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Abstract—Effective risk management in cybersecurity requires
a thorough understanding of the interplay between attacker
capabilities and defense strategies. Attack-Defense Trees (ADTs)
are a commonly used methodology for representing this interplay;
however, previous work in this domain has only focused on ana-
lyzing metrics such as cost, damage, or time from the perspective
of the attacker. This approach provides an incomplete view of the
system, as it neglects to model defender attributes: in real-world
scenarios, defenders have finite resources for countermeasures
and are similarly constrained. In this paper, we propose a novel
framework that incorporates defense metrics into ADTs, and
we present efficient algorithms for computing the Pareto front
between defense and attack metrics. Our methods encode both
attacker and defender metrics as semirings, allowing our methods
to be used to many metrics such as cost, damage, and skill. We
analyze tree-structured ADTs using a bottom-up approach and
general ADTs by translating them to binary decision diagrams.
Experiments on randomly generated ADTS demonstrate that
both approaches effectively handle ADTs with several hundred
nodes.

Index Terms—attack trees, attack-defense trees, Pareto front,
multi-criteria optimization

I. INTRODUCTION

Attack trees. Cyber-physical systems, such as autonomous
vehicle networks or smart grids, can become notoriously com-
plex when multiple actors are involved. The resulting complex-
ity also raises the number of possible breaches that attackers
can exploit, especially in systems where components rely
on each other’s functioning to maintain safety. Consequently,
there is a need for robust and systematic threat modeling
systems that can cope with such attacks. In 1999, Schneier
[1] introduced attack trees (ATs), which nowadays represent
one of the most prominent tools for evaluating the security of
complex systems. Due to their simplicity and compact form,
ATs are commonly used in commercial software tools as well
as industrial applications, e.g., analyzing the security of a
SCADA system for a tank and pump facility [2] and impact
analysis of electric grid feature scenarios [3].

The hierarchical structure of an attack tree models the root
of the tree as the attacker’s primary goal. The tree branches
represent different methods the attacker could take to achieve
their primary goal. The leaves of these branches are basic
attack steps (BASs), which cannot be further refined into finer
sub-goals. Figure 1 shows an exemplary AT. This AT includes
AND gates, activated when all of its children are enabled, and
OR gates, activated when only a single child is enabled.

Fig. 1: An AT depicting how the attacker can steal user data. To
obtain the user’s data, the attacker must obtain both credentials
and the decryption key. The credentials can be stolen in
four different ways: blackmailing the user (BU ), conducting
a phishing attack (PA), exploiting a software vulnerability
(ESV ), or leveraging access control vulnerabilities (ACV ).

Atttack-defense trees. The primary utility of ATs is to
describe the various strategies an attacker can take to compro-
mise a system through a structured decomposition of the attack
into smaller objectives. This enables security experts to design
countermeasures for preventing future attacks. However, one
of the limitations of attack trees is that they do not account for
the countermeasures implemented to prevent an attack. For this
reason, attack-defense trees (ADTs) were introduced by Kordy
et al. [4] as an extension of regular ATs to model the attacks on
a system concurrently and the defenses to block those attacks.
The defenses work by deactivating the attack nodes they are
associated with, thereby disabling them. Figure 2 extends Fig.
1 by adding counter-attack (defense) nodes. The basic defense
steps (BDSs) are highlighted in green for better visualization.
A defense node meets an attack node at an INH (inhibition)
gate. This gate has exactly two children of opposite types,
and one acts as an inhibitor. The INH gate is deactivated in
the presence of an active inhibitor. On the contrary, its output
equals its input when the inhibitor is not activated. For clarity,
the edge leading to the inhibitor child of INH gates is marked
with a small circle.
Quantitative analysis. Quantitative analysis in ADTs enables
the evaluation of different strategies by assigning measurable
values to actions. Common metrics, such as cost and prob-
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Fig. 2: Attack-defense tree extending the attack tree of Fig. 1.
The defender can prevent phishing attacks (PA) through anti-
phishing user training (APUT ), and SDK through SKO.
Regular software updates (SU ) prevent both ESV and ACV .
DNS Hijack (DNS), which does not directly contribute to
reaching the top node, disables the SU defense. Lastly, black-
mailing the user (BU ) has no countermeasure.

abilities, help assess the risks of attack paths and inform
defensive planning. In the current state of the attack-defense
trees research, although there are two actors in an attack
scenario (i.e., an attacker and a defender), only the attacker’s
actions are annotated with quantifiable attribute values [5], [6].
This approach fails to fully capture reality, as the defender, like
the attacker, usually has finite resources. The defender aims to
select the most optimal defenses, typically those with a lower
defense cost, while simultaneously making the situation more
difficult for the attacker (e.g., maximizing the attacker cost).
Note that the defender’s and attacker’s goals are conflicting:
the attacker seeks to minimize their cost, whereas the defender
aims to maximize attack costs with minimum defense cost.
The defender’s optimal strategy aims to reduce their own
defense costs while simultaneously maximizing the difficulty
for the attacker, whether in terms of cost, effort, or time.
Also, the defender’s choice are constrained by a budget. The
set of maximal achievable attacker costs or efforts for each
possible defender budget forms the Pareto front. This leads to
our research goal.

Research Goal: Find efficient algorithms that compute
the Pareto front between attacker and defender metrics for
Attack-Defense Trees.

By leveraging the Pareto front, defenders can make better-
informed decisions to allocate resources efficiently. This en-
ables security analysts to evaluate trade-offs between attacker
and defender strategies more comprehensively, aiding in more
informed and cost-effective decision-making for real-world
system protection.

Most approaches, which we discuss in detail in the next
section, focus on single-parameter optimization or attacker-
centric metrics, leaving defender attributes and multi-objective
optimization underexplored. Some researchers explored multi-
objective and Pareto-efficient solutions for ADTs [7], [8].
Nevertheless, these works have limitations. For instance, the
work of Fila and Widel [7] focuses on multi-parameter op-
timization within ADTs but only considers metrics that are
simultaneously applicable to both attackers and defenders,
such as cost or time. Moreover, their approach fixes the
metric values for one of the parties at 8, thus essentially
only analyzing the metrics for one party. Similarly, the ap-
proach of Aslanyan and Nielson [8] primarily addresses Pareto
fronts between attacker-centric metrics without extending to
defender-specific attributes or the interplay between attacker
and defender objectives.

In this paper, we address the limitations of existing ADT
approaches by introducing a comprehensive framework that is
built on formal definitions of ADTs, including their syntax
and semantics, which enable the representation of attacker
and defender attributes through the use of semirings. For tree-
structured ADTs, we propose an efficient Bottom-Up (BU)
algorithm that processes nodes iteratively from the leaves to
the root, aggregating metrics to compute the Pareto front of
attack and defense strategies. For more general ADTs, which
include directed acyclic graph (DAG) structures, we develop
a Binary Decision Diagram (BDD)-based approach to capture
complex relationships between nodes and ensure scalability.
Both methods were rigorously evaluated using a test suite
of randomly generated ADTs with sizes up to 325 nodes,
demonstrating their practicality and effectiveness. Our main
contributions are:

‚ Formal definitions of ADTs with attacker and defender
attribute domains, including a semiring-based representa-
tion of metrics;

‚ A Bottom-Up algorithm for computing the Pareto front
in tree-structured ADTs;

‚ A Binary Decision Diagram algorithm for efficiently
handling the Pareto front computation for ADTs with
DAG structures;

‚ Experimental validation showcasing the performance of
the algorithms on large-scale ADTs.

Paper organization: The paper is organized as follows.
Section II outlines the background of ADTs and highlights
existing research gaps. In Section III, we introduce the ADT
formalism, detailing its semantics, metrics, and Pareto anal-
ysis. Section IV focuses on computing the Pareto front for
tree-structured ADTs, while Section V extends this discus-
sion to DAG-structured ADTs. Finally, Section VI presents
experimental results and evaluates the performance of the
proposed Pareto front computation methods. Finally, Section
VII concludes the paper and provides future work.

II. RELATED WORK

Attack-Defense Tree (ADT) is a concept introduced by
Kordy et al. [4], which gives the system the possibility of



modeling defenses through counter-attack gates. Before this
work, there had already been defined ideologies of ADTs, but
they were tailored to more specific use cases. For instance,
in [9], defensive actions are only possible at the leaf level.
Similarly, in [10], the defender can only perform counter-
attacks at the leaf level but cannot have higher-level goals
modeled in the tree. In their paper, Kordy et al. [4] provided a
more general concept of ADTs, where attackers and defenders
have equal capabilities, and counter-attacks can be modeled at
intermediate nodes, including the root node. This approach
offers a more comprehensive overview of the security aspects
of a system.

Traditional ADT research has primarily focused on attacker-
centric metrics. However, some frameworks demonstrated the
value of integrating both attack and defense perspectives to
better capture system dynamics [11]. Arias et al. in [12]
analyzed ADTs in a novel way by treating these trees as an
extension of asynchronous multi-agent systems. Each node in
the tree is treated as an agent that can act asynchronously.
The transition functions of these nodes are then equipped with
attributes. Finally, the quantitative results from the generated
automata are verified with state-of-the-art model checkers such
as UPPAAL and Imitator. Similarly, some methods for
optimizing spare management [13] and dynamically modeling
environmental behavior for energy efficiency [14], [15] high-
light the importance of considering multiple attribute domains
in system modeling. Nevertheless, most analytical methods
optimize one parameter at a time, such as the cost or time of an
attack. However, this approach might not accurately represent
complex real-world scenarios where parameters can interact
(e.g., the maximum damage of an attack, given a fixed cost
[16]), potentially leading to potentially sub-optimal solutions.
To analyze multiple parameters simultaneously, the leaf nodes
need to be annotated with multiple values. This creates a multi-
optimization problem, as there is no single solution anymore,
but a set of Pareto efficient solutions called the Pareto Front,
where another does not dominate one solution in a given
ordering relation [6]. For instance, the main intuition behind
this ordering, assuming the Pareto front between the attacker’s
damage and cost, is that if the attacker has two strategies with
the same damage, but one has a lower cost, they have no
incentive to choose the higher-cost strategy.

Efforts to optimize multiple parameters in ADTs have been
studied in the literature [7], [8]. The authors in [7] propose a
framework for analyzing Pareto fronts in ADTs by considering
multi-parameter optimization; however, their approach is lim-
ited to metrics that apply simultaneously to both attacker and
defender actions, such as shared costs or time requirements.
This limitation restricts its applicability to scenarios where
defender-specific strategies, such as investing additional re-
sources to impede attackers, need to be considered. Aslanyan
and Nielson [8] extend ADTs to model attacker and defender
interactions using a type system and propose techniques for
computing Pareto-efficient solutions. Their work focuses on
attacker-specific metrics, such as the cost and probability of
attacks, but does not incorporate defenders’ distinct metrics or

strategic goals.
Our work bridges this gap by introducing a formal frame-

work for analyzing the interplay between attacker and defender
metrics in ADTs, leveraging efficient algorithms to compute
the Pareto front across these metrics. Unlike prior works, our
framework supports the interplay and analysis of attacker and
defender strategies (metrics), offering a comprehensive view
of trade-offs in security planning.

III. ATTACK-DEFENSE TREE FORMALISM

In this section, we introduce the formalism of the ADT,
which is a structured approach to visualize and analyze the
interactions between potential attacks and defensive mecha-
nisms. We explore ADT aspects through three key dimensions:
Semantics, Metrics, and the concept of the Pareto Front.

A. Semantics

An Attack-Defense Tree (ADT) is a structured diagram that
models potential security threats and the defensive actions
that can counter them. ADT semantics define the rules for
interpreting an ADT, specifying how attacks and defenses
interact within the structure. Our definition mostly follows
[17], though we take a graph-theoretic approach rather than
a grammar approach. Like standard ATs, we have AND- and
OR-gates. Furthermore, the effects of countermeasures on in-
coming attacks are modeled by Inhibition gates (INH); these
correspond to the C-gates of [17]. Inhibition gates v have
two inputs: an trigger ϑ̄pvq that can stop propagation, and an
inhibited θpvq that is required for propagation. Finally, each
gate v is assigned an agent τpvq, either attacker (A) or defender
(D). Any gate type can be assigned to both agents; hence, it is
also possible for defender-held inhibition gates to be inhibited
by further attacker actions.

Definition 1 (Attack-Defense Tree). An attack-defense tree is
a quintuple T “ pN,E, γ, τ, ϑq, where pN,Eq is a rooted
directed acyclic graph; γ and τ are functions γ : N Ñ

tBS,AND,OR,INHu, τ : N Ñ tA,Du; and ϑ is a function
ϑ : tv P N | γpvq “ INHu Ñ N such that xv, ϑpvqy P E.
Moreover, T satisfies the following constraints for a node
v P N :

‚ γpvq “ BS if and only if v is a leaf of pN,Eq.
‚ If γpvq “ INH, then v has two children with different
τ -values, with τpϑ̄pvqq ‰ τpθpvqq.

‚ if γpvq P tOR,ANDu, then for all children w of v, τpwq “
τpvq.

The root of T is denoted as RT , and the set of children of
a node v as chpvq “ tw P N | pv, wq P Eu. The set of Basic
Attack Steps (BASs) on T , denoted A, is the set of all nodes
v P N for which γpvq “ BS and τpvq “ A. Similarly we write
D for the set of Basic Defense Steps (BDSs), i.e., nodes v for
which γpvq “ BS and τpvq “ D. These two sets are disjoint,
that is, AXD “ ∅, and the union of these two sets represents
the set of all basic events.If γpvq “ INH, we write ϑ̄pvq for
the trigger child, i.e., chpvq “ tϑ̄pvq, θpvqu.



Fig. 3: Tree-structured ADT annotated with offensive and
defensive costs.

In an attack-defense tree, both the defender and the attacker
choose a set of BDS/BAS to activate. We represent these sets
as binary vectors.

Definition 2 (Event). An attack vector is a binary vector α⃗ P
Bα. A defense vector is a binary vector δ⃗ P BD. An event is
a pair pδ⃗, α⃗q of a defense vector and an attack vector.

Figure 3 is an example of a tree-structured ADT annotated
with numbers representing the cost. In this illustration, the set
of all attacks is A “ ta1, a2, a3u, and the set of defenses is
D “ td1, d2u. If the attacker activates a2 and a3, but not a1,
this forms the attack vector α⃗ “ 011. Similarly, a defensive
vector where only d1 is activated is represented by δ⃗ “ 10.

The extent to which the attacker and defender vectors
determine system status is captured by the structure function:

Definition 3 (Structure Function). Let T be an ADT. The
structure function of T is the function fT : BDˆBAˆN Ñ B
defined as:

fT pδ⃗, α⃗, vq

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

αv, if v P A
δv, if v P D
Ź

wPchpvq fT pα⃗, δ⃗, wq, if γpvq “ AND
Ž

wPchpvq fT pα⃗, δ⃗, wq, if γpvq “ OR

fT pα⃗, δ⃗, ϑpvqq ^ ␣fT pα⃗, δ⃗, ϑ̄pvqq if γpvq “ INH.

B. Metrics
Security metrics, such as the lowest attack time or cost,

are critical for conducting quantitative assessments of systems
and making educated decisions. To achieve this, we use a well-
established method called the semiring framework. We define
security and defense attribute domains as linearly ordered uni-
tal semiring attribute domains, extending the classical semir-
ing structure by incorporating a linear order. This additional
assumption ensures compatibility with the minimization and
maximization operations required for ranking and prioritizing
defense and attack strategies, which are not inherently sup-
ported by traditional semirings.

Definition 4 (Semiring Attribute Domain). A linearly ordered
unital semiring attribute domain (simply semiring attribute
domain) is a tuple

L “ pV,b, 1‘, 1b,ĺq

where V is a set; 1b and 1b are elements of V ; b is a
commutative associative binary operation on V ; and ĺ is a
linear order on V . These furthermore satisfy the following
properties:

‚ b is monotonous w.r.t. ĺ, i.e., for all x, y, z P V with
x ĺ y one has xb z ĺ y b z;

‚ 1b is both the unit of b, and minimal w.r.t. ĺ;
‚ 1‘ is maximal w.r.t. ĺ.

The terminology semiring is justified as follows: given a
semiring attribute domain, one can define a binary operator ‘
on V by

x‘ y “ min
ĺ
px, yq.

Then pV,‘,bq is a semiring; in fact, it is absorbing in the
sense of [18]. We require the semiring to be ordered by ĺ

in order to define Pareto optimality. However, this is not a
stringent constraint, as Table I shows that many attack tree
metrics fit into our framework.

Metric V ‘ b 1‘ 1b ĺ

min cost r0,8s min + 8 0 ď

min time (sequential) r0,8s min + 8 0 ď

min time (parallel) r0,8s min max 8 0 ď

min skill r0,8s min max 8 0 ď

probability r0, 1s max ¨ 1 0 ě

TABLE I: Semiring attribute domains

The attacker and defender have separate attribute domains.
The attacker and defender attribute domains are described by
DA and DD, respectively. βA assigns an attribute value from
VA to each basic attack step in A, while βD does so to each
basic defense step in D. Since the attacker’s attribute values
lie in VA and the defender’s in VD. Since the attacker and
defender have separate attributes, we need to combine these
two into an attribute pair to perform a quantitative analysis.
The attribute pair for an event will naturally have values in
VD ˆ VA.

Definition 5 (Augmented Attack-Defense Tree). An Aug-
mented Attack-Defense Tree (AADT) is an extension of the
attack-defense tree T with associated semiring attributes. For
simplicity, we use T to refer to both the original attack-defense
tree and the Augmented Attack-Defense Tree (AADT), as long
as the context makes the distinction clear. An AADT is defined
as a tuple:

T “ pT,DD, DA, βD, βAq

Where:
‚ DD “ pVD,‘D,bD, 1‘, 1bq is the defender’s semiring

attribute domain,



‚ DA “ pVA,‘A,bA, 1‘, 1bq is the attacker’s semiring
attribute domain.

Each domain has an associated basic assignment function:
βD : D Ñ VD and βA : AÑ VA are functions.

Definition 6 (Metric Values). For a given AADT, the metric
value of a defense vector δ⃗ is given by:

β̂D : BD Ñ VD with β̂Dpδ⃗q “
â

dPD
δd“1

βDpdq

while the metric value of an attack vector α⃗ is given by:

β̂A : BA Ñ VA with β̂Apα⃗q “
â

aPA
αa“1

βApaq

Lastly, the metric value of an event is given by:

β̂ : BD ˆ BA Ñ VD ˆ VA with β̂
`

pδ⃗, α⃗q
˘

“
`

β̂Dpδ⃗q, β̂Apα⃗q
˘

Example 1. Let’s apply the definition of β̂ on Fig. 3 as
an example to determine the metric values of the attack and
defense vector pair. We define a defense vector by listing the
names of the activated nodes while excluding the disabled
ones. Similarly, we define an attack vector in the same manner.
Thus, instead of using binary vectors, we use sets to indicate
the nodes that are active in each case. For example, let 11
and 110 be a pair of defense and attack vectors, where 11
represents the active defense nodes (both d1 and d2), and
110 represents the active attack nodes (both a1 and a2 are
active). Since we are working with the minimal cost domain,
DA “ DD “ pRě0,min,`q. To determine the metric values
of this vector pair, we apply the definition of β̂:

β̂D
`

td1, d2u
˘

“
â

dPtd1,d2u

αd“1

βDpdq “ βDpd1q ` βDpd2q

“ 5` 10 “ 15

β̂A
`

ta1, a2u
˘

“
â

aPta1,a2,a3u

αa“1

βApaq “ βApa1q ` βApa2q

“ 5` 10 “ 15

β̂
`

td1, d2u, ta1, a2u
˘

“ p15, 15q

Before we define the concept of a successful attack, it’s im-
portant to clarify how the overall interaction between activated
defenses and attacks is modeled in our framework. Each event
in the AADT represents a specific attack and the corresponding
defense that seeks to mitigate or prevent it. The effectiveness
of a defense can vary based on the particular attacks it faces,
and this interaction is what ultimately determines whether an
attack is successful or not.

In our model, what is considered to be a successful attack
depends critically on the root node of the tree. If the root
node is an attack node, the attack is considered successful if
the associated defense mechanisms fail to prevent it, which
mathematically means that fT

`

δ⃗, α⃗, RT

˘

“ 1. On the other
hand, if the root node is a defense node, the attack is deemed
successful if it destroys the defense mechanism, corresponding

to fT
`

δ⃗, α⃗, RT

˘

“ 0. This distinction highlights the pivotal
role of the tree’s structure in determining the outcome of an
attack and its dependence on the defenses in place.

C. Pareto analysis

In real-world security scenarios, defenses are typically de-
ployed before any potential attacks occur, forming a proactive
line of protection. In our framework, we mirror this by first
activating the defense nodes. These defenses represent the
system’s initial response to potential threats, and once they are
in place, the attacker proceeds with their actions based on the
activated defenses. This approach reflects the sequential nature
of real-life interactions, where defenses are set up to mitigate
risks before attacks are launched. By structuring our model
this way, we can more accurately analyze the effectiveness of
different defense strategies and their impact on the success or
failure of subsequent attacks.

Before defining the optimal attack response, we introduce
the notation used here. The function arg selects the attack
vector that minimizes the combined metric value, allowing
for any vector to be chosen if multiple vectors yield the same
minimum. This minimization process reflects the attacker’s
optimal response to a given defense.

Definition 7 (Optimal Attack Response). The attacker’s re-
sponse to a defense δ⃗ is:

ρpδ⃗q “

$

’

’

’

’

&

’

’

’

’

%

arg ‘
α⃗PBA :

fT pα⃗,δ⃗,RT q“1

β̂Apα⃗q if τpRT q “ A

arg ‘
α⃗PBA :

fT pα⃗,δ⃗,RT q“0

β̂Apα⃗q if τpRT q “ D

In this definition, the function of the root node fT pδ⃗, α⃗, RT q

determines the attack outcome. If the root node represents
an attacker node (τpRT q “ A), the attacker succeeds if they
can achieve fT pδ⃗, α⃗, RT q “ 1. Conversely, if the root node
represents a defender (τpRT q “ D), then fT pδ⃗, α⃗, RT q “ 0
indicates that the defense has failed, resulting in an attack
success. However, there are two potential issues with this
approach:

‚ Multiple Candidates: If there are multiple attack vectors
that satisfy the minimum arg ‘ value, any of these
vectors may be chosen, as they all yield the same metric
outcome for β̂Apρpδ⃗qq.

‚ No Valid Candidates: If no valid attack vectors exist for δ⃗,
we write ρpδ⃗q “ ˆ with β̂Apˆq “ 1‘. As 1‘ is maximal
with respect to

This ensures that the optimal attack response is well-defined
even in cases where a valid attack vector does not exist.
The defender assumes that the attacker behaves optimally,
i.e., always performs ρpδ⃗q when it exists. This leads to the
following notion of feasible events:

Definition 8. Let T be an AADT. Its set of feasible events
S Ď VD ˆ pVA Y tˆuq is defined as

S “ tpδ⃗, ρpδ⃗qq | δ⃗ P BDu.



Example 2. Consider the attack-defense tree in Fig. 3. For
convenience, we write defense and attack vectors as binary
strings; thus we write 011 for the attack vector α⃗ “ p0, 1, 1q,
i.e. the attack consisting of a2 and a3 but not a1. When no
defenses are active (δ⃗ “ 00), the attacker can succeed by either
010 or 001. These have costs 10 and 20, respectively, and the
attacker chooses the cheapest option; hence ρp00q “ 010. If
only one defense is active, the attack responses remain the
same as in the no-defense scenario, as a single defense alone
is insufficient and has no effect due to the AND gate. When
both defenses are active, the possible attacks are 110 (cost 15)
and 001 (cost 20); hence ρp11q “ 110. Thus

S “ tp00, 010q, p01, 010q, p10, 010q, p11, 110qu.

The trade-off between the defender’s and attacker’s actions
can be analyzed via the Pareto Front. Specifically, the defender
has two primary objectives: “minimizing” their own cost and
“maximizing” the attacker’s cost, with these terms defined
according to the defender’s order ĺD and the attacker’s
order ĺA, respectively. The Pareto Front represents the set
of optimal trade-offs between these competing objectives. A
point in the Pareto Front is called Pareto Optimal if there is
no other solution better in all objectives. The concept of better
is formally known as dominance, and to define it, a few pre-
requisite properties must first be established.

Definition 9 (Pareto dominant). Given two events and their
valuations ps1, t1q and ps2, t2q, the pair ps1, t1q dominates
ps2, t2q i.e. ps1, t1q Ď ps2, t2q when s1 ĺD s2 and t1 ľA t2.

For a general poset pX,Ďq, a point x P X is Pareto optimal
if it is not dominated by any other point in X . Then, the
Pareto frontier is the set of all Pareto optimal points in X , i.e.
minĎX “ tx P X | @x1 P X.x1 ‰ x, x1 Ć xu.

Example 3. Consider the ADT where the defender has two
possible costs, d P t5, 10u, and the attacker has three possible
costs, a P t5, 10, 20u. Let X “ tp10, 10q, p5, 20q, p5, 5qu.
The pair p5, 20q dominates both p10, 10q and p5, 5q because
it satisfies 5 ĺD 10 and 5 ĺD 5 (lower defender cost) as
well as 20 ľA 10 and 20 ľA 5 (higher attacker cost). The
Pareto front for this specific example is p5, 20q, representing
non-dominated trade-offs between defender and attacker costs.

Having all the necessary mathematical prerequisites defined,
we can formally state the problem statement of this paper:

Research Goal. For an Augmented Attack-Defense Tree
T , we aim to find the minimal elements of the Pareto Front
PFpT q, defined as

minĎβ̂pSq Ď VD ˆ VA.

In principle PFpT q can be computed by calculating β̂peq
for all e P S, and computing the Pareto front of the set of
pairs of metric values; thus we need to compute the metric
values of 2|D| events. In the worst case, this is unavoidable,
as the following example shows.

I1

d1a1

I2

d2a2

In

dnan

2n-1 12n-1 2n-2 2n-2 1

Fig. 4: An AADT (with min cost as both attacker and defender
metrics) with |PFpT q| “ 2n.
Example 4. Consider the AADT T of Fig. 4 (for a fixed
integer n). Since τpRT q “ D, the attacker’s goal is to stop the
defender from activating RT . This is done by activating the
attacks corresponding to the observed defenses, i.e., ρpδ⃗q “ δ
as binary vectors. Furthermore, β̂Dpδ⃗q “ β̂Apδ⃗q “ k, where k
is the integer encoded by the binary number δ⃗; hence

S “ tpk, kq P Z2 | 0 ď k ď 2n ´ 1u.

All elements of S are Pareto optimal, so |PFpT q| “ 2n “ 2|D|.

Example 4 shows that a worst-case exponential time com-
plexity is unavoidable. Nevertheless, the brute force approach
of computing each β̂peq is often inefficient, as the final Pareto
front is generally much smaller. In the following two sections,
we present two algorithms that compute the Pareto front more
efficiently, by discarding nonoptimal events along the way.
Their efficiency is investigated empirically in Section VI.

IV. THE PARETO FRONT FOR TREE-SHAPED ADTS

In this section, we present methodologies for calculating
the Pareto Front of tree-structured ADTs, which are ADTs
where each node has a single parent, focusing on distinct
structural representations. For tree-shaped ADTs, we employ
a Bottom-Up Algorithm to efficiently derive optimal strate-
gies. The ADT metrics are computed using a Bottom-Up
approach based on the gate type and its function (attack or
defense). Bottom-Up algorithms have been extensively stud-
ied for Fault Trees (FTs) and Attack Trees (ATs), providing a
framework for systematic metric evaluation. To extend these
algorithms to Attack-Defense Trees (ADTs), we introduce the
following steps for a node v P N :

1) Compute the Pareto Front Bottom-Up for each w P

chpvq.
2) Identify all possible combinations of points from the

children’s Pareto Fronts.
3) For each combination, apply the min or ` operations

as examples of common metrics across the defense and
attack costs, depending on the values of γpvq and τpvq.
While we use these specific metrics for illustrative pur-
poses in this informal definition, the approach supports
general metrics defined over the semiring structure.

4) Discard the dominated points from the previous step.



In step 1, the Bottom-Up algorithm is recursively applied
to each child of v. Due to this recursive nature, the algorithm
will first complete for the leaf nodes, and the results will
then be propagated up the tree towards the root node. For
step 2, the Cartesian product is used to find all possible
ways to combine the children’s Pareto fronts. Unfortunately,
computing all combinations is unavoidable, as it is impossible
to predict which points will be included in the Pareto front
before evaluating all the value pairs in step 3.

The objective of step 3 is to transform a vector of value pairs
into a single value pair ps, tq for each possible combination
based on Table II.

Example 5. Consider an AADT with the structure
ORpINHpd1|a1q, INHpd2|a2qq as shown in Fig. 5, where
d1, d2 are defenses and a1, a2 are attacks. Each defense has
an associated cost: βDpd1q “ 4, βDpd2q “ 8. Similarly, the
attack costs are βApa1q “ 5, βApa2q “ 10. In this example,
we use a semiring where pb,‘q “ p`,minq for both attack
and defense costs.

1) Leaf Nodes: For the leaf nodes, the cost pairs are:

a1 : p0, 5q (no defense cost, attack cost of 5)
a2 : p0, 10q (no defense cost, attack cost of 10)
d1 : p0, 0q, p4,8q (defense can be inactive or active)
d2 : p0, 0q, p8,8q (defense can be inactive or active).

2) INHpd1|a1q: The inhibiting gate combines each a1 cost
with d1 using p`,`q, where both defense and attack costs
are summed (as shown in Table II). The reason is that
the attacker must successfully execute both the inhibiting
attack (d) and the inhibited attack (a) for the system to
fail. Similarly, the defender must allocate resources to
counter both d and a to fully protect the system. As a
result, the operations for the attack INH gate are additive,
represented as p`,`q. Therefore:

p0` 0, 5` 0q “ p0, 5q

p0` 4, 5`8q “ p5,8q.

Final Pareto front for INHpd1|a1q: p0, 5q, p4,8q.
3) INHpd2|a2q:

p0` 0, 10` 0q “ p0, 10q

p0` 8, 10`8q “ p8,8q.

Final Pareto front for INHpd2|a2q: p0, 10q, p8,8q.
4) ORpINHpd1|a1q, INHpd2|a2qq: The attack OR gate

combines the Pareto fronts from INHpd1|a1q and
INHpd2|a2q, using p`,minq, where defense costs are
summed, and attack costs take the minimum. The reason
is that for the OR gate (γpvq “ OR) with attack function
(τpvq “ A), the attacker needs to succeed in only
one of the available attacks to disable the system. In
contrast, the defender must simultaneously defend against
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a1 a2d1 d2

Fig. 5: The AADT of Example 5

γpvq τpvq Def. op (˝D) Att. op (˝A)

AND
A bD bA

D bD ‘A

OR
A bD ‘A

D bD bA

INH
A bD bA

D bD ‘A

TABLE II: Operators applied in the Bottom-Up algorithm.

all possible attacks, not knowing which one the attacker
might choose. Therefore:

p0` 0,minp5, 10qq “ p0, 5q

p0` 8,minp5,8qq “ p8, 5q

p4` 0,minp8, 10qq “ p4, 10q

p4` 8,minp8,8qq “ p12,8q.

After removing dominated points, the Pareto front is:
p0, 5q, p4, 10q, p12,8q.

The output of step 3 is a set of value pairs. In step 4,
we reduce the elements of this set to the Pareto Front by
discarding all the dominated points according to Definition 9.
In Alg. 1, the complete algorithm is presented, where minĎ

represents step 4 specifically.

Algorithm 1 Bottom-Up

Input:
T : augmented attack-defense tree
v: node v P N

Output: ...
1: procedure BU(T, v, β)
2: if v P A then
3: return tp1b, βApvqqu
4: else if v P D then
5: return tp1b, 1bq, pβDpvq, 1‘qu

6: else
7: pÐ

Ś

uPchpvq BUpT, u, βq
8: pv Ð tp⃝D

n
i“1di,⃝A

n
i“1aiq | pd⃗, a⃗q P pu

9: return minĎ(pv)

The following theorem formalizes the relationship between
the Bottom-Up algorithm (BU) and the Pareto Front (PFS)



for a tree-shaped augmented ADT (AADT).

Theorem 1. Let T be a tree-shaped AADT. Then
BUpT,RT q “ PFSpT q.

Based on this theorem, the Bottom-Up approach computes
the Pareto Front for the root node RT , aggregating optimal
points from the children nodes according to the semantics S.

While the procedure loops (recursively) over the number of
vertices, the main complexity comes from the fact that in Lines
7–8 we need to combine increasingly large Pareto fronts. Fig. 4
shows that these are worst-case exponential; hence Alg. 1
is worst-case exponential as well. Nevertheless, in practice
more events will be non-Pareto-optimal, and will be discarded
earlier; we will assess performance in the experiments.

V. THE PARETO FRONT FOR DAG-SHAPED ADTS

The Bottom-Up (BU) algorithm does not work for DAG-
shaped ADTs: When a node has multiple parents, the Pareto
Front computed at that node is propagated multiple times up
the tree, leading to that value being counted several times.

For regular ATs, we know from [18] that generally, com-
puting a metric for a semiring attribute domain in a DAG-
structured AT is NP-hard. The same holds true for the ADTs
in this paper since they represent an extension of regular ATs.
An enumerative approach to compute the Pareto Front would
be inefficient; Therefore, our approach to compute the Pareto
Front for each possible defense vector d⃗, find attack vector a⃗,
and then remove dominated points according to Def. 9 (using
Ď). First, we introduce the Naive approach to calculate the
Pareto Frontier, which provides a baseline for comparison.
Then, we present our optimized solutions. Finally, we compare
the results of all approaches to highlight the advantages and
demonstrate how they improve upon the Naive method.

A. Naive approach

As previously mentioned, computing a metric for a semir-
ing attribute domain in a DAG-structured ADT is NP-hard.
Even so, formally defining this approach is still beneficial:
it provides a practical reference point for what minĎβ̂pSq
outputs for DAGs, while serving as a stepping stone for
the next algorithms to improve on. Algorithm 2 is rather
straightforward. Lines 4-11 compute ρpδ⃗q for each δ⃗ by going
through all the possible attacks and finding the one with the
minimum metric value. In the end, the value pairs are reduced
to the Pareto front using minĎ.

B. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) offer a compact repre-
sentation of Boolean functions. Since BDDS can have shared
sub-trees, these are able to model DAG-structured ADTs. Gen-
erally, a BDD represents a Boolean function f : Bvars Ñ B
over a set of variables vars. A BDD translates a Boolean
function to a flowchart, where each nonterminal node is
labeled by a variable, and has two outgoing edges labeled
0 and 1. Starting from the root, given an input vector b⃗ to

Algorithm 2 Naive algorithm for DAGs

Input:
T : attack-defense tree
v: node v P N
β: assignment of nodes P N

Output: Pareto front of the sub-tree rooted at v.
1: procedure NAIVE(T, v, β)
2: resultÐ new array
3: for δ⃗ P 2D do
4: att MetV aluesÐ new array
5: for α⃗ P 2A do
6: if fT pδ⃗, α⃗, RT q “ 1 then
7: Add β̂Apα⃗q to att MetV alues

8: if att MetV alues “ ∅ then
9: Add

`

β̂Dpδ⃗q,8
˘

to result
10: else
11: Add

`

β̂Dpδ⃗q,minĺA
patt MetV aluesq

˘

to
result

12: return minĎpresultq

Fig. 6: An ADT and a ROBDD corresponding to its structure
function, with variable order d2 ă d1 ă a1 ă a2. Dashed
lines are labeled 0, solid lines are labeled 1.

the Boolean function, the BDD is traversed by taking the 0-
labeled edge at a node labeled x P vars if bx “ 0, and taking
the 1-labeled edge if bx “ 1. The leaves are labeled 0 and
1, which denotes the output of the function for input b⃗. An
example is given in Fig. 6.

We are particularly interested in reduced ordered BDDs
(ROBDDs), which means that the variable order in the BDD
is the same for all paths, and that all unnecessary BDD nodes
are removed. Every Boolean function has a unique ROBDD
once the variable order is fixed, though different variable
orderings result in different ROBDDs. Throughout the rest of
this section, we will simply write ‘BDD’ for ‘ROBDD’.

Definition 10. An ROBDD is a tuple B “

pW,Low,High, Lab,ăq over a set of variables vars,
where:

‚ The set of nodes W is partitioned into terminal nodes
pWtq and nonterminal nodes pWnq;

‚ Low :Wn ÑW maps each nonterminal node to its low
child;



‚ High : Wn Ñ W maps each nonterminal node to its
high child;

‚ Lab : W Ñ t0, 1u Y vars maps terminal nodes to
Booleans and nonterminal nodes to variables:

Labpwq P

#

t0T , 1T u if w PWt,

vars if w PWn;

‚ ă is a strict total order on vars (called the variable
ordering).

Moreover, B satisfies the following constraints:
‚ pW,Eq is a connected Directed Acyclic Graph (DAG),

where

E “ tpw,w1q PW 2 | w1 P tLowpwq, Highpwquu;

‚ B has a unique root, denoted RB :

D!RB PW.@w PWn.RB R tLowpwq, Highpwqu;

‚ The variable ordering ă is respected, i.e., for every edge
pw,w1q P E, if w P Wn and w1 P Wn, then Labpwq ă

Labpw1q;
‚ B is reduced, meaning:

1) No two distinct nodes have the same label, low child,
and high child:

@w,w1 PWn, w ‰ w1 ùñ
`

Labpwq ‰ Labpw1q

_ Lowpwq ‰ Lowpw1q

_Highpwq ‰ Highpw1q
˘

.

2) No node has identical low and high children:

@w PWn.Lowpwq ‰ Highpwq.

Conventionally edges pw,Lowpwqq are labeled 0, and
pw,Highpwqq are labeled 1; as described above, this deter-
mines the Boolean function B represents.

BDDs have been used for the quantitative analysis of fault
trees [19] and attack trees [18]. This makes them a promising
candidate for ADTs as well. One important consideration is
the choice of the variable order ă. For fault trees, attack trees,
and ADTs (as we will see next section), the size of the BDD
is a major factor in algorithm complexity. BDD size is worst-
case exponential; however, in practice it heavily depends on
the choice of ă. At the same time, finding the optimal ă is
NP-hard. These two facts have lead to the rich field of BDD
minimization, where heuristic methods are developed to find
good variable orders [20].

For ADTs the variable order is more restricted: we demand
that in the BDD, defenses come before attacks. This reflects
that the attacker can choose their attack upon having observed
the defender’s actions. This turns out to be necessary in order
for our algorithm to work (see Theorem 2).

Definition 11. A defense-first ordering is a linear order ă on
D YA such that for all d P D and a P A, d ă a.

Example 6. Consider the AFT of Fig. 6. The variable order
of the BDD is defense-first. The paths in the BDD correspond

to evaluations of the structure function; for instance, the
path d2 Ñ d1 Ñ a1 Ñ a2 Ñ 1 represents the fact that
fT p10, 01q “ 1. The path d2 Ñ d1 Ñ a1 Ñ 0 represents the
fact that fT p10, 0˚q “ 0; here ˚ denotes the fact that the value
of αa2

is irrelevant.

C. BDD-based algorithm for ADT

We can use an ROBDD corresponding to an AAFT T to
compute its Pareto front. Suppose τpRT q “ A, so that the
attacker’s goal is to reach the 1-leaf of the ROBDD. Every path
π from the root to 1 represents an event eπ “ pδ⃗, α⃗q, with δd “
1 if and only if there is a node w such that Labpwq “ d and
pw,Highpwqq is part of π; the vector α⃗ is defined likewise.
Thus, in the notation of Example 6, we set ˚ “ 0. Not all
possible events are present as paths; for instance in Fig. 6 the
event p01, 11q is not present. However, all feasible events are
in the ROBDD; hence

PFpT q “ minĎtβ̂peπq | π path from root to 1 in ROBDDu.

Typically, the ROBDD will represent some nonfeasible events
as well. For instance, in Fig. 6, the events p00, 10q and p00, 01q
are both present, but only one of them will be feasible.
However, this is not a problem, as nonfeasible events will be
filtered out in the minĎ of the equation above.

This suggests an algorithm to compute PFpT q: compute
all paths from the root to 1, determine their metric values,
and take the Pareto front. However, this is inefficient as there
will be many, partially overlapping parts. Instead, we perform
a bottom-up computation on the BDD. This is similar to a
typical shortest path algorithm in a directed acyclic graph,
except that (1) our computations are in the semirings DD, DA

instead of R and (2) instead of propagating a single value, we
propagate a Pareto front of optimal value pairs. If T has no
defense nodes (i.e., an attack tree), our algorithm is identical
to the BDD-based attack tree analysis algorithm of [18].

The algorithm BDDBU is presented in Alg. 3. It is a recursive
algorithm; we are interested in BDDBUpT,B,RBq. To explain
it, we will use the min cost semiring (see Table I) for both the
attacker and defender, but the algorithm works for all semiring
attribute domains; we also assume that τpRT q “ A; i.e., the
attacker’s goal is to reach the leaf 1. At every node w, each
element pu, u1q P BDDBUpT,B,wq represents the fact that the
attacker can reach 1 from node w by spending u1, provided
the defender has budget at most u. How BDDBUpT,B,wq is
computed depends on the label Labpwq:

‚ If Labpwq “ 0, then w is the 0-leaf. From here it is
impossible to reach the 1-leaf, i.e., even if the defender
has no budget. This is represented by the value pair p0,8q
(Line 3).

‚ If Labpwq “ 0, then w is the 1-leaf. Thus the attacker
does not need to spend any cost to get to 1, which is
represented by the value pair p0, 0q (Line 5).

‚ If Labpwq P A, we compute BDDBUpT,B,wq
from its children Lowpwq and Highpwq. We as-
sume that both Pareto fronts BDDBUpT,B,Lowpwqq and
BDDBUpT,B,Highpwqq consist of a single element with



Algorithm 3 BDD Bottom Up (BDDBU)

Input:
T “ pT,DD, DA, βD, βAq: augmented ADT
B: ROBDD representing fT
w: node of B

Output: Pareto Front of the ADT encoded by B.
1: procedure BDDBU(T,B,w)
2: if Labpwq “ 0 then

3: return

#

tp1bD
, 1‘A

qu if τpRT q “ A;

tp1bD
, 1bA

qu if τpRT q “ D;
4: else if Labpwq “ 1 then

5: return

#

tp1bD
, 1bA

qu if τpRT q “ A;

tp1bD
, 1‘A

qu if τpRT q “ D;
6: else if Labpwq P A then
7: tp1bD

, u0qu Ð BDDBUpT,B,Lowpwqq;
8: tp1bD

, u1qu Ð BDDBUpT,B,Highpwqq;
9: return tp1bD

, ulow‘A pβApLabpwqqbAuhighqqu;
10: else
11: P0 Ð BDDBUpT,B,Lowpwqq;
12: P1 Ð BDDBUpT,B,Highpwqq;
13: P Ð P0YtpβDpLabpwqqbDu, u

1q | pu, u1q P P1u;
14: return minĎpP q

first coefficient 1bD
“ 0 (Lines 7-8); this is true be-

cause it is true for the leaves and for the output of A-
labeled nodes (Line 9), and our variable order ensures
that no descendants of w are D-labeled. At node w,
the attacker can choose to either not perform attack
Labpwq, move to Lowpwq, and perform the optimal
attack there, which has cost u0; or perform attack Labpwq
(paying cost βApLabpwqq), move to Highpwq, and per-
form the optimal attack there, with cost u1. The attacker
chooses between the two by minimizing cost, which
is minpulow, βApLabpwqq ` uhighq (Line 9). Since the
defender plays no role here, the defender’s metric value
stays 1bD

“ 0.
‚ If Labpwq P D, the defender can choose between either

not activating Labpwq, moving to Lowpwq, and picking
one of the defense options there; or activating Labpwq
(incurring cost βDpLabpwqq, moving to Highpwq, and
picking one of the defense options there. The resulting
combination of defense-attack metric value pairs is given
in Line 13. Not all options will be optimal, so we only
keep its Pareto front (Line 14).

The following theorem expresses correctness.

Theorem 2. Let T be an AADT, and let ă be a defense-first
ordering on AYD Let B be the ROBDD with variable ordering
ă representing fT . Then BDDBUpT,B,RBq “ PFpT q.

The complexity is Op|W |p2q, where W is the set of nodes
of the BDD, and p is the maximal size of the Pareto fronts
involved in the computation. Both are worst-case exponential
in the size of the ADT (see Fig. 4); however, we expect both to
be reasonably small in practice, resulting in fast computation.

We will test this expectation in the experiments.

VI. EXPERIMENTS

We empirically evaluate our methods, using a case study
adapted from [5], as well as 120 randomly generated ADTs.

A. Case Study: Money Theft

We apply our methods to a real-world ADT presented by
Kordy and Wideł [5] modelling a money theft scenario, either
via stealing someone’s card and using an ATM, or via online
banking (see Figure 7). That work assigns a unitless value to
each BAS, representing the attacker’s cost of performing that
action. We also assign cost values to the BDS.

As mentioned in Section II, existing work does not compute
the Pareto front between attack and defense costs. Instead, the
minimal attack cost discussed in [5] only considers attacks
that cannot be prevented. This amounts to giving the defender
infinite budget, and to just one point on the Pareto front.

This is a DAG-shaped ADT, since Phishing has two parents.
As such, we cannot apply our bottom-up approach directly.
Instead, we assume that Phishing needs to be performed twice
in order to activate both Get Password and Get username. This
turns the ADT into a tree-shaped one, and we can perform the
Bottom-Up algorithm. This is inscribed in red in Fig. 7. As
we can see, the final Pareto Front contains of only 3 pairs:
p0, 90q is the cheapest attack on Via ATM. The defender can
thwart this via Cover Keypad; if they do this, the attacker
instead takes the cheapest attack on Via Online Banking,
represented by the pair p30, 150q. If the defender furthermore
activates SMS Authentification, it is most advantageous for
the attacker to attack Via ATM again, disabling the defender’s
action using Camera. This is represented by the Pareto-optimal
pair p50, 165q. Note that the BDS Strong Pwd is not part of
any Pareto-optimal point, suggesting that this action does not
help the defender and should be avoided. In [5] the outcome
of the analysis is 165, which corresponds to our final Pareto-
optimal pair; thus our analysis gives a more complete picture
of the interplay between attacker and defender, by showing the
defender the effect of varying their budget on overall security.

We also compute the Pareto front using BDDBU, which
accurately analyzes the DAG-shaped ADT. We get the Pareto-
optimal pairs p0, 80q, p20, 90q, p50, 140q. Again, we see that
the Pareto front is much smaller than the exponential upper
bound would suggest. The optimal strategies are different to
the tree-shaped case: here tPhishing, Log In & Execute Trans-
feru is optimal if the defender has no budget. 140 is also the
metric computed in [5] under so-called set semantics, which
model DAG-shaped ADTs. Again existing work only gives a
single value, instead of the whole Pareto front. Although this
case study demonstrates the applicability of our method, it ab-
stracts away factors like dynamic system behavior, uncertainty
in metrics, and organizational constraints, which would need
to be addressed when scaling to more complex, real-world
scenarios.
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Fig. 7: Attack-defense tree representing a money theft scenario, adapted from [5]. Values inscribed in BAS/BDS are
attacker/defender costs; red values are the Pareto fronts at every node, computed Bottom-Up.
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Fig. 8: Pareto front for the ADT of Fig. 7, both under
Bottom-Up and BDDBU analysis.

B. Synthetic ADTs

The performance of BU and BDDBU is evaluated against the
Naive approach. The Naive algorithm computes ρpδ⃗q for
each defense vector δ⃗ by iterating over all possible attacks and
selecting the one with the minimum metric value, followed by
reducing the resulting value pairs to the Pareto front using
minĎ. Since existing work does not account for the interplay
between attacker and defender metrics, direct comparisons
with prior literature are not feasible.

One approach to overcome this is to annotate the existing
ADTs found in the literature with cost values for the defender.
We were able to find several ADTs with 25 ď |N | ď 50 [21],
[22] but only a limited number of ADTs with 50 ď |N | ď 100
[23]–[25]. Finding ADTs with |N | ě 100 can be challenging

as they are typically not made public for confidentiality
reasons [26].

In practice, the size of attack trees can range from a few
dozen to several hundred nodes [27]. Given the relatively small
number and size of ADTs found in the literature, we do not
consider this to be a large enough testing suite to evaluate
algorithms. Consequently, it is necessary to synthetically gen-
erate ADTs. Two common techniques for generating ATs are
combining literature trees into a single one [28], or generating
random ATs from scratch. We focused on the latter to cover a
wider range of scenarios and create a more robust test suite.

A risk analysis algorithm that takes several days may be
feasible for some applications. However, within the context
of this work, given the hardware limitations and restricted
time to conduct experiments, we limit our testing scope by
not pursuing computations that take more than 104 seconds.

All experiments were performed on a machine with an
Intel Core i5-12600K 3.7Ghz processor and 16GB of RAM.
The algorithms are implemented in Python 3.12. Although
faster BDD run times could perhaps be achieved using a C
implementation such as in Sylvan [29] or CUDD [30], we
opted to maintain a consistent testing environment for all
algorithms. The code and results are available on GitHub. 1.

We employ a large number of randomly generated ADTs
for a statistically significant comparison of the algorithms’
performance. After setting a maximum number of children n,
nodes with random proprieties (gate type, attack/defense type,
number of children) are recursively generated until the tree

1https://github.com/dvcopae/thesis adtrees

https://github.com/dvcopae/thesis_adtrees


contains n nodes (see the Appendix). This approach naturally
creates tree- and DAG-structured ADTs.

Fig. 9 presents pairwise comparisons between the algo-
rithms. A summary of these comparisons is given in Fig. 10.
Algorithm runtimes across all random graphs are aggregated
by taking the median at each interval of |N | “ 20. Since the
run time of Naive increases at an exponential rate, the values
at the end of the interval will be drastically different than those
at the beginning. To better represent the central tendency of
the interval, the median is used instead of the average.

Regarding the Naive algorithm, it is notable that for certain
small-sized trees with fewer than 50 nodes, it surprisingly
outperforms BDDBU. We hypothesize that this is because, at a
very small number of nodes, the time required to construct the
BDD model constitutes a significant proportion of the total run
time. However, as the number of nodes increases, the Naive
algorithm approaches a runtime of 104 seconds, even for some
trees with less than 50 nodes. This algorithm has the slowest
performance among the considered methods.

As both BU and BDDBU are quite fast, we extended our
analysis for larger trees with up to 325 nodes. Remarkably,
while the performance gap between the two remains consistent
for trees with fewer than 100 nodes, this drastically changes
as trees gain more nodes. For trees ranging from 300 to 325
nodes BDDBU requires approximately 103 seconds, whereas BU
roughly 10´3 seconds.

In summary, this approach indicates that BU computes the
Pareto Front the fastest for tree-structured ADTs, while BDDBU
is the most efficient for DAGs. Furthermore, computation time
remains low (below 10s) even for DAG-shaped ADTs an order
of magnitude larger than our case study of Section VI-A.

VII. CONCLUSION

In this paper, we proposed a novel framework that incor-
porates defense metrics into ADTs, and presented efficient
algorithms for computing the Pareto front between defense and
attack metrics. The highlights behind this framework include
a formal syntax and semantic model for representing ADT
with attacker and defender attribute domains. We delved into
Bottom-Up analysis and Binary Decision Diagram methods
for computing the Pareto Front of the defender’s and attacker’s
cost. We evaluated the performance of these approaches on
a test suite consisting of randomly generated ADTs of sizes
up to 325 nodes and observed significant variations in the
speed of the algorithms. In scenarios where the ADT has a
tree structure, BU performs by far the best, with an average
processing time of less than 1 second, even for trees with
several hundred nodes. On the other hand, in cases where
the ADT has a DAG structure and the attribute domains are
absorbing semirings, then BDDBU is the next fastest choice,
capable of analyzing trees up to 325 nodes under 30 minutes.

As future works, one possible extension is incorporating
probabilistic failures, as explored by Aslanyan and Nielson
[8], to enable scenarios where attackers and defenders operate
under uncertainty. Attack-Fault-Defense Trees (AFDTs), as
introduced in [11], could provide a suitable framework for
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Fig. 9: The first algorithm is the vertical axis while the second
is the horizontal axis. The run time is in seconds, and each ˆ
represents a random ADT. For plots involving BU, only tree-
structured ADTs are generated. Random ADTs were adjusted
in size and number to ensure no run time exceeds 104 seconds.
All plots are based on 120 random ADTs with |N | ă 45.

such extensions. Another possible extension is enhancing al-
gorithm efficiency through modular decomposition techniques.
By dividing large ADTs into smaller modules, the computa-
tional cost of analyzing complex systems could be signifi-
cantly reduced. Furthermore, optimizing BDDs by identifying
orderings that minimize their size while retaining the defense-
first property remains an important challenge. Developing
automated methods for finding such orderings would improve
scalability and enable efficient analysis of larger ADTs. Fi-
nally, an interesting avenue for future research is extending our
approach to ADTs with dynamic behaviour, similar to dynamic
attack trees [31]. The time-dependency between BAS/BDS
could be modelled by their relative position in the BDD
variable order.
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APPENDIX A
PROOF OF THEOREM 1

We first prove an auxiliary lemma. Suppose that T is a
tree-shaped AADT whose root has two children; we call the
subtrees spanned by these children T1 and T2. If Di is the
set of BDS in Ti, then D1 X D2 “ ∅ due to the tree-shaped
property, and D1 Y D2 “ D. Hence BD – BD1 ˆ BD2 . Thus
we can uniquely write each element δ⃗ P BD as pδ⃗1, δ⃗2q, with
δ⃗i P BDi . In this terminology, we have the following lemma:

Lemma 1. Let T be a tree-shaped AADT whose root has two
children; the ADTs spanned by these children are called T1
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and T2, respectively. Let Di be the set of BDS in Ti. Further-
more, let ρ1, ρ2 be the optimal attack response functions of
T1 and T2, respectively. Then for all δ⃗i P BDi ,

β̂Apρpδ⃗1, δ⃗2qq “ β̂Apρ1pδ⃗1qq ˝A β̂Apρ2pδ⃗2qq.

Proof. We prove this statement for the case γpRT q “ OR,
τpRT q “ A; the other cases are similar. We first show
β̂Apρpδ⃗1, δ⃗2qq ĺA β̂Apρ1pδ⃗1qq‘Aβ̂Apρ2pδ⃗2qq. To see this, note
that since RT is an OR-gate, we have

fT ppρ1pδ⃗1q, 0⃗q, pδ⃗1, δ⃗2q, RT q

“ fT1
pρ1pδ⃗1q, δ⃗1, RT1

q _ fT2
p⃗0, δ⃗2, RT2

q

“ 1_ fT2
p⃗0, δ⃗2, RT2

q

“ 1.

By definition of ρpδ⃗1, δ⃗2q, this means that

β̂Apρpδ⃗1, δ⃗2qq ĺA β̂Apρ1pδ⃗1q, 0⃗q

“ β̂Apρ1pδ⃗1qq.

Analogously we can show β̂Apρpδ⃗1, δ⃗2qq ĺA β̂Apρ2pδ⃗2qq;
since ‘A selects the minimum w.r.t. ĺA, this implies
β̂Apρpδ⃗1, δ⃗2qq ĺA β̂Apρ1pδ⃗1qq ‘A β̂Apρ2pδ⃗2qq.

Next, we show β̂Apρ1pδ⃗1qq ‘A β̂Apρ2pδ⃗2qq ĺA

β̂Apρpδ⃗1, δ⃗2qq. Let ρpδ⃗1, δ⃗2q “ pα⃗1, α⃗2q. Then by definition,

1 “ fT ppα⃗1, α⃗2q, pδ⃗1, δ⃗2q, RT q

“ fT1pα⃗1, δ⃗1, RT1q _ fT2pα⃗2, δ⃗2, RT2q.

Without loss of generality, assume fT1
pα⃗1, δ⃗1, RT1

q “ 1. Then

β̂Apρ1pδ⃗1qq ĺA β̂Apα⃗1q

“
â

i:α1,i“1

βpaiq

ĺA

â

i:α1,i“1

βpaiq b
â

i:α2,i“1

βpa1
iq

“ β̂Apα⃗1, α⃗2q

“ β̂Apρpδ⃗1, δ⃗2q.

Here the ai are the BAS of T1, while the a1
i are the BAS of

T2. This proves β̂Apρ1pδ⃗1qq‘A β̂Apρ2pδ⃗2qq ĺA β̂Apρpδ⃗1, δ⃗2qq,
which together with the previous inequality proves equality.

We also need a second lemma to show that the semiring
operations behave nicely with respect to Ď.

Lemma 2. Let ˝A be either bA or ‘A, and let ψ be the
binary operation on VD ˆ VA given by ψppx, yq, px1, y1qq “

pxbDx
1, y˝Ay

1q. Then for any two subsets X,X 1 Ď VDˆVA
we have

minĎpψpX,X
1qq “ minĎpψpminĎpXq, X

1qq.

Proof. Either way we have that y ĺA y1 implies y2 ˝A y ĺA

y2 ˝A y
1. We now first prove

minĎpψpX,X
1qq Ď minĎpψpminĎpXq, X

1qq. (1)

Let px, yq P X and px1, y1q P X 1 be such that
ψppx, yq, px1, y1qq is Pareto optimal in ψpX,X 1q. We first
prove that ψppx, yq, px1y1qq P ψpminĎpXq, X

1q. Let px2, y2q P

X be such that px2, y2q Ď px, yq, i.e., x2 ĺD x and y ĺA y2.
Then x2 bD x1 ĺD xbD x1 and y ˝A y1 ĺA ˝y

2 ˝A y
1; hence

ψppx2, y2q, px1, y1qq Ď ψppx, yq, px1, y1q.

Since the RHS is Pareto optimal in ψpX,X 1q, equality must
hold; hence ψppx, yq, px1y1qq P ψpminĎpXq, X

1q. Further-
more, it cannot be dominated by elements of ψpminĎpXq, X

1q

as it is not dominated by elements of ψpX,X 1q; hence
ψppx, yq, px1, y1qq P minĎpψpminĎpXq, X

1qq, and equality
holds in (1). Next, we prove

minĎpψpX,X
1qq Ě minĎpψpminĎpXq, X

1qq. (2)

Let px, yq P minĎpXq and let px1, y1q P X 1 be such
that ψppx, yq, px1, y1qq is Pareto optimal in ψpminĎpXq, X

1q.
Clearly ψppx, yq, px1, y1qq P ψpX,X 1q; we need to show that
it is Pareto optimal there. Let pz, wq P X , pz1, w1q P X 1 be
such that ψppz, wq, pz1, w1qq P minĎpψpX,X

1qq and such that

ψppz, wq, pz1, w1qq Ď ψppx, yq, px1, y1qq. (3)

By (1) we have that ψppz, wq, pz1, w1qq is Pareto optimal
in ψpminĎpXq, X

1qq. This also holds for ψppx, yq, px1, y1qq.
Hence equality holds in (3), which in turn implies that (2)
holds. This completes the proof.

Proof of Theorem 1. We prove by induction that BUpT, vq “
PFpTvq for all nodes v in T . The statement is clear if v is a
leaf. Now suppose v has two children v1 and v2, for which
the induction hypothesis holds. Then

BUpT, vq “ minĎpψpBUpT, v1q, BUpT, v2qqq

“ minĎpψpminĎpβ̂pBD1qq,minĎpβ̂pBD1qqqq

“ minĎpψpβ̂pBD1q, β̂pBD1qqq

“ minĎpβ̂pBDq

“ PFpTvq.

Here we use Lemma 2 twice in the third “.

APPENDIX B
PROOF OF THEOREM 2

We will prove this theorem for τpRT q “ A; the case
τpRT q “ D is proven analogously. Note that the definition
of ρ, and with it those of β̂ and PFpT q, depend on T only via
fT . Therefore, we can define PFpfq for any Boolean function
f whose variables are partitioned into D Y A. Furthermore,
for the algorithm BDDBU we do not need the full AADT; we
just need DD, DD, βD, βA and τpRT q. All other information
is stored in the structure function fT , which is the same as
the function f . Consider DD, DD, βD, βA and τpRT q “ A

fixed, and write ZpB,wq for the algorithm that performs
BDDBUpT,B,wq for an appropriate AADT T . Then it suffices
to prove the following theorem:

Theorem 3. Let f be a Boolean function with variables DYA,
and let ă be a linear order on the variables such that d ă a



for all d P D and a P A. Let B be the ROBDD with variable
ordering ă representing f . Then ZpB,RBq “ PFpfq.

Proof. We prove this by induction on the size of B. If B
has one node, then f is a constant function, for which the
theorem holds. If LabpRBq P A, then all variables in B are
in A; in this case, the result directly follows from BDD-based
analysis of semiring attack tree metrics [18]. Now suppose
LabpRBq “ d P D. Let B0 and B1 be the ROBDDs spanned
by the low and high child of RB , respectively, representing
functions f0 and f1 with associated functions ρ0, ρ1, β̂0, β̂1.
Then f ” p␣d^ f0q_ pd^ f1q. Hence for δ⃗ P BDztdu we get

β̂Dpδ⃗, 0q “ β̂D,0pδ⃗q,

β̂Dpδ⃗, 1q “ β̂D,1pδ⃗q bD βDpdq,

ρpδ⃗, 0q “ ρ0pδ⃗q,

ρpδ⃗, 1q “ ρ1pδ⃗q.

Furthermore, write φpδ⃗q :“ β̂pδ⃗, ρpδ⃗qq; we define φ0 and φ1

likewise. Thus β̂pSq “ φpBDq. Then it follows that

ZpB,RBq

“ minĎ

˜

ZpB1, RB1
q

Y tpsbD βDpdq, tq | ps, tq P ZpB2, RB2
qu

¸

“ minĎ

˜

minĎpφ0pBDztduq

YminĎ

!

pβ̂D,1pδ⃗q bD βDpdq, β̂Apρ1pδ⃗qq
ˇ

ˇ

ˇ
δ⃗ P BDztdu

)

¸

“ minĎ

´

minĎpφpBDztdu ˆ t0uqq YminĎpφpBDztdu ˆ t1uqq
¯

“ minĎpφpBDqq “ minĎpβ̂pSqq.

which completes the proof by induction.
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