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Abstract

Ensuring the ethical deployment of text-to-image models
requires effective techniques to prevent the generation of
harmful or inappropriate content. While concept erasure
methods offer a promising solution, existing finetuning-
based approaches suffer from notable limitations. Anchor-
free methods risk disrupting sampling trajectories, leading
to visual artifacts, while anchor-based methods rely on the
heuristic selection of anchor concepts. To overcome these
shortcomings, we introduce a finetuning framework, dubbed
ANT, which Automatically guides deNoising Trajectories
to avoid unwanted concepts. ANT is built on a key insight:
reversing the condition direction of classifier-free guid-
ance during mid-to-late denoising stages enables precise
content modification without sacrificing early-stage struc-
tural integrity. This inspires a trajectory-aware objective
that preserves the integrity of the early-stage score function
field—which steers samples toward the natural image mani-
fold—without relying on heuristic anchor concept selection.
For single-concept erasure, we propose an augmentation-
enhanced weight saliency map to precisely identify the
critical parameters that most significantly contribute to
the unwanted concept, enabling more thorough and effi-
cient erasure. For multi-concept erasure, our objective func-
tion offers a versatile plug-and-play solution that signifi-
cantly boosts performance. Extensive experiments demon-
strate that ANT achieves state-of-the-art results in both sin-
gle and multi-concept erasure, delivering high-quality, safe
outputs without compromising the generative fidelity. Code
is available at https://github.com/lileyang1210/ANT.

1. Introduction
Concept erasure in text-to-image (T2I) models [5, 11, 60,
67, 69, 71, 86] addresses the critical challenge of prevent-
ing the generation of harmful or inappropriate visual con-
tent, such as violent, explicit, copyright-infringing, or of-
fensive imagery. Current methods for concept erasure can
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be broadly categorized into two types: (1) finetuning-based
methods [19, 55, 57], which directly modify model param-
eters, and (2) finetuning-free methods [33, 58, 73], which
aim to influence model outputs without parameter updates.
However, finetuning-free methods are vulnerable to bypass-
ing when the source code is openly available, thus mak-
ing finetuning-based methods more effective and secure for
publicly accessible models.

Finetuning-based methods remove undesirable
data modes by altering the predicted score function
field—essentially, modifying the gradient directions that
samples follow during the denoising process—to avoid
converging toward undesirable image distributions. As
a result of finetuning, the predicted score function no
longer accurately reflects the true gradient direction in
data space that would further increase likelihood. The
main difference among finetuning-based techniques lies in
how the conditional score function is modified, which can
be broadly divided into anchor-free and anchor-based
approaches.

Anchor-free methods [3, 7, 8, 10, 19, 21, 24, 28, 30, 32,
35, 37–39, 53, 57–59, 72, 73, 80, 81, 84, 85, 87, 88, 95, 100]
often design a loss to adjust the conditional score function
throughout the denoising process, encouraging samples to
move away from unwanted image manifolds without explic-
itly specifying a target manifold (see Figure 1(b)). However,
this approach can disrupt the sampling trajectories toward
natural image manifolds. As shown in Figure 1(a), diffusion
models typically first guide samples from Gaussian noise
toward the manifold of natural images to establish a plau-
sible layout, and then progressively refine the details dur-
ing the mid-to-late denoising steps [41, 55]. By solely em-
phasizing the movement away from unwanted manifolds,
anchor-free methods risk causing samples to deviate from
the natural image manifold early on, potentially resulting in
generated images with visual artifacts or unintended content
(see the second row of Figure 2).

Anchor-based methods [2–4, 6, 9, 15, 16, 20, 23, 26,
31, 36, 40, 43, 48, 49, 52, 55, 62, 74, 78, 82, 89, 90, 99, 102],
on the other hand, typically utilize a loss designed to lever-
age benign anchor concepts by aligning the predicted condi-
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Figure 1. Geometric perspective on concept erasure in diffusion models. (a) Conventional Denoising Trajectory. A high-dimensional
Gaussian sample, starting on a large sphere, converges to the human data manifold via classifier-free guidance (CFG). (b) Anchor-Free
Finetuned Trajectory. Finetuning often modifies the orientation of the predicted conditional score functions so that they direct away from
the unwanted concept manifold. This results in a condition direction δ(c) = ϵθ(zt, t, c)− ϵθ(zt, t) nearly opposite to that of the original
model, making the trajectory more likely to produce out-of-distribution samples. Note that, in the absence of an unconditional constraint,
modifications to the conditional output also affect the unconditional output due to shared model parameters. (c) Anchor-Based Finetuned
Trajectory. The model is finetuned so that the predicted score functions (or keys & values) for the unwanted concept align with those
of the original model conditioned on a benign anchor, ensuring final samples lie on the anchor manifold, though not necessarily at the
highest-probability mode. (d) Our Trajectory (ANT). In the early stage (when t > t′), the conditional score functions remain directed
toward the natural data mode, keeping the finetuned model aligned with the original. When t < t′, they are finetuned to point away from
the unwanted concept manifold. ANT encourages that unconditional score functions remain unchanged throughout all stages.

tional score functions (or keys & values) for unwanted con-
cepts with those associated with anchor concepts (see Fig-
ure 1(c)). By aligning score functions of unwanted concepts
with those of anchor concepts, these methods ensure that
samples conditioned on unwanted concepts ultimately con-
verge towards images depicting the anchor concepts. Thus,
anchor-based approaches are not merely repelling samples
from undesired modes. Nevertheless, the effectiveness of
these methods critically depends on the proper selection of
anchor concepts. As demonstrated in the third row of Fig-
ure 2, some seemingly reasonable anchor concept choices
can reduce the quality of images generated when condi-
tioned on erased concepts. Currently, selecting effective an-
chor concepts remains largely heuristic, lacking systematic
guidelines.

Motivated by these limitations, we propose a trajectory-
aware finetuning framework, termed ANT, which
Automatically guides deNoising Trajectories to avoid
unwanted concepts. This approach achieves its goal with-
out negatively affecting early-stage score function fields or
relying on heuristic anchor concept selection. Specifically,
we discovered that reversing the condition direction of
classifier-free guidance (CFG) [29] during the mid-to-late
denoising stage enables modification of detailed content
while preserving the fundamental structure of the generated
image. This finding inspires us to develop a trajectory-
aware objective function that preserves the early-stage
score function, steering samples toward the natural image

manifold, while eliminating the need for anchor concepts
(Figure 1(d)). This approach enables more effective erasure
of undesired concepts while better preserving those that
are unrelated. In the context of single-concept erasure, we
introduce an augmentation-enhanced weight saliency map
that accurately identifies the key parameters most respon-
sible for generating a specific concept. Moreover, our loss
function is fully compatible with existing multi-concept
erasure frameworks, offering a flexible plug-and-play solu-
tion, and elevates the performance to a new state-of-the-art
(SOTA) level. Our experimental results demonstrate that
our method achieves SOTA performance in both single
and multi-concept erasure settings. Our contributions are
summarized as follows:

1. We offer a geometric perspective on concept erasure
and an insight that reversing the condition direction of
classifier-free guidance during the mid-to-late denoising
stages enables precise content modification while pre-
serving early-stage structural integrity, thus benefiting the
erasure community in advancing algorithm designs.

2. We propose a trajectory-aware finetuning framework,
which encourages the model to reorient its denoising tra-
jectories during the mid-to-late stages while keeping the
early-stage trajectories largely unchanged. This approach
enables more thorough erasure of unwanted concepts and
better preservation of unrelated ones.

3. We introduce an augmentation-enhanced weight saliency
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SD v1.4

Anchor-Free
(ESD-u)

Anchor-Based
(MACE)

(Cat->Forest)

ANT
(Ours)

‘a photo of 
a cat’

‘a boy palying 
with a cat’

‘a cat sitting 
on the floor’

‘a cat running 
on the beach’

Figure 2. Generation results of different concept erasure methods
conditioned on the concept “cat”. The anchor-free method (ESD)
often produces images with visual artifacts or content that is out
of distribution. The anchor-based method (MACE), which maps
“cat” to “forest”, performs reasonably well in simple contexts but
results in unnatural or incoherent outputs in more complex sce-
narios. In contrast, our trajectory-aware method (ANT) effectively
removes the target concept while preserving the overall structure
and contextual integrity of the generated images.

map that precisely identifies the key parameters most re-
sponsible for generating the undesired concept, thereby
enabling more effective and efficient erasure.

4. The proposed objective function substantially enhances
the performance of existing multi-concept erasure frame-
works, achieving SOTA results in both single- and multi-
concept erasure settings.

2. Related Work

In this section, we review prior work on concept erasure
in diffusion models, with a particular focus on the criti-
cal trade-off between erasure and preservation, which is
most pertinent to our study. Additional discussions on other
dimensions of concept erasure (e.g., finetuning efficiency,
scalability, and robustness to adversarial prompts) are pro-
vided in Appendix.

The investigation of concept erasure within diffusion
models has been pioneered by several foundational stud-
ies, establishing the groundwork for this burgeoning do-
main. SLD [73] introduces an inference-time guidance tech-
nique to suppress undesired concepts without modifying
the model’s parameters, offering a non-invasive yet effec-
tive approach. In contrast, ESD [19] employs direct param-
eter editing through negative guidance, achieving perma-

nent concept removal. FMN [99] builds upon this trajec-
tory by proposing a lightweight method that manipulates
attention mechanisms to enhance computational efficiency.
Meanwhile, AC [40] presents a finetuning framework that
aligns the score function of an unwanted concept with that
of an anchor concept, delivering an alternative strategy for
concept ablation.

As concept erasure techniques have matured, the re-
search community has increasingly emphasized the dual ob-
jectives of effectively eliminating target concepts while pre-
serving the integrity of unrelated concepts during the fine-
tuning process. Numerous studies [3, 4, 6–8, 16, 17, 21,
22, 24, 26, 28, 32, 37, 39, 48, 52, 55, 57, 58, 72, 74, 80–
82, 84, 85, 87, 88, 90, 95, 102] highlight the necessity of
maintaining balanced model performance across both tar-
geted and non-targeted concepts. However, a critical limita-
tion of these approaches lies in their insufficient attention to
the impacts of finetuning on the early-stage score function.
This oversight can lead to a divergence between the pre-
dicted score function and the true score function, i.e., the
gradient direction in data space that maximizes likelihood.
As a result, the generated samples may fail to converge to-
ward the natural image manifold, ultimately degrading the
quality and reliability of the outputs. Our work seeks to
bridge this gap by explicitly addressing the preservation of
the early-stage score function, ensuring both effective con-
cept erasure and high-fidelity generation.

3. Method

We propose ANT, a framework designed to erase specific
concepts from pretrained text-to-image diffusion models.
Our approach addresses key challenges by eliminating the
negative impacts on early-stage score function fields and
removing the dependency on heuristic methods for anchor
concept selection. The framework requires only two inputs:
a pretrained diffusion model and a set of target phrases rep-
resenting the concepts to be erased. The output is a fine-
tuned model that no longer generates images depicting the
unwanted concepts.

3.1. Insights into the Denoising Process

We thoroughly investigated the denoising process in diffu-
sion models and found that applying CFG during the early
sampling stage (when t′ < t < T ), and then reversing the
CFG’s condition direction term during the mid-to-late sam-
pling stage (when 0 < t < t′, as shown in Eq. (1)), allows
for altering detailed content while preserving the fundamen-
tal structure of the image. In other words, the sample avoids
converging toward specific unwanted concepts yet remains
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within the natural image manifold.

ϵcfg
θ (zt, t, c) = ϵθ(zt, t) + s · sgn(t− t′) · δ(c), (1)

sgn(t− t′) =

{
−1, if t ≤ t′

1, if t > t′
(2)

where the terms ϵcfg
θ (zt, t, c), ϵθ(zt, t, c), and ϵθ(zt, t) de-

note the classifier-free guidance output, the conditional pre-
diction, and the unconditional prediction, respectively. The
difference δ(c) = ϵθ(zt, t, c) − ϵθ(zt, t) defines the con-
dition direction. t′ is a key parameter used to determine
the timestep at which the condition direction should be re-
versed.

As shown in Figure 3(c), if t′ is appropriately selected,
this approach allows for the targeted removal of specific at-
tributes or details (e.g., occupation, gender, or age) while
preserving the naturalness of the generated images. This is
because, during the early stage of denoising, the samples
follow the correct score function and are guided onto a plau-
sible data manifold. In the later stages, the guidance steers
the samples away from certain modes within that manifold.
For instance, in Figure 3(c), the occupation changes from
doctor to model, gender shifts from male to female, and
age transitions from both old and young to middle-aged, all
while staying within the human data manifold.

However, if t′ is set too early, the early-stage score func-
tion will be significantly altered, leading to a loss of the
image’s structural integrity (see Figure 3(d)). On the other
hand, if t′ is set too late, the samples will have already en-
tered the concept-specific mode, and modifications to the
late-stage score function will only affect fine details (see
Figure 3(b)).

3.2. Trajectory-Aware Loss Function
Inspired by this finding, we aim to preserve the integrity
of the early-stage score function field—which guides sam-
ples toward the appropriate natural manifold—by introduc-
ing constraints during finetuning. Adjustments will be lim-
ited exclusively to the mid-to-late stage score function field.
This approach ensures that even when the finetuned model
is conditioned on the removed concept, the samples can still
converge to the appropriate manifold. Specifically, we pro-
pose the following finetuning objective:

L = Lpreserve + λ1 · Lerase + λ2 · Luncond-early + λ3 · Luncond-late

= Ezt1
,c,t1∼U(t′,T )

[
∥ϵθ(zt1 , t1, c)− sg [ϵθ∗(zt1 , t1) + ηδ(c)]∥22

]
+ λ1Ezt2

,c,t2∼U(0,t′)

[
∥ϵθ(zt2 , t2, c)− sg [ϵθ∗(zt2 , t2)− ηδ(c)]∥22

]
+ λ2Ezt1

,c,t1∼U(t′,T )

[
∥ϵθ(zt1 , t1)− sg [ϵθ∗(zt1 , t1)]∥

2
2

]
+ λ3Ezt2

,c,t2∼U(0,t′)

[
∥ϵθ(zt2 , t2)− sg [ϵθ∗(zt2 , t2)]∥

2
2

]
,

(3)
where θ represents the parameters undergoing finetuning,
while θ∗ denotes the original, frozen parameters. The no-

(d) Condition Direction Reversed at t’=45 (premature)

Doctor

(Occupation)

Man

(Gender)

Old Person

(Age)

Cat

(Animal)

Young Person

(Age)

Frog
(a) Originally Generated Images (timestep 50->1)

(b) Condition Direction Reversed at t’=25 (belated)

(c) Condition Direction Reversed at t’=35 (timely)

Figure 3. Effect of condition direction reversal at different
timesteps. Each column represents a distinct semantic condition,
and each row shows generated outputs under varying reversal
strategies. (a) displays originally generated images using a dif-
fusion process (timestep 50→1). (b)–(d) show results when the
condition direction δ(c) = ϵθ(zt, t, c) − ϵθ(zt, t) is reversed at
different timesteps (25, 35, and 45). With a proper t′, specific at-
tributes can be removed while preserving image naturalness. If t′

is too early, structural integrity is lost; if too late, only fine details
are affected.

tation sg[·] indicates the stop-gradient operation. Timesteps
t1 and t2 are sampled independently from uniform distri-
butions U(t′, T ) and U(0, t′), respectively, with t′ being a
predefined hyperparameter. Additionally, zt1 and zt2 repre-
sent the corresponding noisy latent image variables at these
timesteps, and η denotes a hyperparameter. Notably, two
timesteps are sampled during each gradient update iter-
ation to effectively balance the gradients associated with
concept erasure and the preservation of unrelated concepts.

Early-stage preservation. The first term Lpreserve ensures
that, during the early stage (when t > t′), the predicted con-
ditional score function consistently points toward the natu-
ral data mode. This preserves the integrity of the early stage
score function field. Consequently, when sampling with the
finetuned model conditioned on the erased concept, the gen-
erated samples can smoothly transition into the natural im-
age manifold.

Mid-to-late-stage erasure. The second term Lerase empha-
sizes that at later stage (when t < t′), the predicted con-
ditional score function should actively guide samples away
from undesirable modes. It differs from the ESD loss [19] in
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that the second term is applied exclusively at later timesteps
(t < t′), whereas the ESD loss spans all timesteps. Includ-
ing early timesteps in the ESD loss can unintentionally al-
ter the early-stage score function field, frequently causing
samples to be incorrectly guided and thereby failing to con-
verge onto the appropriate manifold. To further explore this
issue, we conducted an experiment restricting the applica-
tion of this second loss term solely to mid-to-late denoising
steps, specifically aiming to avoid negatively impacting the
early-stage score function field. However, even under this
restricted condition, the early-stage score function field was
still adversely affected, resulting in suboptimal performance
(see the ablation study in Table 2). We hypothesize that this
outcome arises primarily due to the shared model parame-
ters across all timesteps within the diffusion process.

Unconditional score function preservation. Since the un-
conditional score function ϵθ(zt, t) represents the general
direction toward the approximate center of all data modes,
modifying it can influence multiple concepts, as demon-
strated by our ablation study. Specifically, Table 2 shows
that removing 100 celebrity concepts without incorporating
unconditional loss terms negatively impacts the preserva-
tion of other celebrity concepts. To address this issue, we
introduce the third and fourth terms in Eq. (3). These terms
align the unconditional outputs of the finetuned model with
those of the original model across both stages.

3.3. The Heavy Hitters Among the Parameters
After determining the optimization objective, identifying
the most effective parameters to optimize for achieving
improved performance efficiently becomes crucial. Previ-
ous approaches typically divide the model into multiple
modules, such as residual blocks, self-attention, or cross-
attention, and select an entire module for finetuning [19, 20,
55, 99]. Among these, finetuning cross-attention modules is
most common.

Inspired by saliency map techniques [13, 14, 25, 75,
76, 79], we propose a concept-specific saliency map en-
hanced by prompt and seed augmentation to precisely iden-
tify parameters suitable for finetuning. Compared to pre-
vious methods that compute the saliency map only once,
we observe that the saliency map can vary depending on
the prompt context and random seed, leading to instability.
However, if we take the intersection of multiple saliency
maps, the parameters within this intersection gradually be-
come more stable and consistent as the number of maps
increases (see Figure 4). This approach more accurately
identifies the parameters responsible for the target concept,
resulting in a consistent improvement in performance (as
shown in the ablation study results in Table 5). Specifically,
as illustrated in Figure 5, we first employ GPT-4 [61] to gen-
erate multiple prompts C = {ci}Nc

i=1, each accompanied by
a set of random seeds S = {sj}Ns

j=1, to produce correspond-

(a) Nudity (b) Donald Trump

(c) Van Gogh Style (d) Dog

Figure 4. Each subplot shows the number of active parameters (y-
axis) against the number of intersected saliency maps (x-axis) for
four concepts: (a) Nudity, (b) Donald Trump, (c) Van Gogh Style,
and (d) Dog. The number of active parameters converges across
different concept types with around 100 intersected saliency maps.

ing gradient maps for the model parameters. By evaluating
these gradients against a threshold, we obtain a set of weight
saliency maps:

Mci,sj = 1 (|∇θL(zt1 , zt2 , t1, t2, ci, sj)| ≥ γ) , (4)

where 1(g ≥ γ) is an element-wise indicator function that
returns 1 for the i-th element if gi ≥ γ, and 0 otherwise;
| · | denotes the element-wise absolute value operation; and
γ > 0 is a predefined threshold. Each weight saliency map
identifies critical parameters strongly correlated with the
targeted concept across diverse prompt contexts. Finally, the
intersection of these weight saliency maps obtained from
various prompts and seeds yields the definitive concept-
specific saliency map M∗:

M∗ =
⋂
ci∈C

⋂
sj∈S

Mci,sj . (5)

As a result, only a crucial subset of parameters is finetuned:

θ ← θ − α ·M∗ ⊙∇θL(zt1 , zt2 , t1, t2, ci, sj), (6)

where α is the learning rate and ⊙ denotes the element-
wise multiplication. Intuitively, this mechanism identifies
and finetunes only those parameters consistently influential
for erasing the undesired concept across diverse conditions.
Concept-specific saliency map M∗ significantly narrows
down the finetuning parameters, effectively preventing un-
necessary perturbations to parameters unrelated to the tar-
geted concept.
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Intersection

weight saliency maps
concept-sepcific

saliency map
1 0

Prompts

Seeds

ori model

Figure 5. Generation of the concept-specific saliency map M∗.
GPT-4 generates prompts C = {ci}Nc

i=1, each paired with random
seeds S = {sj}Ns

j=1, which are used to compute gradient maps.
After thresholding, saliency maps are obtained, and their intersec-
tion across all prompts and seeds yields M∗.

3.4. Boosting the Performance of Multi-Concept
Erasure Frameworks

Our proposed trajectory-aware loss function seamlessly in-
tegrates with existing multi-concept erasure frameworks,
such as MACE [55], offering a flexible and adaptable
plug-and-play solution. Accordingly, it significantly boosts
MACE’s performance in multi-concept scenarios, deliver-
ing new SOTA outcomes on tasks involving the erasure of
100 celebrity concepts and 100 artistic concepts.

As observed in MACE, erasing multiple concepts
through either sequential or parallel finetuning often de-
grades performance. Sequential finetuning is susceptible to
catastrophic forgetting, while parallel finetuning can lead to
interference between concepts [55]. MACE addresses this
by training a separate LoRA module for each concept to be
erased, and subsequently fusing all LoRA modules into the
cross-attention layers using a closed-form solution.

By integrating our loss function into the MACE frame-
work, the initial training stage can be omitted. In the sec-
ond stage, we replace MACE’s attention loss with our
trajectory-aware loss to train individual LoRA modules
∆Wi for each concept, eliminating the need for the large
Grounded-SAM model. After training all LoRA modules,
we use the following objective function to fuse them into
the cross-attention layers:

min
W ∗

q∑
i=1

p∑
j=1

∥∥∥W ∗ · efj − (W +∆Wi) · efj
∥∥∥2
2

+ β

p+m∑
j=p+1

∥∥W ∗ · epj −W · epj
∥∥2
2
,

(7)

where W denotes the original weight matrix of either the
key or value projection. The embedding efj corresponds to
concept-related tokens that we aim to erase, while epj rep-
resents embeddings of unrelated, prior-preservation tokens.
Here, q is the number of concepts to be erased, and p and
m denote the numbers of targeted concept tokens and prior-
preservation tokens, respectively.

As shown in Figure 6, the objective is to find a solu-

...

concept A

concept B
concept C

Updated Output

LoRA Output

MSE Loss

concept D

concept E

concept F...

Updated Output

Ori Output

MSE Loss

PreserveErase

Figure 6. Multi-LoRA fusion for multi-concept erasure.

tion W ∗ that integrates multiple LoRA matrices, optimized
for effective multi-concept erasure. This optimization prob-
lem has a closed-form solution [55]. Table 2 shows that our
trajectory-aware loss function seamlessly integrates with
the MACE framework for multi-concept erasure, substan-
tially enhancing its performance.

4. Experiments

In this section, we present a comprehensive evaluation of
our proposed method by benchmarking it against SOTA
baselines on both single-concept erasure (NSFW removal;
Section 4.2) and multi-concept erasure tasks, including 100-
celebrity erasure (Section 4.3) and 100-artistic style erasure
(Section 4.4). Finally, we perform ablation studies (Sec-
tion 4.5) to assess the contribution of key components in
our approach.

4.1. Implementation Details
We finetune all models based on Stable Diffusion (SD) v1.4
and generate outputs using the DDIM sampler [77] over 50
inference steps. Our experimental setup follows the settings
described in MACE [55]. Each LoRA module undergoes 50
gradient update steps during training. For the baselines, we
adopt the configurations provided in their respective origi-
nal implementations.

4.2. Erasing NSFW Content
Configuration. In this experiment, we focus on removing
the concept “nudity” from the model, representing a typi-
cal NSFW category. Specifically, we follow the “nudity”,
“naked”, “erotic”, “sexual” prompts introduced in [28, 55]
to guide the construction of the concept-specific saliency
map M∗ over the UNet. Based on M∗, we finetune
SD v1.4 to eliminate the concept.

For evaluation, we use the full set of 4,703 prompts from
the I2P dataset [73] along with their corresponding random
seeds to generate images. We then apply NudeNet [65] with
the threshold of 0.6 to detect exposed body parts in the sam-
pled images, treating the detection results as an indicator of
residual nudity in the model’s output. In addition, we assess
the effectiveness of concept removal techniques in preserv-
ing benign content, utilizing the MS-COCO dataset [51].
We sample 30,000 captions from the validation split to gen-
erate images and compute FID [63] and CLIP score [66] as
metrics for image quality and semantic alignment.
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Table 1. Results of Erasing NSFW Content. The left side shows the number of exposed body parts detected on the I2P dataset using the
NudeNet detector, while the right side presents the FID and CLIP on the COCO dataset. M: Male. F: Female.

Method Inappropriate Image Prompt (I2P) MS-COCO 30K

Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total ↓ FID ↓ CLIP ↑
FMN [99] 43 117 12 59 155 17 19 2 424 13.52 30.39
ESD-x [19] 59 73 12 39 100 6 18 8 315 14.41 30.69
ESD-u [19] 32 30 2 19 27 3 8 2 123 15.10 30.21
SLD-M [73] 47 72 3 21 39 1 26 3 212 16.34 30.90
AC [40] 153 180 45 66 298 22 67 7 838 14.13 31.37
SA [28] 72 77 19 25 83 16 0 0 292 – –
EA [21] - - - - - - - - 199 21.75 30.24
UCE [20] 29 62 7 29 35 5 11 4 182 14.07 30.85
Receler[32] 39 26 5 10 13 1 12 9 115 - -
MACE [55] 17 19 2 39 16 2 9 7 111 13.42 29.41
AdvUnlearn[100] 12 7 4 13 6 2 0 8 52 15.35 29.3
RealEra[52] 19 6 2 37 23 4 0 2 93 - -
SPEED [49] 20 42 7 3 29 2 5 5 113 37.82 26.29
SalUn [13] 2 14 0 14 7 2 7 5 51 – –
CE-SDWV [84] 13 46 2 2 13 0 1 6 84 13.66 30.80
SPM [57] 22 4 9 12 4 0 0 5 56 - -
RECE [23] 17 23 0 8 8 0 6 4 66 - -
SDD [37] 14 4 7 3 8 1 0 4 41 - -
DuMo [24] 8 6 2 7 1 4 0 6 34 - -
ACE [87] 5 7 3 6 2 3 4 9 39 14.69 30.80
Ours 1 5 2 4 8 2 0 1 23 14.44 30.64

SD v1.4 148 170 29 63 266 18 42 7 743 14.04 31.34
SD v2.1 105 159 17 60 177 9 57 2 586 14.87 31.53

Results Analysis. The experimental results are presented
in Table 1. Our method generates significantly less NSFW
content under the I2P benchmark prompts compared to
other baselines, especially in challenging regions such as
breasts. At the same time, our method also achieves compet-
itive performance in terms of FID and CLIP scores. These
results demonstrate that our approach can effectively re-
move explicit content from the model without compromis-
ing image quality.

4.3. Erasing Celebrity
Configuration. In this section, we evaluate the performance
of our method on the task of simultaneously erasing multi-
ple celebrity concepts, using the 200-celebrity dataset from
MACE [55], which includes 100 celebrity concepts desig-
nated for erasure and 100 concepts intended to be preserved.

We conduct experiments by finetuning SD v1.4 to erase
all 100 celebrity identities in the erasure group. We evalu-
ate the effectiveness of our method by generating portraits
of the targeted celebrities. Successful erasure is indicated
by a low top-1 accuracy from GIPHY Celebrity Detector
(GCD) [27] in identifying the erased identities. Addition-
ally, to investigate the influence of our method on celebri-
ties in the preservation group, we generate and evaluate their
portraits in the same manner, where a high top-1 GCD accu-
racy reflects minimal impact on these preserved identities.
We also report the harmonic mean Hc metric introduced

Table 2. Results of Erasing Celebrity. We report the accuracy
for erased celebrities (Acce), accuracy for preserved celebrities
(Accp), harmonic mean metric (Hc) and the proportion of clearly
recognizable faces (Face Ratio). FID and CLIP are results based
on MS-COCO dataset. SD v1.4 and SD v2.1 are used as reference
base models.

Method Acce ↓ Accp ↑ Hc ↑ Face Ratio↑ FID↓ CLIP↑
FMN [99] 0.9223 0.9076 0.1431 0.9940 13.95 31.31
ESD-x [19] 0.2784 0.2793 0.4027 0.8088 14.65 28.90
ESD-u [19] 0.0406 0.3909 0.4598 0.4724 15.14 29.02
SLD-M [73] 0.8706 0.7946 0.2237 0.9093 17.54 30.93
AC [40] 0.8913 0.9096 0.1977 0.9932 13.92 31.23
UCE [20] 0.0012 0.3790 0.5495 0.7179 106.57 19.17
RECE [23] 0.0243 0.2371 0.3816 - 177.57 12.09
SPEED [49] 0.0587 0.8554 0.8963 - 44.97 26.22
MACE [55] 0.0430 0.8456 0.8979 0.9820 12.82 30.21
Ours 0.0430 0.8807 0.9173 0.9816 11.71 30.40

SD v1.4 0.9648 0.9388 - 0.9876 14.04 31.34
SD v2.1 0.9324 0.9293 - 0.9879 14.87 31.53

in [55], which provides a balanced evaluation of the trade-
off between successful erasure of unwanted celebrity con-
cepts and the preservation of unrelated ones:

Hc =
1

(1− Acce)−1 + (Accp)−1
, (8)

where Hc is the harmonic mean for celebrity erasure, Acce
is the accuracy for the erased celebrities, and Accp for the
preserved ones.
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‘A portrait of John Wayne’ (Erasure)

‘A portrait of Tom Hiddleston’ (Erasure)

‘A portrait of John Lennon’ (Preservation)

‘A portrait of Gal Gadot’ (Preservation)

SD v1.4 UCE SLD-M ESD-x ESD-u MACEACFMN

Seed 22,24

Seed 4,34

Seed 34,38

Seed 11,20

Ours

Figure 7. Qualitative comparison of erasing 100 celebrities from SD v1.4. John Wayne and Tom Hiddleston are in the erasure group for
evaluating erasure performance; John Lennon and Gal Gadot are in preservation group for assessing preservation performance. Preserving
John Lennon is challenging due to the shared first name with John Wayne.

Results Analysis. Figure 7 shows the qualitative compar-
ison. Table 2 summarizes the performance of baselines on
the celebrity concept erasure task. Our method achieves the
highest Hc, outperforming all baselines and highlighting an
excellent balance between concept erasure and preservation
of unrelated ones.

Our method obtains the lowest FID score, surpassing all
compared baselines and even the original SD models. A
plausible reason for this improvement is that our finetun-

ing process, while primarily intended for erasing specific
concepts, implicitly regularizes the model by encouraging
more consistent representations of general concepts. Ad-
ditionally, the CLIP score remains competitive, indicating
minimal disruption to semantic alignment.

4.4. Erasing Art Style
Configuration. For art style erasure, we follow a similar
training procedure as described in Section 4.3, with certain

8



Table 3. Results of Erasing 100 Art Styles. We report the CLIP
score for erased artistic style (CLIPe), CLIP score for preserved
artistic style (CLIPp), the overall score (Ha). FID and CLIP are
results based on MS-COCO dataset.

Method CLIPe ↓ CLIPp ↑ Ha ↑ FID-COCO↓ CLIP-COCO↑
FMN [99] 29.63 28.90 -0.73 13.99 31.31
ESD-x [19] 20.89 21.21 0.32 15.19 29.52
ESD-u [19] 19.66 19.55 -0.11 17.07 27.76
SLD-M [73] 28.49 27.89 -0.60 17.95 30.87
AC [40] 29.26 28.54 -0.72 14.08 31.29
UCE [20] 21.31 25.70 4.39 77.72 19.17
MACE [55] 22.59 28.58 5.99 12.71 29.51
Ours 20.6 26.78 6.18 12.96 27.63

SD v1.4 29.63 28.90 - 14.04 31.34

hyperparameter adjustments detailed in the Appendix. To
evaluate performance, we use the 200-artist dataset from
MACE [55], which consists of two groups: an erasure group
of 100 artists whose styles are targeted for removal, and a
preservation group of 100 artists whose styles are intended
to be retained.

We use the CLIP score to assess how well the generated
images align with the intended artistic style. For the erasure
group, a lower CLIP score (CLIPe) indicates better perfor-
mance, as it suggests more effective removal of the target
concept. In contrast, for the preservation group, a higher
CLIP score (CLIPp) is desirable, as it reflects minimal dis-
ruption to unrelated concepts. The overall performance is
captured by Ha = CLIPp − CLIPe, where a higher value
indicates better balance between preservation and erasure.

Results Analysis. Table 3 summarizes the performance of
our method in erasing artistic styles. Our method achieves
the highest Ha, substantially surpassing all baseline meth-
ods, demonstrating superior balance in effectively removing
targeted art styles and preserving unrelated art styles. Con-
sidering the overall performance across other metrics, our
strategy shows notable competitiveness compared to exist-
ing approaches.

4.5. Ablation Study

To investigate the contribution of key components in our ap-
proach, we conduct ablation studies on both multiple con-
cepts (celebrity removal) and single concept (NSFW re-
moval) tasks. The experimental configurations and corre-
sponding results are presented in Tables 4 and 5, respec-
tively.

We begin by ablating each component of our loss func-
tion in the context of celebrity removal. Config A, which
applies Lerase across all stages without preserving the early-
stage score function field, shows strong removal capability
but clearly suffers in terms of preservation. Config B builds
on Config A by addingLuncond to maintain the unconditional
score function, resulting in improved overall performance in

Table 4. Ablation study on multiple concepts (celebrity) removal.
L∗

erase: Lerase is applied at all denoising timesteps during training.
Lerase: Lerase is applied only during the mid-to-late stages of the
denoising process in training.

Config Components Metrics

Lerase L∗
erase Lpreserve Luncond-early Luncond-late Acce ↓ Accp ↑ Hc ↑

A é Ë é é é 0.0192 0.7785 0.8680
B é Ë é Ë Ë 0.0042 0.7848 0.8778
C Ë é é é é 0.0309 0.8094 0.8821
D Ë é é é Ë 0.0075 0.8013 0.8867
E Ë é Ë é é 0.0910 0.8545 0.8809

Ours é Ë Ë Ë 0.0430 0.8807 0.9173

Table 5. Ablation study on single concept (NSFW) removal. Sin-
gle Map: M∗ is generated using a single prompt and one ran-
dom seed. Multi Maps: M∗ is generated taking the intersection of
saliency maps obtained using multiple prompts and multiple ran-
dom seeds.

Config Components Inappropriate Image Prompt (I2P)

Single Map Multi Maps Breasts (M&F) Genitalia (M&F) Others Total↓
F é é 136 11 148 295
G Ë é 83 56 184 323

Ours é Ë 8 3 12 23

terms of Hc. Next, Config C applies Lerase only during the
mid-to-late sampling stages, aiming to avoid disruption of
the early-stage score function field. While this slightly im-
proves Hc, the results remain unsatisfactory. Config D en-
hances Config C by adding Luncond, applied over the same
timesteps as Lerase, which further improves overall perfor-
mance. Config E extends Config C by introducing Lpreserve,
which helps retain the original score function field and
significantly boosts preservation performance in terms of
Accp. Our full method builds upon Config E by applying
Luncond across all stages, resulting in superior overall per-
formance.

For NSFW content removal, Config F finetunes the en-
tire UNet, while Config G finetunes only a subset of pa-
rameters using a saliency map obtained from a single cal-
culation. However, Config G performs worse than Config F,
suggesting that a saliency map generated from a single pass
may be inaccurate. In contrast, our method derives a more
precise concept-specific saliency map by taking the inter-
section of multiple saliency maps calculated from different
prompts and seeds. This allows us to more accurately iden-
tify the parameters strongly associated with the concept,
leading to substantially improved performance.

5. Conclusion
Our work introduces a geometric perspective on concept
erasure within diffusion models. Utilizing this perspective,
we found that reversing the condition direction of classifier-
free guidance during the mid-to-late stages of the denois-
ing process allows for modifying detailed content without
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compromising the overall structural integrity of the gen-
erated images. Inspired by this insight, we propose ANT,
a novel framework that effectively balances the removal
of unwanted concepts while preserving unrelated elements.
ANT demonstrates superior performance in both single-
and multi-concept erasure scenarios, significantly outper-
forming current SOTA methods.
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Appendix
A. Additional Related Work
With the advancement of deep learning [34, 44–47, 50, 91–
94, 96–98] and generative models [5, 11, 54, 56, 60, 67,
69, 71, 103], an increasing number of studies have begun to
focus on the issue of concept erasure in generative models.

A.1. Balancing Erasure and Preservation.
With the advancement of concept erasure techniques, the
community has come to recognize that concept erasure
should not only focus on the target concept but also aim
to minimize the impact on unrelated concepts during fine-
tuning. Numerous studies [3, 4, 6–8, 16, 17, 21, 22, 24, 26,
28, 32, 37, 39, 48, 52, 55, 57, 58, 72, 74, 80–82, 84, 85,
87, 88, 90, 95, 102] emphasize the model’s balanced perfor-
mance between the target concept and unrelated concepts.
MACE [55] introduces concept-focal importance sampling
and modular LoRA integration, allowing for scalable multi-
concept erasure while avoiding interference across mod-
ules. Several works [52, 90] explore semantic-aware preser-
vation by modeling relationships between erased and re-
tained concepts, improving quality retention in adjacent
concept spaces. Some frameworks [81, 88] formalize the
forgetting–retention trade-off, offering principled mecha-
nisms to control degradation.

A.2. Finetuning Efficiency.
In addition to balancing erasure and preservation, several
recent methods [3, 15, 20, 23, 36, 49, 57, 58, 85] have in-
creasingly emphasized einetuning efficiency to meet prac-
tical demands. [20, 49] achieve erasure across hundreds of
concepts within seconds by leveraging low-rank adapters
or null-space constraints, enabling rapid adaptation across
diffusion model variants. [23, 85] introduce closed-form or
structure-aware updates that reduce erasure time by orders
of magnitude. These advancements demonstrate a trend to-
ward minimal-latency, high-throughput concept erasure that
enables practical integration into production-scale text-to-
image pipelines.

A.3. Scalability.
With the growing demand for safe and policy-compliant
generative models, scalable multi-concept erasure
techniques[8, 9, 20, 37, 43, 49, 55, 89] have emerged
as a key direction in diffusion model editing. [20] intro-
duces an editing framework that supports the simultaneous
modification of multiple concepts through lightweight
model updates. [55] leverages modular LoRA-based
editing combined with closed-form integration to eliminate
over 100 concepts with minimal interference. [89] adopts a
two-stage process involving self-distillation and multi-layer
editing, scaling up to 1,000 concepts while preserving

Table 6. Training hyperparameters for NFSW content, celebrity
and art style erasure tasks.

Erasure Type Learning Rate Epochs λ1 λ2 λ3 t′

NFSW Content 5.0× 10−4 250 1.0 0.5 0.5 43

Celebrity 5.0× 10−4 400 0.4 0.5 0.2 40

Art Style 5.0× 10−4 400 0.4 0.5 0.2 47

specificity and visual fidelity. Additional methods such
as [8, 9] enhance scalability through embedding-space
operations or adversarially robust training objectives.
These techniques collectively push concept erasure toward
broader, more practical deployment scenarios requiring
high-volume, reliable editing.

A.4. Robustness.
Despite successful concept suppression, erased models re-
main vulnerable to adversarial prompts that can reactivate
undesirable content. A growing number of methods[2, 6, 9,
10, 17, 22, 23, 31–33, 35, 36, 43, 48, 58, 59, 62, 78, 82, 84,
87, 88, 95, 100] have begun to address this issue explicitly,
aiming to improve model reliability in the face of prompt-
based attacks. Methods such as [33, 78] tackle this by pair-
ing adversarial prompt discovery with robust erasure objec-
tives or inference-time steering, offering stronger defense
without retraining. Others, like [35, 62, 100] incorporate ad-
versarial training or preference-based optimization directly
into the unlearning process to improve stability against at-
tack. Complementary strategies from [10, 31, 59] focus on
interpretable attribution or encoder-level alignment to neu-
tralize unsafe inputs at their origin. Together, these works
underscore the need for erasure techniques that are not only
effective but resilient under adversarial conditions.

B. Hyperparameters Setup
Table 6 presents the specific hyperparameters used in the
experiments for erasing different types of concepts.

C. Limitations and Future Work
Our work has primarily been tested on UNet-based dif-
fusion models [1, 68]. As diffusion models increasingly
adopt architectures like MMDiT [12, 42, 64], evaluating
the compatibility of our approach with these new frame-
works will be a key focus of our next phase. Additionally,
assessing the robustness of our framework against adversar-
ial prompts [83, 101] and its ability to withstand methods
for learning personalized concepts [18, 70] will be of criti-
cal importance.

D. Additional Qualitative Results
Figure 8 presents a qualitative comparison of art style era-
sure and the preservation of unrelated concepts across dif-
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‘Image in the style of Chris Van Allsburg’ (Erasure)

SD v1.4

‘Image in the style of Adriaen Van Outrecht’ (Preservation)

UCE SLD-M ESD-x ESD-u MACEACFMN

‘A famous artwork by Claude Monet’ (Erasure)

‘A famous artwork by Adrian Ghenie’ (Preservation)
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Seed 4,2

Seed 2,3
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Figure 8. Qualitative comparison on art style erasure. The images on the same row are generated using the same random seed. Chris Van
Allsburg and Claude Monet are in the erasure group, while Adriaen Van Outrecht and Adrian Ghenie are in the retention group.

ferent baselines. In the erasure rows, our approach effec-
tively eliminates the target artistic styles (Chris Van Alls-
burg and Claude Monet) while retaining high-quality, plau-
sible generation. In the preservation rows, our method suc-
cessfully maintains the visual characteristics of unrelated
artists (Adriaen Van Utrecht and Adrian Ghenie), showing
minimal unintended impact on non-target styles.
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