizing a number
of crucial elements, including an attention mechanism
(AT), a squeeze-and-excitation (SE) module, and a Bi-
LSTM module. Our hybrid model was built in four
stages using the TensorFlow framework [54], Beginning
with the Conv-LSTM (Conv LSTM) model (Stage 1).
Then, integrating the Conv LSTM model with a Bi-LSTM
module to form a Bi-Conv LSTM model (Stage 2). The
Bi-Conv LSTM model was enhanced further by adding
an attention mechanism to produce an AT-Bi-Conv LSTM
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TABLE IV: Prediction performance with various proposed modules for prediction of urban area traffic flow.

Algorithm Measure 5min 15min 30 min 60 min

Conv LSTM (Stage 1)

MAE 9.05 10.80 10.28 10.50

MAPE (%) 9.94 11.73 10.25 11.33

RMSE 12.32 14.73 14.28 14.21

Bi-Conv LSTM (Stage 2)

MAE 12.57 18.07 12.37 14.31

MAPE (%) 13.18 19.08 12.9 13.73

RMSE 18.8 24.16 18.55 21.16

AT-Bi-Conv LSTM (Stage 3)

MAE 8.19 9.45 9.21 10

MAPE (%) 8.86 9.56 9.60 10.71

RMSE 11.33 13.14 13.01 13.94

AT-Bi-Conv-SE LSTM (Stage 4)

MAE 7.94 8.66 9.88 10.10

MAPE (%) 8.5 9.22 10.66 10.75

RMSE 11.03 12.10 13.8 13.9

TABLE V: Performance comparison of different Models for Urban traffic flow prediction.

Horizon Measure DCRNN [51] AT-Conv-LSTM [15] Bi-LSTM [38] SCG [35] AGFCRN [52] PGCN [53] Our Model

5 min

MAE 13.79 13.49 12.63 3.43 15.10 12.56 7.49

MAPE (%) 10.7 10.1 10.49 8.60 9.67 8.74 8.5

RMSE 18.88 18.56 16.72 5.09 17.81 16.49 11.03

15 min

MAE 14.79 14.34 15.09 6.89 16.71 13.43 8.66

MAPE (%) 11.5 10.8 12.28 11.61 10.14 9.88 9.22

RMSE 20.43 20.08 18.34 8.43 22.68 17.91 12.10

30 min

MAE 16.05 15.48 17.41 11.15 19.53 15.62 9.88

MAPE (%) 12.4 11.4 14.5 16.89 12.82 11.61 10.66

RMSE 21.18 21.26 19.72 14.71 25.94 19.33 13.8

60 min

MAE 18.43 16.65 20.53 20.21 22.31 18.06 10.10

MAPE (%) 14.2 12.3 16.9 17.36 15.53 13.89 10.75

RMSE 25.74 23.26 24.12 21.09 28.09 24.74 13.9
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Fig. 14: Comparison of Model Predictions and Actual Traffic
Flow over a 300-Minute Interval.

model (Stage 3). Lastly, we fuse a squeeze-and-excitation
module to the previous AT-Bi-Conv LSTM model, re-
sulting in an AT-Bi-Conv-SE LSTM model (Stage 4).
The outcomes, as detailed in Table IV, highlight our
final hybrid model (AT-Bi-Conv-SE LSTM model) as the
best performing model, achieving the lowest MAE and
RMSE error rates of 7.94% and 11.03% respectively for
a 5 minutes prediction time, while posing a 10.1% MAE
value and 13.9% RMSE value for a prediction horizon
of 60 minutes. Also, Table IV shows stage two (Bi-
Conv LSTM model) as the worst performing stage, with
the highest MAE and RMSE error rates of 12.57% and
18.8% respectively for a 5 minutes prediction horizon,
as well as, 14.31% MAE value and 21.16% RMSE
value for a prediction time of 60 minutes, indicating a
decrease in performance, after the addition of the Bi-
LSTM module. For instance, a significant increase in
MAE and RMSE error rates from 10.5% and 14.21%
respectively in stage 1 to MAE and RMSE error rates of
14.31% and 21.16% respectively in stage 2. Conversely,
a substantial performance improvement was witnessed
from stage 2 to stage 3, likewise from stage 3 to stage
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4 (best performing model) across all prediction horizons.
Concretely, this comprehensive approach underscores the
effectiveness of our model in accurately forecasting traffic
flow and positions it as a leading solution for traffic
management and analysis. Fig. 14 shows the prediction
performance of the proposed model, emphasizing its
superior forecasting accuracy due to its coherence with
the referenced actual traffic flow compared to the flow
predictions of other baselines forecasting models.
Furthermore, we comprehensively compared our pro-
posed hybrid (AT-Bi-Conv-SE-LSTM) model and other
established contemporary approaches for short-term
traffic flow predictions spanning various prediction
time horizons (5 minutes, 15 minutes, 30 minutes,
and 60 minutes). The comparative approaches encom-
pass Diffusion Convolutional Recurrent Neural Network
(DCRNN) [51], Attention-Based Conv-LSTM Network
(AT-Con-LSTM) [15], Bidirectional LSTM network [38],
STFSA Convolutional Neural Network Gated Recur-
rent Unit (SCG) [35], Adaptive Spatial-Temporal Fu-
sion Graph Convolutional Network (AGFCRN) [52] and
Progressive Graph Convolutional Network (PGCN) [53].
Table V showcases the comparison of prediction accuracy
(error rates) across different models using the MAE,
MAPE, and RMSE indices. Notably, our proposed hybrid
(AT-Bi-Conv-SE LSTM) model emerged as the overall
best, consistently delivering exceptionally low MAE and
RMSE rates of 7.49% and 11.03%, respectively, for a 5-
minute forecast. For the same prediction time, AGFCRN
shows the highest MAE and RMSE rates of 15.10%
and 17.81% respectively, making it the least effective
for the same forecast duration. Other models, including
DCRNN, AT-Con-LSTM, Bi-LSTM, SCG and PGCN,
showed improved performances (descension of MAE and
RMSE rates) over AGFCRN (least performing), with
SCG being the superior model for shorter prediction
times. Fig 13a affirms these findings, as we can visualize
a reduction in the MAE and RMSE rates (improved
model performance) moving from the least performing
AGFCRN to the best performing SCG forecasting model
for a 5-minute forecast. Similarly, from Table V, for a
60-minute forecast, AGFCRN remains the least efficient
with the highest MAE and RMSE rates of 22.31% and
28.09% respectively, while our proposed model was the
best-performing forecasting model with the least MAE
and RMSE rates of 10.1% and 13.9% respectively (sig-
nificantly reducing errors compared to AGFCRN and
PGCN). Common to the behavior observed in Fig 13a
for the 5-minute forecast, Fig 13b provides a visual
illustration of the ascension in model performance for
the forecasting algorithms moving from AGFCRN (the
least performing algorithm), DCRNN, AT-Con-LSTM,
Bi-LSTM, SCG, PGCN to our proposed hybrid model
(best performing), in decreasing order of MAE and
RMSE rates. It is essential to note, the trend of increasing
MAE and RMSE rates with longer prediction horizons is
consistent across all models as witnessed in both Tables
IV and V. However, the SCG model, while excellent

for short predictions (5 and 15 minutes), from Table
V, falls short for longer horizons (30 and 60 minutes)
compared to our proposed model. This indicating how
reactionary the SCG model is, as well as underlining
the superior capability of our proposed hybrid model
in providing precise short-term traffic forecasts, essential
for dynamic traffic management, incident response, and
enhancing mobility, safety, and the overall efficiency of
the transportation network.
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VIII. CONCLUSION

In this paper, we introduce a novel, lightweight traffic fore-
casting system specifically designed to safeguard the privacy
of driver location information while delivering precise traffic
flow predictions. Our approach employs IPFE technique to
encrypt the location data of drivers to ensure the confidentiality
of individual locations throughout the process. Each driver
uses functional encryption to secure their location data, while
TMCs employ a functional decryption key to compute route
densities. Moreover, a hybrid Conv-LSTM and Bi-LSTM fore-
cast model, which operates on encrypted route data, is utilized
to predict near-future traffic densities. We conducted extensive
simulations using real-world datasets to evaluate the efficacy
of our system. The results highlight the efficiency, scalability,
and low overhead in both computations and communications
of system. Additionally, it demonstrated a reduction in data
losses and improved traffic predictions, particularly at critical
points of interest. Distinct from existing methods, our system
ensures accurate forecasts without compromising privacy. Our
hybrid Conv-LSTM and Bi-LSTM model, enhanced with a
Squeeze-and-Excitation (SE) module, adeptly extracts spatial-
temporal features from encrypted data, capturing intricate daily
and weekly traffic patterns to boost prediction accuracy. Our
findings confirm that our system adeptly meets the complex
requirements of dynamic, real-time traffic management, set-
ting a new benchmark in traffic forecasting with its ability
to integrate seamlessly and operate reliably across various
environments.
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