
Privacy-Preserving CNN Training with Transfer
Learning: Two Hidden Layers

John Chiang

john.chiang.smith@gmail.com

Abstract

In this paper, we present the demonstration of training a four-layer neural network
entirely using fully homomorphic encryption (FHE), supporting both single-output
and multi-output classification tasks in a non-interactive setting. A key contribution
of our work is identifying that replacing Softmax with Sigmoid, in conjunction with
the Binary Cross-Entropy (BCE) loss function, provides an effective and scalable
solution for homomorphic classification. Moreover, we show that the BCE loss
function, originally designed for multi-output tasks, naturally extends to the multi-
class setting [12], thereby enabling broader applicability. We also highlight the
limitations of prior loss functions such as the SLE loss [6, 5] and the one proposed
in the 2019 CVPR Workshop [13], both of which suffer from vanishing gradients as
network depth increases. To address the challenges posed by large-scale encrypted
data, we further introduce an improved version of the previously proposed data
encoding scheme, Double Volley Revolver [4], which achieves a better trade-off
between computational and memory efficiency, making FHE-based neural network
training more practical. The complete, runnable C++ code to implement our work
can be found at: https://github.com/petitioner/ML.NNtraining.

1 Introduction

1.1 Background

Deep neural networks are a versatile and powerful tool with diverse applications, ranging from speech
recognition to computer vision. The process of utilizing these networks typically involves two main
phases: training and inference. In the training phase, an appropriate dataset is selected, and a network
architecture is designed. The data is then used to learn the network weights, a process that may take
days. Once the weights are stable and the network generates meaningful results, it can be used for
inference, where it makes predictions on new, unseen data. While training can be time-consuming,
inference is expected to be much faster.

However, many scenarios involve sensitive data that cannot be freely shared. For example, credit card
transaction data is proprietary to credit card companies, and healthcare data, such as patient records,
is confined to hospitals and unavailable to researchers studying conditions like cancer progression.
Moreover, privacy regulations, such as the European GDPR, further restrict the availability of such
data. Often, data owners lack the expertise to build deep learning models themselves, but privacy and
confidentiality concerns prevent sharing the data with external providers.

Fully homomorphic encryption (FHE) offers a potential solution to balance the need for privacy
with the utility of the data. Despite initial skepticism about its feasibility, FHE has seen significant
advancements over the past decade, with various algorithmic improvements enabling research
prototypes to demonstrate its application in different contexts. Although current implementations
are still considered too slow for training deep neural networks, ongoing progress suggests that FHE
could eventually be a viable approach for secure machine learning.

ar
X

iv
:2

50
4.

12
62

3v
1 

 [
cs

.C
R

] 
 1

7 
A

pr
 2

02
5

https://orcid.org/0000-0003-0378-0607
https://github.com/petitioner/ML.NNtraining


1.2 Related Work

While privacy-preserving machine learning has been explored for nearly two decades, relatively little
research has focused on the specific application of homomorphic encryption within neural networks.
To the best of our knowledge, the only notable prior work utilizing non-interactive homomorphic
encryption in this context is CryptoNets by Gilad-Bachrach et al., which demonstrated a carefully
constructed neural network capable of performing inference directly on encrypted data. This model
achieved 99% accuracy on the MNIST optical character recognition task and an amortized throughput
of approximately 60,000 predictions per hour. More recently, fully homomorphic encryption has also
been employed in the design of protocols for secure face matching and secure k-nearest neighbor
search.

There has been significantly more progress in leveraging homomorphic encryption (HE) in com-
bination with interactive secure computation protocols for neural networks. Early contributions
in this direction include the works of Barni et al. and Orlandi et al., which employed additively
homomorphic encryption together with interactive protocols, enabling inference on small networks
within approximately ten seconds. More recently, a series of interactive protocols have been proposed
for secure inference, such as SecureML by Mohassel and Zhang, MiniONN by Liu et al., Chameleon
by Riazi et al., and GAZELLE by Juvekar et al.. The latter achieves inference on MNIST in as little
as 30ms, and on CIFAR-10 in just 13 seconds.

However, all of these studies focus solely on the inference phase; none address the problem of
privacy-preserving training. To the best of our knowledge, there is few prior work tackling the private
training of neural networks. This absence is likely due to the prevailing belief that training under
homomorphic encryption would be prohibitively slow. Additionally, training complex models often
involves conditional operations such as comparisons and selections, which were traditionally deemed
impractical using HE alone.

In this work, we take a further step toward challenging this perception by demonstrating that even
non-interactive homomorphic encryption can support training in certain restricted scenarios. Previous
research has explored privacy-preserving training and inference for simpler models, including linear
regression and logistic regression.

1.3 Contributions

In this paper, we propose leveraging Fully Homomorphic Encryption (FHE) to facilitate the training
of neural network models on encrypted data. This approach allows users to encrypt their data using a
private (secret) key and share the encrypted data with a service provider. The service provider can
then train the model without accessing the underlying data. Since the trained model is also encrypted,
the service provider remains unaware of both the data and the learned model parameters. Furthermore,
the resulting model is only useful to users with access to the private key, preventing unauthorized
sharing. This method is particularly suited for scenarios where data owners wish to outsource deep
learning tasks to external providers who possess the necessary expertise and computational resources,
while ensuring that these providers do not gain undue advantages from the data or the model.

Our contributions are threefold:

1. We demonstrate that the Binary Cross-Entropy (BCE) loss function is effective for addressing
single-output classification tasks in privacy-perserving machine learning. Given that BCE
is inherently designed for multi-output scenarios, the proposed approach naturally extends
to multi-output classification problems as well [12]. To the best of our knowledge, this is
the first work to tackle multi-output classification in a non-interactive manner over data
encrypted with fully homomorphic encryption (FHE).

2. We propose an improved version of the previously introduced data encoding scheme [4],
Double Volley Revolver, which is better suited for large-scale neural network training. Our
method achieves a favorable balance between the time and space complexity of the resulting
algorithm.

3. Finally, we address the challenge of speeding up FHE computations through the smart
implementation of ciphertext packing. Although ciphertext packing is a known technique in
FHE, we utilize it strategically to minimize the number of bootstrapping operations and en-

2



able parallel computation across neurons, leading to significant reductions in computational
complexity.

2 Preliminaries

2.1 Fully Homomorphic Encryption

Homomorphic Encryption (HE) refers to a class of encryption schemes that support computation
directly on encrypted data, without requiring access to the secret key. A scheme is called fully
homomorphic if it supports both addition and multiplication operations, thereby enabling arbitrary
computations over ciphertexts. Since Gentry’s groundbreaking work in 2009 [8], which introduced the
first fully homomorphic encryption (FHE) scheme, there has been significant progress in the field. For
instance, Brakerski, Gentry, and Vaikuntanathan [1] proposed the BGV scheme, a leveled FHE scheme
that significantly improves efficiency. Smart and Vercauteren [14] introduced a key optimization
known as the Single Instruction Multiple Data (SIMD) technique, which enables encrypting multiple
plaintext slots into a single ciphertext via polynomial Chinese Remainder Theorem (CRT) packing.

Another major advancement, especially for machine learning applications, is the rescaling tech-
nique [2], which allows control over the magnitude of plaintexts during computation, helping manage
precision and ciphertext noise.

Modern FHE schemes such as HEAAN support a set of standard homomorphic operations, including:

• Enc: Encryption of a plaintext vector;
• Dec: Decryption of a ciphertext;
• Add and Mult: Homomorphic addition and multiplication of ciphertexts;
• cMult: Multiplication of a ciphertext with a constant plaintext vector;
• ReScale: Rescaling operation to reduce the plaintext scale;
• Rot: Rotation of encrypted vectors (e.g., circular shift);
• bootstrap: Bootstrapping to refresh ciphertexts and reduce accumulated noise.

These operations form the foundation for implementing non-trivial encrypted computations, including
privacy-preserving machine learning tasks.

2.1.1 Data Encoding

To optimize homomorphic computations on databases, Kim et al. [11] proposed an efficient encoding
method that maximizes resource utilization in HE systems. Specifically, given a matrix-form database
Z, the data is first linearized into a vector V using row-wise flattening, which is then encrypted to
produce the ciphertext Z = Enc(V ).

Based on this vectorized encoding, two key operations are enabled by shifting the encrypted vector:

• Complete row shifting: rotates entire rows within the matrix;
• Incomplete column shifting: simulates column-wise operations by partially rotating values

across rows.

These techniques enable matrix manipulations directly in the encrypted domain, yielding modified
matrices Z ′ and Z ′′ respectively.

Z =


x10 x11 . . . x1d

x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd

 , Z
′
= Enc


x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd

x10 x11 . . . x1d

 ,

Z
′′
= Enc


x11 . . . x1d x20

x21 . . . x2d x30

...
...

. . .
...

xn1 . . . xnd x10

 , Z
′′′

= Enc


x11 . . . x1d x10

x21 . . . x2d x20

...
...

. . .
...

xn1 . . . xnd xn0

 .

3



Moreover, complete column shifting to generate the matrix Z
′′′

can be realized using two Rot
operations, two cMult operations, and one Add operation.

Subsequent works [9, 4] adopting the same encoding approach have introduced additional procedures
such as SumRowVec and SumColVec, which compute the summation of each row and column,
respectively. These basic yet essential operations serve as foundational building blocks for more
complex computations, including the homomorphic evaluation of gradients.

2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a class of artificial neural networks inspired by biological
visual systems. They are particularly well-suited for analyzing visual data and have demonstrated
state-of-the-art performance in image recognition tasks. Notably, CNNs are among the few deep
learning architectures that draw structural inspiration from the visual cortex in the human brain.

2.2.1 Transfer Learning

Transfer learning refers to techniques where a model pre-trained on one task is reused or adapted
for another, typically related, task. In real-world scenarios, training entire CNNs from scratch is
uncommon due to the limited availability of sufficiently large datasets. Instead, practitioners often
employ a pre-trained CNN as a fixed feature extractor, transferring its learned representations to new
tasks.

In our case, we freeze the weights of all layers in the selected pre-trained CNN except for the final
fully connected layer. We then replace this final layer with a new one initialized with random weights
(e.g., zeros), and train only this layer. This approach simplifies CNN training to that of multiclass
logistic regression.

REGNET_X_400MF For our privacy-preserving CNN training, we adopt a recent model design
paradigm introduced by Facebook AI researchers, known as RegNet. This framework defines a
low-dimensional design space consisting of simple and regular networks. We specifically select
REGNET_X_400MF as our fixed feature extractor and replace its final fully connected layer with a new
one initialized with zero weights. The rest of the network remains frozen during training.

Since REGNET_X_400MF is designed to accept color images of size 224× 224, any grayscale input
images are transformed by stacking them across three channels. Furthermore, input images of varying
sizes are resized to the required dimensions. These preprocessing steps are performed using PyTorch
utilities.

2.3 Squared Likelihood-Error Loss

Due to the inherent uncertainty and complexity of the Softmax function, directly approximating it
in the encrypted domain is often impractical. To address this challenge, Chiang et al. [6, 5] adopt
a classical mathematical strategy: transforming a difficult problem into a simpler one. Specifically,
instead of approximating the Softmax function, they focus on the Sigmoid function, which has been
extensively studied under encryption, particularly using least-squares approximation techniques.

To remain consistent with the typical use of Softmax in the log-likelihood loss function, they propose
maximizing the following reformulated objective:

L1 =

n∏
i=1

1

1 + exp(−xi ·w⊺
[yi]

)
.

Empirical evaluations suggest that lnL1 performs suboptimally. A key reason is that its gradient and
Hessian, for each individual example, involve only the class weight associated with that example,
without accounting for other classes.

To overcome this limitation, Chiang et al. [6, 5] introduce a new loss function:

L11 =

n∏
i=1

c−1∏
j=0

(
1−

(
ȳij − Sigmoid(xi ·w⊺

[j])
))2

.

4



Initially, they attempt to maximize its logarithmic form:

lnL11 =

n∑
i=1

c−1∑
j=0

ln
∣∣∣1− (

ȳij − Sigmoid(xi ·w⊺
[j])

)∣∣∣ .
To better align with conventional learning paradigms, the formulation is further revised to minimize
the logarithm of a new loss function L2:

L2 =

n∏
i=1

c−1∏
j=0

(
ȳij − Sigmoid(xi ·w⊺

[j])
)2

,

lnL2 =

n∑
i=1

c−1∑
j=0

ln
∣∣∣ȳij − Sigmoid(xi ·w⊺

[j])
∣∣∣ .

This new loss, referred to as the Squared Likelihood Error (SLE), is empirically shown to perform
competitively with the Softmax-based log-likelihood loss. Notably, the SLE formulation resembles
the Mean Squared Error (MSE): whereas MSE sums squared errors, SLE takes the product of squared
likelihood errors across all classes and examples.

A subsequent study [5] extends this formulation to neural networks with one hidden layer. The
proposed generalized loss is:

L3 =

n∑
i=1

c−1∑
j=0

(
ȳij − Sigmoid(xi ·w⊺

[j])
)2

.

This reformulation offers greater interpretability by treating classification as a special case of re-
gression. The use of Sigmoid activation in the output layer improves training stability and reduces
the likelihood of divergence caused by inappropriate learning rates—a common issue in standard
regression settings.

For first-order optimization methods such as gradient descent/ascent, it is standard practice to average
the loss, yielding the Mean Squared Likelihood Error (MSLE):

L2 =
1

n

n∑
i=1

c−1∑
j=0

(
ȳij − Sigmoid(xi ·w⊺

[j])
)2

,

lnL2 =
1

n

n∑
i=1

c−1∑
j=0

ln
∣∣∣ȳij − Sigmoid(xi ·w⊺

[j])
∣∣∣ .

3 Technical Details

3.1 Binary Cross-Entropy Loss

Binary Cross Entropy is a widely-used loss function in machine learning, particularly in binary
classification tasks. It measures the dissimilarity between the true labels and the predicted probabilities
for each class, utilizing the concept of entropy from information theory. This loss function is especially
effective when the output is a probability value indicating the likelihood of a particular class, and the
model outputs a value in the range [0, 1] for each instance. Binary Cross-Entropy loss originates from
the concept of cross entropy in information theory, first introduced by Shannon (1948), and is widely
adopted in modern neural networks as the negative log-likelihood under a Bernoulli distribution.

The Binary Cross-Entropy Loss function is defined as:

L = − 1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

where:

• n is the total number of samples,

5



• yi is the true label (0 or 1) of the i-th sample,

• pi is the predicted probability for the positive class (class 1),

• log represents the natural logarithm.

The Binary Cross-Entropy Loss quantifies the error between the predicted probability pi and the
true label yi. The logarithmic terms ensure that the penalty increases as the predicted probability
diverges from the actual label. This loss is minimized during training, leading the model to improve
its accuracy in classifying binary outcomes.

Had the formulation

lnL11 =

n∑
i=1

c−1∑
j=0

ln
∣∣∣1− (

ȳij − Sigmoid(xi ·w⊺
[j])

)∣∣∣
been properly transformed into its dual form from the beginning, the resulting expression would
naturally coincide with the Binary Cross-Entropy (BCE) loss:

LBCE = −
n∑

i=1

c−1∑
j=0

ln
∣∣∣1− ȳij + Sigmoid(xi ·w⊺

[j])
∣∣∣ .

Both the SLE loss function and the loss formulation adopted in the 2019 CVPR Workshop base-
line [13] suffer from inherent limitations. In particular, they are prone to the vanishing gradient
problem as the network depth increases, leading to ineffective training in more complex architec-
tures. In contrast, the Binary Cross-Entropy (BCE) loss offers a more stable and scalable solution,
making it a more suitable choice for deeper neural networks and ultimately serving as a more robust
optimization objective.

3.2 Double Volley Revolver

Unlike those efficient, complex encoding methods [10], Volley Revolver [4] is a simple, flexible
matrix-encoding method specialized for privacy-preserving machine-learning applications, whose
basic idea in a simple version is to encrypt the transpose of the second matrix for two matrices to
perform multiplication.

The encoding method actually plays a significant role in implementing privacy-preserving CNN
training. Just as Chiang mentioned in [4], we show that Volley Revolver can indeed be used to
implement homomorphic CNN training. This simple encoding method can help to control and
manage the data flow through ciphertexts.

However, we don’t need to stick to encrypting the transpose of the second matrix. Instead, either of
the two matrices is transposed would do the trick: we could also encrypt the transpose of the first
matrix, and the corresponding multiplication algorithm due to this change is similar to the Algorithm
2 from [4].

Also, if each of the two matrices are too large to be encrypted into a single ciphertext, we could also
encrypt the two matrices into two teams A and B of multiple ciphertexts. In this case, we can see this
encoding method as Double Volley Revolver, which has two loops: the outside loop deals with
the calculations between ciphertexts from two teams while the inside loop literally calculates two
sub-matrices encrypted by two ciphertexts A[i] and B[j] using the raw algorithm of Volley Revolver.

3.2.1 Vertical Partitioning

Figure 1 describes a simple case for the algorithm adopted in this encoding method.

3.3 Deep Learning Model

Deep learning models are commonly structured as multilayer neural networks, enabling the hierarchi-
cal extraction of abstract features through nonlinear transformations of lower-level representations,
beginning with the raw input data. Figure 2 illustrates a typical feedforward neural network architec-
ture consisting of two hidden layers.

6



·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

×

a0 a1

a2 a3 b0 b1

a4 a5 b2 b3

a6 a7

0 0

0 0

0 0

0 0

·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

c0 = a0 · b0 + a1 · b2 c3 = a2 · b1 + a3 · b3

c0 c0

c3 c3

c4 c4

c7 c7

c4 = a4 · b0 + a5 · b2 c7 = a6 · b1 + a7 · b3

c0 0

0 c3

c4 0

0 c7

·

a0 a1 b1 b3

a2 a3 b0 b2

a4 a5 b1 b3

a6 a7 b0 b2

c1 = a0 · b1 + a1 · b3 c2 = a2 · b0 + a3 · b2

c1 c1

c2 c2

c5 c5

c6 c6

c5 = a4 · b1 + a5 · b3 c6 = a6 · b0 + a7 · b2

0 c1

c2 0

0 c5

c6 0

Encrypt

Encoding

R
o
t
(0)

R
o
t(1)

SumColVec(·) Clean up the

redundant values

SumColVec(·) Clean up the

redundant values

⊕
⊕

Figure 1: The matrix multiplication algorithm of Volley Revolver for the 4× 2 matrix A and the
matrix B of size 2× 2

Each node (neuron) in the network computes its output by applying a nonlinear activation function to
the weighted sum of its inputs, where a bias term—typically fixed at 1—is also included. Formally,
the activation vector of the ℓ-th layer, denoted a(ℓ), is computed as:

a(ℓ) = f
(
W (ℓ)a(ℓ−1)

)
, (1)

where f(·) is the activation function, W (ℓ) is the weight matrix for layer ℓ, and L denotes the total
number of layers in the network.

Given a labeled training dataset {(xi, yi)}Ni=1, the objective is to learn the set of weight matrices
{W (ℓ)} that minimizes a predefined loss function L. This task corresponds to solving a non-convex
optimization problem, which is typically addressed using variants of gradient descent.

In this work, we employ the widely-used Nesterov’s Accelerated Gradient (NAG) algorithm. One full
pass over the entire dataset is referred to as an epoch. The gradient update is iteratively performed
until convergence to a local minimum or until a maximum number of epochs is reached. The weight
update rule is given by:

W (ℓ) ←W (ℓ) − α
∂LB

∂W (ℓ)
, (2)

where LB denotes the loss evaluated over the mini-batch B, and α is the learning rate.

During training, the forward pass computes the output of the network, and the loss at the output
layer is determined accordingly. The backpropagation algorithm is then used to propagate the error
backward through the network, allowing gradients to be computed for all layers.

Nesterov’s Accelerated Gradient With∇ or ∇2, first-order gradient algorithms or second-order
Newton–Raphson method are commonly applied in MLE to maxmise lnL. In particular, Nesterov’s
Accelerated Gradient (NAG) is a practical solution for homomorphic MLR without frequent inversion
operations. It seems plausible that the NAG method is probably the best choice for privacy-preserving
model training.

7



3.3.1 4-Layer Neural Networks

In our implementation, we employ a 4-layer neural network consisting of two single hidden layers,
following the same architecture as the baseline methods.

Input Layer

1

x1

...

xd

Hidden Layer

1

h11

h12

h13

...

h1n

Hidden Layer

1

h21

h22

h23

...

h2n

Output Layer

y1

...

yc

Figure 2: A typical neural network with two hidden layers is illustrated, where black circles represent
bias nodes that constantly emit a value of 1. The weight matrices W (ℓ) determine the contribution of
each input signal to the activation function at each node.

Figure 2 illustrates a typical neural network comprising two hidden layers. The output of each node
(or neuron) is computed by applying a non-linear activation function to a weighted sum of its inputs,
which includes a constant bias term with value 1. The output vector of neurons in layer ℓ (where
ℓ = 1, 2, . . . , L) is given by:

a(ℓ) = f
(
W (ℓ)a(ℓ−1)

)
,

where f denotes the activation function, W (ℓ) is the weight matrix for layer ℓ, and L is the total
number of layers in the network.

Table 1: Result of machine learning on encrypted data
Layer BaseLine [13] Our
Input nn.Reshape(64)
FC-1 nn.Linear(64->32)
ACT-1 nn.Sigmoid quadratic/cubic polynomial activation
FC-2 nn.Linear(32->16)
ACT-2 nn.Sigmoid low-degree polynomial activation function
FC-3 nn.Linear(16->10)
Output nn.Sigmoid polynomial sigmoid approximation
Sigmoid Approximation homomorphic table lookup [7] domain extension polynomials [3]
Optimization Algorithm Stochastic Gradient Descent Nesterov’s Accelerated Gradient

Nandakumar et al. [13] actually use Mini-batch Gradient Descent instead of Stochastic Gradient
Descent.

4 Homomorphic Training

Implementation/Homomorphic Implementation

8



4.1 Polynomial Approximation

Several established techniques exist for approximating nonlinear functions using polynomials. Classi-
cal methods such as Taylor expansion and Lagrange interpolation offer precise local approximations
around a specific point. However, their accuracy deteriorates rapidly outside the vicinity of the
expansion point, resulting in significant approximation error over broader intervals.

In contrast, the least squares approximation method seeks to minimize the overall approximation error
across a global domain, thereby providing more reliable performance over wider ranges. Due to its
robustness and generality, it has been extensively adopted in practical applications, as demonstrated in.
Both Python and MATLAB provide built-in functions—polyfit(·)—that implement least squares
polynomial fitting for non-polynomial functions.

Another widely used technique is the minimax approximation, which aims to minimize the maximum
error over the approximation interval. This method ensures uniform approximation quality and is
particularly suitable for scenarios where worst-case error bounds are critical.

Recent research has also focused on polynomial approximation over large intervals. For example,
Cheon et al. [3] proposed the use of domain extension polynomials, which enable iterative extension
of the approximation domain. This approach allows efficient approximation of sigmoid-like functions
over significantly wider intervals and has proven effective for homomorphic evaluation. In our work,
we adopt their method to approximate the sigmoid function over the interval [−64, 64].

4.2 Homomorphic Evaluation

4.3 Computational Complexity

We conducted experiments for encrypted-domain processing on a dual-socket Intel Xeon E5-2698 v3
(Haswell architecture) server, featuring 16 cores per socket running at 2.30GHz and equipped with
250 GB of main memory. Compilation was performed using GCC 7.2.1, with NTL version 10.5.0
and GMP version 6.0 for arithmetic support.

Future improvements: These preliminary results demonstrate the feasibility of SGD training in
the encrypted domain. Nevertheless, this work represents an initial effort, and further optimization
opportunities remain. In particular, we have only begun to explore efficient batching/packing
strategies. At present, we batch the inputs but still allocate a separate ciphertext for each weight
parameter.

5 Experiments

The C++ source code to implement the experiments in this section is openly available at:
https://github.com/petitioner/ML.NNtraining .

5.1 Comparison with Baseline Work [13]

5.2 Multi-output Classification Performance

5.3 Transfer Learning Application

Datasets In our experiments, we use three widely-used datasets: USPS, MNIST, and CIFAR-10.
Table 2 summarizes the key characteristics of these datasets.

Table 2: Characteristics of the datasets used in our experiments

Dataset No. of Samples
(training)

No. of Samples
(testing) No. of Features No. of Classes

USPS 7,291 2,007 16×16 10
MNIST 60,000 10,000 28×28 10

CIFAR-10 50,000 10,000 3×32×32 10

9

https://github.com/petitioner/ML.NNtraining


Parameters For the training data, we use the first 128 MNIST training images, and the entire test
dataset is used for evaluation. Both the training and testing images have been pre-processed with the
pre-trained model REGNET_X_400MF, resulting in a new dataset where each example has a size of
401.

The parameters of HEAAN used in our experiments are as follows: logN = 16, logQ = 990,
logp = 45, and slots = 32768, which ensure a security level of λ = 128. For further details on these
parameters, refer to [11]. We did not use bootstrapping to refresh the weight ciphertexts, which limits
our algorithm to 2 iterations. Each iteration takes approximately 11 minutes. The maximum runtime
memory required is around 18 GB.

The 128 MNIST training images are encrypted into 2 ciphertexts. The client, who owns the private
data, uploads these two ciphertexts, two ciphertexts encrypting the one-hot labels Ȳ , one ciphertext
encrypting B̄, and one ciphertext encrypting the weight matrix W to the cloud. The initial weight
matrix W0 is set to the zero matrix. After 2 iterations of training, the resulting MLR model achieves
a precision of 21.49% and a loss of -147206, which is consistent with the Python simulation results.

Performance

6 Conclusion

In this work, we implemented privacy-persevering 4-layer NN training based on mere HE techniques
by presenting a faster HE-friendly algorithm.

References
[1] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014). (leveled) fully homomorphic encryption

without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36.

[2] Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic encryption for arithmetic of
approximate numbers. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 409–437. Springer.

[3] Cheon, J. H., Kim, W., and Park, J. H. (2022). Efficient homomorphic evaluation on large
intervals. IEEE Transactions on Information Forensics and Security, 17:2553–2568.

[4] Chiang, J. (2022). Volley revolver: A novel matrix-encoding method for privacy-preserving
neural networks (inference). arXiv preprint arXiv:2201.12577.

[5] Chiang, J. (2023a). Privacy-preserving 3-layer neural network training. arXiv preprint
arXiv:2308.09531.

[6] Chiang, J. (2023b). Privacy-preserving cnn training with transfer learning: Multiclass logistic
regression. arXiv preprint arXiv:2304.03807.

[7] Crawford, J. L., Gentry, C., Halevi, S., Platt, D., and Shoup, V. (2018). Doing real work with fhe:
the case of logistic regression. In Proceedings of the 6th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 1–12.

[8] Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178.

[9] Han, K., Hong, S., Cheon, J. H., and Park, D. (2019). Logistic regression on homomorphic en-
crypted data at scale. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 9466–9471.

[10] Jiang, X., Kim, M., Lauter, K., and Song, Y. (2018). Secure outsourced matrix computation
and application to neural networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1209–1222.

[11] Kim, A., Song, Y., Kim, M., Lee, K., and Cheon, J. H. (2018). Logistic regression model
training based on the approximate homomorphic encryption. BMC medical genomics, 11(4):83.

10



[12] Kornblith, S., Chen, T., Lee, H., and Norouzi, M. (2021). Why do better loss functions lead to
less transferable features? Advances in Neural Information Processing Systems, 34:28648–28662.

[13] Nandakumar, K., Ratha, N., Pankanti, S., and Halevi, S. (2019). Towards deep neural network
training on encrypted data. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pages 0–0.

[14] Smart, N. and Vercauteren, F. (2011). Fully homomorphic simd operations. Cryptology ePrint
Archive, Report 2011/133. https://ia.cr/2011/133.

11

https://ia.cr/2011/133

	Introduction
	Background
	Related Work
	Contributions

	Preliminaries
	Fully Homomorphic Encryption
	Data Encoding

	Convolutional Neural Network
	Transfer Learning

	Squared Likelihood-Error Loss

	Technical Details
	Binary Cross-Entropy Loss
	Double Volley Revolver
	Vertical Partitioning

	Deep Learning Model
	4-Layer Neural Networks


	Homomorphic Training
	Polynomial Approximation
	Homomorphic Evaluation 
	Computational Complexity

	Experiments
	Comparison with Baseline Work nandakumar2019towards
	Multi-output Classification Performance
	Transfer Learning Application

	Conclusion

