
Adversary-Augmented Simulation for Fairness
Evaluation and Defense in Hyperledger Fabric
Erwan Mahe , Rouwaida Abdallah , Sara Tucci-Piergiovanni

Université Paris Saclay, CEA LIST
Palaiseau, France

Pierre-Yves Piriou
EDF Lab, Dpt. PRISME

Palaiseau, France

Abstract—This paper presents an adversary model and a sim-
ulation framework specifically tailored for analyzing attacks on
distributed systems composed of multiple distributed protocols,
with a focus on assessing the security of blockchain networks.
Our model classifies and constrains adversarial actions based
on the assumptions of the target protocols—defined by failure
models, communication models, and the fault tolerance thresh-
olds of Byzantine Fault Tolerant (BFT) protocols. The goal is to
study not only the intended effects of adversarial strategies but
also their unintended side effects on critical system properties.
We apply this framework to analyze fairness properties in a
Hyperledger Fabric (HF) blockchain network. Our focus is
on novel fairness attacks that involve coordinated adversarial
actions across various HF services. Simulations show that even
a constrained adversary can violate fairness with respect to
specific clients (client fairness) and impact related guarantees
(order fairness), which relate the reception order of transactions
to their final order in the blockchain. This paper significantly
extends our previous work by introducing and evaluating a
mitigation mechanism specifically designed to counter transaction
reordering attacks. We implement and integrate this defense
into our simulation environment, demonstrating its effectiveness
under diverse conditions.

Index Terms—Adversary model, Distributed Systems, Cyberse-
curity, Multi-Agent Simulation, Hyperledger Fabric, Tendermint,
Order Fairness,

I. INTRODUCTION

Distributed Systems (DS), by virtue of their decentralized
nature, complexity and scale, present a unique set of security
challenges. While decentralization might favor fault tolerance,
it also introduces vulnerabilities. Indeed, in addition of pro-
viding a greater surface of attack, most DS require specific
global properties to hold (e.g., for blockchains a common
property is the coherence of the replicated state, expressed
as the absence of forks). Each sub-system, each connection
linking them, and even properties of communication protocols
in use are potential targets for malicious entities. How then
can we ensure the security of DS?

Cybersecurity often involves perimeter-based defense [1],
ensuring that external threats are kept at bay. However, with
DS, where there might not always be a clear “inside” or
“outside”, these approaches might fall short. The alternative,
which we pursue, is that of modeling the adversary as an agent
that is an integral part of the DS. Adversary modeling [2]
has been initially introduced to reason about cryptographic
protocols [3] but has since been extended to various fields
in computer science and security research [4]. The use of

adversary models can facilitate the evaluation of security
properties. Indeed, like any other model, an adversary model,
provided it has a well-defined semantics, can be used in
formal verification (e.g., model checking) or in testing (e.g.,
via simulation).

In this paper, we propose an adversary model that builds
upon the notions of assumptions, goals, and capabilities, as
introduced in [4], while being specifically tailored to assess
the security of distributed systems at the protocol level.
Importantly, our model targets attacks on distributed systems
that combine multiple distributed protocols.

In this context, adversary goals capture the attacker’s intent,
while capabilities define the set of actions available to achieve
those goals. Our focus is on adversaries aiming to compromise
classical properties of distributed protocols, such as safety
and liveness [5], [6]. Adversary capabilities are modeled as
atomic actions that can be executed at any time during system
execution. These capabilities are bounded by a set of assump-
tions reflecting the adversary’s environment and resources. In
contrast to the all-powerful network adversaries commonly
used in cryptographic protocol verification [3], our model
considers realistic, resource-limited adversaries constrained by
the assumptions of the distributed protocols under study. These
constraints stem from the underlying communication model
[7], [8], failure model [9], and fault tolerance thresholds, as
explored in the resource-limited adversary framework [10].

In this paper, we apply our model to demonstrate the feasi-
bility of attacks on a distributed network of blockchain nodes
implementing HyperLedger Fabric (HF) [11]. Our choice of
HF is motivated by two factors. On one hand, HF stands out as
a popular choice for industrial blockchain applications. On the
other hand, its structure that combines two services (an endors-
ing service for transaction validation and an ordering service
for sequencing and appending transactions to the blockchain)
enables us to demonstrate our approach by combining attacks
on the different protocols implementing these services in a
non-trivial manner.

Let us note that although HF is a permissioned blockchain,
which means that participants must be authorized to be part of
the system, HF nodes can be deployed in a wide-area network
(e.g., the Internet) as opposed to a private intranet. As a result,
HF is vulnerable to attacks [12], [13], [14] that can consist
in either or both the adversary taking control of some of its
constituting nodes, or the adversary otherwise manipulating

ar
X

iv
:2

50
4.

12
73

3v
1

 [
cs

.C
R

]
 1

7
A

pr
 2

02
5

https://orcid.org/0000-0002-5322-4337
https://orcid.org/0009-0007-9803-3511
https://orcid.org/0000-0001-9738-9021
https://orcid.org/0000-0001-6061-7270

exchanges between these nodes (e.g., increasing transmission
delays via e.g., having control over routers, or via performing
Denial of Service [12]).

In terms of attacks, we focus on a specific class of live-
ness attacks known as fairness attacks. Fairness refers to
ensuring that all users, or clients, have equally fair access
to the blockchain, meaning that no client’s transactions are
systematically favored over others. In consortium blockchains,
censorship attacks targeting specific participants are a genuine
concern. As such, evaluating the robustness of distributed
protocols against fairness attacks is a critical aspect of ensuring
system security. More specifically, we examine four fairness
properties: an application-specific form of client fairness,
whose violation is the adversary’s primary goal, and three
types of order fairness [6], [15], which relate the order in
which transactions are received by individual nodes to the or-
der in which they are ultimately committed to the blockchain.

In this paper, we show that even when the adversary oper-
ates within the tolerance thresholds of the underlying protocols
— such as the proportion of compromised participants and
assumptions about the communication and failure models —
it is still possible to violate the client-fairness property in
HF. Moreover, the different strategies used to achieve this
violation have varying impacts on the associated order-fairness
properties.

In [16], we introduced our adversary model and imple-
mented it within the MAX [17] multi-agent simulation tool.
We then defined several attacks on HF and used our simulator
to demonstrate that even a weak adversary can negatively
impact the fairness of a system based on HF.

Our framework also enabled the quantification of order-
fairness violations, allowing us to assess the effects of our
attacks on both the ordering and endorsing services of HF. To
the best of our knowledge, this was the first time a blockchain
simulator was augmented with a programmatic adversary [18],
that these specific attacks on HF were described, and that an
empirical evaluation of order-fairness violations was explored.

This paper extends our previous work [16] in five key
ways: (1) we broaden the discussion of related work, par-
ticularly regarding order fairness; (2) we enhance our initial
simulation framework by incorporating more realistic network
assumptions—especially in terms of probabilistic delay distri-
butions—and by collecting and analyzing additional metrics;
(3) we introduce a mitigation mechanism aimed at improving
HF’s resilience to transaction reordering attacks; (4) we ob-
serve and evaluate the effects of a specific implementation
of this mitigation mechanism within our simulations; and
(5) we vary additional simulation parameters—such as the
number of peers, orderers, and clients—to demonstrate the
generalizability of our findings.

This paper is organized as follows. Sec.II introduce pre-
liminary notions and discusses related works. In Sec.III, we
recall in details the adversary model from [16]. Sec.IV presents
the HF system on which we apply our approach as well as
the specific fairness properties that we consider. The attacks
that can be performed by the adversary are defined in Sec.V,

and simulated in Sec.VI. In Sec.VII, we define our mitigation
mechanism, and then observe its impact in Sec.VIII-A. Finally,
after studying the impact of the network composition in
Sec.VIII-B, we conclude in Sec.IX.

II. PRELIMINARIES AND RELATED WORKS

A. Communication and failure models

Distributed protocols specify patterns of communications
between distant systems with the aim of performing a service.
These services are characterized by properties often related to
safety and liveness [5]. Here, communications involve message
passing between sub-systems of a Distributed System (DS)
over a network. Three distinct communication models [8]
define assumptions that hold over message passing. In the
synchronous model [7], there is a finite time bound ∆ (that can
be known by the involved parties) s.t., if a message is sent at
time t, it must be received before t+∆. By contrast, the asyn-
chronous model [7] allows an arbitrary delay between emission
and reception. With the eventually synchronous model [8],
communications are initially asynchronous, but there is an
unknown Global Stabilization Time (GST) after which they
become synchronous. Another equivalent definition of the
eventually synchronous model (without GST) is to consider
that the bound ∆ is not known by any of the involved parties
[8], [19].

Distributed protocols are deployed in an environment con-
sisting of a DS with various sub-systems, each corresponding
to a running process. The individual failure of such processes
may negatively impact the service performed by the protocol
(i.e., the associated properties may not be upheld). Failure
models [9] (see Fig.1) define assumptions on the types of
failures that may occur.

byzantine

performance

omission

crash

Fig. 1: Failures

A crash failure involves a process
terminating prematurely. An omission
failure occurs when it never delivers
an event (e.g., never sends a message
it is expected to send). As illustrated
on Fig.1, a crash is a specific omis-
sion where, after a certain time, all
subsequent events are never delivered.

With the performance failure model, only expected events
(considering the protocols that nodes implement) occur, but the
time of their occurrence may be overdue. Omission failures are
infinitely late performance failures. Finally, Byzantine failures
authorize any arbitrary behavior.

Some distributed protocols are designed to uphold specific
properties, even in cases where a number of processes (sub-
systems) fail. These Fault Tolerant (FT) protocols [9] are
characterized by the nature of the failures they can withstand
(i.e., a failure model) and a threshold (usually a proportion
of involved processes) of failures below which they maintain
their properties. For instance, Tendermint [20] is a Byzantine
FT (BFT) consensus algorithm (the property it upholds being
that of maintaining consensus agreeement) that can withstand
lessup to one-third of faulty processes.

B. Ledgers & Transaction Reordering

A Distributed Ledger is a network of replicated state ma-
chines that maintain a consistent state. By its decentralized
nature, it has no single point of control/failure, which improves
security. The replication of the data it carries also improves
transparency and auditability. Blockchains are a means to
implement a Distributed Ledger. In a Blockchain, individual
machines are referred to as “nodes” and changes in the state
machine occur when a transaction is “delivered”. We call
“clients” the entities that submit these transactions to the
nodes. By agreeing on the initial state and the order in which
transactions are delivered, the nodes maintain a consensus on
the current state. To improve throughput (i.e., the rate at which
transactions can be delivered), transactions are batched into
consecutive blocks. The order of delivery of transactions then
corresponds to the order in which they appear on and within
blocks.

The properties of distributed ledgers which are mostly
studied can be categorized as either “consistency properties”,
“liveness properties” or “fairness properties”. While the first
may correspond to consensus agreement and validity which are
safety properties [5], the second may refer to various distinct
notions such as starvation-freedom, local progress or consen-
sus wait-freedom [21]. Fairness, in the context of Blockchains
[22], [23] may refer to various notions, including the fairness
in committee selection [22], rewarding [24] or the ability
to take decisions [23], [25] w.r.t. individual nodes’ voting
power. Consistency (1), liveness (2) and the aforementioned
fairness properties (in e.g., committee selection or rewards)
(3) may resp. enforce that (1) all nodes deliver the exact same
transactions in the same order, (2) it is always possible for
an honest client to submit a transactions that will eventually
be delivered or (3) the rules for nodes to participate in the
consensus process are fair and they are rewarded according to
their participation.

However, as explained in [6], these properties enforce no
constraint on the agreed upon order of transactions. In that
case, even though the involved algorithms may be BFT, an
adversary may still be able to manipulate the order of transac-
tions. A malicious adversary which causes the order of transac-
tions to change (i.e., the consensus yields a different total order
as the one which would have occurred without the intervention
of the adversary) is said to perform a “transaction reordering
attack” [26]. A typical example is that of front-running : if the
adversary is aware that a transaction x has been submitted but
not yet delivered, it may submit a new transaction x′ and make
so that x′ is delivered before x (e.g., by leveraging reward
mechanisms [27] or by coordinating Byzantine nodes that
it controls [16]). In decentralized finance [27], front-running
can be leveraged to extract profits via manipulating the value
of financial assets. Maximum Extractable Value (MEV) bots
can continuously monitor a distributed ledger and perform
such attacks opportunistically [27], [26]. It is estimated that
MEV bots have extracted around ∼ 675 million $ on the
Ethereum blockchain alone in the span between January 2020

and September 2022, which underlines the importance of being
concerned with transaction ordering.

C. Order Fairness

The rise in potential applications of transaction reordering
attacks lead to an increased interest in properties related to the
fairness with which the order of transactions is decided. In the
context of decentralized finance, in [26], “fairness” is achieved
whenever participants cannot include, exclude or front-run a
transaction after having seen its content. Formal definitions of
similar concepts exist in the literature. Using an older notion
of “order” [28] in State Machine Replication, [29] defines
“serializability” in ledger consensus. This “serializability”
coı̈ncides 1 with the “receive-order fairness” of [6] which is
defined as follows : for any two transactions x and x′, if a
majority of nodes receive x before x′ then x is delivered before
x′. In the following, we will use the terminology order-fairness
(OF) to refer to such properties. OF properties relate the order
in which transactions are delivered to some partial orders
on communication events occurring in the distributed system.
receive-order fairness is a particular case of OF property that
is defined with regards to reception events.

a) OF w.r.t. receptions events.: As per [6], receive-order
fairness is impossible to achieve. Indeed, one might notice that
for three transactions x1, x2 and x3, it occur that a majority
of nodes receive x1 before x2, x2 before x3 and x3 before x1,
hence forming a Condorcet cycle [30].

As a result, [6] proposes a weaker property of “block-order
fairness” and introduces the “Aequitas” consensus protocol
that upholds it. Block-order fairness is defined as follows :
for any two transactions x and x′, if a majority of nodes
receive x before x′ then no honest node can deliver x in a
block after the block in which x′ is delivered. However, in
[6], the meaning of these blocks is more specific than the
generic notion of block in a Blockchain. Indeed, they rather
correspond to batching together exactly the transactions that
are in the same Condorcet cycle (i.e., transactions that are
not in a Condorcet cycle together must not be put in the
same block). [19] clarifies this via defining “γ-(all)-batch-
order fairness” as follows : for γ > 1/2, if a proportion of
nodes greater than γ receives x before x′ and if x and x′

are not in a Condorcet cycle, then x must be delivered before
x′. [19] also introduces the Themis algorithm that upholds
γ-(all)-batch-order fairness.

[15] introduces “differential-order fairness” and a “quick
order-fair atomic broadcast” protocol that upholds it. This
property is defined as follows: for any two transactions x and
x′, if the number of honest nodes that receive x first exceeds
by more than 2∗f (where n = 3∗f+1 is the total number of
nodes) the number of nodes that receive x′ first, then x must
be delivered before x′.

These properties encode an intuitive notion of fairness in
consensus ordering, as the delivery order, if “fair”, should

1in [29], the “majority” is defined as the set of all honest nodes and
“reception” of a transaction x by a node signifies x enters the node’s local
view of the mempool

mimic the “reception” order. Protocols that uphold such OF
properties are called Algorithmic Committee Ordering algo-
rithms in [26].

However, most existing consensus algorithms and
Blockchain systems were not designed with these properties
in mind. As a result, assessing the propensity of an existing
Blockchain system to violate such OF properties can be
difficult. In particular, the notion of “reception” may be
ambiguous. For instance, it may be so that clients do not
broadcast their transactions to all the nodes (then the instants
of “reception” do not necessarily exist). In Blockchains using
the execute-order-validate architecture, different subsets of
nodes might perform different tasks and thus do not receive
transactions in the same manner (in HyperLedger Fabric [31],
peers receive transactions before orderers do).

b) Limitations of OF defined w.r.t. receptions.: If a
protocol upholds an order-fairness property that is defined
w.r.t. reception events, it only implies that the delivery order
cannot be tampered with given certain reception orders (one
per participating node). However, an adversary may actually
tamper with the reception orders themselves, in order to
influence the delivery order. For instance, if the adversary
benefits from a quicker network connection than honest nodes
and clients (lower latency when the adversary receives and
sends transactions), it may listen to an incoming transaction x
and front-run it via submitting x′ and ensuring that most nodes
receive x′ before x [26]. In that case, upholding receive-order-
fairness guarantees the front-running will succeed.

But even without the reduced latency requirement, an
adversary may still succeed. Let us consider a consensus
algorithm that upholds a form of γ-(all)-batch-order fairness.
Then, as described in [30] the adversary may artificially create
Condorcet cycles by submitting transactions in a specific
manner : for any transaction x′′, it immediately (instant (1))
sends x′′ to half of the nodes and then waits before (instant
(2)) sending x′′ again to the other half of the nodes. Indeed, it
is then likely that x′′ will form a Condorcet cycle, “trapping”
a number of transactions that were submitted between instants
(1) and (2). Considering our previous front-running example,
if both x and x′ are trapped in the Condorcet cycle formed by
x′′, it is more likely for the front-running to succeed (given
that no constraint is enforced on the ordering within a block
and that x and x′ are, as a result, in the same block).

As a result, as shown in [30], existing Algorithmic Com-
mittee Ordering algorithms are not robust against all forms of
transaction reordering attacks.

c) Blind-order fairness.: [32], [33] (called “on-chain
commit and reveal” in [26]) solves the problem of transaction
order manipulation by hiding the content of the transactions
until their delivery order has been decided. As the adversary
ignores the content of the transactions, it cannot easily identify
and choose the transactions it wants to reorder (except through
some leakage of metadata or if it just wants to front-run blindly
[33]). Blind-order fairness can be achieved in various ways.
Time-lock puzzles [34] or delay encryption [35] enable time-
based implementations (i.e., decryption is only possible after

an amount of time has passed, e.g., that of solving a puzzle).
Verifiable secret sharing and threshold encryption [36] enable
communication-based implementations (i.e., knowledge of the
key for decrypting transactions is split in shares that are only
gathered after delivery). In any case, blind-order fairness re-
quires significant overhead (computational and communication
costs) [33] and may negatively impact latency and throughput
[26]. Moreover, even though it may limit the ability of an
adversary to perform transaction reordering attacks, blind-
order fairness does not reduce the number of order-fairness
violations that may naturally occur (due to e.g., network delays
and non-deterministic communications) in the system. In other
words, implementing blind-order fairness does not make the
system “fair” but only prevents an adversary to make it “more
unfair” than it already is (see also the notion of “bounded
unfairness” in [37]).

d) Send-order fairness.: Instead of considering the orders
with which nodes receive transactions, “send-order fairness”
[6] relates the orders in which transaction are emitted (by
clients) to the order in which they are delivered. Unlike
the variants of receive-order fairness, upholding send-order
fairness may prevent an adversary with a better network
connection to perform front-running as it cannot possibly
make so, after receiving a transactions x and sending x′ to
front-run it, that the time of emission of x′ is lower than
that of x. However, actually implementing a system that
upholds send-order fairness remains an unsolved problem
[6]. Indeed, it requires keeping track of the global order in
which emission events occur across all the clients. Because
distant machines have uncorrelated local clocks, and because,
in any case, Byzantine clients may falsify timestamps, one
cannot simply rely on trusting clients to report the time at
which they send transactions. A potential solution would be
to use a Byzantine Fault Tolerant vector clock algorithm.
However, such algorithms do not exist (it is impossible in an
asynchronous network as per [38], at most, we have Crash
Fault Tolerance for vector clocks [39]). A partial solution
would be to combine Trusted Execution Environments and
a Clock Synchronization algorithm [40] such as NTP [41].
In addition of the communications overhead they incur, such
algorithms only guarantee that at any given time, the difference
in the readings of any pair of local clocks do not exceed a
certain maximal skew δ [42]. This is problematic in cases
where the difference between the timestamps of events is
smaller than δ. Still, the notion of send-order fairness is
particularly pertinent as it is the most accurate description of
order fairness. Moreover, in a controlled environment (e.g., in
a simulator), it can actually be monitored.

e) Fairness to clients.: Send-order fairness is, intrinsi-
cally, a form of “fairness to clients”. More generally, client-
fairness refers to nodes treating clients fairly, which includes
the order with which transactions coming from distinct clients
should be handled [43], [44]. Jain’s fairness index [45] quan-
tifies fairness between m client sharing resources. Jain’s index
is 1 if all clients receive the same allocation and k/m (for any
k ∈ [1,m]) if m − k clients receive no allocation and the k

others equally share what remains. Jain’s index represents a
global notion of fairness which may also be used to quantify
“fair access to transactions from all clients”. In that context,
value 1 would mean that transactions from all clients are
treated equally and value 0 that the transactions coming from
one specific client are always prioritized over the others. The
“client-fairness score” from [16] describes a similar notion.
However, whereas Jain’s fairness index is global, this score
is defined on a “per client” basis, as it evaluates the fairness
towards a specific client.

f) Bounded unfairness.: The “strongest” (i.e., closest to
fairness to the clients) notion of order-fairness is send-order
fairness. However, we have seen that it is not achievable due
to lacking mechanisms to maintain a BFT global clock across
distant clients. The second strongest is receive-order fairness
which is also impossible to uphold due to the Condorcet para-
dox [6]. The variants of batch-order fairness [19], [15] simply
ignore the problem by ignoring pairs of transactions that
violate receive-order fairness if they are in the same Condorcet
cycle. However, in practice, distributed ledgers must output
a total order on transactions (i.e., transactions from the same
Condorcet cycle cannot remain unordered). We have also seen
that an adversary may perform Condorcet attacks [30] to force
sets of transactions into the same cycle. In turn, this render
protocols upholding batch-order fairness powerless as they
only guarantee order-fairness between transactions that are not
in the same cycle. As for blind-order fairness [33], it may only
prevent an adversary from making the system more unfair than
it already is, provided there is no metadata leakage and at the
cost of computation and/or communication overheads. As a
result, there are no ideal solution to the problem of providing
an order-fair total order of transactions. Still, instead of trying
to provide a fair order, one can approximate a solution by
minimizing unfairness in the order.

This is what is proposed in [37] via the notion of “bounded
unfairness”. Given a threshold γ > 1/2 and a bound Ω ∈ N,
a ledger satisfies “γ-Ω-bounded-unfairness” if, for any pair of
transaction x and x′, if a proportion of nodes greater than γ
receives x before x′ then x cannot be delivered at an index
that is greater than Ω plus the index at which x′ is delivered.
We can see that when Ω = 0, bounded-unfairness coincides
with the classical formulation of receive-order fairness and is
therefore impossible to uphold. [37] proves that there exists a
lower bound for the value of Ω from which it becomes possible
to guarantee γ-Ω-bounded-unfairness. [37] also shows that
the Algorithmic Committee Ordering algorithms from [6],
[19], [15] (resp. Aequitas, Themis and the quick-order-fair
broadcast) as well as other timestamp-based methods (Pompe
from [46] and Wendy from [47]) do not uphold γ-Ω-bounded-
unfairness with this minimal bound.

Moreover, [37] proves that calculating this bound (which
depends on the actual transactions that are considered and
their dependencies i.e., wether or not a γ-fraction of nodes has
received one before the other) and a total order of transactions
such that γ-Ω-bounded-unfairness is upheld corresponds to
solving a NP-hard problem. Thus, any protocol that would

guarantee the minimal unfairness in its ordering would not
satisfy liveness. [37] details one such protocol called TaxisWL

(WL standing for Weak Liveness). To conclude, any attempt
at providing order-fairness in transaction ordering either (1)
only solves part of the problem (via batch-order fairness,
which only provides a partial instead of a total order), (2)
only focuses on making the order impervious to manipulations
(via blind-order fairness) or (3) yields a protocol that does not
satisfy liveness.

Reconciling order-fairness and liveness necessary requires
upholding weaker forms of order-fairness. This means that the
total order that is output is not necessarily the “best” but is
chosen according to a certain heuristics. In the literature, the
most common mechanisms used to implement such heuristics
involve reasoning on timestamps. The Pompe algorithm from
[46] uses the median timestamps of the times at which nodes
in a quorum receive a transaction to determine its delivery
order. Because there are at most f Byzantine nodes (which
may maliciously provide exceedingly low or high values),
using the median value guarantees that the retained value is
greater or equal than a timestamp send by an honest node
and also lower or equal than a timestamp send by another
honest node. In the live version of TaxisWL (simply called
Taxis) [37], a timeout mechanism is used to break long
cycles of dependencies between transactions and transactions
within the same Condorcet cycle are sorted according to the
median timestamp. In [30], the Themis algorithm from [19] is
extended with a method to sort transactions within Condorcet
cycles. Instead of relying on a median timestamp, it uses
Tideman’s Ranked Pairs algorithm.

D. Adversary models

To assess the robustness of a DS, it is a common practice
(from Cybersecurity) to consider an attacker actively trying
to harm it. Adversary models describe such attackers [4].
The level of abstraction of these models may vary from
natural language to concrete algorithms and implementations.
Historically, adversary models such as the symbolic Dolev-Yao
[2] model were central to the design of provably-secure cryp-
tographic schemes. In formal verification of (cryptographic)
security protocols, whether a symbolic or computational model
is used, the adversary is all powerful on the network (i.e., it can
intercept all messages and compute and send new messages to
any node) but has no power outside of it (i.e., side channels
attacks or code injection are not modeled) [3]. However, in
other fields of computer sciences, in which the use of adversary
models remain limited [4], these assumptions on the power of
the adversary may not be desirable.

In [4], a more generic description of adversary models
according to three aspects is discussed. These correspond to
the adversary’s (1) assumptions, (2) goals and (3) capabilities.
Assumptions involve the conditions under which the adversary
may act. Goals correspond to the adversary’s intentions (which
are related to information retrieval in most of the literature
on cryptography). Capabilities synthesize all the actions the
adversary may perform. A passive attacker may only eaves-

drop on message passing without any tampering while an
active attacker may, among other things, intercept and modify
messages (Man-In-The-Middle attack).

Certain assumptions may bind the capabilities of adver-
saries. Adaptability [48] refers to the ability of the adversary
to update its plan i.e., the choice of its victims and of
which adversarial actions to perform. While static adversaries
have a fixed plan (established before the execution of the
system), adaptive adversaries may make choices at runtime.
Threshold cryptography [49] was introduced as a means to
share a secret securely among a fixed set of participants, a
threshold number of which being required to access it. Hence,
adversaries attacking such protocols within its assumptions
must not be able to infect more participants than the threshold,
thus bounding their power. By extension, adversarial actions
can be limited by a corresponding resource as in [10] (bounded
resource threshold adversaries), or via a more abstract notion
of budget.

Various adversary models have been designed specifically
for Blockchain systems. For instance, that from [50] focuses
on network connectivity (i.e., the adversary only performs
network related actions) and how this can be exploited to
impact the consensus mechanism. The limitation of adversary
models to only represent network related actions stem from
their origin in cryptographic protocol verification [3], in which
the adversary has a total control over the network.

The adversary model from [16] (which this present paper
extends) allows modeling an adversary which manipulates the
network. However, it may additionally target individual sub-
systems (thus modeling e.g., side channel or code injection).
Moreover, it incorporates notions of communication models
[8], failure models [9] and Fault Tolerance thresholds to further
limit the capabilities of the adversary [10], which enables
parameterizing attacks depending on assumptions under which
involved distributed protocols are to be used. This approach
also allows observing the side-effects of attacks (whether or
not the adversary succeeds) on various metrics. If the side
effects of an attack are known, their observation might allow
detecting the attack.

E. Simulation

Validating systems can either involve formal verification or
testing which are two orthogonal approaches [9]. The former
involves techniques such as model checking or automated
theorem proving which do not scale well with the complexity
of verified systems and properties. Indeed, in complex and
dynamic DS involving several protocols we must then consider
all possible correct as well as incorrect behaviors (due to
failures up to the relevant failure model) combined with all
possible interleaving and side effects between these behaviors
(due to communications delays up to the relevant commu-
nication model and/or performance failures). Although tech-
niques can be used to negate (e.g., universal composability) or
mitigate (e.g., partial order reduction or symbolic execution)
this complexity, this is not always possible. In this context,

empirical security evaluations, in the form of testing, is more
adapted.

Tests can be performed against a concrete implementation of
the DS. However, it may involve unexpected side-effects due to
executing the whole implementation and hardware dependent
protocol stack. Similarly to software integration tests being
performed via code isolation using mockups, one can focus on
and isolate specific aspects of the DS via the use of a simulator
in which parts of the protocol stack are abstracted away.
Additionally, this allows a finer control over communications
because they occur within the simulator and not on a network
on which control is lacking. Simulation also has the added
advantage of being able to closely and easily monitor the
simulated system e.g., by collecting metrics (which is more
difficult on a live network or testnet deployed on a WAN).

As highlighted by the recent review [18], blockchain sim-
ulators are important tools for understanding these complex
systems. Yet, to our knowledge, none have been fitted with
a programmatic adversary to simulate adversarial attacks.
Most simulators address specific blockchain systems (Bitcoin,
Ethereum) and/or are oriented towards performance evalu-
ations (latency & throughput) rather than security aspects.
Shadow-Bitcoin [51] allows replicating Bitcoin networks on
a large scale, but lacks flexibility for non-Bitcoin blockchains.
While lacking an adversary, some simulators can be adapted
for security analyses such as eVIBES [52] for Ethereum
networks.

Multi-Agent-Systems (MAS) is an agent-oriented modeling
paradigm which is particularly adapted to DS with large num-
bers of agents. The behavior of each agent can be proactive
(following a specific plan regardless of their environment) and
reactive (reacting to stimuli e.g., incoming messages). Agent
Group Role (AGR) [53] is a MAS framework which focuses
on the interactions agents have by playing roles within groups.
MAX [17] is a simulator based on AGR that leverages MAS
for blockchain networks.

F. HyperLedger Fabric

[16] demonstrates an approach to computational studies
of order-fairness via adversary-augmented simulation on a
specific Blockchain system : HyperLedger Fabric (HF) [11].
Although generally secure, HF has some known vulnerabili-
ties. If the addresses of peers are known by malicious entities,
DoS [31] might occur. To mitigate this, [31] recommends
anonymizing peers (e.g., using random verifiable functions and
pseudonyms). HF chaincode is vulnerable to (smart contract)
programming errors [54] which can be mitigated by formal
verification of smart contracts [31] and updating deployed
contracts [55]. HF, like any other permissioned blockchain,
is vulnerable to the compromise of the Membership Service
Provider (MSP) [54]. Potential solutions include using secure
hardware for registration and transactions [31], and monitor-
ing requests to detect potential attacks [55]. HF’s flexible
consensus protocols have distinct strengths and weaknesses.
[55] points out the vulnerability to Network Partitioning from
internal attackers affecting network routing, identifiable via

methods like BGP hijacking and DNS attacks. Its Gossip
protocol, essential for block delivery, is susceptible to Eclipse
attacks [54].

The attacks on HF defined in [16] have not been described
previously [56] and correspond to transaction reordering at-
tacks [26].

III. OUR ADVERSARY MODEL

In this section we define our adversary model. Fig.2 illus-
trates it following the approach from [4].

In our context, the adversary’s environment is the DS it aims
to harm. We formalize it as a set S of sub-systems. At any
given time, each sub-system s ∈ S has a certain state (defined
by e.g., the current values of its internal state variables) in a
state space Γs. The state space of the overall system, which
is the product of its sub-systems’, is Γ =

∏
s∈S Γs. At any

given time during its execution, the state of the DS is a certain
η ∈ Γ.

Assumptions Goals Capabilities
Environment (system & assumptions):

- Communication Model

- Failure Model

Resources (binding capabilities):

- Knowledge

- Fault-Tolerance thresholds

property

violation

- process discovery

- adaptation

- adversarial actions

Fig. 2: Our adversary model (adaptive adversaries underlined)

The goals of the adversary must be clearly defined so that
the success or failure of attacks can be ascertained. In the
following, we consider that goal to be to invalidate a property
ϕ of the system, and we denote it as a First Order Logic [57]
formula. Given a state η ∈ Γ of the system, the property can
be either satisfied (i.e. η |= ϕ) or not satisfied (i.e. η ̸|= ϕ).
Thus, the goal of the adversary is to lead the system to a state
η s.t. η ̸|= ϕ.

For instance, let us consider a DS S with two sub-systems
s1 and s2 which must agree on a value x stored as x1 in s1
and x2 in s2. Before agreement is reached, the value of x is
undefined which we may denote as x = ∅. After consensus,
the values of x1 and x2 must be the same. This safety property
of correct consensus can be described using ϕ = (x1 = ∅) ∨
(x2 = ∅) ∨ (x1 = x2). Given a state η ∈ Γ, in order to check
whether or not ϕ holds it suffices to verify that η(ϕ) (i.e.,
(η(x1) = ∅) ∨ (η(x2) = ∅) ∨ (η(x1) = η(x2))) holds.

The expressiveness of this approach is only limited by the
expressiveness of the language that is used to define ϕ and
the state variables of Γ. Both global and local variables can be
used. If the adversary has several goals we can use disjunctions
(resp. conjunctions) to signify that it suffices for one of these
to be (resp. requires that all of these are) fulfilled.

A. Adversarial actions

We propose in Fig.3a a novel classification of adversarial
actions. We name 7 types of actions, each one being illustrated
by a diagram on Fig.3. The process target of the action is

represented on the left, the other processes of the DS on the
right, and the adversary below them. The black horizontal
arrows represent message passing. The effects of the action
is represented in red.

Actions of type reveal and listen are passive actions.
While reveal allows the adversary to read an internal state
variable of a target process (e.g., the x variable on Fig.3c),
listen only allows reading incoming and/or outgoing mes-
sages (red arrows on Fig.3b). Because message buffers are
a specific kind of state variables, a listen action can be
performed via a reveal action. Hence, on Fig.3a, listen is a
subtype of reveal. listen actions can be further specialized
depending on the nature of the messages that are observed
e.g., whether they correspond to inputs, outputs or both (as
indicated by I/O/IO on Fig.3a).

In the real world, listen actions correspond to network
eavesdropping (also called sniffing or snooping), a common
vulnerability in open networks, particularly wireless ones as
discussed in [58]. reveal actions can mean access with
read permissions. It may also involve passive side-channels
attacks [14] where a process, despite being software secure,
leaks information (e.g., memory footprint, power consumption
etc.), or more active tampering with certain types of memory
scanning attacks [13] in which an attacker reads and interprets
memory addresses associated with a process.

While actions of type listen and reveal are passive (i.e.,
have no direct impact on system execution), those of types
send, delay, skip, stop and inject are active. send allows
the adversary to send messages to a target process (see Fig.3d),
which, combined with specific knowledge (see resources on
Fig.2), can be used to impersonate third parties (with e.g.,
knowledge of private keys). With stop, the adversary forces
a process to crash (terminate prematurely). With skip, it
prevents message exchange between the target and the rest of
the system. If skip concerns every messages, it is equivalent
(from the point of view of the system) to stop (hence on
Fig.3a, skip contains stop). delay makes so that message
exchanges with the target are slowed down. As a result, it
delays the reception of the messages that it receives and emits.
If the added delay is infinite, then delay is equivalent to skip.
In the real world, delay may be implemented via Denial
of Service [12]. inject modifies the behavior of the target
process either by forcing it to express a given behavior at a
given time or by changing the manner with which it reacts
to events (e.g., to incoming messages). This may realistically
correspond to code injection attacks [59] or the adversary
having user access to the target’s information system.

Network actions (hatched on Fig.3a) include actions of types
listen, send, stop, skip and delay because they may only
require tampering with the network environment and not the
with the target sub-system hardware or software directly.

B. Capabilities binding assumptions

The adversary’s assumptions (Fig.2) include a communica-
tion model and a failure model for individual processes. These
models bind the capabilities of the adversary as they do not

delay (I/O/IO)

skip (I/O/IO)

stop

send listen (I/O/IO)

reveal

inject

passive active network

(a) Classification

intercept
I/O/IO

messages

(b) listen action

reveal
internal

information

var x;
var y;
...

x

(c) reveal action

send a
message

(d) send action

X
terminate
a process

(e) stop action

X
X

delete
I/O/IO

messages

(f) skip action

add network
delay to
I/O/IO

(g) delay action

change the
behavior of
a process

if .. :
do ..

...

(h) inject action

Fig. 3: Adversarial actions

allow certain classes of adversarial actions. Fig.4 summarizes
these limitations.

It is always possible to perform reveal (and thus listen)
actions. The asynchronous communication model always en-
ables the unrestricted use of delay actions. While skip is al-
lowed under the omission failure model, only stop is available
under crash failures. Under both failure models and with the
synchronous communication model, the use of delay actions
is limited to the addition of a maximum delay δ so that the
total retransmission time (i.e., between the output o and the
input i) of the affected message does not exceed a certain
∆ time. Given t the retransmission time without intervention
from the adversary we hence have i−o = t+δ < ∆. Under the
eventually synchronous communication model, this condition
is only required after the GST (hence o ≥ GST on Fig.4).

Fail.

Comm.
Synch. Async. Event. Synch.

Crash
reveal

stop

delay

t + δ < ∆

reveal

delay

reveal

stop

delay

o ≥ GST ⇒ t + δ < ∆

Omission
reveal

skip

delay

t + δ < ∆

reveal

delay

reveal

skip

delay

o ≥ GST ⇒ t + δ < ∆

Performance reveal

delay

reveal

delay

reveal

delay

Byzantine inject inject inject

Fig. 4: Enabled actions w.r.t. assumptions

The adversary’s assumptions also include its knowledge,
which represents the information it possesses about the system.
This includes it being aware of the existence of the various
sub-systems that are part of the DS. In the case of an adaptive
adversary, which may update its plan of actions according to
new information, its capabilities can include process discovery.
Knowledge can directly bind adversarial capabilities when cer-
tain action requires specific knowledge (e.g., authentication).

We use the concept of resource limited adversary [10] to
bind the capabilities of the adversary w.r.t. FT thresholds.
We abstract away adversarial actions as a set A. Each action
a ∈ A has a target sub-system s(a) ∈ S, and a baseline cost
κ(a) ∈ K, where K is the ordered vector space in which
the budget of the adversary is represented. The adversary is
bound by a certain initial budget B ∈ K which limits its
capabilities. For instance, let us suppose the initial budget of
the adversary is the vector (fx, fy), representing the maximal
number of nodes it can infect on protocol x and resp. y. Then,
if an action ax involves sabotaging a node participating in
protocol x, we have κ(ax) = (1, 0) and the remaining budget
is (fx−1, fy) after performing ax. Because it might cost less to
target a sub-system that has already been victim of a previous
action, we consider a protection level function ψ ∈ KS (which
may vary during the simulation) to modulate this cost. Then,
given a current budget b ≤ B, the adversary can perform an
action a ∈ A if the associated cost is within its budget i.e., iff
κ(a)⊙ ψ(s(a)) ≤ b, with ⊙ the Hadamard product (element-
wise product). After performing this action, the remaining
budget is then b−κ(a)⊙ψ(s(a)). For instance, in our previous
example we have an initial protection level ψ(s(ax)) = (1, 1)
and therefore κ(ax)⊙ψ(s(ax) = (1, 0)⊙(1, 1) = (1, 0). After
having performed ax, the protection level for s(ax) becomes
ψ′(s(ax)) = (0, 1) and therefore performing another action a′x
on that same node w.r.t. protocol x (i.e., s.t., s(a′x) = s(ax))
has no cost (i.e., κ(a′x)⊙ ψ(s(a′x) = (1, 0)⊙ (0, 1) = (0, 0)).

C. System simulation and success of attack

Combining a model of the DS and of the adversary, we
can simulate attacks and test whether or not the adversary’s
goal is met. The simulation’s state at any time is given by
a tuple (η, b, ψ) where η ∈ Γ gives the current state of the
system, b ∈ K correspond to the remaining budget of the
adversary and ψ ∈ KS gives the current protection levels of
sub-systems (for each type of resource and each target sub-
system). Protection levels of individual sub-systems may vary
during the simulation for several reasons. It might cost less

to target a process that has already been victim of an action.
Inversely, the system might heal and reset the sub-systems’
protection level or apply countermeasures to increase it further.

We distinguish between two kinds of events: adversarial
actions in A and system events in E (which correspond to
the system acting spontaneously). Let us consider a relation
→E⊆ (Γ×KS)×E×(Γ×KS) s.t., for any (η, ψ)

e−→ (η′, ψ′),
η′ and ψ′ describe the state and protection levels of the system
after the occurrence of e ∈ E. Similarly, let us consider
→A⊆ (Γ×KS)×A×(Γ×KS). Then, the space of simulations
is the graph with vertices in G = Γ×K×KS and edges defined
by the transition relation ⇝⊆ G2 s.t.:

κ(a)⊙ ψ(s(a)) ≤ b (η, ψ)
a−→A (η′, ψ′)

attack
(η, b, ψ)⇝ (η′, b− κ(a)⊙ ψ(s(a)), ψ′)

(η, ψ)
e−→E (η′, ψ′)

exec
(η, b, ψ)⇝ (η′, b, ψ′)

Any simulation (1) starts from a node (η0, B, ψ0) where η0
is the initial state of the system, B is the initial budget of
the adversary and ψ0 gives the initial protection level of sub-
systems and (2) corresponds to a finite path (η0, B, ψ0)

∗
⇝

(ηj , bj , ψj) in graph G, its length j being related to the
duration of the simulation. To assess the success of the
adversary, we then check if and how property ϕ is invalidated
in that path.

IV. USE-CASE AND FAIRNESS PROPERTIES

A. Hyperledger Fabric system

A system using HyperLedger Fabric consists of a set of
subsystems S = Sc∪Sp∪So deployed over a network, where:

• Sc is a set of clients2, with |Sc| = m
• Sp is a set of peers, with |Sp| = n
• So is a set of orderers, with |So| = n′

Fig.5 roughly describes the behavior of such a system.
Clients may send transactions (denoted as x) to the peers,
which are tasked with endorsing them. Upon receiving a
transaction each peer pi may send a corresponding endorse-
ment with a cryptographic signature si. Once it has collected
“enough” endorsements (which depends on the HF system’s
endorsing policy parameterization), a client may then forward
its endorsed transaction to the orderers (with the corresponding
set of cryptographic signatures attesting its endorsement)

The orderers run a consensus algorithm to agree on the
order of endorsed transactions. It is possible to use Crash Fault
Tolerant algorithms in cases where the network is deemed safe
or Byzantine Fault Tolerant ones if this is not the case. In any
case, this allows orderers to order transactions in batches that
are called blocks.

For the Tendermint [20] BFT consensus algorithms, which
we will consider in the remainder of the paper, orderers may
successively take the role of a proposer, which proposes a
value for the next block of transactions ([x1, · · · , xu] on Fig.5).

2for the sake of simplicity, we do not distinguish between clients and the
applications through which they interact with HF

Fig. 5: Schematic behavior of HF

For honest proposers, the content of that block corresponds
to the set of endorsed transactions it has received up to that
moment and which have not already been put in a previous
block. As for the order of transactions within the block, it
corresponds to the local order with which that orderer received
them.

Hyperledger Fabric (HF) thus implements a Distributed
Ledger, and, more specifically, a non-revocable permissioned
Blockchain. We say that a transaction is delivered once it
has been put in a block. The delivery order of transactions
corresponds to the order with which they are delivered on and
within blocks. We may refer to the set of peers (resp. orderers)
as the “endorsing service” (resp. “ordering service”).

B. OF properties as evaluation metrics

In the following, we define several metrics that can be used
to monitor the effect of transaction reordering attacks on our
HF system. These metrics correspond to counting the number
of pairs of transactions (x, x′) for which specific OF properties
are violated.

In the case of HF, there is no single notion of “node”
because there is a distinction between peers and orderers.
Thus, the notion of “reception” can be interpreted in two
manners. Indeed, we can either consider the receptions of not-
yet endorsed transactions by the peers, or the receptions of
endorsed transactions by the orderers.

Let us consider properties OF β
α of the form: for any

transactions x and x′, if α(x, x′) then β(x, x′).

The premise of the property, which involves partial orders
between communication events, is represented by the α pred-
icate. We consider three variants : α ∈ {SND, EDS , ORD}. If
we have SND(x, x′), then the emission of x precedes that of
x′. If we have EDS(x, x

′) then, a majority of peers receive
an endorsement request for x before they do for x′. Finally,
if ORD(x, x′) then, a majority of orderers receive x with
sufficient endorsements before they do for x′.

The property’s right-hand side, represented by the β,
involves partial orders between the delivery events. We
consider two variants : β ∈ {DLV , BLC}. DLV (x, x

′)
(resp. BLC(x, x

′)) corresponds to x being delivered before
x′ (resp. x being delivered in a block that is either before that
or the same as the one in which x′ is delivered).

Let us remark that OFDLV

SND
corresponds to send-order

fairness, while OFDLV

EDS
and resp. OFDLV

ORD
correspond to

receive-order fairness from the perspective of the peers and
resp. the orderers. Because blocks in HF do not coincide
with Condorcet cycles, OFBLC

EDS
and resp. OFBLC

ORD
do not

correspond to the γ-batch-order fairness from [19] (which is
a generalization of the block-order fairness from [6]). Still,
counting the violations of OFBLC

SND
, OFBLC

EDS
and OFBLC

ORD
is

pertinent as, if one observes an increase of these numbers as
the adversarial power increases, this means that the adversary
pushes transactions x it front-runs into blocks after the one in
which the corresponding x′ is delivered.

C. Application layer & client fairness

Let us consider that several clients repeatedly compete to
solve puzzles. For a given puzzle k, a client c wins iff the
first delivered transaction that contains the solution of k was
sent by c. All clients having the same aptitude, the game is
client-fair iff every client has the same likelihood of winning,
which is 1/m where m is the number of clients. Let us denote
by g the total number of resolved puzzle competitions.

length of simulation

Fig. 6: Convergence of client-fairness score towards 1

As blocks are regularly delivered, g increases with the
length of the simulation, as illustrated on Fig.6 (in blue on the
right axis). For a client c, we denote by %g(c) the percentage
of games it has won during a simulation. The game is client-
fair if, for all clients c, the longer the simulation is, the more
%g(c) is close to 1/m. Via defining a client-fairness score
score(c) = %g(c)∗m, we obtain an independent metric, that

converges towards 1, as illustrated on Fig.6 (in red, on the left
axis) if the game is client-fair.

We consider the goal of the adversary to be to diminish
the likelihood for a target client c ∈ Sc to win puzzles. We
formalize this as the client-fairness property: ϕ(c) = (g >
5000) ∧ (score(c) < 0.75). This signifies that, the adversary
wins if, after more than 5000 competitions have been resolved,
the client’s score is less than 0.75.

Using this specific application use-case provides us with
an additional client-fairness score metric as well as a clear
goal for the adversary, which success can thus be measured.
Additionally, it is particularly convenient for quantifying the
number of OF violations. Indeed, counting the violations
amounts to comparing, for each pair of delivered transactions
x and x′, their delivery order and either the order of their
emission or the order of their reception in each of the peers or
orderers. If we consider X to be the total number of delivered
transactions, there are X ∗ (X − 1)/2 such pairs to consider.
Moreover, for our results to be statistically significant, we
need a high number k of puzzle games, which yields a large
number of transactions X = m ∗ k having m (the number
of clients) transactions per game. Thus, comparing reception
orders on every pair of transactions on every peer amounts to
n ∗m ∗ k ∗ (m ∗ k− 1)/2 comparisons, which quickly become
intractable. Thanks to our puzzle use-case, the order between
two transactions only matters if they concern the same puzzle
game as they may commute otherwise. Hence, we only need
to consider n ∗ k ∗m ∗ (m− 1)/2 comparisons.

D. Parameterization of the system

For the experiments, we consider the network described on
Fig.7. The peers (p1 to pn on the left) exclusively communicate
with the clients (c1 to cm in the middle). The orderers
(o1 to on′ on the right) communicate with the clients and
among themselves. Peer to peer communications is simulated
with no loss and delays for the transmission of individual
messages are sampled from a probability distribution denoted
as /. As recommended in [60], we consider hypoexponential
distributions for these delays and we bound the maximal value
a delay may take with a bound ∆, which corresponds to that
of a partially synchronous communication model [8] (in its
formulation without the GST, with ∆ not known by any of
the involved parties).

c1

··
·

cm

p1

pn

o1

on′

A

� �/

/

/

/

/

/

/

/

/

c Clients (m in total)

p Peers (n in total)

o Orderers (n′ in total)

Delay distributions:

A Constant � Poisson

/Hypoexponential

Fig. 7: Fabric network with delays

We suppose that puzzles are revealed at regular intervals,
represented by A on Fig.7, and that all clients are aware of
the puzzles at the same time. Any client can solve a puzzle
in a certain amount of time that is sampled from a Poisson
distribution, represented by � on Fig.7. We use the same �
distribution for all clients so that they all have the same ability
to solve puzzles.

Upon solving a puzzle, a client submits the corresponding
transaction to HF (via the peers and then the orderers). In our
use-case, the HF system also receives third party transactions
(that do not correspond to puzzle solutions) at regular intervals.
These heartbeat transactions simulate a concurrent usage of the
HF system by other applications (besides the puzzle game).

Fig. 8: The delay distributions

We consider three variants of the / delay distribution: one
with small delays denoted as / (in blue), another with medium
delays denoted as / (in green) and a third with large delays
denoted as / (in red). Fig.8 represents these distributions in
logarithmic scale.

The endorsing policy of HF is parameterized as follows:
for a transaction to be endorsed and forwarded to the ordering
service, it suffices to obtain at least n/2 endorsements from
distinct peers, n being the total number of peers.

Finally, we parameterize the cost of actions and the budget
B of the adversary so that it cannot apply adversarial actions
to more than (n′ − 1)/3 orderers (where n′ is the total
number of orderers) and n − n/2 peers. As a result, for the
ordering service, which runs Tendermint, we remain in the
hypotheses of Byzantine Fault Tolerance (below the one third
threshold). Likewise, for the endorsing service, the adversary
cannot guarantee censorship of the transactions.

V. BASIC ATTACK SCENARIOS

We consider several basic attack scenarios that can be
combined by the adversary to harm the target client c.

A. Peer sabotage

Peer sabotage consists in applying an inject action to
a peer so that it never endorses transactions from c. If the
adversary were to sabotage more than n/2 peers, it would

guarantee that no transactions from c are ever delivered be-
cause there are n peers and at least n/2 distinct endorsements
are required. However, sabotaging fewer peers still has an
effect, particularly in a slow network.

Let us indeed denote by t the time required for c to
receive an endorsement (for a given transaction) from any
given peer p ∈ Sp. We represent the probability of receiving
the endorsement from p before a certain timestamp z using
P(t < z). If we suppose all events to be independent (i.e., we
have i.i.d. variables) and have the same likelihood (i.e., peer
to peer channels of communications have equally probable
delays), for any honest peer p we may denote by X this
probability P(t < z). On the contrary, the endorsement from
p being received after t has a probability P(t ≥ z) = 1−X .

Among n trials, the probability of having exactly k ≤ n
peers endorsing the transaction before timestamp z is:

P(k endorsement < z) =

(
n

k

)
∗Xk ∗ (1−X)n−k

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X = P(t < z) for all honest peer p

Y
=
P
(a

t
l
e
a
s
t
n
/
2

e
n
d
o
r
s
e
m
e
n
t
s
<
z
)

b sabotaged peers

b = 0
b = 1
b = 2
b = 3
b = 4
b = 5
b = 6
b = 7
b = 8

Fig. 9: Theoretical effect of peer sabotage (for n = 20)

Sabotaged peers never endorse transactions (we always have
X = 0 for any timestamp z) and can therefore be ignored
when counting the numbers of endorsements. Therefore, given
b ≤ n/2 the number of sabotaged peers, the probability Y of
having at least n/2 endorsements from distinct peers before z
is:

Y =

n−b∑
k=n/2

(
n− b
k

)
∗Xk ∗ (1−X)n−b−k

On Fig.9, we plot this probability Y w.r.t. X which
corresponds to the probability P(t < z) for honest peers.
On this plot, we consider a system with n = 20 nodes,
n/2 = 10 endorsements being required. We can see that
the more peers are sabotaged, the smaller is the probability
of collecting enough endorsements before timestamp z. We
conclude that, infecting a minority of peers statistically delays
the endorsement of transactions from c. This delay might in
turn be sufficient to force these transactions into later blocks
in comparison to transactions from other clients emitted at the
same time.

B. Orderer sabotage

Wining a puzzle requires a solution-carrying transaction to
be ordered in a new block. For this purpose, Tendermint [20]
consensus instances are regularly executed by the orderers.
Tendermint is based on rounds of communications, each
one corresponding to an attempt to reach consensus. These
attempts rely on a proposer to PROPOSE a new block, which
will then be voted upon.

The adversary can sabotage an orderer via an inject action
to force it not to include transactions from c whenever it
proposes a new block. Because there are unknown delays
between emissions and corresponding receptions (which might
be arbitrary in the asynchronous communication model, or
bounded in the synchronous and partially synchronous com-
munication models), and because some messages might even
be lost (depending on the failure model) it is impossible for
the other orderers to know whether these transactions were
omitted on purpose or because they have not been received
at the moment of the proposal (guaranteeing the discretion of
the attack).

If there are sabotaged orderers, the likelihood of transac-
tions from c to be included in the next block diminishes,
thus negatively impacting its client-fairness score. However,
because the proposer generally isn’t the same from one round
to the next, infecting less than f ′ = (n′ − 1)/3 orderers
cannot reduce the score to 0 i.e., total censorship is not
possible. Yet, because orderers (as Tendermint [20] is used)
require 2 ∗ f ′ + 1 PRECOMMIT messages to order a block,
if the adversary sabotages more than f ′ orderers and makes
so that these orderers do not PREVOTE and PRECOMMIT
blocks containing transactions from c, then, total censorship
is possible.

VI. SIMULATIONS OF THE ATTACKS

Using MAX [17], we have simulated attack scenarios which
are combinations of basic attacks from Sec.V. In these attacks,
the adversary attempts to reduce the fairness score (as defined
in Sec.IV) of a specific client. To do so, it infects a minority
of peers and/or orderers.

For the simulations of this section, we consider m = 3
clients, n = 25 peers and n′ = 25 orderers (in Sec.VIII-B, we
consider additional simulations, varying m, n and n′). To be
endorsed, a transaction requires 12 endorsements from distinct
peers. We use an arbitrary unit of time denoted as “tick” in our
discrete time simulations. Heartbeat transactions are submitted
every 20 ticks. A new puzzle is revealed every 200 ticks and
the � Poisson distribution which determines the time required
by a client to solve a puzzle has a mean of 75 ticks. The
Tendermint consensus is parameterized so that empty blocks
can be emitted and the timeout for each phase is set to 1500
ticks. In every simulation 5000 puzzles are revealed and the
duration of the simulation is 1 200 000 ticks (we wait 200 000
ticks after the last puzzle is revealed so as to guarantee very
puzzle to be solved). The details of the experiments and the
means to reproduce them are available at [61].

We vary the following parameters : (1) the / delay
distribution, which can either be small (/ in blue), medium
(/ in green) or large (/ in red), (2) the proportion of infected
peers (between 0% and 50%) and (3) the proportion of infected
orderers (between 0% and 33%).

For each simulation, we measure 9 metrics : the numbers
of OFDLV

SND
, OFBLC

SND
, OFDLV

EDS
, OFBLC

EDS
, OFDLV

ORD
and OFBLC

ORD

violations, the client-fairness score(c) of the target client c,
the total number of blocks that is delivered and a measure on
the observed distribution of the sizes of the blocks (the third
quartile).

A. Analysis of the results

a) Diagrams presentation.: Fig.10 focuses on the effect
of the attack on the endorsing service (i.e., the effect of the
adversary infecting increasingly more peers). The 9 diagrams
on Fig.10 plot our 9 metrics on the vertical axis, with, on
the horizontal axis, the proportion of peers that are infected
by the adversary. In each diagram, we have 9 curves, which
correspond to 9 combinations of parameters. Each curve has
13 data points, which correspond to infecting between 0 and 12
peers. Thus, Fig.10 reports metrics collected from 117 distinct
simulations.

As indicated in the legend, the three blue (resp. green
and red) curves correspond to simulations in which the small
(resp. medium and large) delay distribution / (resp. / and
/) is considered. The shape of the points and style of the
lines correspond to proportions of infected orderers (0%,16%
or 32%), highlighting the effect of combining peer and orderer
sabotage.

The six diagrams on the left correspond to the number of
violations of our six OF properties. These six diagram share
the same scale on the vertical axis. The 3 diagrams on the
right report on the score(c) metric of the targeted client c as
well as the total number of blocks that have been delivered
and their size (we report the third quartile of the observed
distribution of the size of the blocks as it is more stable and
is not too much biased by the presence of empty blocks).

b) Discussion on peer sabotage.: We observe that, when
no peers and no orderers are infected (at horizontal position
0, for the plain line curves), the score of the target client
(i.e. the proportion of puzzles it has won, relative to the total
number of puzzles (∼ 5000) and the total number of clients)
stays around 1 which is expected as per Fig.6.

As discussed in Sec.V-A, peer sabotage statistically delays
the endorsement of transactions from the target client. Because
collecting sufficiently many endorsements for these transac-
tions is delayed, their delivery is likely to be delayed as well,
resulting in other clients being more likely to win puzzle
games. Experimentally, this effect is observed on Fig.10,
especially on the diagrams corresponding to the score and
OFDLV

EDS
metrics. Indeed, we observe that, as the proportion

of infected peers increase, the score decreases and the number
of receive-order fairness violations w.r.t. the instants at which
peers receive the transactions increases. The attack is quite
successful, as the score almost reaches 0 (meaning the target

OF
DLV
SND

violations OF
DLV
EDS

violations OF
DLV
ORD

violations Legend # of blocks

■ Small delays /

■ Medium delays /

■ Large delays /

% of infected orderers :

0%

16%▲

32%■

OF
BLC
SND

violations OF
BLC
EDS

violations OF
BLC
ORD

violations score 3rd quartile size of blocks

Fig. 10: Varying the number of infected Peers

client almost never wins) when the proportion of infected peers
comes closer to the threshold (which is 50% in our use-case,
having a majority endorsing policy).

This statistical delay, because it is correlated to Y on
Fig.9, depends on the distribution of the communication delays
between the peers and the clients, which corresponds to either
the blue / (small delays), green / (medium delays) or red
/ (large delays) from Fig.8 and is correlated to X on Fig.9.
Indeed, with higher communication delays, the likelihood
that an honest peer receives an endorsement before a certain
timestamp, which corresponds X on Fig.9, decreases. At lower
values of X , the values of Y are also lowered.

On Fig.10 this translates into having, at a fixed proportion
of infected peers (i.e., horizontal position), a lower score for
larger delays. Indeed, if we look at, e.g., the top three curves
on the score diagram, we observe that the score is higher
in the case of the small delays /. For OFDLV

EDS
, we observe

that the baseline number of OFDLV

EDS
violations (whether or not

peers are infected) is higher at higher values of delays. This is
due to the fact that larger randomly sampled delays are more
likely to cause endorsed transactions to be mis-ordered due
to overtaking in communications from the peers to the clients
and then from the clients to the orderers. Also, the number
of violations tends to increase as more peers are infected and
this increase is sharper for the smaller delays (at larger delays
there are already many naturally occurring violations so the
effect of the adversary is less noticeable). Similar remarks may
be made w.r.t. OFBLC

EDS
.

As for OFDLV

ORD
, we also observe a higher number of

violations at higher delays. However, an increase in the
proportion of infected peers results in a decrease in the
number of OFDLV

ORD
violations. Indeed, unlike OFDLV

EDS
which

is defined w.r.t. the instants at which peers receive transactions,
OFDLV

ORD
is defined w.r.t. the instants at which orderers receive

endorsed transactions. Infecting peers results in tampering
with the delivery order but also with the order with which
orderers receive endorsed transactions (the attack targeting the
endorsing service which is upstream w.r.t. the orderers). Thus,
the attack does not yield an increase in OFDLV

ORD
violations.

On the contrary, it makes so that there is less competition
between transactions from the target client and the other
clients. Indeed, because delayed transactions are more likely
to be both received and ordered after those of the other clients
for the same puzzle, there are less risks of OFDLV

ORD
violations,

having less pairs of transactions susceptible to cause such
violations. Interestingly, in our simulations we have three
clients, and, after neutralizing the target client on the endosring
service, the number of OFDLV

ORD
violations roughly decreases

by two thirds. Similar remarks may be made w.r.t. OFBLC

ORD
.

Concerning OFDLV

SND
, the effect of the attack is not notice-

able. It may be so that the non-determinism of the network
already saturates the number of violations. However, even
if there still is some noise, we can observe an increase in
OFBLC

SND
violations with the proportion of infected peers. The

statistical delay caused by peer sabotage is indeed likely to
force transactions from the target client into later blocks, which
is observable when considering OFBLC

SND
.

Finally, at higher delays, there are less blocks but these
blocks are bigger. Infecting peers do not have a noticeable
effect on the number and size of blocks, as the ordering service
is not directly tampered with.

c) Discussion on orderer sabotage.: Fig.11 reports on
81 simulations (having 9 curves, and 9 data-points per curve)
that focus on the effect of infecting orderers. The diagrams of
Fig.11 are similar than those of Fig.10, the main difference
being that the horizontal axes rather correspond to the propor-
tion of infected orderers. Also, the shape of points and style
of the lines correspond here to proportions of infected peers

OF
DLV
SND

violations OF
DLV
EDS

violations OF
DLV
ORD

violations Legend # of blocks

■ Small delays /

■ Medium delays /

■ Large delays /

% of infected peers :

0%

24%▲

48%■

OF
BLC
SND

violations OF
BLC
EDS

violations OF
BLC
ORD

violations score 3rd quartile size of blocks

Fig. 11: Varying the number of infected Orderers

(0%, 24% and 48%), highlighting the combined effect of both
attacks.

Staying below the Byzantine threshold, we observe a mod-
erate but still significant impact the more orderers are infected.
When no peers are infected (plain curves on Fig.11), the
diminution of the score is directly correlated to the proportion
of infected orderers (e.g., 30% of infected orderers yields a
diminution of the score of around 30%). This is expected
as it corresponds to the likelihood that an infected orderer is
chosen as proposer. In contrast to peer sabotage, we observe
that the violations of both OFDLV

EDS
and OFDLV

ORD
increase

with the number of infected orderers. Indeed, this attack
tamper with the delivery order but has no effect on the order
of reception of transactions, w.r.t. neither the peers nor the
orderers. Therefore its effect can be observed on violations of
receive-order fairness w.r.t. both the peers and the orderers.

We also remark that unlike peer sabotage, which has no
noticeable effect on the number and size of blocks, this is not
the case for orderer sabotage. When there are more infected
orderers, the number of blocks diminishes non-linearly in
a S-shape sigmoid (top right diagram of Fig.11). Also, the
likelihood that some blocks are quite big increases before
decreasing again (bottom right diagrma of Fig.11). This can
be explained as follows : when there is a small proportion of
Byzantine orderers, the mean time required for consensus to
be reached increases as these orderers will not send PREVOTE
and PRECOMMIT messages for blocks that contain transac-
tions from the target client. Because a majority of nodes are
honest, a majority of these blocks are likely to contain such
transactions. As a result, the overall rate at which blocks are
delivered diminishes. In turn, this lead to bigger blocks as
transactions accumulate in each orderer’s local mempool. In
turn, these bigger blocks are more likely to contain transactions
from the target client (simply because they contain more

transactions, collected during a larger span of time). Thus
the proportion of blocks which agreement are slowed by
the Byzantine nodes increases, which further increases the
overall diminution in the rate at which blocks are delivered.
This explains the sharp decrease part of the non-linear effect
(center of the sigmoid). As the proportion of infected orderers
further increases, this increase in the likelihood that new
block proposals contain transactions from the target client is
counterbalanced by the fact that proposers are more likely to
be Byzantine themselves and therefore that their proposal do
not include such transactions. This then explains the last part
of the non-linear effect (end of the sigmoid). This discussion
also explains what is observed w.r.t. the 3rd quartile in the
size of blocks. Indeed, when most block proposals include
transactions from the target client, the rate at which blocks
are delivered diminishes, which results in bigger blocks, more
transactions accumulating in the orderers’ mempools. Once
the proportion of infected orderers is past a certain point, the
likelihood that block proposals contain transactions from the
target client diminishes again, leading to smaller blocks.

Now that we have understood the side effect orderer sabo-
tage has on the number and size of blocks, we can take a look
at the number of OFBLC

SND
, OFBLC

EDS
and OFBLC

ORD
violations.

Byzantine orderers do not include transactions from the target
client in their block proposals. This trivially causes an increase
in the number of OFBLC

SND
, OFBLC

EDS
and OFBLC

ORD
violations. On

Fig.11, this is particularly noticeable for OFBLC

ORD
(see plain

curves, with no infected peers). However, the aforementioned
side effect on the size of blocks creates an inflection point
in the curves (this is especially visible for OFBLC

SND
). As the

proportion of infected orderers increases, the average size
of the blocks increases before decreasing again. With bigger
blocks, the likelihood of violating OF defined w.r.t. the partial
order in which transactions are included into blocks decreases.

This explains why both OFBLC

SND
and OFBLC

EDS
decrease before

increasing again.
d) Combining peer and orderer sabotage.: On both

Fig.10 and Fig.11, we have information related to the com-
bined effect of peer and orderer sabotage in the form of the
dotted and dashed curves. We observe that the more there are
infected peers and orderers, the more the score decreases.
However, there are diminishing returns between the number
of infected peers and orderers. Indeed, on Fig.10, when the
proportion of infected peers is low, the infection of orderers
has a significant effect on the score. However, closer to 50%
of infected peers, we can see that there is few to no advantage
in infecting additional orderers below the BFT threshold. Yet,
overall, it seems that infecting peers is more efficient than
infecting orderers, especially when network delays are large.
This is particularly visible on the score diagram of Fig.11.

VII. A MITIGATION MECHANISM

The experiments presented in Sec.VI suggest that HF is
particularly vulnerable to transaction reordering attacks. In this
section, we propose a simple mitigation mechanism to make
HF more robust to such attacks. In this context, improving
robustness amounts to modifying the protocol so as to reduce
the ability of the adversary to increase the number of OF
violations (for our specific use-case, this would also limit the
ability of the adversary to reduce the score).

In the following, we focus on reducing the number of
OFDLV

EDS
violations. Indeed, it is not actually possible to

consider a total order of send events across distant clients (as
we have seen in Sec.II, upholding send-order fairness remains
an open problem [6]) and reducing OFDLV

EDS
violations would

be more efficient than reducing OFDLV

ORD
(as the reception

orders on peers are likely closer to the send order than the
reception orders on the orderers are).

Let us recall that receive-order fairness (which is the
strongest OF defined w.r.t. receptions) is impossible to uphold
[6]. As a result, our mitigation mechanism may, at most,
reduce the number of violations (it cannot prevent all pairs
of transactions to violate OFDLV

EDS
, as HF must output a total

order on transactions).
Let us also recall that batch-order fairness [19] (block-order

fairness in [6]), ignores part of the problem by excluding pairs
of transactions that are in the same Condorcet cycle. Because
we are considering OFDLV

EDS
, and because a total order must be

agreed upon, mechanisms adapted from algorithms that uphold
a form of batch-order fairness (see [6], [19], [15]) may not be
adapted.

Our goal of “reducing the number of OFDLV

EDS
violations” is

rather related to the notion of “bounded unfairness” from [37].
However, we have seen in Sec.II-C that finding a total order
that minimizes the unfairness amounts to a NP-Hard problem.
Practical solutions to that problem can only be approximate
heuristics. Our mitigation mechanism is one such practical
solution.

A. Description of the mechanism

Let us recall that, as described on Fig.5, the endorsement
of a transaction corresponds to collecting a quorum of sig-
natures (denotes as {sk1

, · · · , skj
} on Fig.5) from the peers.

Upon receiving a sufficient number of signatures, a client
may forward its transaction to the orderers. Concurrently, the
orderers participate in repeated instances of consensus. Upon
receiving an endorsed transactions, an orderer puts it in its
local mempool. As a result, transactions can be progressively
delivered.

Fig. 12: Example scenario

Fig.12 describes a simple scenario in which we focus on
the lifecycle of two transactions x1 and x2. In this simplified
system we consider that there are three peers and that the
endorsement policy is such that all of them must endorse a
transaction for it to be ordered. In our scenario, x1 is sent
before x2. However, while p1 and p2 do receive x1 before
x2, p3 receives x2 before x1. Once the corresponding has
received the 3 endorsements (represented by the signatures
s1-1, s2-1 and s3-2) for x1, it forwards it to the orderer. The
same thing occurs for x2. There are a number of orderers that
participate in repeated instances of (Tendermint) consensus.
On Fig.12 only two of them : o1 and o2 are represented. The
Tendermint protocol is continuously executed concurrently
w.r.t. the endorsing process. On the right of Fig.12, the grey
squares roughly represents the spans of time taken to resolve
an instance of consensus. On Fig.12, we can see that both
o1 and o2 (and we suppose this is the case for all the other
orderers) receive the endorsed x1 and x2 during the vote of
block 3. Supposing the vote is resolved at round 0, neither
x1 not x2 will be included in block 3. Later on, when the
consensus instance for block 4 starts, the proposer selected
for the first round of that instance may then include x1 and
x2 in its proposal for block 4.

Let us then suppose that the proposer for the first round of
the consensus instance for block 4 is either o1 or o2. Let us
also suppose that both of them are honest and, in particular,
that they have no interest in manipulating the relative delivery

order of x1 and x2. The default mempool implementation
in Tendermint is a thread-safe FIFO queue3. As a result, if
o1 is the proposer, it will propose a block in which x1 is
ordered before x2, having received the endorsed x1 before
x2. However, if o2 is the proposer, its block will order x2 first
(for the same reason). Thus, if o2 is the proposer, OFDLV

EDS
will

be violated for the pair (x1, x2), a majority of peers having
received x1 before x2.

Our mitigation mechanism prevents such scenarios from
occurring without any communication overhead and a slight
computation overhead. We propose that each peer maintains
a local counter that keeps track of the total number of
transactions it has endorsed. When endorsing a transaction,
a peer piggybacks the current value of its local counter in
its endorsement message (the signature authenticating this
value) and increments the counter. Then, when the client has
received sufficiently many endorsements, the set of signatures
({sk1

, · · · , skj
} on Fig.5) that it sends to the orderers includes

information about the local orders in which individual peers
endorsed it.

As a result, whenever an orderer is selected to propose a
block and has to propose a new value for that block, it may use
this information as a guide in order to determine the order of
the transactions within that block. In our case, let us consider
that o2 is the proposer and has exactly two transactions :
x1 and x2 in its mempool at the moment it is selected to
propose a block. o1 knows that x1 has {s1-1, s2-1, s3-2} as set
of endorsements and also knows that s1-1 (resp. , s2-1 and s3-2)
implies that x1 is the first (resp. first and second) transaction
endorsed by p1 (resp. p2 and p3). Similarly, o2 infers that
x2 is the second (resp. second and first) transaction endorsed
by p1 (resp. p2 and p3). As a result, the orderer can infer a
set of 3 ballots, one for each peer, that indicate their ranked
preferences as for the ordering of the transactions.

Type Key ; /* public key*/

Type Tx ; /* endorsed transaction*/

Input peers : Set⟨Key⟩; /* peers’ keys set*/

Input pool : Set⟨Tx⟩; /* orderer’s local mempool*/

localOrders :Map⟨Key,Map⟨Int, Tx⟩⟩ ← {};
for x ∈ pool do

for s ∈ sigs(x) do
localOrders.addOrInsert(s.key, s.idx, x);

end
end
ballots : Set⟨List⟨Tx⟩⟩ ← {};
for (p, loc) ∈ localOrders do

ballot← loc.values().sortByKeys();
ballots.add(ballot);

end
return ballots;
Algorithm 1: Extracting ballots from order metadata

Alg.1 details the process of extracting ranked preferences
in the ordering of transactions from the orderer’s mempool

3see https://github.com/tendermint/tendermint/discussions/6295

for each peer. These preferences are extracted from the order-
related metadata that is piggybacked on the endorsements of
each transaction. This yields a set of ballots (one per peer)
that may then be used to determine a total order between
the transactions that are currently present in the orderers’
mempool. Each ballot consists of a list of transactions in the
order in which the corresponding peer has endorsed them. In
our example from Fig.12 the ballots for p1 and p2 are both
[x1, x2] and the one for p3 is [x2, x1]. However, let us remark
that, depending on the endorsing policy, each transaction may
only be endorsed by a fraction of the nodes. As a result, ballots
may be of different lengths. In our example, if we had a fourth
peer p4, its ballot would be the empty list as it endorsed neither
x1 nor x2.

In any case, this set of ballots may then be used by the
orderer to compute a total order. A wide variety of voting
algorithms may be applied to that end. Our only two require-
ments for choosing one such algorithm is that it is compatible
with ranked ballots [62] and that voting allows establishing an
ordered list of winners.

B. Selection of the voting algorithm

Algorithms that satisfy our two requirements include the
following three families: positional voting (e.g., Borda count,
Dowdall system), Condorcet voting (e.g., Copeland’s method,
Tideman’s Ranked Pairs, Kemeny-Young method) and runoff
voting (e.g., Nanson’s and Baldwin’s methods) [62].

Positional voting would consist here in computing scores
for each transaction based on their indices in each ballot and
ordering them according to these scores. Positional voting
algorithms generally have a O(n ∗X) time complexity where
n is the number of peers (and therefore of ballots) and X is the
number of transactions (and therefore the size of the block).
These algorithms generally uphold monotonicity (increasing
the rank of a transaction in some ballots should not cause a
decrease in its overall ranking).

Condorcet voting would consist here in reasoning on each
transaction’s pairwise wins and losses, a transaction winning
against another if a majority of peers ranks it higher. Such
algorithms have at least a O(n2 ∗X) time complexity. They
also uphold the Condorcet criterion, which, in our case, is
particularly interesting to minimize OFDLV

EDS
violations.

Runoff voting consists in determining a single winner or
loser, removing it from the set of candidates and repeating
the process until no candidate is left. Some runoff voting
algorithms satisfy the Condorcet criterion (e.g., Nanson’s and
Baldwin’s methods which eliminate candidates below the
average Borda score) and others do not (e.g., Bucklin, which
reasons on the highest median ranking). Their time complexity
also varies.

There are many parameters one ought to consider when
choosing a specific voting algorithm for the orderers. Voting
criteria such as the Condorcet criterion or the Majority cri-
terion might be considered so as to reduce the probability to
violate OFDLV

EDS
. However, this is not the only parameter to

consider. Indeed, proposing a new block is in the critical path

https://github.com/tendermint/tendermint/discussions/6295

■ Small delays /

■ Medium delays /

■ Large delays /

Without mitigation

With mitigation▲

(a) Legend

OF
DLV
EDS

violations OF
DLV
ORD

violations

OF
BLC
EDS

violations score

(b) Effect on peer sabotage

OF
DLV
EDS

violations OF
DLV
ORD

violations

OF
BLC
EDS

violations score

(c) Effect on orderer sabotage

Fig. 13: Effects of the mitigation mechanism

of the HF process. Choosing an algorithm with a high time
complexity could negatively impact latency. Given a block h
of a certain size, determining the order of transactions within
the block takes more time with one such algorithm. Moreover
as the consensus for block h takes a long time, the next
block proposal for block h + 1 may likely contain numerous
transactions (which have accumulated in the next proposer’s
mempool during the time it took to reach consensus for block
h). As a result, the consensus for block h+ 1 may take even
more time and so on.

Another important aspect to consider is that of the manipu-
lability of the algorithm [62], [63]. Indeed, an adversary may
attempt to change the outcome of the election (and therefore
the order of transactions within the next block) by coordinating
the peers and clients it controls so as to manipulate the
content of some ballots. For instance, the peers it controls
could assign high (resp. low) indices to transactions that the
adversary wants ordered first (resp. last). As for the clients
it controls, they could carefully select the subsets of required
endorsements that are forwarded to the ordering service (thus
manipulating the ballots more directly). However, to do so,
the adversary must, in a timely manner, (1) predicts which
transactions are likely to be part of the next block (i.e., predict
the set of candidates), (2) compute a “manipulation” that
would yield an order it wants to favor (the term “manipulation”
having a formal meaning in e.g., [63]), (3) predict how to
coordinate the peers and clients it controls so as to perform
this manipulation of the ballots and (4) communicate with
these peers and clients in a timely manner to coordinate them.
Fortunately, as discussed in [63], the problem of computing
a “manipulation” is NP-Hard for a variety of positional and
runoff voting algorithms (Borda, Nanson, Baldwin). As a re-
sult, it is highly unlikely that an adversary may succeed except

if there is very few ballots (i.e., the endorsing service has only
a few peers and/or the endorsing policy only requires a few
endorsements) and candidates (the block proposal contains few
transactions) or if it has complete control over the network
under an asynchronous communication model.

In this paper, we do not recommend any specific voting
algorithm. Still, simple positional voting algorithms such as
Borda and Dowdall are interesting as they have a low time
complexity and are difficult to manipulate in a timely manner
(as per [63]). Let us also remark that, in another context,
[30] uses Tideman’s Ranked Pairs to order transactions within
Condorcet cycles. However, the O(n3) time complexity of
Ranked Pairs may be problematic for latency.

VIII. ADDITIONAL SIMULATIONS

A. Effect of the mitigation mechanism

We use MAX [17] to evaluate the effectiveness of the
mitigation mechanism described in Sec.VII in making our HF
system more robust to the attacks performed by the adversary.
For our experiments, the orderers use the Dowdall positional
voting algorithm to order transactions. We otherwise keep the
same experimental setting as that of Sec.VI.

Fig.13 summarizes our experimental results. In each dia-
gram, the plain (resp. dotted) curves correspond to simulations
without using (resp. that use) the mitigation mechanism.
Overall, the number of OFDLV

EDS
violations is smaller when

using the mechanism (at any proportion of infected peers and
orderers and under any network condition), which was its
purported goal (it being defined as a vote on the ordering
preferences of the peers).

However, the mechanism might increase the number of
OFDLV

ORD
violations in certain cases. On Fig.11, using the

mechanism causes a decrease under the smaller delays /

legend OF
DLV
EDS

violations OF
DLV
ORD

violations score w.r.t. peer sabotage score w.r.t. orderer sabotage

■ m = 3

of clients m:

■ m = 4

■ m = 5

no mitigation

mitigation▲

Small Delays

Large Delays

■ n = 25

of peers n:

■ n = 35

■ n = 45

no mitigation

mitigation▲

Small Delays

Large Delays

■ n′ = 25

of orderers n′:

■ n′ = 31

■ n′ = 37

no mitigation

mitigation▲

Small Delays

Large Delays

Fig. 14: Effects of varying the number of clients, peers, and orderers

in blue but an increase under the larger delays / in red.
Indeed, when network delays are particularly high and random,
the order with which orderers receive endorsed transactions
might not be correlated to the order with which peers receive
transactions. Using the mechanism replaces the default FIFO
order on the orderers’ local mempools by an order that is
computed according to the preferences of the peers. If we
recall our example from Fig.12, under high network delays
it may be so that a majority of orderers receive x2 before
x1, even though a majority of peers received x1 before x2.
As a result, using the default FIFO order would result in
a violation of OFDLV

EDS
and complying with OFDLV

ORD
while

using the mitigation mechanism would result in complying
with OFDLV

EDS
and a violation of OFDLV

ORD
.

On Fig.13b, we remark that the mitigation mechanism
has a protective effect against the attack on the endorsing
service, especially under smaller network delays. Indeed, when
using the mitigation, the decrease of the score with the
number of infected peers is less pronounced. This protection
is less visible against the ordering service attack except under
smaller delays. Still, as peer sabotage is more efficient than
orderer sabotage, overall, using the mechanism should prove
advantageous.

B. Varying the numbers of sub-systems

In Sec.VI and Sec.VIII-A, we considered n = 25 peers,
n′ = 25 orderers and m = 3 clients and we varied the number

of Byzantine peers (resp. orderers) between 0 and 12 (resp. 0
and 8) so that their proportion varies between 0% and 50%
(resp. 0% and 33%). As we need long simulations to make the
score converge, considering higher numbers of participants
involves costly simulations. These arbitrary values for n, n′

and m were chosen so as to make the experiments reproducible
without a prohibitive computational cost. In the following, we
show that our results and remarks still hold when varying n,
n′ and m.

The first line of Fig.14 summarizes results from 264 distinct
simulations, varying the number of clients m from 3 to
5. While the three diagrams on the left correspond to 156
simulations, varying the number of infected peers between 0
and 12 on the horizontal axis, the one on the right corresponds
to 108 simulation, varying the number of infected orderers
between 0 and 8 on the horizontal axis. We observe that the
number of violations increases with m, as there are more
pairs of non commutative transactions to consider. Still, we
observe the same effect as in Sec.VI w.r.t. the power of
the adversary : increasing the proportion of infected peers
increases the number of OFDLV

EDS
violations and decreases

the number of OFDLV

ORD
violations. Also, the effectiveness of

the attack increases w.r.t. the number of clients m, which is
expected, as slowing down the delivery of the transactions
from the target clients is more likely to make that client loose
if it has more competitors. As previously, we also remark
that larger delays make the system more vulnerable while

the mitigation mechanism makes it more robust. Similarly,
modifying m does not significantly change the effect of orderer
sabotage.

The second line of Fig.14 summarizes results from 324
distinct simulations with the number of peers n being either
25, 35 or 45. We remark that the number of OFDLV

EDS
violations

decreases with n. Indeed, increasing n reduces the variance
of the time taken to obtain n/2 endorsements. However,
increasing the proportion of infected peers still lead to an
increase in OFDLV

EDS
violations. Overall the effect of peer

sabotage and orderer sabotage is not impacted by modifying
n. Also, the effect of the delay distribution and the mitigation
system does not depend on n.

Finally, the third line of Fig.14 reports results of 288
simulations with the number of orderers n′ being either 25, 31
or 37. Likewise, modifying n′ does not change the effect of
peers sabotage, orderer sabotage, of the distribution of delays
or of the mitigation system.

IX. CONCLUSION

In [16], we have introduced a novel adversary model tailored
to distributed systems and blockchain technologies. The adver-
sary operates by performing actions that are bound by a failure
and a communication model. Chaining such actions, it exe-
cutes attacks within predefined fault-tolerance thresholds. This
approach facilitates a more direct and fine-grained integration
of adversarial behavior in practical scenarios. Furthermore,
by integrating this adversary model into a multi-agent-based
simulator, we enable the simulation of realistic adversarial
attacks. We applied our approach on an HF-based blockchain
system, simulating several attacks on a client-fairness property
while evaluating their side effects on several order-fairness
properties.

This present paper extends the study from [16] via consider-
ing more realistic network assumptions (e.g., hypoexponential
delay distributions [60]) and a wider range of metrics. We
also propose a novel mitigation mechanism (with no overhead)
to make HF more robust to transaction reordering attacks
[26]. we extend our simulation study to this mechanisms to
demonstrate its protective effect, in particular against peer
sabotage. Finally, we vary additional simulation parameters
to comfort our results. Varying the number of clients, peers
and orderers do not call into question the effect of the attacks
from [16] and of our mitigation mechanism.

Our study thus highlights the vulnerability of HF to trans-
action reordering attacks. Although achieving order fairness
is not realistic (as discussed in Sec.II-C and in [37]), simple
mechanisms can be put in place to mitigate this vulnerability.

REFERENCES

[1] S. Chen and Q. Song, “Perimeter-based defense against high bandwidth
ddos attacks,” TPDS, 2005.

[2] D. Dolev and A. Yao, “On the security of public key protocols,”
Transactions on information theory, 1983.

[3] Barbosa et al., “Sok: Computer-aided cryptography,” in Symposium on
Security and Privacy, 2021.

[4] Q. Do, B. Martini, and K.-K. R. Choo, “The role of the adversary model
in applied security research,” Computers and Security, 2019.

[5] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,”
Distrib. Comput., 1987.

[6] M. Kelkar et al., “Order-fairness for byzantine consensus,” in CRYPTO,
2020.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” 1985.

[8] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” 1988.

[9] F. B. Schneider, What Good Are Models and What Models Are Good?
ACM Press, 1993.

[10] A. Teixeira et al., “A secure control framework for resource-limited
adversaries,” Automatica, 2015.

[11] T. Guggenberger et al., “An in-depth investigation of the performance
characteristics of hyperledger fabric,” Computers & Industrial Engineer-
ing, 2022.

[12] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for
classifying denial of service attacks,” in SIGCOMM, 2003.

[13] M. Shimamura and K. Kono, “Yataglass: Network-level code emulation
for analyzing memory-scanning attacks,” in DIMVA, 2009.

[14] R. Spreitzer et al., “Systematic classification of side-channel attacks: A
case study for mobile devices,” COMST, 2018.

[15] C. Cachin et al., “Quick order fairness,” in Financial Cryptography and
Data Security, 2022.

[16] E. Mahe, R. Abdallah, S. Tucci-Piergiovanni, and P.-Y. Piriou,
“Adversary-augmented simulation to evaluate order-fairness on hyper-
ledger fabric,” in 13th Latin-American Symposium on Dependable and
Secure Computing (LADC24), 2024.

[17] CEA LICIA, “Multi-Agent eXperimenter (MAX),” cea-licia.gitlab.io/
max/max.gitlab.io/, 2022.

[18] R. Paulavičius, S. Grigaitis, and E. Filatovas, “A systematic review and
empirical analysis of blockchain simulators,” in Access. IEEE, 2021.

[19] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
strong order-fairness in byzantine consensus,” in 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS23), 2023.

[20] Y. Amoussou-Guenou et al., “Dissecting tendermint,” in NETYS, 2019.
[21] V. Bushkov and R. Guerraoui, “Safety-liveness exclusion in distributed

computing,” in 2015 ACM Symposium on Principles of Distributed
Computing (PODC15), 2015.

[22] Y. Amoussou-Guenou, A. D. Pozzo, M. Potop-Butucaru, and S. Tucci
Piergiovanni, “On fairness in committee-based blockchains,” in 2nd
International Conference on Blockchain Economics, Security and Pro-
tocols, Tokenomics 2020, 2020.

[23] S. Müller, A. Penzkofer, D. Camargo, and O. Saa, “On fairness in voting
consensus protocols,” in Intelligent Computing, K. Arai, Ed., 2021.

[24] Y. Huang, J. Tang, Q. Cong, A. Lim, and J. Xu, “Do the rich get
richer? fairness analysis for blockchain incentives,” in 2021 International
Conference on Management of Data (SIGMOD21), 2021.

[25] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi, “FairLedger: A
Fair Blockchain Protocol for Financial Institutions,” in 23rd Interna-
tional Conference on Principles of Distributed Systems (OPODIS 2019),
2020.

[26] L. Heimbach and R. Wattenhofer, “Sok: Preventing transaction reorder-
ing manipulations in decentralized finance,” in 4th ACM Conference on
Advances in Financial Technologies (AFT22), 2023.

[27] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020.

[28] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., 1990.

[29] J. Garay and A. Kiayias, “Sok: A consensus taxonomy in the blockchain
era,” in Topics in Cryptology (CT-RSA 2020), 2020.

[30] M. A. Vafadar and M. Khabbazian, “Condorcet Attack Against Fair
Transaction Ordering,” in 5th Conference on Advances in Financial
Technologies (AFT 2023), 2023.

[31] N. Andola et al., “Vulnerabilities on hyperledger fabric,” Pervasive and
Mobile Computing, 2019.

[32] D. Malkhi and P. Szalachowski, “Maximal Extractable Value (MEV)
Protection on a DAG,” in 4th International Conference on Blockchain
Economics, Security and Protocols (Tokenomics 2022), 2023.

[33] P. Momeni, S. Gorbunov, and B. Zhang, “Fairblock: Preventing
blockchain front-running with minimal overheads,” in Security and
Privacy in Communication Networks, 2023.

cea-licia.gitlab.io/max/max.gitlab.io/
cea-licia.gitlab.io/max/max.gitlab.io/

[34] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” MIT, Tech. Rep., 1996.

[35] J. Burdges and L. De Feo, “Delay encryption,” in 40th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT2021), 2021.

[36] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[37] A. Kiayias, N. Leonardos, and Y. Shen, “Ordering transactions with

bounded unfairness: Definitions, complexity and constructions,” in Ad-
vances in Cryptology (EUROCRYPT 2024), 2024.

[38] A. Misra and A. D. Kshemkalyani, “Byzantine fault-tolerant causal
ordering,” in 24th International Conference on Distributed Computing
and Networking (ICDCN23), 2023.

[39] O. Damani and V. Garg, “How to recover efficiently and asynchronously
when optimism fails,” in 16th International Conference on Distributed
Computing Systems, 1996.

[40] B. Simons, “An overview of clock synchronization,” in Fault-Tolerant
Distributed Computing, 1990.

[41] J. Martin, J. Burbank, W. Kasch, and D. Mills, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” RFC 5905, 2010.

[42] R. Ganguly, A. Momtaz, and B. Bonakdarpour, “Distributed Runtime
Verification Under Partial Synchrony,” in 24th International Conference
on Principles of Distributed Systems (OPODIS 2020), 2021.

[43] S. Duan, K. N. Levitt, H. Meling, S. Peisert, and H. Zhang, “Byzid:
Byzantine fault tolerance from intrusion detection,” in 33rd IEEE
International Symposium on Reliable Distributed Systems, SRDS 2014,
2014.

[44] P. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: redundant byzantine
fault tolerance,” in IEEE 33rd International Conference on Distributed
Computing Systems, ICDCS 2013, 2013.

[45] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
1984.

[46] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine ordered
consensus without byzantine oligarchy,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020.

[47] K. Kursawe, “Wendy, the good little fairness widget: Achieving order
fairness for blockchains,” in 2nd ACM Conference on Advances in
Financial Technologies (AFT20), 2020.

[48] R. Cramer et al., “Efficient multiparty computations secure against an
adaptive adversary,” in EUROCRYPT, 1999.

[49] A. De Santis et al., “How to share a function securely,” in STOC, 1994.
[50] Y. Xiao et al., “Modeling the impact of network connectivity on

consensus security of proof-of-work blockchain,” in INFOCOM, 2020.
[51] A. Miller and R. Jansen, “Shadow-Bitcoin: Scalable simulation via direct

execution of Multi-Threaded applications,” in CSET. USENIX, 2015.
[52] A. Deshpande, P. Nasirifard, and H.-A. Jacobsen, “evibes: Configurable

and interactive ethereum blockchain simulation framework,” in Middle-
ware. ACM, 2018.

[53] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations:
An organizational view of multi-agent systems,” in Agent-Oriented
Software Engineering IV, 2004.

[54] A. Dabholkar and V. Saraswat, “Ripping the fabric: Attacks and miti-
gations on hyperledger fabric,” in ATIS, 2019.

[55] B. Putz and G. Pernul, “Detecting blockchain security threats,” in IEEE
International Conference on Blockchain, 2020.

[56] S. D. Angelis et al., “Evaluating blockchain systems: A comprehensive
study of security and dependability attributes,” in DLT at ITASEC, 2022.

[57] J. Barwise, “An introduction to first-order logic,” 1977.
[58] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile commu-

nications: The insecurity of 802.11,” in MobiCom, 2001.
[59] D. Ray and J. Ligatti, “Defining code-injection attacks,” in POPL, 2012.
[60] R. Wallace, X. G. Andrade, P. Kayser, Z. Luo, H. Mukherjee, R. Nunes,

and M. Warrior, “Models of network delay,” in Developments in Statis-
tical Modelling, 2024.

[61] E. Mahe, “Extended order fairness experiments on hyperledger fab-
ric & tendermint,” gitlab.com/cea-licia/max/models/experiments/max.
model.experiment.fabric tendermint of exp with mitigation, 04 2025.

[62] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia,
Handbook of Computational Social Choice, 1st ed. USA: Cambridge
University Press, 2016.

[63] J. Davies, G. Katsirelos, N. Narodytska, T. Walsh, and L. Xia, “Com-
plexity of and algorithms for the manipulation of borda, nanson’s and
baldwin’s voting rules,” Artificial Intelligence, 2014.

gitlab.com/cea-licia/max/models/experiments/max.model.experiment.fabric_tendermint_of_exp_with_mitigation
gitlab.com/cea-licia/max/models/experiments/max.model.experiment.fabric_tendermint_of_exp_with_mitigation

	Introduction
	Preliminaries and Related Works
	Communication and failure models
	Ledgers & Transaction Reordering
	Order Fairness
	Adversary models
	Simulation
	HyperLedger Fabric

	Our adversary model
	Adversarial actions
	Capabilities binding assumptions
	System simulation and success of attack

	Use-case and fairness properties
	Hyperledger Fabric system
	OF properties as evaluation metrics
	Application layer & client fairness
	Parameterization of the system

	Basic attack scenarios
	Peer sabotage
	Orderer sabotage

	Simulations of the attacks
	Analysis of the results

	A mitigation mechanism
	Description of the mechanism
	Selection of the voting algorithm

	Additional simulations
	Effect of the mitigation mechanism
	Varying the numbers of sub-systems

	Conclusion
	References

