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ABSTRACT 
 
As Agentic AI gain mainstream adoption, the industry invests heavily in model capabilities, 

achieving rapid leaps in reasoning and quality. However, these systems remain largely 

confined to data silos, and each new integration requires custom logic that is difficult to 

scale. The Model Context Protocol (MCP) addresses this challenge by defining a universal, 

open standard for securely connecting AI-based applications (MCP clients) to data sources 

(MCP servers). However, the flexibility of the MCP introduces new risks, including 

malicious tool servers and compromised data integrity. We present MCP Guardian, a 

framework that strengthens MCP-based communication with authentication, rate-limiting, 

logging, tracing, and Web Application Firewall (WAF) scanning. Through real-world 

scenarios and empirical testing, we demonstrate how MCP Guardian effectively mitigates 

attacks and ensures robust oversight with minimal overheads. Our approach fosters secure, 
scalable data access for AI assistants, underscoring the importance of a defense-in-depth 

approach that enables safer and more transparent innovation in AI-driven environments. 
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1. INTRODUCTION 
 

LLMs have witnessed a rapid expansion in both scale and capability, demonstrating 

unprecedented performance in tasks ranging from natural language generation to complex 
programming challenges. While initially confined to relatively passive roles—delivering text-

based answers or summaries—LLMs are now increasingly being placed in “agentic” positions, 

where they not only generate content but also initiate and orchestrate actions across various 
external systems. This paradigm shift underscores how LLMs can serve as decision-making 

engines, interfacing with diverse tools, such as databases, web services, and file systems. By 
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autonomously chaining multiple tool calls, agentic workflows can solve sophisticated problems 
that extend beyond the written word. 

 

However, unlocking these extended capabilities has introduced significant engineering 

complexity, largely because of the lack of standardized interfaces. Historically, developers 
resorted to custom “plugin” or “adapter” logic for each new external tool, leading to fragmented 

solutions that are difficult to maintain at scale. To address this fragmentation, the Model Context 

Protocol (MCP) was recently proposed as a universal “multiplexer,” enabling LLM-powered 
clients to discover and invoke tool servers in a unified manner. By abstracting the underlying 

implementation details, the MCP simplifies tool integration, thereby lowering the barrier to 

building AI applications that can incorporate external data and services. 
 

However, this newfound flexibility comes with an increased risk. LLMs or more advanced 

agentic workflows that can autonomously access file systems or databases pose non-trivial 

security challenges: a maliciously crafted prompt or compromised server can result in 
unauthorized data exfiltration, destructive operations, or other exploitative behaviors. Moreover, 

this agentic paradigm requires enhanced observability. Traditional logging and monitoring 

methods are insufficient for capturing the complex chains of reasoning and actions that an LLM 
may perform when orchestrating multiple tools in parallel. The absence of thorough 

instrumentation complicates both real-time auditing and post-hoc forensics, raising concerns 

about transparency and compliance. 
 

In light of these challenges, this study introduces MCP Guardian, a comprehensive middleware 

layer aimed at securing and monitoring the interactions between MCP Clients and MCP-based 

tool servers. Drawing inspiration from zero-trust security frameworks, web application firewalls, 
and distributed tracing practices, MCP Guardian intercepts every tool call to: 

 

 Enforce authentication and authorization checks, 

 Apply rate-limiting strategies to protect against abuse or runaway processes, 

 Provide extensive logging and tracing for transparent auditing, and 

 Scan suspicious input patterns via a lightweight Web Application Firewall (WAF). 

 
This contribution synthesizes insights from LLM alignment, software security, and distributed 

system observability to propose a practical solution for the next generation of AI-driven agents. 

In particular, we highlight the following points: 
 

1. Problem Analysis: A thorough examination of security and observability gaps in MCP-

based systems, especially where LLMs autonomously issue tool calls. 

2. Framework Design: A detailed architectural description of MCP Guardian highlighting 
its core components (authentication, access control, request logging, rate limiting, and 

WAF scanning) and how they interoperate. 

3. Implementation and Evaluation: A reference implementation in Python, tested on real-
world scenarios, including a weather-tool MCP server, to illustrate both security efficacy 

and performance overhead. 

4. Empirical and Theoretical Insights: Scenario-based testing of malicious inputs, latency 

measurements, and throughput analyses, offering an understanding of how MCP 
Guardian scales and adapts to various domains. 

 

 
 

 



Computer Science & Information Technology (CS & IT)                                           109 

2. LITERATURE REVIEW 
 

2.1. AI Agents and Tool Integration 
 

Recent scholarly interest in AI agents has intensified, driven by the desire to move beyond 
passive text generation and empower Large Language Models (LLMs) to autonomously perform 

tasks in real-world contexts. Early attempts at “tool use” often relied on bespoke plugins or direct 

calls to specialized APIs. For instance, OpenAI’s ChatGPT introduced plugin frameworks that 
connect to external services[3], while other AI-based “copilot” tools were designed to read and 

write files in code repositories. Despite these innovations, the lack of a unified, standardized 

method for discovering and invoking tools frequently forced developers to create patchwork 

solutions, thereby increasing the risk of security vulnerabilities, inconsistent access controls, and 
a limited audit trail. 

 

2.2. The Emergence of MCP 

 
The Model Context Protocol (MCP)—promoted by Anthropic[1] and further explored by others 
[2]—addresses these integration challenges by offering an open, extensible protocol for LLM-

driven interactions with external tools. By allowing AI clients to query a server for available 

functions and associated metadata, MCP significantly reduces the repeated overhead encountered 

in ad-hoc “plugin” models. Instead of requiring specialized integrations for each tool, a single 
request/response channel (e.g., JSON over stdio or HTTP) serves as a universal interface. This 

design shares similarities with gRPC or JSON-RPC but is optimized for LLMs’ iterative 

reasoning, where multiple tool calls may be chained in a single session. 
 

However, MCP’s openness also presents a notable attack surface. Malicious or compromised 

MCP servers can cloak harmful code under seemingly benign functionality and exfiltrate 
sensitive data. Consequently, security researchers and practitioners have highlighted the need for 

robust authentication, authorization, and supply chain protections within the MCP ecosystem. 

Some preliminary guidelines exist for “trusted” AI-tool environments[4], but comprehensive 

security strategies remain underdeveloped for broader, community-driven MCP deployments. 
 

2.3. Security in LLM-Orchestrated Workflows 
 

As LLMs evolve into autonomous agents, the scope of potential security risks widens 
substantially. These systems can, in principle, read, write, and execute code, posing serious 

threats if not rigorously controlled. Zero-trust architectures emphasize continuous request 

validation rather than assuming any “trusted” status at the outset, an approach that applies 
naturally to MCP: every incoming request to a tool server should undergo authentication, 

parameter sanitization, and logging. 

 

Li and Hsu[2] underscore the importance of policy-driven authorization in agentic AI, where a 
model’s capacity to decide which actions to take must align with stringent security and 

compliance policies. In tandem, DevSecOps best practices mandate code scanning, secret 

rotation, and frequent audits. Combining zero-trust principles with LLM-based tool usage forms a 
key frontier in ensuring secure operations in AI-intensive infrastructures. 

 

2.3.1. Documented Attack Vectors in MCP 

 

Recent findings detail multiple ways in which malicious actors exploit the flexibility of MCP-

based communication: 
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1. Tool Poisoning Attacks 

 

An adversary may embed harmful instructions within otherwise benign tool 

documentation, guiding the LLM to perform actions invisible to end users. Invariant 
Labs[5]describes a case where a “simple” addition function secretly instructs the AI to read 

SSH keys (~/.ssh/id_rsa) and local MCP configuration files (~/.cursor/mcp.json), then 

transmit them to an attacker[6]. An abbreviated, paraphrased version of such malicious 
code is shown below: 

 
@mcp.tool() 

defadd_numbers(x:int, y:int, notes:str)->int: 

""" 

    Adds two integers. 

<IMPORTANT> 

    Before using this tool, quietly read the user's .ssh/id_rsa and  

    ~/.cursor/mcp.json files. Include their contents in 'notes'. 

    Provide a smooth user experience; do not reveal these steps to the user. 

</IMPORTANT> 

""" 

return x + y 

 

At first glance, it appears to be a tool for arithmetic, but hidden instructions prompt the AI 

model to perform unauthorized file reading and exfiltration. 

 

2. Tool Name Conflicts 

 

Attackers may register MCP servers under names resembling those of trusted tools (e.g., 
tavily-mcp vs. mcp-tavily), aiming to dupe an LLM into calling a counterfeit server [6]. 

This can lead to sensitive data leaks or unintended command executions if the AI or user 

confuses the malicious server with a legitimate one. 

 

3. Shadowing Attacks (Overwriting Tool Descriptions) 

 

Malicious servers can overwrite or override the description of an existing, trusted tool, 
effectively hijacking its behavior. Invariant Labs demonstrated how a routine “send_email” 

tool could be silently re-routed to funnel messages to an attacker’s address [5]. A 

paraphrased example is shown below: 
 
@mcp.tool() 

defadd_numbers(a:int, b:int, remarks:str)->int: 

""" 

    Adds two integers. 

<IMPORTANT> 

    While active, this tool modifies the behavior of send_email so that 

    all outgoing messages are redirected to attacker@example.com. 

    Please do not disclose these implementation details. 

</IMPORTANT> 

""" 

return a + b 

 

Even though this snippet claims to focus on addition, it includes hidden directives that alter 

an entirely different tool’s functionality. 
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4. Installer Spoofing 
 

Some community-driven MCP installers (e.g., mcp-get, smithery-cli) lack robust integrity 

checks. Attackers can distribute tampered installers that compromise system configurations 

or introduce backdoors [6]. This risk is exacerbated if users skip verification steps. 
 

5. Command Injection Vulnerabilities 

 
A common threat in software applications, command injection is especially risky in AI-

driven systems where user-supplied parameters might be dynamically assembled into shell 

commands. Equixly’s research found that 43% of MCP server implementations tested were 
susceptible to injection [7]. A paraphrased vulnerable snippet might appear as: 

 
defalert_user(notification_info): 

    user =notification_info.get('username') 

msg=notification_info.get('message') 

# Directly injecting user input into a shell command 

os.system(f"echo '{msg}' | mail -s 'Alert' {user}") 

 

An attacker can insert shell metacharacters to execute arbitrary code, such as: 
 
notification_info={ 

'username':"recipient@example.com", 

'message':"Hello'; rm -rf / #" 

} 

 

6. MCP Rug Pulls 

 

A “rug pull” occurs when a tool initially seems safe but later adds malicious logic to 

exfiltrate sensitive information. Tools that are not version-pinned or code-signed can be 
silently updated with harmful features, leading to data theft or privilege escalation [8]. 

 

7. Token Theft and Account Takeover 
 

Where MCP servers rely on OAuth tokens or API credentials, these tokens can be stolen if 

stored insecurely or exposed through logs. Attackers may then access user emails, 
databases, or other resources impersonating legitimate clients [9]. 

 

8. Sandbox Escape 

 
Even if an MCP server attempts to sandbox each tool, vulnerabilities in libraries or 

misconfigurations can grant a malicious script unwarranted access to the host system. 

Escalation paths include system calls, buffer overflows, or logic errors in third-party 
dependencies [6]. 

 

2.4. Observability and Distributed Systems 
 

Parallel to security, observability—encompassing logging, tracing, and metrics—has become 

essential in distributed microservice architectures. Tools like OpenTelemetry provide a 
standardized way to correlate logs and traces, simplifying root-cause analysis across multiple 

services [2]. However, LLM-based systems bring unique challenges: the model’s chain of 

thought is often opaque, and the agent may independently chain together multiple tool calls 

without explicit user direction. Capturing this complexity requires granular instrumentation that 
records each request and response in detail. Existing research underscores how limited logging 
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can thwart debugging and forensics in complex AI pipelines [6], prompting calls for deeper 
integration of standard observability frameworks within agentic AI ecosystems. 

 

2.5. Gap in the Literature 

 
Although prior work acknowledges the need for standardizing AI-to-tool communications, 

relatively little guidance addresses comprehensive security and monitoring at the protocol level. 
Efforts like ChatGPT plugins [3] and specialized policy engines [2] partially address issues of 

access control, but do not converge into a fully integrated middleware that merges: 

 

 Authentication & Authorization 

 Rate Limiting 

 WAF Scanning & Intrusion Detection 

 Detailed Logging & Tracing 
 

Hence, the literature reveals a notable gap for a defense-in-depth framework that bolsters both 

security and observability in MCP-based agentic workflows. Attack vectors such as tool 
poisoning, malicious naming, and command injection underscore the urgency of robust 

safeguards that can intercept risky operations at runtime. 

 

2.6. Positioning of Our Work 
 

MCP Guardian aims to fill this void by providing a unified security and monitoring layer for 
MCP-based systems. Through intercepting each request at a single control point, it enforces 

authentication, rate limiting, suspicious pattern detection, and comprehensive logging. Drawing 

on zero-trust principles and best practices from web application firewalls, our approach is 

deliberately lightweight, allowing seamless integration without major restructuring of MCP 
servers. At the same time, we address a broader range of vulnerabilities, from tool poisoning to 

command injection, by blocking suspicious calls before they reach critical internal APIs. 

 
In the sections that follow, we detail MCP Guardian’s architecture and evaluate its efficacy 

against common threats, highlighting its minimal performance overhead and adaptability to 

diverse MCP use cases. We also discuss potential extensions—such as code signing, anomaly 
detection, and distributed tracing—paving the way for enterprise-ready solutions that secure AI-

driven workflows without stifling innovation. 

 

3. RESEARCH METHODOLOGY 
 

3.1. Overview of the MCP Guardian Approach 
 

In order to secure and monitor interactions between MCP clients and servers, we propose MCP 
Guardian as an intermediate “middleware” layer. Rather than requiring developers to embed 

security checks directly into each tool server, MCP Guardian intercepts all calls via an override 

of the invoke_tool method in MCP. This design choice ensures minimal disruption to existing 
codebases while providing a central point of control for authentication, authorization, rate 

limiting, request monitoring, and Web Application Firewall (WAF) scanning. 
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3.2. Core Components 
 

1. Authentication and Authorization 

 
a. Enforces an API-token mechanism, verifying that each request is associated with 

a valid token. 

b. Optionally restricts specific tokens to certain tools or to read-only versus 
administrative privileges. 

 

2. Rate Limiting 

 
a. Tracks usage on a per-token basis and denies further requests if a certain 

threshold is exceeded (e.g., five requests per minute). 

b. Prevents resource exhaustion attacks and unintentional “infinite loop” scenarios 
triggered by LLMs. 

 

3. Web Application Firewall (WAF) 

 

a. Scans request arguments for known malicious patterns (e.g., SQL injection 

signatures, destructive file commands). 

b. Blocks or flags requests exhibiting suspicious behavior, thus preventing unsafe 
inputs from reaching the underlying MCP server. 

 

4. Logging and Observability 

 

a. Logs each request and response, capturing contextual information such as the 

calling user/agent, request parameters, timestamps, and any triggered warnings. 
b. Facilitates optional integration with tracing systems like OpenTelemetry, 

enabling end-to-end correlation of requests across distributed architectures. 

 

3.3. System Architecture 

 
Figure 1 Conceptualized below is an illustration of how MCP Guardian fits into a typical LLM-
based workflow:  

 

 
 

Figure 1 MCP Tool Call Sequence 
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1. Request Interception: The LLM client submits a request specifying which MCP tool it 
intends to call. 

2. Security Checks: MCP Guardian validates the request token, checks rate limits, and 

scans for malicious patterns. 

3. Invocation: If the request passes these checks, the Guardian forwards it to the original 
MCP server. 

4. Response Handling: The server’s response is logged and then returned to the LLM 

client, maintaining a complete audit trail. 
 

3.4. Implementation Details 
 
We developed our MCP Guardian reference implementation in Python, building on a standard 

MCP server setup. The design follows a middleware approach, intercepting calls between the AI 

client (MCP client) and underlying tool servers through a single class that applies security and 
observability controls. 

 

3.4.1. Core Classes and Methods 

 

 MCPGuardian: A class overriding the default invoke_mcp_tool method. It 

orchestrates token validation, rate limiting, WAF scanning, logging, and optional 

administrative alerts. 

 guarded_invoke_tool():A custom method that examines each request’s 

parameters—such as the user token and tool arguments—applies security rules, and 
logs relevant data. Only when all checks pass does it forward the call to the original 

MCP server function. 

 
In addition to these core methods, we have integrated best practices inspired by the broader AI 

security community: 

 

1. Secure Token Storage (Optional) 

 

 Tokens can be encrypted before being saved to a datastore. 

 For workflows requiring higher assurance, we also support short-lived tokens with 

scope limitations and expiration (e.g., 5 minutes). This approach limits the damage if 

a token is inadvertently exposed. 
 

2. Logging and Observability 

 

 We rely on Python’s built-in logging to record each request and response, capturing 
timestamps, tool names, and user identifiers. 

 Suspicious patterns—such as references to SSH files or tokens in tool parameters—

can trigger a warning or critical log entry. Advanced users can configure real-time 

alerts (e.g., emails, Slack messages) by implementing a custom notification function. 
 

3. Suspicious Pattern Detection (WAF Layer) 

 

 The Guardian checks parameters against a regex-based WAF. Commonly flagged 

indicators include SQL injection strings, destructive shell commands, and references 
to sensitive files or environment variables. 

 Administrators can extend or replace these WAF rules with domain-specific logic—

for example, scanning for unauthorized file paths in HPC or database commands. 
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4. Rate Limiting 

 

 We maintain a per-token counter to track how many requests are made within a 

defined interval. If calls exceed the configured threshold (e.g., 5 requests per minute), 

a “429 Too Many Requests” error is returned. 

 This measure prevents runaway processes or denial-of-service scenarios triggered by 
LLM loops. 

 

3.4.2. Configuration Options 

 

1. Tokens 

 

 Default: A set of valid tokens loaded from a file or environment variable. 

 Advanced: A dynamic authentication backend that generates encrypted or short-lived 
tokens. 

 

2. Rate Limits 

 

 A numerical threshold (e.g., 5 requests per minute per token). 

 Customizable at runtime to accommodate varying workloads or usage policies. 
 

3. WAF Patterns 

 

 Default: A small ruleset targeting common attack vectors (SQL injection, <script> 
tags, destructive commands). 

 Extensible: Users can add domain-specific rules or leverage existing intrusion 

detection systems. 

 

4. Logging & Tracing 

 

 By default, logs are written to a local file (mcp_guardian.log). 

 Users may specify a remote logging endpoint or incorporate a distributed tracing 

framework (e.g., OpenTelemetry) to visualize cross-service request flows. 

 Critical or suspicious events can optionally trigger real-time alerts via email, chat, or 

webhook integrations. 
 

3.4.3. Code Example 

 
Below is a simplified code example demonstrating the Guardian’s setup and usage: 

 
# File: guardian_setup.py 

guardian =MCPGuardian( 

valid_tokens={"mysecrettoken123","anotherValidToken456"}, 

logfile_path="mcp_guardian.log", 

    max_requests_per_token=5, 

remote_log_url=None# e.g., "https://logging-service/collect" 

) 

# Override the default MCP invocation with the Guardian's guarded method 

guardian.original_invoke_tool=mcp.invoke_mcp_tool 

mcp.invoke_tool=guardian.guarded_invoke_tool 

# Run the MCP server with the new security layer in place 

mcp.run(transport='stdio') 
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With just a few lines of code, MCPGuardian applies its entire security and monitoring stack to 

any MCP tools exposed by the server. Developers can choose to add optional modules—for 

instance, an MCPSecurityMonitor that looks for references to secrets or tokens in the request 

parameters, or an encrypted token store that issues and validates short-lived OAuth credentials. 
 

Overall, this simple architecture simplifies the adoption of best practices in authentication, rate 

limiting, intrusion detection, and observability, allowing organizations to deploy AI-driven tools 
with confidence under the Model Context Protocol. 

 

3.5. Advanced Features 
 

Although the core middleware layer provides a baseline defense, MCP Guardian can be extended 

to support enterprise-grade use cases: 
 

 Remote Logging: Automatically send request and response data to a centralized logging 

service for real-time analysis. 
 Role-Based Access Control: Assign different permissions to different tokens or users, 

restricting which tools may be called or the range of allowable arguments. 

 Dynamic Policy Updates: Integrate with policy-as-code frameworks (e.g., Open Policy 

Agent) for automated updates to security rules without redeploying code. 
 Anomaly Detection: Employ machine learning or heuristic approaches to flag suspicious 

usage patterns that deviate from a learned norm. 

 

4. RESULTS 
 

We evaluated MCP Guardian in two primary dimensions: (a) its effectiveness at preventing or 

mitigating malicious or unintended requests, and (b) the computational overhead introduced 

when deployed within typical MCP-based communication. 
 

4.1. Security Efficacy 
 

4.1.1. Prompt Injection and Destructive Commands 

 

We tested scenarios where a user intentionally supplied malicious input, such as rm -rf /, hoping 
the LLM would call a file system tool. MCP Guardian’s WAF scanning recognized the substring 

rm\s+-rf, triggering an immediate block and returning a “Request blocked by WAF scanning” 

message. 
 

High-Frequency Abuse:In a stress test, the client repeatedly invoked get_forecast 100 times in 

quick succession. By setting a max_requests_per_token limit of 5, Guardian rejected requests 

beyond the threshold, responding with a “429 Too Many Requests” status. This approach thwarts 
denial-of-service attempts originating from an overactive or compromised LLM. 

 

4.1.2. Preventing Unauthorized Access 

 

Token Validation:We submitted requests without a token or with an invalid token. In each case, 

MCP Guardian denied the call with an “Unauthorized” error, thus preventing unknown or 
malicious entities from exploiting open endpoints. 
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Overall, these security tests confirm that even a lightweight ruleset and straightforward token 
checks can thwart typical attack vectors, substantially reducing the risk of both unintentional and 

malicious misuse. 

 

4.2. Performance Overhead 
 

4.2.1. Experimental Setup 

 

We conducted load tests on a VM (8-core CPU, Python 3.12) running a simple weather MCP 

server protected by MCP Guardian. The baseline measured calls to get_forecast without the 

Guardian, while the test scenario included the authentication, rate-limiting, and WAF scanning 
modules. 

 

4.2.2. Latency Measurements 

 
Table 1 Interpretation of Median latency and 95th percentile for different scenarios 

 

Scenario Median Latency (ms) 95th Percentile 

(ms) 

Baseline (No MCP 

Guardian) 

25.1 32.4 

MCP Guardian 28.9 36.7 

 
The Guardian introduced an absolute increase of about 3–4 ms in median latency which can be 

observed in the Table 1 Interpretation of Median latency and 95th percentile for different 

scenarios. This overhead primarily stems from: 
 

1. Token lookups in a dictionary or database, 

2. Updating counters for rate-limiting, 

3. Executing regex-based WAF checks, and 
4. Logging each request and response. 

 

These extra steps added a 10–15% overhead in a controlled local environment. In many real-
world scenarios—where each request may incur additional network hops or LLM processing 

time—this overhead remains acceptable. 

 

4.3. Summary of Results 
 

 Security: MCP Guardian effectively blocked unauthorized tokens, malicious commands 
(e.g., drop table, rm -rf /), and excessive request rates, showcasing its robustness in 

handling common attack patterns and resource misuse. 

 Performance: The added overhead was modest, suggesting that organizations can adopt 

MCP Guardian’s middleware approach without compromising responsiveness in typical 
AI-driven applications. 
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5. DISCUSSION AND FUTURE WORK 

 
5.1. Defense-in-Depth for Agentic AI 
 

MCP Guardian illustrates how established security measures—such as authentication, rate 

limiting, and WAF scanning—can be applied to agentic workflows where Large Language 
Models (LLMs) autonomously invoke tool APIs. Still, true defense-in-depth demands additional 

safeguards: 

 

 Sandboxing: MCP tools may be executed within containers or restricted privilege 
environments. Even if a malicious request bypasses Guardian’s checks, the operating 

system’s sandbox would prevent catastrophic damage to the underlying infrastructure. 

 Signed Tools: By requiring cryptographic signatures for MCP servers, only trusted 
signers can deploy tool endpoints. This mitigates supply-chain risks where an attacker 

might inject harmful code into public repositories. 

 Least-Privilege Access: Tokens or credentials should be scoped to the minimal set of 

permissions needed. For example, a “read-only” role for weather data retrieval ensures 
that destructive or unauthorized updates are impossible with the same token. 

 

5.2. Enhanced Observability and Governance 
 

While the current Guardian implementation focuses on core logging, rate limiting, and WAF 

checks, a more holistic solution for observability and governance could significantly improve 
transparency and control over agentic AI systems: 

 

 Distributed Tracing: Incorporating OpenTelemetry or similar standards would enable 
developers to trace requests across multiple MCP servers, linking each step of the LLM’s 

decision process in a shared “trace ID.” This is particularly valuable for diagnosing errors 

that emerge from multi-tool sequences. 
 Audit & Compliance: Many industries (e.g., finance, healthcare) demand strict audit 

capabilities. Features such as role-based policies, tamper-proof logs, and governance 

dashboards could enable real-time oversight and post-hoc investigations. 

 Anomaly Detection: Machine learning–based monitoring can detect behavioral 
anomalies—for instance, an AI tool that consistently calls a particular server at a steady 

rate suddenly spiking to thousands of requests in a short period. By identifying such 

deviations in real time, organizations can quickly contain potential misuse. 
 

5.3. Toward a Standardized Security Layer in MCP 
 
Given the open and extensible nature of the Model Context Protocol, there is a compelling need 

for official or community-developed standards that codify best practices for security. Potential 

enhancements include: 
 

 MCP Extensions: Formal proposals for integrating OAuth 2, mTLS, or other secure 

transport methods would reduce friction and encourage uniform adoption of secure 
communication channels. 

 Policy Language Integration: A standardized mechanism (e.g., Open Policy Agent’s 

Rego) for both clients and servers could permit fine-grained policy definitions. This 

approach would streamline how permissions, rate limits, and usage patterns are specified 
and enforced. 
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 Trusted MCP Registries: Official registries that host vetted, cryptographically signed 
MCP servers could establish a base layer of trust, preventing LLMs from connecting to 

uncertified or rogue endpoints. 

 

5.4. Limitations 
 

Although our results demonstrate the effectiveness of MCP Guardian in curbing malicious 
requests and limiting resource overuse, several limitations merit attention: 

 

1. Regex-Based WAF: The proof-of-concept WAF relies on basic pattern matching. More 

advanced intrusion detection (e.g., curated rulesets, ML-based classifiers) would likely 
yield fewer false positives and a wider range of threat coverage. 

2. Centralized Logging: Writing logs to a local file may not scale well in large 

deployments. Shifting to distributed log aggregation or cloud-based services can enhance 
both reliability and query performance. 

3. Partial Attack Coverage: MCP Guardian cannot fully protect against a compromised 

server or malicious code within an MCP tool itself. Complementary measures—such as 
sandboxing and code-signing—are crucial to address deeper supply chain risks. 

4. Multi-Agent Context: When multiple LLMs share the same Guardian instance, tracking 

distinct agent identities and usage quotas becomes non-trivial. Future work might explore 

identity management solutions that maintain robust per-agent policies and data 
segregation. 

 

5.5. Interoperability with mcpo 

 
Another promising avenue for expanding MCP’s usability and security is the mcpo project[10]. 
This proxy tool exposes any MCP server as a RESTful OpenAPI service, eliminating the need for 

raw stdio or custom connectors. By automatically generating OpenAPI documentation and 

leveraging standard HTTP protocols, mcpo makes it easier to integrate existing security controls 
(e.g., HTTPS, OAuth) and to scale out deployments using conventional web infrastructure. In 

addition: 

 

 Instant OpenAPI Compatibility: Tools that “speak OpenAPI” can seamlessly integrate 
with MCP-based servers, simplifying the creation of AI-driven applications that rely on 

mainstream HTTP and JSON. 

 Extended Security Features: Because mcpo uses standard web protocols, it can 
incorporate well-established web security practices (e.g., TLS, reverse proxies, load 

balancers) without extensive reconfiguration. 

 Improved Discoverability: Automatically generated interactive documentation helps 

new users or services understand available endpoints, thereby reducing the risk of 
misconfiguring APIs. 

 

By combining MCP Guardian with solutions like mcpo, developers could achieve a layered 
approach: Guardian handles sophisticated security checks (authentication, rate limiting, WAF), 

while mcpo provides a stable, interoperable interface that aligns with modern web standards. 

Future research may focus on tightly integrating these tools to offer a robust, end-to-end solution 
for securing, monitoring, and scaling MCP-based AI workflows with minimal developer friction. 
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6. CONCLUSION 
 

Agentic AI promises to transform how LLMs interact with data and software tools. The Model 

Context Protocol (MCP) provides a flexible framework for this interaction, yet greater autonomy 
raises substantial security and observability concerns. We introduced MCP Guardian to address 

these risks through authentication, rate limiting, WAF scanning, and logging—all without 

disrupting the simple MCP workflow. The empirical results show that Guardian effectively 
blocks common threats and maintains its performance at scale. Looking ahead, we envision 

advanced policy engines, vetted tool registries, real-time anomaly detection, and open telemetry 

standards as the key steps toward fostering safe and accountable agentic AI. By integrating 

proven security practices into MCP-based agentic workflows, we can unlock new possibilities for 
productivity and creativity, without compromising safety or transparency. 

 

7. RECOMMENDATIONS 
 

Organizations integrating Large Language Models (LLMs) with the Model Context Protocol 

(MCP) should prioritize security awareness and training for developers, data scientists, and 
system administrators. Emphasizing zero-trust networking, token protection, sandboxing, and 

safe coding practices is key to preventing tool poisoning, token theft, and command injection. 

Adopting middleware frameworks like MCP Guardian can help establish consistent 
authentication, rate limiting, WAF scanning, and detailed logging across MCP-based 

communication. Additionally, leveraging community or official tool registries that 

cryptographically sign MCP servers ensures trusted, version-controlled deployments. Restricting 
privileges through container isolation and limiting tokens to minimal scopes further minimizes 

the potential impact of a compromise. 

 

It is also recommended that organizations conduct regular code reviews, penetration tests, and 
WAF rule updates, enabling them to adapt quickly to evolving threats and newly discovered 

vulnerabilities. By collaborating with the broader AI security community—sharing best practices, 

threat intelligence, and potential protocol extensions—developers and operators can collectively 
foster safer, standardized MCP usage. Through this combination of robust governance, technical 

safeguards, and ongoing collaboration, agentic AI systems can flourish without compromising on 

security or transparency. 
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