arXiv:2504.12806v2 [cs.LG] 7 May 2025

A Numerical Gradient Inversion Attack
in Variational Quantum Neural-Networks

Georgios Papadopoulos’,

Shaltiel Eloul', Yash Satsangi!

, Jamie Heredge?, Niraj Kumar?, Chun-Fu Chen?,

and Marco Pistoia?

Abstract—The loss landscape of Variational Quantum Neural
Networks (VQNNSs) is characterized by local minima that grow
exponentially with increasing qubits. Because of this, it is more
challenging to recover information from model gradients during
training compared to classical Neural Networks (NNs). In this pa-
per we present a numerical scheme that successfully reconstructs
input training, real-world, practical data from trainable VQNNs’
gradients. Our scheme is based on gradient inversion that works
by combining gradients estimation with the finite difference
method and adaptive low-pass filtering. The scheme is further
optimized with Kalman filter to obtain efficient convergence.
Our experiments show that our algorithm can invert even
batch-trained data, given the VQNN model is sufficiently ‘over-
parameterized’.

Index Terms—Quantum Machine Learning, VQNN, Varia-
tional, Privacy, Inversion Gradient Attacks

I. INTRODUCTION

UANTUM Computing (QC) experiences significant

technological advancements every year [1]-[6]. This
progress is anticipated to influence a wide-range of scien-
tific and industrial applications. Quantum Machine Learning
(QML) is one of the domains considered to be early ben-
eficiaries of QC, with development of algorithms such as
Quantum Support Vector Machines [7] (QSVM), Quantum
Deep Neural Networks [8] (QDNN), and Quantum Reinforce-
ment Learning [9] (QRL). QML models are designed to fit
patterns in data, similar to classical NNs. QMLs are generally
grouped into a) models with fixed quantum circuits [10]-[12]
such as quantum kernel methods, that do not have variational
parameters in the quantum circuit and b) VQNN models, a
flexible technique that incorporates trainable parameters within
the quantum circuits (ansatz) [13], [14].

VQNNSs encode classical data into quantum states and pro-
cess them using quantum mechanical gates arranged in layers
(Fig. 1). The output from measuring the quantum state is then
used to calculate the loss function. The trainable parameters
are represented as vectors and optimized by measuring gradi-
ents using the parameter shift rule [15] at each training round.
The model parameters are then updated through classical
optimization in the training round. VQNN models are flexible
and are often combined within larger hybrid quantum-classical
models [16]. This allows studying their potential applicability
across various domains, including ab-initio molecular model-
ing [17], material analysis [18], high-energy matter [19]; and
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Fig. 1. Generic architecture of a VQNN. It consists of a quantum feature
map P(x) that encodes classical input data x into a quantum state. The
horizontal lines represent the qubits in the quantum circuit. The ansatz V' (8)
is designed with trainable parameters @ to explore the solution space. The
trainable parameters are optimized by adjusting € to minimize a defined loss
function (Loss).

also being explored for general data applications, recognition
with ML models, financial applications, and more [20].

Training VQNNs may prove challenging since gradient-
based training suffers from the vanishing gradient problem
[21], [22] due to barren plateaus in the loss landscape. Another
challenge is that the loss landscape is characterized by a
large number of local minima. The importance of the latter is
apparent even in a system with a few qubits, yet it is somewhat
under-looked in the literature (but see [23]). For instance,
Fig. 2 shows a sampled gradient map of a two qubits VQNN
circuit. This oscillating landscape can lead to large instability
in common gradient descent optimizers [23] (ADAM [24], L-
BFGS [25], NatGrad [26]). Interestingly, the existence of many
local minima can be leveraged for privacy-preserving training
of VQNN models [27]-[29] in distributed learning setups such
as Federated Learning (FL) [30].

Federated learning [30] are distributed training paradigms
for a machine learning model, without sharing the local
data among different parties/clients (C;). FL is crucial in
training on sensitive and personal data of edge devices, in
communication systems such as in automotive, data-market
and pricing data models [34]-[36], or recently, even being
used to preserve confidentiality of drug molecule structures
in an FL setup between pharmaceutical companies [37]. In a
typical application, a central server initializes and distributes
a global model to all clients. Each client then independently
trains the model on local data, computing weight updates (see
Fig. 3). Clients send only these updates back to the server.
The updated weights ®;, shared by each client for the model
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Fig. 2. The surface shows the value of the VQNN model loss gradients for
each combination of input values. The ansatz VQNN model is used also in
our experiments, E f ficientSU2 [31] with Fraud data as described in Table
I and with input parameters z1 (qubit 1) and x2 (qubit 2). ZZ FeatureM ap
is used here for embeddings [32], [33].
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Fig. 3. In a standard pipeline of a Federated Learning model, clients (C})
locally train the neural network on their data and share only the gradients
or weights with the server, without exposing the data itself. Then the server
aggregates the gradients (g) or weights (6) and calibrates a global model.
Next, it broadcasts the updated global model back to the clients.

f (with ¢ as the training steps/rounds), are defined as:

vy OLoss(f(Xi5,0:),Yip)
G =-L : ’ !
¢ B Z 891 ’ ( )
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where G; the gradients of each training step ¢ = {1,2,--- ,I}

with I the total steps, X; the features data, B the batch
size, Y; target values, Loss the loss function, ®; the model
f weights, ~ the learning rate. The server then aggregates
updates of the weights from clients [38], [39], G; = G;—1 +
> e,<c, Gi> and repeat the training with new rounds of data
and possibly new clients. For later use, we define g = G; for
the gradients, 8 = ®, for the model weights, x = X; for the
data, y =Y, for the target values.

Gradient sharing is vulnerable to inversion attacks [40]-
[42], allowing adversaries to reconstruct sensitive data from
shared gradients. A typical attack involves selecting a proxy
model and proxy gradients g’ to minimize a loss function
[43]-[45] between g’ and g, for example, ||g’ — g|| w.rt
a guess proxy input vector x’ [43], [45]. Variations include
using vector products instead of absolute distance [46], adding
regularizations [47], or prior distributions to enhance inversion
success. Results indicate that NNs are surprisingly highly

vulnerable to such attack, with potentially recovering the full
large batch of input data within machine-level precision [48]—
[50]. Proposed mechanisms with Differential Privacy (DP) and
other techniques [40], [45], [51] to reduce NN vulnerability
often lower model performance, or incur high computational
costs with encryption schemes [52]-[54]. Recent studies [27],
[55]-[57] highlight Variational Quantum Circuits (VQCs) as
resistant to gradient inversion attacks. VQC gradients, with
complex multivariate Chebyshev polynomials, create a system
of equations difficult to solve numerically, hindering data
reconstruction. Fig. 4 illustrates the challenge of finding a
global minimum for min||g’ — g||.

In this paper we present a new algorithm that successfully
adapts inversion attacks to invert private data when training
VQNNSs in federated or decenteralized learning setups. One
could try inversion attacks in the VQNN scheme by numeri-
cally calculating gradients using the Finite Difference Method
(FDM). However, this alone, would not be sufficient and fail to
minimize min||g’ — g|| to the global minimum of the original
data, due to the high density of local minima. By incorporating
adaptive low-pass filtering in the FDM, the attack can find the
global minimum effectively by adapting the low-pass filter’s
window to the local minima frequency (see Fig. 5). The
algorithm is found to be effective as long as the model is
trainable. This paper accurately reconstructs input x with a
numerical error of M SE(x’,x) ~ le—10. Additionally, when
adding a Kalman filter updates, we improve the efficiency
of convergence across all trainable models and data, even
recovering batch inputs.

A. Contributions

For a comprehensive privacy study, it is critical to assess
the performance of the VQNN models. Therefore, this work
revisits training tasks proposed on VQNNSs. It is shown, that
practical models which are trainable with typical optimizer
(SGD or L-BFGS), can be also vulnerable to the inversion
algorithm proposed here. In addition, the work includes results
for benchmark dataset (MNIST [58]) and importantly, real-
life sensitive data (Credit Card Fraud [59]). Through this
systematic study, we provide a practical analysis of data
leakage risks in sensitive QML applications. Although our
work provides results on representative and typical cases, it
does not intend to provide a full assessment to all potential
models or datasets. Instead, it forms the base for a benchmark
scheme that can be tested in a specific application or for further
research on security of model training.

Specifically, our contributions are:

o A successful gradient inversion attack on VQNN
models. The attack is achieved by an optimization al-
gorithm based on finite difference gradient estimation
with an adaptive filtering.

o A critical study of the gradients inversion in trainable
VQNN models, at different sizes and complexity,
batching, and various datasets.

o Providing a practical benchmark attack to assess the
trade-off between privacy and performance, and in
comparison to NN models.
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Fig. 4. The plots show the gradient loss landscape (Eq.7) with multiple local minima, which can hinder the success of gradient inversion attacks [27]-[29].
Each plot shows a different viewpoint of the multiple local minima of a VQNN model. In the 3-D and surface plots (a), the x-axis and y-axis represent the
input parameters 1 (qubit 1) and 2 (qubit 2), ranging from 0 to 2. The z-axis depicts the gradient loss (g’ — g)2. The line plot (b) shows the multiple
local minima across the dimension x1. The VQNN model used in these plots is named ‘Complex’ and depicted in Table 1.
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Fig. 5. Gradient inversion attack profile on two qubits ‘Complex’ VQNN
model (thick orange line), shows a close-up near the global minimum of the
inversion error with log10 MSE distance (x’,x) versus the squared gradient
loss (g’ — g)2. As the attack is progressed, g’ approaches g which leads
to reveal the hidden x. The fluctuating x space is plotted (thin blue line) by
sampling small random differences of (x/ — x)2.

The rest of the paper is structured as follows: Section
IT overviews recent work on privacy in QML followed by
background on VQNN model training (Section III). Section
1V, details the method for the inversion attack with the
proposed optimization algorithm (Alg. 2). Section V discusses
the VOQNN models used, their training and setup (Table
I), assumptions, and the experiments carried out. Then, we
discuss results of inversion attacks in the various experiments
of models, datasets, and batch. We also compare performance
versus privacy, with differential privacy using noisy gradients
in VQNN and NN (Section VI).

II. RELATED WORK

Many recent works explored the applicability of quantum
FL setup and indicated the added value for privacy [27], [55]-
[57], [60], [61]. However, none of these works demonstrate a
successful attack for practical cases, and hence our paper pro-
vides an important insight to practitioners and researchers in

the field. [62] uses a hybrid quantum convolutional network to
preserve privacy via FL for automatic speech recognition. [63]
focuses on implementing privacy-preserving QML through the
application of DP. The authors propose a hybrid quantum-
classical model using a VQC trained with differentially private
optimization algorithms. The privacy mechanism is introduced
by clipping the gradients and adding Gaussian noise to ensure
DP. Compared to their work, our paper goes beyond simple
noise addition for privacy by actively exploring vulnerabilities
through gradient-based attacks, specifically gradient inversion.
Other works in quantum DP [64] which primarily focus a theo-
retical framework for quantum DP using information-theoretic
tools like the hockey-stick divergence. Their work does not
actively explore attacks on quantum models to evaluate privacy
risks. [65] employ quantum FL, which distributes training data
among multiple clients and trains local models iteratively.
They also integrate quantum DP by adding noise during
training. However, they do not explicitly perform adversarial or
propose inversion attacks to reconstruct original inputs. Their
emphasis is on accuracy versus privacy under FL.

Closely related works are in a new line of research, [27],
[66]. These works investigate properties of ‘overparameter-
ized” QML models with highly-expressive encoding (in terms
of Fourier frequency spectrum) that provide an inherent pro-
tection against gradient inversion attacks. It examines these
models in the context of an FL setup. The works show
theoretical results backed by empirical evidence that the perpe-
trator encountered a considerable challenge when attempting
to craft an attack on these models due to its complexity.
Here, we show empirically, that despite this challenge, we can
successfully invert to original data in trainable VQNN models.
[61] establishes a relation between the privacy of VQNNs and
the dimension of the Lie algebra of their circuit generators.
This theoretical insight highlights the general susceptibility
of various models to analytical closed-form solution attacks.
Our research complements this study and introduces the first
algorithm for inversion attacks of VQNNSs. This is valuable



tool for exploring and benchmarking the resilience of VQNN5
in practical applications. Several recent works also discuss the
security and privacy of VQNNs [67] mostly with relation to
adversarial attacks (or white-box attacks since they require
access to target values) [68], [69], a group of methods that
exploit gradients to create inputs (adversarial examples) that
fool the model into making incorrect predictions. For exam-
ple, [70] and [71] explore adversarial robustness in VQNN:S.
[70] analyzes vulnerabilities under scenarios involving Haar-
random pure states and Gaussian latent spaces, using the
quantum DP framework from [72]. They provide robustness
bounds and focus on classification tasks, particularly exam-
ining prediction-change attacks and their impact on artificial
datasets like MNIST [71], on the other hand, leverage quan-
tum hypothesis testing (QHT) to establish formal robustness
conditions for quantum classifiers, proposing assessments to
evaluate resilience against adversarial and noise perturbations.
Both works emphasize robustness evaluation not on the inver-
sion attack type presented here, and require target labels or
classification outputs.

In contrast, our work departs from these frameworks by
implementing gradient-based inversion attacks that exploit
quantum reversibility without relying on target labels or classi-
fication outputs. By approximating original input data in both
regression and classification contexts, we provide a broader
vulnerability analysis encompassing both benchmark and real-
world datasets, revealing additional risks not covered in prior
studies. Similar to [60], [70], [71], [73] investigate adversarial
robustness in VQNNs by incorporating quantum noise (similar
to DP), proposing it as a defense mechanism against adver-
sarial attacks. Their work employs the iterative fast gradient
sign method (I-FGSM) to craft adversarial examples, which
rely on access to target labels for calculating perturbations that
maximize the model’s loss. This approach evaluates robustness
by measuring the rate of mis-classification caused by these
perturbations, with a focus on assessing the effects of noise
on classification accuracy. However, their methodology is
inherently dependent on the availability of target values and is
designed for classification tasks. In contrast, our work operates
without access to target labels, employing gradient inversion
techniques that exploit quantum reversibility to recover input
data directly.

III. BACKGROUND
A. Training Variational Quantum Neural Networks (VOQNN)

Given a dataset {(X;,Y;)}/_, that consists of X; € R’/
input features and corresponding target values for classification
Y; € {0,1}¢ where C is the number of classes or in
regression models Y; € R. In a model the parameters are
0 = {01,00,-- ,0p,,--- ,0p}, with m = [1,M]. Sub-
sequently, training a neural network with parameter 6 that
accepts the data X; as input, it requires minimizing a loss
function between the prediction Y; = f(X;, 8) and the target
values Y;:

i=1

I
mgin [Z Loss(Yi, YZ)] 2)

Algorithm 1 Training Algorithm for VQNN
Require: Dataset x with rows {(X;,Y;)}!_,, initial param-
eters O, learning rate 7, maximum epochs [

Ensure: Optimized parameters 6*

1: Initialize 8* < 0,

2: fort=1to I do

3: for each (X;,Y;) in the dataset x do

4: Encode X, into quantum state:

s B(X,)) U (X,)[0)2
6: Apply parameterized circuit:
7
8
9

(X, 07)) « V(07)|2(X,;))
Measure observablq:
Y+ ((Xi,07)[09(X;,67))

10: Compute loss:

11: Loss « (Y; — Y;)?

12: Compute gradients g = Eq. 6

13: Update parameters: 8* < 0™ — ng
14: end for

15: end for

16: return 0"

In order to minimize the loss, the gradients (Eq.1) of the
loss function with respect to the model parameters 6 are
calculated. After the gradient estimation, the model parameters
can be updated by optimization such as stochastic gradient
descent update to complete one round of training. In VQNN,
the computation of gradients is different and requires the
measurement of the qubits’ states as detailed below.

Alg. 1 summarizes the training of a VQNN model. As a
first step, it uses quantum feature map ®(x) to encode the
classical input data x into a quantum state [14], [21].

|@(x)) = Us (x)[0)*7, 3)

where Ug (%) is a unitary operator parameterized by x, and
q is the number of qubits. The feature map ®(x) is a circuit
of quantum gates that transforms the initial state [0)®? with a
unitary operation Ug that is embedded with the information of
x. Typically, in angle encoding feature maps, the number of
qubits is chosen to be equal to the number of dimensions in x,

so J = ¢q, where x = {x1,22, -+ ,z;} and j the dimension
index j = {1,2,---,J}. A feature map used in the models
here is a rotation gate around the X-axis (Rx) [14], [21], with

5%

Rx(z;) = exp (—i%0,) and o, is the Pauli-X matrix. The
ansatz V(0) is a parameterized quantum circuit that consists
of sequence of quantum gates with trainable parameters 6 to
create a highly expressive model [74]:

¥ (x,8)) = V(0)|®(x)) @)

the ansatz includes rotations around the Y and Z axes and
controlled-NOT (CNOT) gates to entangle qubits. To obtain
a prediction, a measurement on the quantum state |¢(x,8))
is performed. A pre-defined Hermitian operator is used as an
observable O and the expected value is computed [21]:

¥ = (¥(x,0)|0)(x,0)). (5)



A common choice of the observable is the Pauli-Z (%)
operator o, but any other operator can be chosen based on
the problem. In classification tasks we encode probabilities
with the Pauli-Z operator to measure the state of each qubit.
From Eq. 5, for regression tasks the y is a continuous value
derived from the expectation value of the observable. To train
a VQNN, the parameters are measured and gradients are
estimated with the parameter-shift rule [15], [75]-[77]:

-t ls(o+Te) 5 (0-Fe)] o

where €,, is the unit vector of size M, the m-th entry
equals one [é,,],, = 1, and all other entries [€,,]i%m = 0.
After evaluation of the gradients, the model parameters can
be optimized with similar methods to classical NN.

IV. METHODS

A. Gradient Inversion Attacks

The core idea behind gradient inversion attacks is to exploit
the parameters shared during or after a distributed training. An
adversary tries to infer the original input data by analyzing
these gradients. For example, by using the ‘Deep Leakage
Gradient’ (DLG) attack on classical NN [43]. In classical NN,
the optimization of x’ to recover x relies simply on back-
propagation of a differentiable model to calculate some cost
function between g’ and g, denoted by Ly ¢, and differentiate
it with respect to asj, Lagz £ . Then, to use an optimizer to find
x’ that minimizes the coét function [47], [78], or even invert
it directly for some NN architectures [45]. In a VQNN, the
gradients are obtained with a measurement, hence we adapt
the finite-difference method to estimate numerically Lg £ for
every j. However, the main challenge, is to optimize L; g to
the global minimum. This work proposes an adaptive low-
pass filter in the finite difference estimation of gradients. The
cost function used here, is the euclidean distance between the
gradients g’ and g, where g’ is the gradient of Eq. 1 with
proxy model input using x':

M

1
i > (G = gm)” (@)

m=1

ﬁgﬁg =

Other cost functions and regularization can also be consid-
ered [48], but are beyond the scope of the study. The inversion
attack scheme has the following steps:

1. Numerical Gradient Approximation: For each dimen-
sion j, compute the numerical gradient of the cost function
with respect to x; (the j similar to Eq. 3):

0Ly o
ox’.

J

_ Eg/,g(m; + nhe;) — £g/,g(x;
2nh

— nhe;)

+ O(nh)
®)

See Alg. 2, and ¢; is the unit vector in the j-th direction. n the
moving average window size used in the algorithm n = [1, N].
h the step size of the algorithm.

2. Low-pass filter: We can use a simple moving average
window with size IV, to remove oscillations with frequencies,

1/(Nh):

N n
Ly g _ Z 6[1 “~e'g O(n
ox’; N ox’;
The window size for filtering, Nh depends on the model com-
plexity and how close Lg/ ¢ is to zero, the global minima. Nh
is initially chosen to be sufficiently large and is dynamically
adapted according to convergent criteria. Optimally, close to
the global minima, reducing Nh as Lg/ g|nn—0 — 0.
3. Gradient Descent Update: It is sufficient to use a

stochastic gradient descent where at each round, k, each
dimension of x’ is updated:

h) ©)

0Ly o
8x;

1 k 1 k—1
T T —Ir

(10)

where [r is the learning rate, obtaining the updated x’* from
the previous x’*~1,

4. Iterative Refinement: Repeat the gradient approximation
and update steps iteratively for a fixed number of iterations
(K) or until reaching convergence. Implementation of the steps
are presented in Alg. 2.

B. Kalman Filter Attack

To enhance the attack’s efficiency, we employ a Kalman
filter, which iteratively refines the estimate of the input val-
ues. The Kalman filter operates in two parts: prediction and
measurement. The prediction part uses transition F' matrix to
predict new state from previous iteration x’*~1 and initialized
to zero in k = 0. The measurement here is calculated from
the new x’* in Eq. 10 to obtain the update:

1k — Fx/k*l 4 Dk(xlk‘ _ HFx/k*l) (11)

H is the measurement matrix, and D” is the Kalman gain
matrix for the correction of the prediction. We explain the
details of the update stages for obtaining D¥, with a standard
application of Kalman filter [79] in Appendix, Eq. 12 and 13.

V. EXPERIMENTS
A. Data Generation and Quantum Model Design

We conduct model training and attack experiments on
various benchmark datasets, with different VQNN architec-
tures and qubit/input numbers, for both regression and binary
classification tasks. The datasets used are MNIST [58], data
generated from a commonly used cosine function with y =
0.7 cos(x), and Fraud detection data [59]. Model architectures
are shown in Fig. 6, including ZZ FeatureMap [32], [33]
and Ef ficientSU2 [31] (referred here as ZZZEfficient).
Experiments involve systems of 2 and 6 qubits and inputs.
Table I displays VQNN training performance comparable to
classical NNs. It includes 5-fold Cross Validation averages,
with datasets split into 80/20. We apply the proposed attack
in this study to shared gradients in a round of training. The



TABLE I
VQNN MODEL TRAINING PERFORMANCE AND ARCHITECTURES. THE ZZ E f ficient MODEL IN THE EXPERIMENTS IS THE ZZ FeatureMap [32], [33]
AND E f ficientSU2 [31] MODELS. ALL MODELS USE A Loss FUNCTION OF THE MSE. THE COSINE IS A REGRESSION MODEL AND THE FRAUD AND
MNIST ARE BINARY CLASSIFICATION MODELS. THE TRAINING/TEST RESULTS ARE THE AVERAGE OF 5-FOLD CROSS VALIDATION.

Dataset Model Qubits/Inputs Model Diagram Metric Train  Test Attack Plot

Cosine Simple 2 Fig. 6a R? 9%  96%  Appx. Fig. 12
Simple 6 Fig. 6a R2 98%  94%  Appx. Fig. 12
Complex 2 Fig. 6¢ R2 9%  98%  Appx. Fig. 12

Complex 6 Fig. 6¢ R? 9%  95% Fig. 7
MNIST Simple 2 Fig. 6a Balanced Acc. 89%  80%  Appx. Fig. 13
Simple 6 Fig. 6a Balanced Acc.  91%  81%  Appx. Fig. 13
Complex 2 Fig. 6¢ Balanced Acc. 84%  81%  Appx. Fig. 13

Complex 6 Fig. 6¢ Balanced Acc. 83%  80% Fig. 7
Credit Card Fraud  Simple (Entangled) 2 Fig. 6b Balanced Acc. 88%  86%  Appx. Fig. 14
Simple (Entangled) 6 Fig. 6b Balanced Acc. 85%  83%  Appx. Fig. 14
Complex 2 ZZEf ficient (Fig. 6d) Balanced Acc. 84%  81%  Appx. Fig. 14

Complex 6 ZZEf ficient (Fig. 6d) Balanced Acc. 80%  78% Fig. 7

Algorithm 2 Evaluate Gradient Inversion Susceptibility in
VQNNs with Kalman Filter
Require: x’ (initial random data), N (moving average win-
dow size), h (step size), Ir (learning rate), J (number of
dimensions x’), g (gradient of original data x), threshold
(gradient change), K the number of iterations
Ensure: Optimized g’ approaching g
1: g < VQNN gradients of original data x from clients C'
2: Initialize (k = 0) Kalman filter parameters as all-ones el-
ements (F, H) and zero initial state x’*~1, see Appendix,
Eq. 12 and 13.
3: for k=1to K do

4 for j =1to J do

5: Initialize loss; < 0 and loss_ < 0

6: for n=1to N do

7: x| —x

8: aly el s+ (n+1)-h

9: g’. < VQNN parameter-shift on x/, (Eq. 6)

10: lossy < lossy + Egiwg (Eq. 7)

11: x «—x

12: g sl —(n+1)-h

13: g’ + VQNN parameter-shift on =’ (Eq. 6)

14 loss_ < loss_ + Lg ¢ (Eq. 7)

15: Numerical gradient approximation (Eq. 8):
acr,

16: ai;’g < (lossy —loss_)/(2-n-h)

17: end for

18: Iglgmerical gradient approximation (Eq. 9):

19: ai;’g )

20: Compute average Lf, ,:

21 E%,g — % %:QN(ZOSGSS_ +loss_)

22: A 7 A U ai'j’g

23: x;k + Perform Kalman update (Eq. 11)

24: end for

25 if (LF o/L5 ) > threshold then

26 N < max(1,N//2)

27: end if

28: end for

29: return x’
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Fig. 6. The model architectures which are used in the experiments. A Simple
VQNN system (a) and a Complex designed system (c) for both regression
and classification for the generated Cosine and the MNIST datasets. This
schematic shows a 2 and a 6-dimensional qubit/input model. System (b) is
designed for batch data. For the Credit Card Fraud experiment, the trainable
architecture ZZ FeatureMap [32], [33] and Ef ficientSU2 [31] (d) are
used, named as ZZE f ficient in the paper.

experiments are carried out on untrained models, but comple-
mentary results for trained model are provided in Appendix
Fig. 17. Qiskit [80] and Pennylane [81] libraries are both used
through out the study with combination of Torch library to
evaluate VQNNs model gradients using the parameter shift
rule, and for training the models.

B. Inversion attack experiment

Table II provides an overview of the attack experiments.
The attack algorithm in Section IV-A is used here to optimize



TABLE I
ATTACKS ON A VARIETY OF VQNN MODELS, WITH SINGLE ROW DATA AND BATCH-SIZE DATA. THE RESULTS ARE THE SAMPLE AVERAGE M SE(x/, x)
OF 10 ATTACKS WITH DIFFERENT STARTING POINTS x’. THE (S E) IS THE STANDARD ERROR OF THE RESULTS. SUCCESSFUL ATTACKS ARE
CONSIDERED TO REACH A THRESHOLD OF < 0.005 MSE. THE MODEL ARCHITECTURE IS BASED ON FIG. 6. MAXIMUM ITERATIONS OF THE MODELS

ARE < 250.

Model One Shot Success % | Adaptive Moving Average MSE (£SFE) | One Shot Success % | Kalman MSE (£SFE)
VQNN 2-qubits Cosine Complex | 100% 0.0002 (£7c—4) 100% 0.0002 (£he—4)
VQNN 6-qubits Cosine Complex | 40% 0.0005 (+4e—4) 70% 0.0003 (£3e—4)
VQNN 6-dims Fraud ZZEfficient | 50% 0.0007(+£2e—4) 70% 0.0003(£1e—4)
VQNN 6-dims MNIST Complex | 40% 0.0005(+1e—4) 80% 0.0002(+1e—4)
VQNN Batch size 2 100% 0.00005 (£1le—5) 100% 0.00002 (+4e—5)
VQNN Batch size 3 100% 0.002 (+0.005) 100% 0.003 (+0.004)

random initial points x’ with adaptive moving average and
also with Kalman filter. Experiments are carried out on J = 2
and J = 6 dimensional datasets, for various different circuit
architectures (Fig. 6).

C. Batch Inversion Attack

In an additional experiment, we explore a batch attack on
a VQNN (Table II). In this experiment, gradients are summed
over a batch of vectors, before being shared. Overall, the
larger the batch is, the harder is to invert the gradients to the
input vectors. In VQNN, a batch size of 2 and 3 are used.
Larger batch sizes causes significant degradation of model
performance due to their small model sizes. In this experiment,
the model used is a Simple Entangled VQNN depicted in Fig.
6. The CNOT gate introduces entanglement between qubits,
which maximizes the dependencies between the input elements
in the model. This ensures an ‘Over-parameterized’ model.

D. Differential Privacy and NN Experiment

Experiments for benchmark NN models carried out to
compare both training, and privacy against inversion attack,
under differential privacy schemes involving adding noise. A
Gaussian noise with standard deviation o, is added to the
shared original gradients g. The added noise can reduce the
inversion attack accuracy but at the same time degrades the
model training performance [82], [83]. We evaluate the attack
and model performances under various differential privacy
budgets (noise magnitudes). A typical benchmark NN attack,
Deep Leakage Gradients (DLG), is also implemented for this
comparison from [43].

E. Assumptions

Assumptions on the setup and the success criteria of the
attack are provided below:

1) Unknown input data: In an attack scenario, there is
no access to the original underlying data x neither to the
target values y. The initialized weights for the VQNN model
gradients are all unit vectors. For robustness, attacks are
performed also successfully with random initialized weights
(see also Appendix, Fig.16).

2) Inversion evaluation: Inversion success is measured by
using Eq. 7, the Euclidean distance between the guessed
x’ and the real x, MSE(x’,x). There are other metrics to
evaluate attacks [84], but they are concerned with different

types of datasets and embeddings. To evaluate if the algorithm
successfully recovers the data, it is sufficient to use a finite and
small number of iterations (up to 200) are used in a single-
shot trials, and a sample size of 10, to obtain the success rate
of the trials.

3) Convergent criteria and a successful attack: The at-
tack is considered successful if it meets the threshold
MSE(x',x) < 0.005. To support that this threshold is
sufficient to recover the vector x (at the global minima) with
high precision. A convergence analysis of longer runs is also
provided in Appendix. Fig. 15 . This supporting data shows
recovery of all sample with error down to MSE(x',x) ~
1le—10 for initial vectors x’ constrained to > 0.005 random
distances.

4) Over-parameterized Models: The inversion is possible
as long as the model (the number of equations can be
constructed from 6) is comparable or larger than the number
of unknowns (x, y) [85]. In NN, this is usually the case,
as models generally contain a large number of parameters.
VQNN models are small, and using batch size larger than
one is sometimes sufficient to obtain an ‘under-parameterized’
model. In fact, in a batch size larger than one, it requires to use
more complex models in order to remain ‘over-parameterized’.
Note, that increasing batch sizes as a strategy to prevent
the attack is not sufficient, as it can cause also to large
performance degradation. Specifically, in the model used here
(Simple Entangled VQNN), increasing the batch size beyond
3 inputs vectors already affects performance dramatically.

VI. RESULTS AND ANALYSIS
A. Attack Results

Fig. 7 shows successful convergence profiles of the
inversion attacks on various datasets for Complex and
ZZEf ficient models. Averaged error statistics are in Table
II. Using the scheme from Alg. 2 (without the Kalman
component), the adaptive low-pass filter attack can recover
all sensitive input data x in small number of iterations, often
within a single trial (except 6 qubits at 40%). Results in Table
Il reports that adding Kalman improves further the success
and convergence rates (see also Appendix Figs. 12, 13, 14).
Increasing the number of iterations would reduce error to
1le—10 (see convergence analysis in Appendix Fig. 15). In Fig.
8, we assess the attack across different circuit depths, showing
model complexity’s impact. The attack recovers original data
in all cases, though convergence takes longer due to increased
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on a variety of datasets. Each line provides a visual of the optimization path
(attacks) taken to move the random starting point x’ (start of the line on the
right) closer to the baseline/true value x. The y-axis is the log MSE distance
between the x;C and the baseline x, with K the number of iterations for
the attack. The z-axis is the loss function between gradient g’ and original
gradient g (Eq. 7).
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Fig. 8. The plot shows the number of iterations required for the attack to
reach error of le—5 for a ZZE f ficient model of 2 dimensions/qubits of
different complexities (8, 12, 16, and 20 parameters ansatz). The results show
the average iteration number for Cosine and Fraud datasets together.

ansatz complexity. More gates lead to longer optimization but
remain fully recoverable as expected.

In addition, Fig. 9 shows the increase of efficiency when
adding Kalman Filter to update the step in the attack. With
Kalman filter updates we can successfully recover x with small
starting filter sizes, e.g. N = 16, which improves significantly
the convergent rate. It shows that for NV = 16 the non-Kalman
attack with adaptive moving average fails to converge at all,
but is still successful when using sufficiently large filters, e.g.
N = 64.

B. Batch Data

Since in many ML and FL pipelines the data that the model
is trained on a batch of inputs, and subsequently the gradients
are a sum of these batches, the model quickly becomes ‘under-
parameterized’ in comparison to the size of unknown inputs.
Table IT shows that using a batch size of 2, the attack algorithm
approximates x as close as MSE(x’,x) = 2e—5. When
batch size increases to 3 though, the accuracy decreases to
MSE(x',x) = 0.003. Due to the small size of VQNN in
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Fig. 9. VQNN complex model ZZE f ficient with 2 qubits/inputs x. The
graph shows the Kalman based attacks on Fraud data with different number
of perturbations (N = 16,32,64) for the adaptive low-pass filtering (Alg.
2). The figure also includes a failed non-Kalman attack for N = 16 and a
successful non-Kalman attack for N = 64.

comparison to classical NN, it is enough to use a batch of size
above 3 to not be able to recover the gradients in the VQNN
model used. However, as long as the model has sufficient
complexity it would possible to recover the data as shown
in Table II. Naturally, increasing the batch size in such small
models would also lead to reduced training performance, hence
it is not considered as a sufficient defense against this attack.
For example, for a Simple Entangled VQNN model trained on
the Cosine dataset and batch size 5, the test accuracy is 93%;
with batch size 20 the test accuracy decreases to 88%; with
batch size 60 the accuracy is down to 71%; and batch size
100 the accuracy is 66%.

C. Comparison to NN and Differential Privacy

Table III summarizes model performance and attack error
for NN and VQNN on Fraud and Cosine datasets. The DLG
attack is successful for NN but fails for VQNN, hence the
results are compared to our algorithm which can successfully
invert the data. We also examine the model performance and
the attack performance when noise is added to increase privacy
and potentially prevent the attack.

Privacy versus performance results are also provided for
Cosine (Fig. 10) and Fraud datasets (Fig. 11). VQNNs excel
in fitting cosine functions due to their quantum gate design,
outperforming NNs with few linear layers. Fig. 10 shows
VQNNs offer better security against inversion with noise,
while NNs remain vulnerable even with degraded perfor-
mance. The inversion error’s square root aligns with added
noise, as shown in [45]. However for more realistic datasets,
such as the Fraud dataset, VQNNSs struggle to match simple
NNs with 16 weights. Fig. 11 indicates VQNNs may be
more secure but with lower performance. Notably, noise with
standard deviation o = 0.1 yields significant inversion error
(MSE(x',x) ~ =+0.013) while maintaining model utility
(R? = 0.65) for VQNN. NNs perform better than VQNN but



TABLE III

TRAIN/TEST MODEL ACCURACY OF A 5-FOLD CROSS VALIDATION SET, WITH THE STANDARD ERRORS (£ SFE) OF THE RESULTS. THE ATTACKS ON THE

MODELS ARE PERFORMED ONCE. THE VQNN MODELS WITH FRAUD DATA IS THE ZZ E f ficient AND FOR THE COSINE DATA IS THE ‘COMPLEX
ENTANGLED’ (FIG. 6 ). A TYPICAL ATTACK FOR NN, DEEP LEAKAGE GRADIENTS (DLG) [43], IS ALSO INCLUDED HERE FOR NN.

Models Train accuracy (£SE) | Test accuracy (£SE) | DLG (mse, iters) | Kalman (mse, iters)
Fraud 6 input 16weights/ NN 91% (+0.8%) 88% (+1.0%) <0.001, 10 <0.001, 200
Fraud 6 inputs 16weights/ NN + Noise0.05 | 90% (40.8%) 88% (+0.9%) <0.002, 10 <0.004, 200
Fraud 6 inputs 16weights/ NN + Noise0.14 | 80% (+1.2%) 79% (£1.5%) <0.06, 12 <0.017, 200
Fraud 6 input/ VQNN 80% (£+2.0%) 78% (£2.3%) - <0.003, 200
CosinBenchmark6 VQNN 99% (£0.2%) 95% (£0.3%) - <0.004, 200
CosinBenchmark2 VQNN + Noise0.08 88% (+£0.3%) 86% (0.4%) - <0.007, 200
CosinBenchmark2 VQNN 99% (+0.2%) 98% (+0.5%) - <0.001, 200
CosinBenchmark NN16x2 97% (4+0.2%) 96% (+0.4%) <0.002, 10 <0.001, 200
CosinBenchmark NN16x2 + Noise0.08 87% (£+0.3%) 85% (+0.4%) <0.01, 10 <0.003, 200
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Fig. 10. The plot shows the R? regression score (LH y-axis and solid lines)
and the inversion error between x’ and x (RH y-axis and dashed lines) over
different noise standard deviation (o) values (¢ = 0.0,0.02,0.05,0.07,0.08)
added to gradients shared. It follows the Cosine data results from Table III. The
models are the Cosine Benchmark VQNN 2 qubits and the Cosine Benchmark
NN 2 dimensions.

with smaller noise inversion error. With that, other considera-
tions may included in practice. For example, it is worthwhile to
note that noise is inherent in quantum hardware, often reduced
in VQNN gradients [86], but can be leveraged here for privacy.
This suggests that advanced low-error quantum computers may
not be essential, as noisy systems could benefit privacy.

VII. CONCLUSION

This paper introduces a numerical gradient attack scheme
that effectively navigates the frequency modulated landscape
of VQNN to obtain global minima via adaptive low-pass
filtering. The algorithm proposed can be further optimized
with Kalman filter updates to obtain efficient convergence. We
show empirically, that as long as the model is trainable (numer-
ically), the proposed attack can invert successfully gradients
to data within the precision of the numerical scheme, error
down to ~ le—10. Analysis of various models and datasets
show that the algorithm can be used as a benchmark scheme
to evaluate the tradeoff between privacy and performance in
distributed learning setup, and the practicality of VQNN in
comparison to classic NN with differential privacy. Finally,

Noise std. values
Balanced Accuracy
= Neural Network -
VQNN

Inversion error
Neural Network
VQNN

Fig. 11. The plot shows the balanced accuracy (LH y-axis and solid lines)
and the inversion error between x’ and x (RH y-axis and dashed lines) over
the different noise levels (¢ = 0.0,0.05,0.10,0.14) added to the gradients
shared. It follows the Fraud data results from Table III. The model is the 6
dimensional ZZ E f ficient.

while this work explores optimization for the inversion of
gradients, this optimization approach with low-pass filtering
could be insightful for future studies in improving training
and the usability of VQNN models.
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APPENDIX A
KALMAN FILTER

The Kalman model’s matrices and vectors, as specified in
the Kalman filter methods [79], [87], are initialized (k = 0)

Cosine Dataset Experiment Results
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Fig. 12. These plots feature 2 and 6-dimensional Cosine datasets x. Fig.
6 shows the Simple and Complex models respectively. Each line provides a
visual of the optimization path taken to move the random point x’ (start of
the line on the right) closer to the original x (at coordinates z-axis= 0, y-
axis= 0). The y-axis is the log10 MSE distance between the x; and the x,
with k = {1,2,--- , K} the attack steps and K the total steps. The z-axis
is the distance between the gradient g;g of the x;C and the gradient g

as all-ones elements (F,Q,P,H,R) and zero initial state.
Therefore, we do not assume a prior knowledge of the state
or the transitions F. The Kalman filter at each iteration step
is divided into two parts, the prediction and the measurement
update. The process starts by predicting the state from previous
iteration x’*~! (Eq.10) using the transition matrix F:

)f\(/k*l — :F>(/kfl7 (12)
P* 1 = FP*'FT 1 Q,
where P*~! is the prior covariance matrix of the state and

Q is the process noise covariance. The update step refines

the state estimate using the current measurement x’* and the

predicted previous state x’*71:

i/k} —_ X/k; _ H)A(/kfl
St = HP*'H” +R,
Dk _ pk_lHTs_l’k
Dki/k

)A(/k—l +
P* = (I - D*H)PF!

(13)

9

where H is the measurement matrix, R is the measurement
noise covariance, S¥ the innovation covariance, and D¥ is the
Kalman gain.

APPENDIX B
SUPPORTING ANALYSIS

Fig.12 shows the attacks on cosine generated dataset, for 2
and 6 dimensions. The models are the Simple and the Complex
from Fig. 6. The attack gets as close as MSE(x',x) is <
le—10.
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Fig. 13. These plots feature 2 and 6-dimensional MNIST data. Fig. 6 shows
the Simple and Complex models respectively. Each line provides a visual of
the optimization path taken to move the random point x’ (start of the line
on the right) closer to the original x (at coordinates z-axis= 0, y-axis=
0). The y-axis is the log10 MSE distance between the xﬁc and the x, with
k=4{1,2,---, K} the attack steps and K the total steps. The z-axis is the
distance between the gradient g;c of the xk and the gradient g
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Fig. 14. These plots feature 2 and 6-dimensional credit Fraud classification
data [59]. For the complex model we relied on the trainable architecture
ZZ FeatureMap [32], [33] and E f ficientSU2 [31]. Each line provides
a visual of the optimization path taken to move the random point x’ (start
of the line on the right) closer to the original x (at coordinates z-axis= 0,
y-axis= 0). The y-axis is the log10 MSE distance between the x;C and the x,
with k = {1,2,--- , K} the attack steps and K the total steps. The z-axis
is the distance between the gradient g;9 of the x; and the gradient g

Fig.13 pictures the attack on the MNIST dataset [58]. The
MSE(x’,x) error of the attacks is < 1le—10. The models are
the Simple and the Complex from Fig. 6.

Fig. 14 illustrates the attacks on the Fraud dataset [59].
The VQNN models are the Simple and for complex the
ZZEf ficient (Fig. 6). The MSE(x',x) is < le—10.

Fig. 15 shows that for runs with more that £ > 200
iterations the algorithm eventually converges to as low as
MSE(x',x) = 1le—10.

Fig. 16 depicts attacks on the Cosine data by using different
initialized weights for each attack attempt. It proves the
robustness of the attack algorithm under different scenarios
(instead of starting the weights with 1s).

In Fig. 17, we observe that the attack algorithm is successful

6 dims VQNN Attack - Experiment Results
Attack Direction
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Lyg.g
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Fig. 15. Attack on Fraud dataset of the 6 dimensional VQNN ZZ E f ficient
model. We show that when we attack the 6-VQNN model for more than
k > 200 the results will converge to as low as 1le—10.
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Fig. 16. We perform 4 attacks by using different initial model weights each
time. We utilize a 2-qubit/inputs Simple model (6) on Cosine data. The results
converge to as low as 1le—10.

even when we target gradients coming from a trained model
g. This shows that in real-life FL settings the attack algorithm
can approximate the base data x under most scenarios we have
put forward.
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Fig. 17. We perform 3 attacks using as a base gradient g the gradient
after the successful training of a VQNN classification model (Fraud data,
ZZEf ficient, 6 qubits/dimensions). The results converge to as low as
le—5.



APPENDIX C
LIST OF SYMBOLS

The following list contains the symbols used in the text:

e 0: Vector of ansatz parameters/weights of the Quantum
Machine Learning model.

M: The total number of weights of a QVNN model.

C': The total number of classes in the target values y.
Loss: The loss function of the Quantum Machine Learn-
ing model.

g: Vector of gradient dLoss/00.

Lg: ¢: The loss function of the Quantum Machine Learn-
ing model gradient g and an approximate gradient g.
V: The symbol of gradient.

x: A vector of the input data that feed into the Quantum
Machine Learning model.

y: The target values/classes that are used during the
training process.

y: Predicted values.

I: The total number of training steps/epochs. The total
number of the data points.

1: The training steps (iterations) during the training pro-
cesses i € {1,2,...,I}.

B: The batch data size.

b: The number of the batch segment.

~: The learning rate parameter during model training/op-
timization.

Ci: The total number of clients in a Federated Learning
framework.

("): We use the apostrophe/quote symbol to designate
proxy elements, (x’ proxy to original data x or f’ proxy
to original model f).

J: The number of features/dimensions.

f: A function that takes inputs x and parameters € and
generates predicted values ¥.

€: A unit vector.

6: A parameter for the finite difference method that
approximates gradients.

n: The learning rate of the gradient descent algorithm.
q: The number of qubits of a VQNN model. For this
paper, all of our cases are J = ¢. Number of qubits
equals the number of inputs/dimensions of x.

®: The feature map of a VQNN model .

Ug: The unitary operator of a VQNN model.

1: The VQNN function that gives us the measurement
using the parameterized circuit.

V': The ansatz of a VQNN model.

O: A Hermitian operator used as an observable in the
VQNN.

®: Tensor product.
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